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Preface to the first edition

Why should we care about nano-optics? For the same reason we care about optics! The
foundations of many fields of the contemporary sciences have been established using opti-
cal experiments. To give an example, think of quantum mechanics. Blackbody radiation,
hydrogen lines, or the photoelectric effect were key experiments that nurtured the quantum
idea. Today, optical spectroscopy is a powerful means to identify the atomic and chemi-
cal structure of different materials. The power of optics is based on the simple fact that
the energy of light quanta lies in the energy range of electronic and vibrational transitions
in matter. This fact is at the core of our abilities for visual perception and is the reason
why experiments with light are very close to our intuition. Optics, and in particular optical
imaging, helps us to consciously and logically connect complicated concepts. Therefore,
pushing optical interactions to the nanometer scale opens up new perspectives, properties
and phenomena in the emerging century of the nanoworld.

Nano-optics aims at the understanding of optical phenomena on the nanometer scale,
i.e. near or beyond the diffraction limit of light. It is an emerging new field of study,
motivated by the rapid advance of nanoscience and nanotechnology and by their need
for adequate tools and strategies for fabrication, manipulation and characterization at the
nanometer scale. Interestingly, nano-optics predates the trend of nanotechnology by more
than a decade. An optical counterpart to the scanning tunneling microscope (STM) was
demonstrated in 1984 and optical resolutions had been achieved that were significantly
beyond the diffraction limit of light. These early experiments sparked a field initially
called near-field optics, since it was realized quickly that the inclusion of near-fields in the
problem of optical imaging and associated spectroscopies holds promise for achieving arbi-
trary spatial resolutions, thus providing access for optical experiments on the nanometer
scale.

The first conference on near-field optics was held in 1992. About seventy participants
discussed theoretical aspects and experimental challenges associated with near-field optics
and near-field optical microscopy. The subsequent years are characterized by a constant
refinement of experimental techniques, as well as the introduction of new concepts and
applications. Applications of near-field optics soon covered a large span ranging from
fundamental physics and materials science to biology and medicine. Following a logical
development, the strong interest in near-field optics gave birth to the fields of single-
molecule spectroscopy and plasmonics, and inspired new theoretical work associated with
the nature of optical near-fields. In parallel, relying on the momentum of the flowering
nanosciences, researchers started to tailor nanomaterials with novel optical properties. Pho-
tonic crystals, single-photon sources and optical microcavities are products of this effort.
Today, elements of nano-optics are scattered across the disciplines. Various review articles

xv



xvi Preface to the first edition

and books capture the state-of-the-art in the different subfields but there appears to be no
dedicated textbook that introduces the reader to the general theme of nano-optics.

This textbook is intended to teach students at the graduate level or advanced
undergraduate level about the elements of nano-optics encountered in different subfields.
The book evolved from lecture notes that have been the basis for courses on nano-optics
taught at the Institute of Optics of the University of Rochester, and at the University of
Basel. We were happy to see that students from many different departments found interest
in this course, which shows that nano-optics is important to many fields of study. Not all
students were interested in the same topics and, depending on their field of study, some stu-
dents needed additional help with mathematical concepts. The courses were supplemented
with laboratory projects that were carried out in groups of two or three students. Each
team picked the project that had most affinity with their interest. Among the projects were:
surface enhanced Raman scattering, photon scanning tunneling microscopy, nanosphere
lithography, spectroscopy of single quantum dots, optical tweezers, and others. Towards
the end of the course, students gave a presentation on their projects and handed in a written
report. Most of the problems at the end of individual chapters have been solved by students
as homework problems or take-home exams. We wish to acknowledge the very helpful
input and inspiration that we received from many students. Their interest and engagement
in this course is a significant contribution to this textbook.

Nano-optics is an active and evolving field. Every time the course was taught new topics
were added. Also, nano-optics is a field that easily overlaps with other fields such as phys-
ical optics or quantum optics, and thus the boundaries cannot be clearly defined. This first
edition is an initial attempt to put a frame around the field of nano-optics. We would be
grateful to receive input from our readers related to corrections and extensions of existing
chapters and for suggestions of new topics.

Acknowledgments

We wish to express our thanks for the input we received from various colleagues and
students. We are grateful to Dieter Pohl who inspired our interest in nano-optics. This
book is a result of his strong support and encouragement. We received very helpful input
from Andreas Lieb, Scott Carney, Jean-Jacques Greffet, Stefan Hell, Carsten Henkel, Mark
Stockman, Gert Zumofen, Jer-Shing Huang, Paolo Bragioni, and Jorge Zurita-Sanchez. It
was also a great pleasure to discuss various topics with Miguel Alonso, Joe Eberly, Robert
Knox, and Emil Wolf at the University of Rochester.



Preface to the second edition

We are very pleased that this textbook found wide use and reasonably high demand. Since
the first printing of the first edition in 2006, the field of nano-optics has gained consid-
erable momentum and new research directions have been established. Among the new
topics are metamaterials, optical antennas, and cavity optomechanics, to name but a few.
The high field localization associated with metals at optical frequencies has given rise to
the demonstration of truly nanoscale lasers and the high nonlinearity of metals is being
used for frequency conversion in subwavelength volumes. These new trends define a clear
motivation for a second edition of Principles of Nano-Optics.

The overall structure of the book has been left unchanged with the exception of a new
chapter on optical antennas (Chapter 13). Chapter 2 (Theoretical foundations) has been
adjusted to include topics such as reciprocity and energy density in lossy media, and
Chapter 4 (Resolution and localization) has been extended by including new microscopy
techniques, such as structured illumination and localization microscopy. Chapter 5 received
a major polish: optical microscopy is now classified in terms of interaction orders between
probe and sample. On the other hand, Chapter 6 has been condensed since some near-
field techniques are no longer of general interest. Several new topics have been included in
Chapter 8, which covers the theory of localized light–matter interactions. Among the new
sections is a discussion of Fano interference, strong coupling between modes, and level
crossing. Chapters 9 and 10 received only minor revisions, while Chapter 11 has been
extended by a section on metamaterials and cavity optomechanics. Chapter 12 (Surface
plasmons) has also been restructured: metals are discussed from a perspective of plasma
physics leading to screening and to ponderomotive forces, which give rise to a wide range
of optical nonlinearities. The chapter on optical forces (Chapter 14) has been adjusted to
provide a more self-consistent perspective on dipole forces. Finally, various typos have
been fixed. We thank our critical readers for pointing out several errors and for suggesting
valuable changes.

Despite the changes and additions it is not possible to account for all the new results and
directions in the field. However, the purpose of this book is not to provide a comprehensive
review, but to present the necessary foundations and concepts to understand what’s going
on. In this sense, the book has remained a textbook and a reference for those seeking a
conceptual understanding of the working principles of nano-optics.
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1 Introduction

In the history of science, the first applications of optical microscopes and telescopes to
investigate nature mark the beginnings of new eras. Galileo Galilei used a telescope to see
for the first time craters and mountains on a celestial body, the Moon, and also discovered
the four largest satellites of Jupiter. With this he opened the field of optical astronomy.
Robert Hooke and Antony van Leeuwenhoek used early optical microscopes to observe
certain features of plant tissue that were called “cells,” and to observe microscopic organ-
isms, such as bacteria and protozoans, thus marking the beginning of optical biology. The
newly developed instrumentation enabled the observation of fascinating phenomena not
directly accessible to human senses. Naturally, the question of whether the observed struc-
tures not detectable within the range of normal vision should be accepted as reality at all
was raised. Today, we have accepted that, in modern physics, scientific proofs are veri-
fied by indirect measurements, and the underlying laws have often been established on
the basis of indirect observations. It seems that as modern science progresses it withholds
more and more findings from our natural senses. In this context, the use of optical instru-
mentation excels among ways to study nature. This is due to the fact that because of our
ability to perceive electromagnetic waves at optical frequencies our brain is used to the
interpretation of phenomena associated with light, even if the structures that are observed
are magnified a thousandfold. This intuitive understanding is among the most important
features that make light and optical processes so attractive as a means to reveal physical
laws and relationships. The fact that the energy of light lies within the energy range of
electronic and vibrational transitions in matter allows us to use light for gaining unique
information about the structural and dynamical properties of matter and also to perform
subtle manipulations of the quantum state of matter. These unique spectroscopic capabili-
ties associated with optical techniques are of great importance for the study of biological
and solid-state nanostructures.

Today we encounter a strong trend towards nanoscience and nanotechnology. This trend
was originally driven by the benefits of miniaturization and integration of electronic circuits
for the computer industry. More recently we have observed a paradigm shift that manifests
itself in the notion that nanoscience and technology are more and more driven by the fact
that, as we move to smaller and smaller scales, new physical effects that may be exploited
in future technological applications become prominent. The advances in nanoscience and
technology are due in large part to our newly acquired ability to measure, fabricate, and
manipulate individual structures on the nanometer scale using scanning probe techniques,
optical tweezers, high-resolution electron microscopes and lithography tools, focused ion-
beam milling systems etc.

1



2 Introduction

The increasing trend towards nanoscience and nanotechnology makes it inevitable that
we will need to study optical phenomena on the nanometer scale. Since the diffraction
limit does not allow us to focus light to dimensions smaller than roughly one half of the
wavelength (200 nm), traditionally it was not possible to optically interact selectively with
nanoscale features. However, in recent years, several new approaches have been put forth
to “shrink” the diffraction limit or even overcome it. A central goal of nano-optics is to
extend the use of optical techniques to length scales beyond the diffraction limit. The most
obvious potential technological applications that arise from breaking the diffraction barrier
are super-resolution microscopy and ultra-high-density data storage. But the field of nano-
optics is by no means limited to technological applications and instrument design. Nano-
optics also opens new doors to basic research on nanometer-sized structures.

Nature has developed various nanoscale structures to bring out unique optical effects.
A prominent example is photosynthetic membranes, which use light-harvesting proteins
to absorb sunlight and then channel the excitation energy to other neighboring proteins.
The energy is guided to a so-called reaction center where it initiates charge transfer across
the cell membrane. Other examples are sophisticated diffractive structures used by insects
(butterflies) and other animals (peacocks) to produce attractive colors and effects. Also,
nanoscale structures are used as antireflection coatings in the retinas of various insects,
and naturally occurring photonic bandgaps are encountered in gemstones (opals). In recent
years, we have succeeded in creating different artificial nanophotonic structures [1]. A few
examples are depicted in Fig. 1.1. Single molecules are being used as local probes for
electromagnetic fields and for biophysical processes, resonant metal nanostructures are

�Fig. 1.1 A potpourri of man-made nanophotonic structures. (a) Strongly fluorescent molecules, (b) metal nanostructures
fabricated by nanosphere lithography, (c) localized photon sources, (d) microdisk resonators (from [2]),
(e) semiconductor nanostructures, (f) particle plasmons (from [3]), (g) photonic bandgap crystals (from [4]),
(h) nanocomposite materials, (i) laser microcavities (from [5]), (j) single-photon sources (from [6]), (k) surface
plasmon waveguides (from [7]).



3 1.1 Nano-optics in a nutshell

being exploited as sensor devices, localized photon sources are being developed for high-
resolution optical microscopy, extremely high Q-factors are being generated with optical
microdisk resonators, nanocomposite materials are being explored for generating increased
nonlinearities and collective responses, microcavities are being built for single-photon
sources, surface plasmon waveguides are being implemented for planar optical networks,
and photonic bandgap materials are being developed to suppress light propagation in spe-
cific frequency windows. All of these nanophotonic structures are being created to provide
unique optical properties and phenomena, and the aim of this book is to establish a basis
for their understanding.

1.1 Nano-optics in a nutshell

Let us try to get a quick glimpse of the very basics of nano-optics just to show that optics at
the scale of a few nanometers makes perfect sense and is not forbidden by any fundamental
law. In free space, the propagation of light is determined by the dispersion relation �ω =
c · �k, which connects the wavevector k =

√
k2

x + k2
y + k2

z of a photon with its angular

frequency ω via the speed of propagation c. Heisenberg’s uncertainty relation states that
the product of the uncertainty in the spatial position of a microscopic particle in a certain
direction and the uncertainty in the component of its momentum in the same direction
cannot become smaller than �/2. For photons this leads to the relation

�(�kx) ·�x ≥ �/2, (1.1)

which can be rewritten as

�x ≥ 1

2�kx
. (1.2)

The interpretation of this result is as follows. The spatial confinement that can be achieved
for photons is inversely proportional to the spread in the magnitude of wavevector compo-
nents in the respective spatial direction, here x. Such a spread in wavevector components
occurs for instance in a light field that converges towards a focus, e.g. behind a lens. Such
a field may be represented by a superposition of plane waves traveling at different angles
(see Section 2.12). The maximum possible spread in the wavevector component kx is the
total length of the free-space wavevector k = 2π/λ.1 This leads to

�x ≥ λ

4π
, (1.3)

which is very similar to the well-known expression for the Rayleigh diffraction limit. Note
that the spatial confinement that can be achieved is limited only by the spread of wavevector
components in a given direction. In order to increase the spread of wavevector components
we can play a mathematical trick. If we choose two arbitrary perpendicular directions in
space, e.g. x and z, we can increase one wavevector component to values beyond the total

1 For a real lens this must be corrected by the numerical aperture.



4 Introduction

wavevector while at the same time requiring the wavevector in the perpendicular direction
to become purely imaginary. If this is the case, then we can still fulfill the requirement for

the total length of the wavevector k =
√

k2
x + k2

y + k2
z to be 2π/λ. If we choose to increase

the wavevector in the x-direction then the possible range of wavevectors in this direction
is also increased and the confinement of light is no longer limited by Eq. (1.3). However,
the possibility of increased confinement has to be paid for and the currency is confine-
ment also in the z-direction, resulting from the purely imaginary wavevector component in
this direction that is necessary to compensate for the large wavevector component in the
x-direction. On introducing the purely imaginary wavevector component into the expres-
sion for a plane wave we obtain exp(ikzz) = exp(−|kz|z). In one direction this leads to an
exponentially decaying field, an evanescent wave, while in the opposite direction the field
is exponentially increasing. Since exponentially increasing fields have no physical meaning
we may safely discard the strategy just outlined to obtain a solution, and state that in free
space Eq. (1.3) is always valid. However, this argument holds only for infinite free space!
If we divide our infinite free space into at least two half-spaces with different refractive
indices, then the exponentially decaying field in one half-space can exist without needing
the exponentially increasing counterpart in the other half-space. In the other half-space a
different solution that satisfies the boundary conditions for the fields at the interface may
be valid.

These simple arguments show that in the presence of an inhomogeneity in space the
Rayleigh limit for the confinement of light is no longer strictly valid, but in principle infi-
nite confinement of light becomes, at least theoretically, possible. This insight is the basis
of nano-optics. One of the key questions in nano-optics is how material structures have
to be shaped to actually realize the theoretically possible field confinement. Another key
issue is the nature of the physical consequences of the presence of exponentially decay-
ing and strongly confined fields, which we will discuss in some detail in the following
chapters.

1.2 Historical survey

In order to put this text on nano-optics into the right perspective and context we deem
it appropriate to start out with a very short introduction to the historical development of
optics in general and the advent of nano-optics in particular.

Nano-optics builds on the achievements of classical optics, the origin of which goes back
to antiquity. At that time, burning glasses and the reflection law were already known and
Greek philosophers (Empedocles, Euclid) speculated about the nature of light. They were
the first to do systematic studies on optics. In the thirteenth century the first magnifying
glasses were used. There are documents reporting the existence of eye glasses in China
several centuries earlier. However, the first optical instrumentation for scientific purposes
was not built until the beginning of the seventeenth century, when modern human curiosity
started to awaken. It is often stated that the earliest telescope was the one constructed by
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Galileo Galilei in 1609, since there is definite confirmation of its existence. Likewise, the
first prototype of an optical microscope (1610) is also attributed to Galilei [8]. However,
it is known that Galilei knew of a microscope built in Holland (probably by Zacharias
Janssen) and that his instrument was built according to existing plans. In the sixteenth cen-
tury craftsmen were already using glass spheres filled with water for the magnification of
small details. As in the case of the telescope, the development of the microscope extends
over a considerable period and cannot be attributed to any single inventor. A pioneer who
advanced the development of the microscope, as has already been mentioned, was Antony
van Leeuwenhoek. It is remarkable that the resolution of his microscope, built in 1671,
was not exceeded for more than a century. At the time, his observation of red blood cells
and bacteria was revolutionary. In the eighteenth and ninteenth centuries the development
of the theory of light (polarization, diffraction, dispersion) helped to significantly advance
optical technology and instrumentation. It was soon realized that optical resolution cannot
be improved arbitrarily and that a lower bound is set by the diffraction limit. The theory of
resolution was formulated by Abbe in 1873 [9] and Rayleigh in 1879 [10]. It is interesting
to note, as we saw above, that there is a close relation to Heisenberg’s uncertainty princi-
ple. Different techniques such as confocal microscopy [11] were invented over the years
in order to stretch the diffraction limit beyond Abbe’s limit. Today, confocal fluorescence
microscopy is a key technology in biomedical research [12]. Highly fluorescent molecules
that can be specifically attached to biological entities such as lipids, muscle fibers, and
various cell organelles have been synthesized. This chemically specific labeling and the
associated discrimination of different dyes in terms of their fluorescence emission allows
scientists to visualize the interior of cells and study biochemical reactions in living envi-
ronments. The invention of pulsed laser radiation propelled the field of nonlinear optics and
enabled the invention of multiphoton microscopy [13]. However, multiphoton excitation is
not the only nonlinear interaction that is exploited in optical microscopy. Second-harmonic,
third-harmonic, and coherent anti-Stokes Raman scattering (CARS) microscopy [14] are
other examples of extremely important inventions for visualizing processes with high spa-
tial resolution. Besides nonlinear interactions, it has also been demonstrated that saturation
effects can, in principle, be applied to achieve arbitrary spatial resolutions, provided that
one knows what molecules are being imaged [15].

A different approach for boosting spatial resolution in optical imaging is provided by
near-field optical microscopy. In principle, this technique does not rely on prior informa-
tion. While it is restricted to imaging of features near the surface of a sample it provides
complementary information about the surface topology similar to atomic force microscopy.
A challenge in near-field optical microscopy is posed by the coupling of source (or detec-
tor) and the sample to be imaged. This challenge is absent in standard light microscopy
where the light source (e.g. the laser) is not affected by the properties of the sample.
Near-field optical microscopy was originally proposed in 1928 by Synge (Fig. 1.2). In
a prophetic article he proposed an apparatus that comes very close to present implementa-
tions in scanning near-field optical microscopy [16, 17]. A minute aperture in an opaque
plate illuminated from one side is placed in close proximity to a sample surface, thereby
creating an illumination spot not limited by diffraction. The transmitted light is then col-
lected with a microscope, and its intensity is measured with a photoelectric cell. In order
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to establish an image of the sample, the aperture is moved in small increments over the
surface. The resolution of such an image should be limited by the size of the aperture and
not by the wavelength of the illuminating light, as Synge correctly stated. It is known that
Synge was in contact with Einstein about his ideas and Einstein encouraged Synge to pub-
lish his ideas. It is also known that later in his life Synge was no longer convinced about his
idea and proposed alternative but, as we know today, incorrect ideas. Owing to the obvious
experimental limitations at that time, Synge’s idea was not realized and was soon forgotten.
Later, in 1956, O’Keefe proposed a similar set-up without knowing of Synge’s visionary
idea [18]. The first experimental realization in the microwave region was performed in
1972 by Ash and Nichols, again without knowledge of Synge’s paper [19]. Using a 1.5mm
aperture, illuminated with 10 cm waves, Ash and Nichols demonstrated subwavelength
imaging with a resolution of λ/60.

The invention of scanning probe microscopy [20] at the beginning of the 1980s enabled
distance regulation between probe and sample with high precision, and hence set the
ground for a realization of Synge’s idea at optical frequencies. In 1984 Massey proposed
the use of piezoelectric position control for the accurate positioning of a minute aperture
illuminated at optical frequencies [21]. Shortly after, Pohl, Denk and Lanz at the IBM
Rüschlikon Research Laboratory managed to solve the remaining experimental difficul-
ties of producing a subwavelength-sized aperture: a metal-coated pointed quartz tip was
“pounded” against the sample surface until some light leakage through the foremost end
could be detected. In 1984 the IBM group published the first subwavelength images at
optical frequencies [22] and an independent development was undertaken by Lewis et al.
[23] and Fischer et al. [24]. Subsequently, the technique was systematically advanced
and extended to various applications mainly by Betzig et al. [25, 26], who demonstrated

�Fig. 1.2 In an April 1928 sketch sent to Albert Einstein, Edward Hutchinson Synge proposed a newmicroscopy method: using a
tiny gold particle between two quartz slides to scatter incident light from below onto a sample. Light that didn’t strike
the particle would be totally internally reflected, and an objective lens of a microscope could be positioned to accept
some of the gold-scattered light. That arrangement, Synge wrote, could be used to image a biological specimen fixed
to the top cover slip at a resolution below the diffraction limit. (Courtesy of the Albert Einstein Archives, Hebrew
University of Jerusalem, Israel.)
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subwavelength magnetic data storage and detection of single fluorescent molecules. Over
the years, various related techniques were proposed, such as the photon scanning tunneling
microscope, the near-field reflection microscope, microscopes using luminescent centers as
light-emitting sources, microscopes based on local plasmon interaction, microscopes based
on local light scattering, and microscopes relying on the field enhancement effect near
sharply pointed metal tips. All these techniques provide a confined photon flux between
probe and sample. However, the confined light flux is not the only limiting factor for the
achievable resolution. In order to be detectable, the photon flux needs to have a mini-
mum intensity. These two requirements are to some extent contradictory and a compromise
between light confinement and light throughput has to be found. The interested reader is
referred to Ref. [17] for a more detailed account on the history of near-field optics.

1.3 Scope of the book

Traditionally, the field of optics is part of both the basic sciences (e.g. quantum optics)
and applied sciences (e.g. optical communication and computing). Therefore, nano-optics
can be defined as the broad spectrum of optics on the nanometer scale, ranging from
nanotechnology applications to fundamental nanoscience.

On the nanotechnology side, we find topics like nanolithography, high-resolution opti-
cal microscopy, and high-density optical data storage. On the basic science end, we might
mention atom–photon interactions in the optical near-field and their potential applications
for atom trapping and manipulation experiments. Compared with free propagating light the
optical near-field is enriched by so-called virtual photons that correspond to the exponen-
tially decaying fields introduced before. The virtual-photon picture can be used to describe
local, non-propagating fields in general. These virtual photons are the same sort of parti-
cles as is also responsible for molecular binding (van der Waals and Casimir forces) and
therefore have potential for selective probing of molecular-scale structures. The considera-
tion of virtual photons in the field of quantum optics will enlarge the range of fundamental
experiments and will result in new applications. The present book provides an introduc-
tion to nano-optics that reflects the full breadth of the field between applied and basic
science.

We start out by providing in Chapter 2 an overview of the theoretical foundations of
nano-optics. Maxwell’s equations, being scale-invariant, provide a secure basis for nano-
optics. Since optical near-fields are always associated with matter, we review constitutive
relations and complex dielectric constants. The systems that are investigated in the context
of nano-optics, as we saw, must separate into several spatial domains that are separated
by boundaries. Representations of Maxwell’s equations valid in piecewise homogeneous
media and the related boundary conditions for the fields are therefore derived. We then
proceed with the discussion of fundamental theoretical concepts, such as the Green func-
tion and the angular spectrum representation, that are particularly useful for the discussion
of nano-optical phenomena. The treatment of the angular spectrum representation leads to
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a thorough discussion of evanescent waves, which correspond to the new virtual-photon
modes just mentioned.

Light confinement is a key issue in nano-optics. To set the basis for further discussions
in Chapter 3, we analyze what is the smallest possible confinement of light that can be
achieved by classical means, i.e. microscope objectives and other high-numerical-aperture
focusing optics. Starting out with the treatment of focused fields in the paraxial approxi-
mation, which yields the well-known Gaussian beams, we proceed by discussing focused
fields beyond the paraxial approximation as they occur, for example, in modern confocal
microscopes.

Speaking of microscopy, spatial resolution is a key issue. There exist several definitions
of the spatial resolution of an optical microscope that are related to the diffraction limit.
An analysis of their physical foundations in Chapter 4 leads to the discussion of methods
that can be used to enhance the spatial resolution of optical microscopy. Saturation effects
and the difference between spatial position accuracy and resolution are discussed.

The following three chapters then deal with more practical aspects of nano-optics related
to applications in the context of near-field optical microscopy. In Chapter 5 we discuss
the basic technical realizations of high-resolution microscopes, starting with confocal
microscopy and proceeding with various near-field techniques that have been developed
over time. Chapter 6 then deals with the central technical question of how light can be
squeezed into subwavelength regions. This is the domain of the so-called optical probes,
material structures that typically have the shape of pointed tips and exhibit a confined
and enhanced optical field at their apex. Finally, to complete the technical section, we
show how such delicate optical probes can be approached and scanned in close proxim-
ity to a sample surface of interest. A method relying on the measurement of interaction
(shear) forces between probe and sample is introduced and discussed. Taken together, these
three chapters provide the technical basics for understanding the current methods used in
scanning near-field optical microscopy.

We then proceed with a discussion of more fundamental aspects of nano-optics, i.e. light
emission and optical interactions in nanoscale environments. As a starting point, we show
that the light emission of a small particle (atom, molecule) with an electronic transition
can be treated in the dipole approximation. We discuss the resulting fields of a radiat-
ing dipole and its interactions with the electromagnetic field in some detail. We proceed
with the discussion of spontaneous decay in complex environments, which in the ultimate
limit leads to the discussion of dipole–dipole interactions, energy transfer and excitonic
coupling.

Having discussed dipolar emitters without mentioning a real-world realization, we dis-
cuss in Chapter 9 some experimental aspects of the detection of single-quantum emitters
such as single fluorescent molecules and semiconductor quantum dots. Saturation count
rates and the solutions of rate equation systems are discussed as well as fascinating issues
such as the non-classical photon statistics of fields emitted by quantum emitters and coher-
ent control of wave functions. Finally we discuss how single emitters can be used to map
spatially confined fields in great detail.

In Chapter 10 we return to the issue of dipole emission in a nanoscale environment.
Here, we treat in some detail the very important and illustrative case of dipole emission
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near a planar interface. We calculate radiation patterns and decay rates of dipolar emitters
and also discuss the image-dipole approximation that can be used to obtain approximate
and qualitative results.

If we consider multiple interfaces, instead of only one, that are arranged in a regular
pattern, we obtain a so-called photonic crystal. The properties of such structures can be
described in analogy to solid-state physics by introducing an optical band structure that
may contain bandgaps in certain directions where propagating light cannot exist. Defects
in photonic crystals lead to localized states, much like their solid-state counterparts, which
are of particular interest in nano-optics since they can be considered as microscopic cavities
with very high quality factors. In the same chapter we discuss optical resonators and their
interaction with mechanical oscillators. This interaction makes it possible either to amplify
the motion of a mechanical system or to slow it down.

Chapter 12 then takes up the topic of surface plasmons. Resonant collective oscillations
of the free surface charge density in metal structures of various geometries can couple
efficiently to optical fields and, due to the occurrence of resonances, are associated with
strongly enhanced and confined optical near-fields. We give a basic introduction to the
topic, covering the optical properties of noble metals, thin-film plasmons, and particle plas-
mons. In the following chapter we discuss optical antennas, devices designed to convert
free-propagating radiation to localized energy, and vice versa.

The next chapter concentrates on optical forces. We formulate a theory based on
Maxwell’s stress tensor that allows us to calculate forces of particles of arbitrary shape
once the field distribution is known. We then specialize the discussion and introduce the
dipole approximation valid for small particles. Practical applications discussed include the
optical-tweezers principle. Finally, the transfer of angular momentum using optical fields
is discussed, as well as forces exerted by optical near-fields.

Another type of forces is discussed in the subsequent chapter, i.e. forces that are related
to fluctuating electromagnetic fields which include the Casimir–Polder force and electro-
magnetic friction. On the way we also discuss the emission of radiation by fluctuating
sources.

The present textbook is concluded by a summary of theoretical methods used in the field
of nano-optics. Hardly any predictions can be made in the field of nano-optics without
using adequate numerical methods. A selection of the most powerful theoretical tools is
presented and their advantages and drawbacks are discussed.
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2 Theoretical foundations

Light embraces the most fascinating spectrum of electromagnetic radiation. This is mainly
due to the fact that the energy of light quanta (photons) lies within the energy range of
electronic transitions in matter. This gives us the beauty of color and is the reason why our
eyes adapted to sense the optical spectrum.

Light is also fascinating because it manifests itself in the forms of waves and parti-
cles. In no other range of the electromagnetic spectrum are we more confronted with
the wave–particle duality than in the optical regime. While long wavelength radiation
(radiofrequencies, microwaves) is well described by wave theory, short wavelength radi-
ation (X-rays) exhibits mostly particle properties. The two worlds meet in the optical
regime.

To describe optical radiation in nano-optics it is mostly sufficient to adopt the wave
picture. This allows us to use classical field theory based on Maxwell’s equations. Of
course, in nano-optics the systems with which the light fields interact are small (single
molecules, quantum dots), which necessitates a quantum description of the material prop-
erties. Thus, in most cases we can use the framework of semiclassical theory, which
combines the classical picture of fields and the quantum picture of matter. However,
occasionally, we have to go beyond the semiclassical description. For example the pho-
tons emitted by a quantum system can obey non-classical photon statistics in the form of
photon-antibunching (no two photons arriving simultaneously).

This section summarizes the fundamentals of electromagnetic theory forming the nec-
essary basis for this book. Only the basic properties are discussed and for more detailed
treatments the reader is referred to standard textbooks on electromagnetism such as the
books by Jackson [1] and Stratton [2]. The starting point is Maxwell’s equations, which
were established by James Clerk Maxwell in 1873.

2.1 Macroscopic electrodynamics

In macroscopic electrodynamics the singular character of charges and their associated cur-
rents is avoided by considering charge densities ρ and current densities j. In differential
form and in SI units the macroscopic Maxwell’s equations have the form

12
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∇ × E(r, t) = −∂B(r, t)

∂ t
, (2.1)

∇ × H(r, t) = ∂D(r, t)

∂ t
+ j(r, t), (2.2)

∇ · D(r, t) = ρ (r, t), (2.3)

∇ · B(r, t) = 0. (2.4)

where E denotes the electric field, D the electric displacement, H the magnetic field,
B the magnetic induction, j the current density, and ρ the charge density. The com-
ponents of these vector and scalar fields constitute a set of 16 unknowns. Depending
on the medium considered, the number of unknowns can be reduced considerably. For
example, in linear, isotropic, homogeneous and source-free media the electromagnetic
field is entirely defined by two scalar fields. Maxwell’s equations combine and com-
plete the laws formerly established by Faraday, Ampère, Gauss, Poisson, and others. Since
Maxwell’s equations are differential equations they do not account for any fields that are
constant in space and time. Any such field can therefore be added to the fields. It has
to be emphasized that the concept of fields was introduced to explain the transmission
of forces from a source to a receiver. The physical observables are therefore forces,
whereas the fields are definitions introduced to explain the troublesome phenomenon
of “action at a distance.” Notice that the macroscopic Maxwell’s equations deal with
fields that are local spatial averages over microscopic fields associated with discrete
charges. Hence, the microscopic nature of matter is not included in the macroscopic
fields. Charge and current densities are considered as continuous functions of space. In
order to describe the fields on an atomic scale it is necessary to use the microscopic
Maxwell’s equations which consider all matter to be made of charged and uncharged
particles.

The conservation of charge is implicitly contained in Maxwell’s equations. Taking the
divergence of Eq. (2.2), noting that ∇ ·∇×H is identically zero, and substituting Eq. (2.3)
for ∇ · D one obtains the continuity equation

∇ · j(r, t) + ∂ρ (r, t)

∂ t
= 0. (2.5)

The electromagnetic properties of the medium are most commonly discussed in terms of
the macroscopic polarization P and magnetization M according to

D(r, t) = ε0E(r, t) + P(r, t), (2.6)

H(r, t) = μ−1
0 B(r, t) − M(r, t), (2.7)

where ε0 and μ0 are the permittivity and the permeability of vacuum, respectively.
These equations do not impose any conditions on the medium and are therefore always
valid.
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2.2 Wave equations

After substituting the fields D and B in Maxwell’s curl equations by the expressions (2.6)
and (2.7) and combining the two resulting equations we obtain the inhomogeneous wave
equations

∇ × ∇ × E + 1

c2

∂ 2E
∂ t2

= −μ0
∂

∂ t

(
j + ∂P

∂ t
+∇ × M

)
, (2.8)

∇ × ∇ × H + 1

c2

∂ 2H
∂ t2

= ∇ × j + ∇ × ∂P
∂ t

− 1

c2

∂2M
∂ t2

. (2.9)

The constant c was introduced for (ε0μ0)−1/2 and is known as the vacuum speed of light.
The expression in the brackets of Eq. (2.8) can be associated with the total current density

jt = js + jc + ∂P
∂ t

+∇ × M, (2.10)

where j has been split into a source current density js and an induced conduction current
density jc. The terms ∂P/∂t and ∇ × M are recognized as the polarization current den-
sity and the magnetization current density, respectively. The wave equations as stated in
Eqs. (2.8) and (2.9) do not impose any conditions on the media considered and hence are
generally valid.

2.3 Constitutive relations

Maxwell’s equations define the fields that are generated by currents and charges in matter.
However, they do not describe how these currents and charges are generated. Thus, to
find a self-consistent solution for the electromagnetic field, Maxwell’s equations must be
supplemented by relations that describe the behavior of matter under the influence of the
fields. These material equations are known as constitutive relations. In a non-dispersive
linear and isotropic medium they have the form

D = ε0εE (P = ε0χe E), (2.11)

B = μ0μH (M = χm H), (2.12)

jc = σE. (2.13)

with χe and χm denoting the electric and magnetic susceptibility, respectively. For nonlin-
ear media, the right hand sides can be supplemented by terms of higher power. Anisotropic
media can be considered using tensorial forms for ε and μ. In order to account for general
bianisotropic media, additional terms relating D and E to both B and H have to be intro-
duced. For such complex media, solutions to the wave equations can be found for very
special situations only. The constituent relations given above account for inhomogeneous
media if the material parameters ε, μ, and σ are functions of space. The medium is called



15 2.4 Spectral representation of time-dependent fields

temporally dispersive if the material parameters are functions of frequency, and spatially
dispersive if the constitutive relations are convolutions over space. An electromagnetic
field in a linear medium can be written as a superposition of monochromatic fields of the
form

E(r, t) = E(k,ω) cos(k · r − ωt), (2.14)

where k and ω are the wavevector and the angular frequency, respectively. In its most
general form, the amplitude of the induced displacement D(r, t) can be written as1

D(k,ω) = ε0 ε(k,ω) E(k,ω). (2.15)

Since E(k,ω) is equivalent to the Fourier transform Ê of an arbitrary time-dependent field
E(r, t), we can apply the inverse Fourier transform to Eq. (2.15) and obtain

D(r, t) = ε0

∫∫
ε̃(r − r′, t − t′)E(r′, t′) dr′ dt′. (2.16)

Here, ε̃ denotes the response function in space and time. The displacement D at time t
depends on the electric field at all times t′ previous to t (temporal dispersion). Additionally,
the displacement at a point r also depends on the values of the electric field at neighboring
points r′ (spatial dispersion). A spatially dispersive medium is therefore also called a non-
local medium. Non-local effects can be observed at interfaces between different media or
in metallic objects with sizes comparable to the mean-free path of electrons. In general,
it is very difficult to account for spatial dispersion in field calculations. In most cases of
interest the effect is very weak and we can safely ignore it. Temporal dispersion, on the
other hand, is a widely encountered phenomenon and it is important to take it accurately
into account.

2.4 Spectral representation of time-dependent fields

The spectrum Ê(r,ω) of an arbitrary time-dependent field E(r, t) is defined by the Fourier
transform

Ê(r,ω) = 1

2π

∫ ∞

−∞
E(r, t) eiωt dt. (2.17)

In order that E(r, t) is a real-valued field we have to require that

Ê(r,−ω) = Ê∗(r,ω). (2.18)

Applying the Fourier transform to the time-dependent Maxwell’s equations (2.1)–(2.4)
gives

∇ × Ê(r,ω) = iωB̂(r,ω), (2.19)

∇ × Ĥ(r,ω) = −iωD̂(r,ω) + ĵ(r,ω), (2.20)

1 In an anisotropic medium the dielectric constant ε =↔
ε is a second-rank tensor.
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∇ · D̂(r,ω) = ρ̂ (r,ω), (2.21)

∇ · B̂(r,ω) = 0. (2.22)

Once the solution for Ê(r,ω) has been determined, the time-dependent field is calculated
by the inverse transform as

E(r, t) =
∫ ∞

−∞
Ê(r,ω) e−iωt dω. (2.23)

Thus, the time dependence of a non-harmonic electromagnetic field can be Fourier trans-
formed and every spectral component can be treated separately as a monochromatic field.
The general time dependence is obtained from the inverse transform.

2.5 Fields as complex analytic signals

The relationship (2.18) indicates that the positive-frequency region contains all the infor-
mation of the negative-frequency region. If we restrict the integration in Eq. (2.23) to
positive frequencies, we obtain what is called a complex analytic signal [3]

E+(r, t) =
∫ ∞

0
Ê(r,ω) e−iωt dω, (2.24)

with the superscript “+” denoting that only positive frequencies are included. Similarly,
we can define a complex analytic signal E− that accounts only for negative frequencies.
The truncation of the integration range causes E+ and E− to become complex functions of
time. Because E is real, we have [E+]∗ = E−. By taking the Fourier transform of E+(r, t)
and E−(r, t) we obtain Ê+(r,ω) and Ê−(r,ω), respectively. It turns out that Ê+ is identical
to Ê for ω > 0 and it is zero for negative frequencies. Similarly, Ê− is identical to Ê for
ω < 0 and it is zero for positive frequencies. Consequently, Ê = Ê+ + Ê−. In quantum
mechanics, Ê− is associated with the creation operator â† and Ê+ with the annihilation
operator â.

2.6 Time-harmonic fields

The time dependence in the wave equations can be easily separated to obtain a harmonic
differential equation. A monochromatic field can then be written as2

E(r, t) = Re{E(r) e−iωt} = 1

2

[
E(r) e−iωt + E∗(r) eiωt

]
, (2.25)

2 This can also be written as E(r, t) = Re{E(r)}cos(ωt) + Im{E(r)}sin(ωt).
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with similar expressions for the other fields. Notice that E(r, t) is real, whereas the spatial
part E(r) is complex. The symbol E will be used both for the real, time-dependent field and
for the complex spatial part of the field. The introduction of a new symbol is avoided in
order to keep the notation simple. It is convenient to represent the fields of a time-harmonic
field by their complex amplitudes. Maxwell’s equations can then be written as

∇ × E(r) = iωB(r), (2.26)

∇ × H(r) = −iωD(r) + j(r), (2.27)

∇ · D(r) = ρ (r), (2.28)

∇ · B(r) = 0, (2.29)

which is equivalent to Maxwell’s equations (2.19)–(2.22) for the spectra of arbitrary time-
dependent fields. Thus, the solution for E(r) is equivalent to the spectrum Ê(r,ω) of an
arbitrary time-dependent field. It is obvious that the complex field amplitudes depend on
the angular frequency ω, i.e. E(r) = E(r,ω). However, ω is usually not included in the
argument. Also the material parameters ε, μ, and σ are functions of space and frequency,
i.e. ε = ε(r,ω), σ = σ (r,ω), and μ = μ(r,ω). For simpler notation, we will often drop
the argument in the fields and material parameters. It is the context of the problem that
determines which of the fields E(r, t), E(r), or Ê(r,ω) is being considered.

2.7 Longitudinal and transverse fields

For some problems it is favorable to represent a field vector E in terms of a transverse field
E⊥ and a longitudinal field E‖, that is

E(r) = E⊥(r) + E‖(r), (2.30)

with ∇ × E‖ = 0 and ∇ · E⊥ = 0. The meaning of ‘transverse’ and ‘longitudinal’ is best
seen in reciprocal space, where E(r) = ∫kÊ(k) exp(ik · r) dk. We then obtain ik×Ê‖ = 0

and ik · Ê⊥ = 0 (c.f. Section 2.15), that is Ê‖ points in the direction of the k vector and
Ê⊥ perpendicular to it. E‖ is also called solenoidal and E⊥ irrotational. The statement in
Eq. (2.30) directly follows from Helmholtz’s theorem, which states that any vector field can
be written as E = −∇φ +∇×A. Here, ∇φ is associated with a longitudinal field because
∇× (∇φ) = 0. Similarly, ∇×A is transverse because ∇ · (∇×A) = 0. Evidently, because
∇ · B = 0 the magnetic field is purely transverse. On the other hand, since ∇ · E = −ρ/ε,
it follows that the electric field generated by charges is longitudinal. Note, however, that
the current density j = j⊥ + j‖ gives rise to both transverse and longitudinal electric fields.
It has to be emphasized that E⊥ and E‖ are a mathematical construct and that they have
no physical meaning. Only when they are added together do we obtain a fully retarded and
causal field.
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2.8 Complex dielectric constant

With the help of the linear constitutive relations we can express Maxwell’s curl equations
(2.26) and (2.27) in terms of E(r) and H(r). We then multiply both sides of the first equation
by μ−1 and then apply the curl operator to both sides. After the expression ∇×H has been
substituted by the second equation we obtain

∇ × μ−1 ∇ × E − ω2

c2

[
ε + iσ/(ωε0)

]
E = iωμ0js. (2.31)

It is common practice to replace the expression in the brackets on the left-hand side by a
complex dielectric constant, i.e. [

ε + iσ/(ωε0)
]→ ε. (2.32)

In this notation one does not distinguish between conduction currents and polarization
currents. Energy dissipation is associated with the imaginary part of the dielectric constant.
With the new definition of ε, the wave equations for the complex fields E(r) and H(r) in
linear, isotropic, but inhomogeneous media are

∇ × μ−1 ∇ × E − k2
0 ε E = iωμ0 js, (2.33)

∇ × ε−1 ∇ × H − k2
0μH = ∇ × ε−1 js, (2.34)

where k0 = ω/c denotes the vacuum wavenumber. These equations are also valid for
anisotropic media if the substitutions ε→↔

ε and μ→ ↔
μ are performed. The complex

dielectric constant will be used throughout this book.

2.9 Piecewise homogeneousmedia

In many physical situations the medium is piecewise homogeneous. In this case the entire
space is divided into subdomains in which the material parameters are independent of posi-
tion r. In principle, a piecewise homogeneous medium is inhomogeneous and the solution
can be derived from Eqs. (2.33) and (2.34). However, the inhomogeneities are entirely con-
fined to the boundaries and it is convenient to formulate the solution for each subdomain
separately. These solutions must be connected with each other via the interfaces to form
the solution for all space. Let the interface between two homogeneous domains Di and Dj

be denoted as ∂Dij. If εi and μi designate the constant material parameters in subdomain
Di, the wave equations in that domain read as

(∇2 + k2
i )Ei = −iωμ0μi ji + ∇ρi

ε0 εi
, (2.35)

(∇2 + k2
i )Hi = −∇ × ji, (2.36)
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where ki = (ω/c)
√
μiεi is the wavenumber and ji and ρi are the sources in domain

Di. To obtain these equations, the identity ∇ × ∇ × = −∇2 + ∇∇ · was used and
Maxwell’s equation (2.3) was applied. Equations (2.35) and (2.36) are also denoted as
the inhomogeneous vector Helmholtz equations. In most practical applications, such as
scattering problems, there are no source currents or charges present and the Helmholtz
equations are homogeneous.

2.10 Boundary conditions

Since the material properties are discontinuous on the boundaries, Eqs. (2.35) and (2.36)
are valid only in the interior of the subdomains. However, Maxwell’s equations must also
hold for the boundaries. Owing to the discontinuity it turns out to be difficult to apply the
differential forms of Maxwell’s equations, but there is no problem with the corresponding
integral forms. The latter can be derived by applying the theorems of Gauss and Stokes to
the differential forms (2.1)–(2.4), which yields∫

∂S
E(r, t) · ds = −

∫
S

∂

∂ t
B(r, t) · ns da, (2.37)

∫
∂S

H(r, t) · ds =
∫

S

[
j(r, t) + ∂

∂ t
D(r, t)

]
· ns da, (2.38)

∫
∂V

D(r, t) · ns da =
∫

V
ρ (r, t) dV , (2.39)

∫
∂V

B(r, t) · ns da = 0. (2.40)

In these equations, da denotes a surface element, ns the normal unit vector to the sur-
face, ds a line element, ∂V the surface of the volume V , and ∂S the border of the surface S.
The integral forms of Maxwell’s equations lead to the desired boundary conditions if they
are applied to a sufficiently small part of the considered boundary. In this case the bound-
ary looks flat and the fields are homogeneous on both sides (Fig. 2.1). Consider a small
rectangular path ∂S along the boundary as shown in Fig. 2.1(a). As the area S (enclosed
by the path ∂S) is arbitrarily reduced, the electric and magnetic fluxes through S become
zero. This does not necessarily apply for the source current, since a surface current den-
sity K might be present. The first two of Maxwell’s equations then lead to the boundary
conditions for the tangential field components3

n × (Ei − Ej) = 0 on ∂Dij, (2.41)

n × (Hi − Hj) = K on ∂Dij, (2.42)

3 Notice that n and ns are different unit vectors: ns is perpendicular to the surfaces S and ∂V , whereas n is
perpendicular to the boundary ∂Dij.
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�Fig. 2.1 Integration paths for the derivation of the boundary conditions on the interface ∂Dij between two adjacent
domains Di and Dj .

where n is the unit normal vector on the boundary. A relation for the normal field compo-
nents can be obtained by considering an infinitesimal rectangular box with volume V and
surface ∂V according to Fig. 2.1(b). If the fields are considered to be homogeneous on both
sides and if a surface charge density σ is assumed, Maxwell’s third and fourth equations
lead to the boundary conditions for the normal field components:

n · (Di − Dj) = σ on ∂Dij, (2.43)

n · (Bi − Bj) = 0 on ∂Dij. (2.44)

In most practical situations there are no sources in the individual domains, and K and σ
consequently vanish. The four boundary conditions (2.41)–(2.44) are not independent of
each other since the fields on both sides of ∂Dij are linked by Maxwell’s equations. It can be
easily shown, for example, that the conditions for the normal components are automatically
satisfied if the boundary conditions for the tangential components hold everywhere on the
boundary and Maxwell’s equations are fulfilled in both domains.

2.10.1 Fresnel reflection and transmission coefficients

Applying the boundary conditions to a simple plane wave incident on a single planar
interface leads to the familiar Fresnel reflection and transmission coefficients. A detailed
derivation can be found in many textbooks, e.g. [4], pages 36ff. We only briefly mention
the results.

An arbitrarily polarized plane wave E1 exp(ik1 ·r − iωt) can always be written as the
superposition of two orthogonally polarized plane waves. It is convenient to choose these
polarizations parallel or perpendicular to the plane of incidence defined by the k-vector of
the plane wave and the surface normal n of the plane interface

E1 = E(s)
1 + E(p)

1 . (2.45)
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�Fig. 2.2 Reflection and refraction of a plane wave at a plane interface: (a) s-polarization and (b) p-polarization.

E(s)
1 is parallel to the interface while E(p)

1 is perpendicular to the wavevector k and E(s)
1 .

The indices (s) and (p) stand for the German words senkrecht (perpendicular) and parallel
(parallel), respectively, and refer to the plane of incidence. Upon reflection or transmission
at the interface, the polarizations (s) and (p) are conserved.

As shown in Fig. 2.2, we denote the dielectric constants of the medium of incidence and
the medium of transmittance as ε1 and ε2, respectively. The same designation applies to the
magnetic permeability μ. Similarly, we distinguish between incident and reflected as well
as transmitted wavevectors k1, k1r, and k2. Using the coordinate system shown in Fig. 2.2,
it follows from the boundary conditions that

k1 = (kx, ky, kz1 ), |k1| = k1 = ω

c

√
ε1μ1, (2.46)

k2 = (kx, ky, kz2 ), |k2| = k2 = ω

c

√
ε2μ2. (2.47)

Thus, the transverse components of the wavevector (kx, ky) are conserved and the magni-
tudes of the longitudinal wavenumbers are given by

kz1 =
√

k2
1 − (k2

x + k2
y ), kz2 =

√
k2

2 − (k2
x + k2

y ). (2.48)

The transverse wavenumber k‖ =
√

k2
x + k2

y can be expressed conveniently in terms of the

angle of incidence θ1 as

k‖ =
√

k2
x + k2

y = k1 sin θ1, (2.49)

which, according to Eqs. (2.48), also allows us to express kz1 and kz2 in terms of θ1.
It follows from the boundary conditions that the amplitudes of the reflected and

transmitted waves can be represented as

E(s)
1r = E(s)

1 rs(kx, ky), E(p)
1r = E(p)

1 rp(kx, ky), (2.50)

E(s)
2 = E(s)

1 ts(kx, ky), E(p)
2 = E(p)

1 tp(kx, ky),
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where the Fresnel reflection and transmission coefficients are defined as4

rs(kx, ky) = μ2kz1 − μ1kz2

μ2kz1 + μ1kz2

, rp(kx, ky) = ε2kz1 − ε1kz2

ε2kz1 + ε1kz2

, (2.51)

ts(kx, ky) = 2μ2kz1

μ2kz1 + μ1kz2

, tp(kx, ky) = 2ε2kz1

ε2kz1 + ε1kz2

√
μ2ε1

μ1ε2
. (2.52)

As indicated by the superscripts, these coefficients depend on the polarization of the inci-
dent plane wave. The coefficients are functions of kz1 and kz2 , which can be expressed in
terms of kx and ky and thus in terms of the angle of incidence θ1. The sign of the Fresnel
coefficients depends on the definition of the electric field vectors shown in Fig. 2.2. For a
plane wave at normal incidence (θ1 = 0), rs and rp differ by a factor of −1. Notice that
the transmitted waves can be either plane waves or evanescent waves. This aspect will be
discussed in Section 2.14.

2.11 Conservation of energy

The equations established so far describe the behavior of electric and magnetic fields. They
are a direct consequence of Maxwell’s equations and the properties of matter. Although the
electric and magnetic fields were initially postulated to explain the forces in Coulomb’s and
Ampère’s laws, Maxwell’s equations do not provide any information about the energy or
forces in a system. The basic Lorentz law describes the forces acting on moving charges
only. As the Abraham–Minkowski controversy shows, the forces acting on an arbitrary
object cannot be extracted from a given electrodynamic field in a consistent way. It is also
interesting, that Coulomb’s and Ampère’s laws were sufficient to establish the Lorentz
force law. Although later the field equations were completed by adding the Maxwell
displacement current, the Lorentz law remained unchanged. There is less controversy
regarding the energy. Although also not a direct consequence of Maxwell’s equations,
Poynting’s theorem provides a plausible relationship between the electromagnetic field
and its energy content. For later reference, Poynting’s theorem will be outlined below.

If the scalar product of the field E and Eq. (2.2) is subtracted from the scalar product of
the field H and Eq. (2.1) the following equation is obtained:

H · (∇ × E) − E · (∇ × H) = −H · ∂B
∂ t

− E · ∂D
∂ t

− j · E. (2.53)

On noting that the expression on the left is identical to ∇ · (E × H), integrating both sides
over space and applying Gauss’s theorem, the above equation becomes∫

∂V
(E × H) · n da = −

∫
V

[
H · ∂B

∂ t
+ E · ∂D

∂ t
+ j · E

]
dV . (2.54)

4 For symmetry reasons, some authors omit the square-root term in the coefficient tp. In this case, tp refers to the
ratio of transmitted and incident magnetic field. We adopt the definition from Born & Wolf [4].
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Although this equation already forms the basis of Poynting’s theorem, more insight is
provided when B and D are substituted by the generally valid equations (2.6) and (2.7).
Equation (2.54) then reads∫
∂V

(E × H) · n da + 1

2

∂

∂ t

∫
V

[
D · E + B · H

]
dV

= −
∫

V
j · E dV − 1

2

∫
V

[
E · ∂P

∂ t
− P · ∂E

∂ t

]
dV − μ0

2

∫
V

[
H · ∂M

∂ t
− M · ∂H

∂ t

]
dV .

(2.55)

This equation is a direct conclusion of Maxwell’s equations and has therefore the same
validity. Poynting’s theorem is more or less an interpretation of the equation above. It states
that the first term is equal to the net energy flow in or out of the volume V , the second term
is equal to the time rate of change of electromagnetic energy inside V and the remaining
terms on the right-hand side are equal to the rate of energy dissipation inside V . According
to this interpretation

S = (E × H) (2.56)

represents the energy flux density and

W = 1

2

[
D · E + B · H

]
(2.57)

is the density of electromagnetic energy. If the medium within V is linear and non-
dispersive, the two last terms in Eq. (2.55) equal zero and the only term accounting for
energy dissipation is j · E. The vector S is called the Poynting vector. In principle, the curl
of any vector field can be added to S without changing the conservation law (2.55), but it
is convenient to make the choice as stated in (2.56).

Of special interest is the mean time value of S. This quantity describes the net power
flux density and is needed for the evaluation of radiation patterns. Assuming that the fields
are harmonic in time, linear, and non-dispersive, the time average of Eq. (2.55) becomes∫

∂V
〈S〉 · n da = −1

2

∫
V

Re
{
j∗ · E

}
dV , (2.58)

where we have used complex notation. The term on the right defines the mean energy
dissipation within the volume V . 〈S〉 represents the time average of the Poynting vector,

〈S〉 = 1

2
Re
{
E × H∗}. (2.59)

In the far-field, the electromagnetic field is purely transverse. Furthermore, the electric and
magnetic fields are in phase and the ratio of their amplitudes is constant. In this case 〈S〉
can be expressed in terms of the electric field alone as

〈S〉 = 1

2

√
ε0ε

μ0μ
|E|2nr, (2.60)

where nr represents the unit vector in the radial direction and the inverse of the square root
denotes the wave impedance.
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Energy density in dispersive and lossy media

The two last terms in Eq. (2.55) strictly vanish only in a linear medium with no dispersion
and no losses. The only medium fulfilling these conditions is vacuum. For all other media,
the last two terms only vanish approximately. In this section we consider a linear medium
with a frequency-dependent and complex ε and μ.

Let us return to the Poynting theorem stated in Eq. (2.54). While the left-hand side
denotes the power flowing in or out of the volume V , the right-hand side denotes the power
dissipated or generated in the volume V . The three terms on the right-hand side are of
similar form and so we start by considering first the electric energy term E·(∂D/∂t). The
electric energy density wE at the time t is

wE(r, t) =
∫ t

−∞
E(r, t′) · ∂D(r, t′)

∂ t′
dt′. (2.61)

We now express the fields E and D in terms of their Fourier transforms as E(t′) =∫
Ê(ω)exp[−iωt′]dω and D(t′) = ∫

D̂(ω)exp[−iωt′]dω, respectively. In the last expres-
sion we substitute ω = −ω′ and obtain D(t′) = ∫ D̂∗(ω′)exp[iω′t′]dω′, where we used
D̂(−ω′) = D̂∗(ω′) since D(t) is real (c.f. Eq. (2.18)). Using the linear relation D̂ = ε0ε Ê
and inserting the Fourier transforms in Eq. (2.61) yields

wE(r, t) = ε0

∫ ∞

−∞

∫ ∞

−∞
ω′ ε∗(ω′)
ω′ − ω Ê(ω)·Ê∗(ω′) ei(ω′−ω)tdω′ dω, (2.62)

where we have carried out the differentiation and integration over time and assumed that
the fields were zero at t → −∞. For later purposes it is advantageous to represent the
above result in different form. Using the substitutions u′ = −ω and u = −ω′ and making
use of Ê(−u) = Ê∗(u) and ε(−u) = ε∗(u) gives an expression similar to Eq. (2.62) but in
terms of u and u′. Finally, we add this expression to Eq. (2.62) and take one half of the
resulting sum, which yields [5]

wE(r, t) = ε0

2

∫ ∞

−∞

∫ ∞

−∞

[
ω′ε∗(ω′) − ωε(ω)

ω′ − ω
]

Ê(ω)·Ê∗(ω′) ei(ω′−ω)t dω′ dω. (2.63)

Similar expressions are obtained for the magnetic term H·(∂B/∂t) and the dissipative term
j·E in Eq. (2.54).

If ε(ω) is a complex function then wE accounts not only for the energy density built up in
the medium but also for the energy transferred to the medium, such as heat dissipation. This
contribution becomes indistinguishable from the term j·E in Eq. (2.54) as has already been
discussed in Section 2.8. Thus, the imaginary part of ε can be included in the conductivity
σ (c.f. Eq. (2.32)) and accounted for in the term j·E through the linear relationship ĵ=σ Ê.
Therefore, to discuss the energy density it suffices to consider only the real part of ε, which
we’re going to denote as ε′.

Let us now consider a monochromatic field represented by Ê(r,ω) = E0(r) [δ(ω −
ω0) + δ(ω + ω0)]/2. Inserting into Eq. (2.63) yields four terms: two that are constant in
time and two that oscillate in time. Upon averaging over an oscillation period 2π/ω0 the
oscillatory terms vanish and only the constant terms survive. For these terms we must view
the expression in brackets in Eq. (2.63) as a limit; that is,

lim
ω′→ω

[
ω′ε′(ω′) − ωε′(ω)

ω′ − ω
]
= d [ω ε′(ω)]

dω

∣∣∣∣
ω=ω0

. (2.64)
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Thus, the cycle average of Eq. (2.63) yields

w̄E(r) = ε0d [ω ε′(ω)]

4dω

∣∣∣∣
ω=ω0

|E0(r)|2. (2.65)

A similar result can be derived for the magnetic term H·(∂B/∂t).
It can be shown that Eq. (2.65) also holds for quasi-monochromatic fields that have

frequency components ω only in a narrow range about a center frequency ω0. Such fields
can be represented as

E(r, t) = Re{Ẽ(r, t)} = Re{E0(r, t) e−iω0t}, (2.66)

which is known as the slowly varying amplitude approximation. Here, E0(r, t) is the slowly
varying (complex) amplitude and ω0 is the “carrier” frequency. The envelope E0 spans over
many oscillations of frequency ω0.

Expressing the field amplitudes in terms of time-averages, that is |E0|2 = 2 〈E(t)·E(t)〉,
we can express the total cycle-averaged energy density W̄ as

W̄ =
[
ε0

d [ωε′(ω)]

dω

〈
E·E

〉
+ μ0

d [ωμ′(ω)]

dω

〈
H·H

〉]
, (2.67)

where E = E(r, t) and H = H(r, t) are the time-dependent fields. Notice that ω is the
center frequency of the spectra of E and H. For a medium with negligible dispersion this
expression reduces to the familiar W̄ = (1/2)

[
ε0ε

′|E0|2+ μ0μ
′ |H0|2

]
, which follows

from Eq. (2.57) using the dispersion-free constitutive relations. Because of d(ωε′)/dω > 0
and d(ωμ′)/dω > 0 the energy density is always positive, even for metals with ε′ < 0.
A detailed discussion on energy density in dispersive and lossy materials can be found in
Refs. [5, 6].

2.12 Dyadic Green functions

An important concept in field theory is the Green function: the fields due to a point source.

In electromagnetic theory, the dyadic Green function
↔
G is essentially defined by the electric

field E at the field point r generated by a radiating electric dipole p located at the source
point r′. In mathematical terms this reads as

E(r) = ω2μ0μ
↔
G (r, r′)p. (2.68)

To understand the basic idea of Green functions we will first consider a general mathemat-
ical point of view.

2.12.1 Mathematical basis of Green functions

Consider the following general, inhomogeneous equation:

LA(r) = B(r). (2.69)
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L is a linear operator acting on the vector field A representing the unknown response
of the system. The vector field B is a known source function and makes the differential
equation inhomogeneous. A well-known theorem for linear differential equations states
that the general solution is equal to the sum of the complete homogeneous solution (B=0)
and a particular inhomogeneous solution. Here, we assume that the homogeneous solution
(A0) is known. We thus need to solve for an arbitrary particular solution.

Usually it is difficult to find a solution of Eq. (2.69) and it is easier to consider the special
inhomogeneity δ(r − r′), which is zero everywhere, except in the point r = r′. Then, the
linear equation reads as

LGi(r, r′) = niδ(r − r′) (i = x, y, z), (2.70)

where ni denotes an arbitrary constant unit vector. Here Gi is the solution of L for the
source niδ(r − r′), while A is the solution of L for the source B. In general, the vector
field Gi depends on the location r′ of the inhomogeneity δ(r− r′). Therefore, the vector r′
has been included in the argument of Gi. The three equations given by Eq. (2.70) can be
written in closed form as

L↔
G (r, r′) =↔

I δ(r − r′), (2.71)

where the operator L acts on each column of
↔
G separately and

↔
I is the unit dyad. The

function
↔
G fulfilling Eq. (2.71) is known as the dyadic Green function.

Next, assume that Eq. (2.71) has been solved and that
↔
G is known. Postmultiplying

Eq. (2.71) by B(r′) on both sides and integrating over the volume V in which B �= 0 gives∫
V
L↔

G (r, r′)B(r′)dV ′ =
∫

V
B(r′)δ(r − r′)dV ′. (2.72)

The right-hand side simply reduces to B(r) and with Eq. (2.69) it follows that

LA(r) =
∫

V
L↔

G (r, r′)B(r′)dV ′. (2.73)

If on the right-hand side the operator L is taken out of the integral, the solution of Eq. (2.69)
can be expressed as

A(r) =
∫

V

↔
G (r, r′)B(r′)dV ′. (2.74)

Thus, the solution of the original equation can be found by integrating the product of the
dyadic Green function and the inhomogeneity B over the source volume V .

The assumption that the operators L and
∫

dV ′ can be interchanged is not strictly valid

and special care must be applied if the integrand is not well-behaved. Most often
↔
G is

singular at r=r′ and an infinitesimal exclusion volume surrounding r=r′ has to be intro-
duced [7, 8]. Depolarization of the principal volume must be treated separately, resulting

in a term (
↔
L) depending on the geometrical shape of the volume. Furthermore, in numeri-

cal schemes the principal volume has a finite size, giving rise to a second correction term,

which is commonly designated by
↔
M. As long as we consider field points outside of the

source volume V , i.e. r �∈ V , we do not need to consider these tricky issues. However, the
topic of the principal volume will be taken up in Chapter 16.
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2.12.2 Derivation of the Green function for the electric field

The derivation of the Green function for the electric field is most conveniently accom-
plished by considering the time-harmonic vector potential A and the scalar potential φ in
an infinite and homogeneous space characterized by the constants ε and μ. In this case, A
and φ are defined by the relationships

E(r) = iωA(r) −∇φ(r), (2.75)

H(r) = 1

μ0μ
∇ × A(r). (2.76)

We can insert these equations into Maxwell’s second equation (2.27) and obtain

∇ × ∇ × A(r) = μ0μj(r) − iωμ0με0ε[iωA(r) −∇φ(r)], (2.77)

where we used D= ε0εE. The potentials A and φ are not uniquely defined by Eqs. (2.75)
and (2.76). We are still free to define the value of ∇ · A, which we choose as

∇ · A(r) = iωμ0με0εφ(r). (2.78)

A condition that fixes the redundancy of Eqs. (2.75) and (2.76) is called a gauge condition.
The gauge chosen through Eq. (2.78) is the so-called Lorenz gauge. Using the mathemat-
ical identity ∇ × ∇ × = −∇2 + ∇∇ · together with the Lorenz gauge we can rewrite
Eq. (2.77) as [

∇2 + k2
]

A(r) = −μ0μj(r), (2.79)

which is the inhomogeneous Helmholtz equation. It holds independently for each compo-
nent Ai of A. A similar equation can be derived for the scalar potential φ,[

∇2 + k2
]
φ(r) = −ρ(r)/(ε0ε). (2.80)

Thus, we obtain four scalar Helmholtz equations of the form[
∇2 + k2

]
f (r) = −g(r). (2.81)

To derive the scalar Green function G0(r, r′) for the Helmholtz operator we replace the
source term g(r) by a single point source δ(r − r′) and obtain[

∇2 + k2
]

G0(r, r′) = −δ(r − r′). (2.82)

The coordinate r denotes the location of the field point, i.e. the point at which the fields
are to be evaluated, whereas the coordinate r′ designates the location of the point source.
Once we have determined G0 we can state the particular solution for the vector potential
in Eq. (2.79) as

A(r) = μ0μ

∫
V

j(r′) G0(r, r′) dV ′. (2.83)
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A similar equation holds for the scalar potential. Both solutions require the knowledge of
the Green function defined through Eq. (2.82). In free space, the only physical solution of
this equation is [1]

G0(r, r′) = e±ik|r− r′|

4π |r − r′| . (2.84)

The solution with the plus sign denotes a spherical wave that propagates out of the origin,
whereas the solution with the minus sign is a wave that converges towards the origin. In
the following we retain only the outwards propagating wave. The scalar Green function
can be introduced into Eq. (2.83) and the vector potential can be calculated by integrating
over the source volume V . Thus, we are in a position to calculate the vector potential and
scalar potential for any given current distribution j and charge distribution ρ. Notice that
the Green function in Eq. (2.84) applies only to a homogeneous three-dimensional space.
The Green function of a two-dimensional space or a half-space will have a different form.

So far we have reduced the treatment of Green functions to the potentials A and φ
because this allows us to work with scalar equations. The formalism becomes more
involved when we consider the electric and magnetic fields. The reason for this is that
a source current in the x-direction leads to an electric and magnetic field with x-, y-, and
z-components. This is different for the vector potential: a source current in x gives rise to
a vector potential with just an x-component. Thus, in the case of the electric and magnetic
fields we need a Green function that relates all components of the source to all components
of the fields, or, in other words, the Green function must be a tensor. This type of Green
function is called a dyadic Green function and has been introduced in the previous section.
To determine the dyadic Green function we start with the wave equation for the electric
field Eq. (2.33). In a homogeneous space it reads as

∇ × ∇ × E(r) − k2 E(r) = iωμ0μ j(r). (2.85)

We can define for each component of j a corresponding Green function. For example, for
jx we have

∇ × ∇ × Gx(r, r′) − k2Gx(r, r′) = δ(r − r′)nx, (2.86)

rr′

E(r)j(r′) G(r,r′)

V

�Fig. 2.3 Illustration of the dyadic Green function
↔
G (r,r’). The Green function renders the electric field at the field point r due to

a single point source j at the source point r’. Since the field at r depends on the orientation of j the Green function
must account for all possible orientations in the form of a tensor.
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where nx is the unit vector in the x-direction. A similar equation can be formulated for a
point source in the y- and z-directions. In order to account for all orientations we write as
the general definition of the dyadic Green function for the electric field [9]

∇ × ∇× ↔
G(r, r′) − k2↔G(r, r′) =↔

Iδ(r − r′), (2.87)
↔
I being the unit dyad (unit tensor). The first column of the tensor

↔
G corresponds to the field

due to a point source in the x-direction, the second column to the field due to a point source
in the y-direction, and the third column is the field due to a point source in the z-direction.
Thus a dyadic Green function is just a compact notation for three vectorial Green functions.

As before, we can view the source current in Eq. (2.85) as a superposition of point

currents. Thus, if we know the Green function
↔
G we can state a particular solution of

Eq. (2.85) as

E(r) = iωμμ0

∫
V

↔
G(r, r′)j(r′)dV ′. (2.88)

However, this is a particular solution and we need to add any homogeneous solutions E0.
Thus, the general solution turns out to be

E(r) = E0(r) + iωμ0μ

∫
V

↔
G(r, r′) j(r′)dV ′ r /∈V . (2.89)

The corresponding magnetic field reads as

H(r) = H0(r) +
∫

V

[
∇ × ↔

G(r, r′)
]

j(r′)dV ′ r /∈V . (2.90)

These equations are called volume integral equations. They are very important since they
form the basis for various formalisms such as the method of moments, the Lippmann–
Schwinger equation, and the coupled-dipole method. We have limited the validity of the
volume integral equations to the space outside the source volume V in order to avoid the

apparent singularity of
↔
G at r = r′. This limitation will be relaxed in Chapter 16.

In order to solve Eqs. (2.89) and (2.90) for a given distribution of currents, we still need

to determine the explicit form of
↔
G. Introducing the Lorenz gauge Eq. (2.78) into Eq. (2.75)

leads to

E(r) = iω

[
1 + 1

k2
∇∇·

]
A(r). (2.91)

The first column vector of
↔
G, i.e. Gx, defined in Eq. (2.86) is simply the electric field due

to a point source current j = (iωμ0)−1δ(r − r′)nx. The vector potential originating from
this source current is, according to Eq. (2.83),

A(r) = (iω)−1G0(r, r′)nx. (2.92)

Upon inserting this vector potential into Eq. (2.91) we find

Gx(r, r′) =
[

1 + 1

k2
∇∇ ·

]
G0(r, r′)nx, (2.93)
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with similar expressions for Gy and Gz. The only thing remaining to be done is to tie the
three solutions together to form a dyad. With the definition ∇ · [G0

↔
I ] = ∇G0 the dyadic

Green function
↔
G can be calculated from the scalar Green function G0 in Eq. (2.84) as

↔
G(r, r′) =

[
↔
I + 1

k2
∇∇
]

G0(r, r′). (2.94)

2.12.3 Time-dependent Green functions

The time dependence in the wave equations can be separated and the resulting harmonic
differential equation for the time behavior is easily solved. A monochromatic field can be
represented in the form of Eq. (2.25) and any other time-dependent field can be generated
by a Fourier transform (sum of monochromatic fields). However, for the study of ultrafast
phenomena it is of advantage to retain the explicit time behavior. In this case we have to
generalize the definition of A and φ as5

E(r, t) = − ∂

∂t
A(r, t) −∇φ(r, t), (2.95)

H(r, t) = 1

μ0μ
∇ × A(r, t), (2.96)

from which we find the time-dependent Helmholtz equation in the Lorenz gauge (cf.
Eq. (2.79)) [

∇2 − n2

c2

∂2

∂t2

]
A(r, t) = −μ0μ j(r, t). (2.97)

A similar equation holds for the scalar potential φ. The definition of the scalar Green
function is now generalized to[

∇2 − n2

c2

∂2

∂t2

]
G0(r, r′; t, t′) = −δ(r − r′)δ(t − t′). (2.98)

The point source is now defined with respect to space and time. The solution for G0 is [1]

G0(r, r′; t, t′) =
δ
(

t′ − [t ∓ (n/c)|r − r′|] )
4π |r − r′| , (2.99)

where the minus sign is associated with the response at a time t later than t′. Using G0

we can construct the time-dependent dyadic Green function
↔
G(r, r′; t, t′) as in the previous

case. Since we shall mostly work with time-independent Green functions we avoid further
details and refer the interested reader to specialized books on electrodynamics. Working
with time-dependent Green functions accounts for arbitrary-time behavior but it is very
difficult to incorporate dispersion. Time-dependent processes in dispersive media are more
conveniently solved using Fourier transforms of monochromatic fields.

5 We assume a non-dispersive medium, i.e. ε(ω)=ε and μ(ω)=μ.
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2.13 Reciprocity

The reciprocity theorem generally states that the source and detector of electromagnetic
fields can be interchanged without affecting the physical situation. The derivation of
the reciprocity theorem is formally the same as the derivation of Poynting’s theorem in
Section 2.11. For simplicity we restrict the discussion to purely monochromatic fields rep-
resented by complex amplitudes. Let us consider two spatially separate volumes V1 and
V2 with the current densities j1 and j2, respectively. j1 creates the fields E1 and H1, and j2

gives rise to fields E2 and H2. We write Maxwell’s curl equations separately for the two
fields as

∇ × E1 = iωB1,

∇ × H1 = −iωD1 + j1,

∇ × E2 = iωB2,

∇ × H2 = −iωD2 + j2.

We now multiply the first equation by H2, the second by E2, the third by H1, and the fourth
by E1, and then subtract the sum of the latter two equations from the sum of the first two
equations, which yields

(H2 · ∇ × E1 − E1 · ∇ × H2)+ (E2 · ∇ × H1 − H1 · ∇ × E2)

= iω(H2 · B1 − H1 · B2) − iω(E2 · D1 − E1 · D2) + (j1 · E2 − j2 · E1).

(2.100)

The left-hand side is identical to ∇ · (E1 × H2 − E2 × H1). Furthermore, assuming linear
constitutive relations the first two terms on the right-hand side cancel out and we arrive at

∇ · (E1 × H2 − E2 × H1) = j1 · E2 − j2 · E1, (2.101)

which is the Lorentz reciprocity theorem with sources [10, 11].
We now integrate Eq. (2.101) over a spherical volume with large radius and assume

that all sources and objects, such as scatterers, are finite in size, Then, after making use
of Gauss’s theorem and the fact that far-fields are transverse to the surface normal of the
spherical volume, the term on the left-hand side in Eq. (2.101) vanishes and we obtain

∫
V1

j1 · E2 dV =
∫

V2

j2 · E1 dV , (2.102)

where we have reduced the integration volume to regions where the currents are non-zero.
Equation (2.102) is of central importance and is widely used in antenna theory. For lossless
media, the reciprocity theorem is equivalent to time reversibility. However, in dissipative
media time-reversibility is lost whereas the reciprocity theorem remains valid [11]. At
first sight, the expressions in Eq. (2.102) look similar to the right-hand side of Eq. (2.58).
However, there are no complex conjugates in Eq. (2.102) and reciprocity is not just another
statement of energy conservation.
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Let us now express the fields E1 and E2 in Eq. (2.102) in terms of their source cur-

rents. This can be done using Eq. (2.88) by means of the Green dyadic
↔
G. The equality in

Eq. (2.102) then leads to

↔
G(r1, r2) = ↔

G(r2, r1). (2.103)

Thus, reciprocity implies that the Green dyadic is symmetric and that it isn’t affected by
interchanging the source and the detector.

2.14 Evanescent fields

Evanescent fields play a central role in nano-optics. The word evanescent derives from
the Latin word evanescere and has meanings like vanishing from notice or imperceptible.
Evanescent fields can be described by plane waves of the form Eei(kr−ωt). They are charac-
terized by the fact that at least one component of the wavevector k describing the direction
of propagation is imaginary. In the spatial direction defined by the imaginary component
of k the wave does not propagate but rather decays exponentially. Evanescent fields are of
major importance for the understanding of optical fields that are confined to subwavelength
dimensions. This section discusses the basic properties of evanescent waves and introduces
simple experimental arrangements for their creation and measurement.

Evanescent waves never occur in a homogeneous medium but are inevitably connected
to the interaction of light with inhomogeneities [12]. The simplest case of an inhomogene-
ity is a plane interface. Let us consider a plane wave impinging on such a flat interface
between two media characterized by optical constants ε1, μ1 and ε2, μ2. As discussed in
Section 2.10.1, the presence of the interface will lead to a reflected wave and a refracted
wave whose amplitudes and directions are described by Fresnel coefficients and by Snell’s
law, respectively.

To derive the evanescent wave generated by total internal reflection at the surface of a
dielectric medium, we refer to the configuration shown in Fig. 2.2. We choose the x-axis
to be in the plane of incidence. Using the symbols defined in Section 2.10.1, the complex
transmitted field vector can be expressed as

E2 =

⎡
⎢⎢⎣

−E(p)
1 tp(kx) kz2/k2

E(s)
1 ts (kx)

E(p)
1 tp(kx) kx/k2

⎤
⎥⎥⎦ eikxx+ikz2 z, (2.104)

which can be expressed entirely in terms of the angle of incidence θ1 using kx = k1 sin θ1.
Note that we suppressed the harmonic time factor exp(−iωt). With this substitution the
longitudinal wavenumbers can be written as (cf. Eq. (2.48))

kz1 = k1

√
1 − sin2θ1, kz2 = k2

√
1 − ñ2 sin2θ1, (2.105)
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where we introduced the relative index of refraction

ñ =
√
ε1μ1√
ε2μ2

. (2.106)

For ñ > 1, with increasing θ1 the argument of the square root in the expression for kz2

gets smaller and smaller and eventually becomes negative. The critical angle θc can be
defined by the condition

1 − ñ2 sin2θ1 = 0, (2.107)

which describes a refracted plane wave with zero wavevector component in the z-direction
(kz2 = 0). Consequently, the refracted plane wave travels parallel to the interface. Solving
for θ1 yields

θc = arcsin(1/ñ). (2.108)

For a glass/air interface at optical frequencies, we have ε2 = 1, ε1 = 2.25, andμ1 =μ2 = 1,
yielding a critical angle θc = 41.8◦.

For θ1 > θc, kz2 becomes imaginary. Expressing the transmitted field as a function of
the angle of incidence θ1 results in

E2 =

⎡
⎢⎢⎣

−iE(p)
1 tp(θ1)

√
ñ2 sin2θ1 − 1

E(s)
1 ts(θ1)

E(p)
1 tp(θ1) ñ sin θ1

⎤
⎥⎥⎦ ei sin(θ1) k1xe−γ z, (2.109)

where the decay constant γ is defined by

γ = k2

√
ñ2 sin2θ1 − 1 . (2.110)

This equation describes a field that propagates along the surface but decays exponentially
into the medium of transmittance. Thus, a plane wave incident at an angle θ1 > θc creates
an evanescent wave. Excitation of an evanescent wave with a plane wave at supercriti-
cal incidence (θ1 > θc) is referred to as total internal reflection (TIR). For the glass/air
interface considered above and an angle of incidence of θ1 = 45◦, the decay constant is
γ = 2.22/λ. This means that already at a distance of ≈λ/2 from the interface the time-
averaged field is a factor of e smaller than it is at the interface. At a distance of ≈2λ the
field becomes negligible. The larger the angle of incidence θ1 the faster the decay will be.
Note that the Fresnel coefficients depend on θ1. For θ1 > θc they become complex num-
bers and, consequently, the phase of the reflected and transmitted wave is shifted relative
to the incident wave. This phase shift is the origin of the so-called Goos–Hänchen shift.
Furthermore, for p-polarized excitation, it results in elliptic polarization of the evanescent
wave with the field vector rotating in the plane of incidence (see e.g. [13] and Problem 2.5).

Evanescent fields as described by Eq. (2.109) can be produced by directing a beam of
light into a glass prism as sketched in Fig. 2.4(b). Experimental verification for the exis-
tence of this rapidly decaying field in the optical regime relies on approaching a transparent
body to within λ/2 of the interface that supports the evanescent field. As shown in Fig. 2.5,
this can be accomplished, for example, by using a sharp transparent fiber that converts the
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�Fig. 2.4 Excitation of an evanescent wave by total internal reflection. (a) An evanescent wave is created in a medium if the
plane wave is incident at an angle θ1 > θc. (b) Actual experimental realization using a prism and a weakly focused
Gaussian beam.

evanescent field at its tip into a guided mode propagating along the fiber [14]. This mea-
surement technique is called photon scanning tunneling microscopy and will be discussed
later in Chapter 5.

For p- and s-polarized evanescent waves, the intensity of the evanescent wave can be
larger than that of the input beam. To see this we set z = 0 in Eq. (2.109) and we write for
an s- and p-polarized plane wave separately the intensity ratio |E2(z = 0)|2/|E1(z = 0)|2.
This ratio is equal to the absolute square of the Fresnel transmission coefficient tp,s. These
transmission coefficients are plotted in Fig. 2.6 for the example of a glass/air interface.
For p- (s-)polarized light the transmitted evanescent intensity is up to a factor of 9 (4)
larger than the incoming intensity. The maximum enhancement is found at the critical
angle of TIR. The physical reason for this enhancement is a surface polarization that is
induced by the incoming plane wave which is also represented by the boundary condition
(2.43). A similar enhancement effect, but a much stronger one, can be obtained when the
glass/air interface is covered by a thin layer of a noble metal. Here, so-called surface plas-
mon polaritons can be excited. We will discuss this and similar effects in more detail in
Chapter 12.

2.14.1 Energy transport by evanescent waves

For non-absorbing media and for supercritical incidence, all the power of the incident
wave is reflected. This effect is known as total internal reflection (TIR). One can predict
that because no losses occur upon reflection at the interface there is no net energy transport
into the medium of transmittance. In order to prove this fact we have to investigate the
time-averaged energy flux across a plane parallel to the interface. This can be done by
considering the z-component of the Poynting vector (cf. Eq. (2.59))

〈S〉z = 1

2
Re
(

ExH∗
y − EyH∗

x

)
, (2.111)
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where all fields are evaluated in the upper medium, i.e. the medium of transmittance.
Applying Maxwell’s equation (2.26) to the special case of a plane or evanescent wave
allows us to express the magnetic field in terms of the electric field as

H =
√
ε0ε

μ0μ

[(
k
k

)
× E

]
. (2.112)

On introducing the expressions for the transmitted field components of E and H into
Eq. (2.111), it is straightforward to prove that 〈S〉z vanishes (Problem 2.4) and that there is
no net energy transport in the direction normal to the interface.

On the other hand, when considering the energy transport along the interface (〈S〉x), a
non-zero result is found:

〈S〉x = 1

2

√
ε2μ2

ε1μ1
sin θ1

(∣∣ts∣∣2 ∣∣∣E(s)
1

∣∣∣2 + ∣∣tp∣∣2 ∣∣∣E(p)
1

∣∣∣2) e−2γ z. (2.113)

Thus, an evanescent wave transports energy along the surface, in the direction of the
transverse wavevector.

The absence of a net energy flow normal to the surface does not mean that there is no
energy contained in an evanescent wave. For example, the local field distribution can be
mapped out by using the fluorescence of a single molecule as a local probe.6 The rate R at
which the fluorophore emits photons when excited by the optical electric field is given by
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�Fig. 2.5 Spatial modulation of the standing evanescent wave along the propagation direction of two interfering waves (x-axis)
and the decay of the intensity in the z-direction. The ordinate represents the measured optical power. From [14].

6 Excitation of fluorescence using evanescent waves is quite popular in biological imaging. Since only a thin
slice of the sample is illuminated, background is drastically reduced. The technique is known as total internal
reflection fluorescence (TIRF) microscopy [15].
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R ∼ |p · E|2 , (2.114)

where p is the absorption dipole moment of the molecule. As an example, for s-polarized
fields the fluorescence rate of a molecule with a non-zero dipole component along the
y-axis at a distance z above the interface will be

R (z) ∼
∣∣∣tsE(s)

1

∣∣∣2e−2γ z, (2.115)

decaying twice as fast as the electric field itself. Notice that a molecule can be excited even
though the average Poynting vector vanishes.

2.14.2 Frustrated total internal reflection

Evanescent fields can be converted into propagating radiation if they interact with
matter [12]. This phenomenon is among the most important effects in near-field optical
microscopy since it explains how information about subwavelength structures is trans-
ported into the far-field. We shall discuss the physics behind this conversion by considering
a very simple model. A plane interface will be used in order to create an evanescent wave
by TIR as before. A second parallel plane interface is then advanced towards the first inter-
face until the gap d is within the range of the typical decay length of the evanescent wave.
A possible way to realize this experimentally is to close together two prisms with very
flat or slightly curved surfaces as indicated in Fig. 2.7(b). The evanescent wave then inter-
acts with the second interface and can be partly converted into propagating radiation. This
situation is analogous to quantum mechanical tunneling through a potential barrier. The
geometry of the problem is sketched in Fig. 2.7(a).

The fields are most conveniently expressed in terms of partial fields that are restricted
to a single medium. The partial fields in media 1 and 2 are written as a superposition
of incident and reflected waves, whereas for medium 3 there is only a transmitted wave.
The propagation character of these waves, i.e. whether they are evanescent or propagating
in either of the three media, can be determined from the magnitude of the longitudinal
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�Fig. 2.6 Intensity enhancement on top of a glass surface irradiated by a plane wave with variable angle of incidence θ1. For p-
and s-polarized waves, the enhancement peaks at the critical angle θc = 41.8◦ marked by the dotted line.
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wavenumber in each medium in analogy to Eq. (2.105). The longitudinal wavenumber in
medium j reads

kjz =
√

k2
j − k2‖ = kj

√
1 − (k1/kj)2 sin2θ1, j ∈ {1, 2, 3}, (2.116)

where kj = njk0 = nj(ω/c) and nj = √
εjμj. In the following a layered system with

n2 < n3 < n1 will be discussed, which includes the system sketched in Fig. 2.7. This leads
to three regimes for the angle of incidence in which the transmitted intensity as a function
of the gap width d shows different behavior.

1. For θ1 < arcsin(n2/n1) or k‖ < n2k0, the field is entirely described by propagating
plane waves. The intensity transmitted to a detector far away from the second interface
(in the far-field) will not vary substantially with gapwidth, but will only show rather
weak interference undulations.

2. For arcsin(n2/n1) < θ1 < arcsin(n3/n1) or n2k0 < k‖ < n3k0 the partial field in
medium 2 is evanescent, but in medium 3 it is propagating. At the second interface
evanescent waves are converted into propagating waves. The intensity transmitted to
a remote detector will decrease strongly with increasing gapwidth. This situation is
referred to as frustrated total internal reflection (FTIR).

3. For θ1 > arcsin (n3/n1) or k‖ > n3k0 the waves in layer 2 and in layer 3 are evanescent
and no intensity will be transmitted to a remote detector in medium 3.

If we chose θ1 such that case 2 is realized (FTIR), the transmitted intensity I(d) will
reflect the steep distance dependence of the evanescent wave(s) in medium 2. However, as
shown in Fig. 2.8, I(d) deviates from a purely exponential behavior because the field in
medium 2 is a superposition of two evanescent waves of the form

ε2, μ2

ε3, μ3

ε1, μ1

�Fig. 2.7 Transmission of a plane wave through a system of two parallel interfaces. In frustrated total internal reflection (FTIR),
the evanescent wave created at interface B is partly converted into a propagating wave by the interface A of a second
medium. (a) Configuration and definition of parameters. A and B are interfaces between media 2 and 3 and 1 and 2,
respectively. The reflected waves are omitted for clarity. (b) The experimental set-up used to observe frustrated total
internal reflection.
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c1e−γ z + c2e+γ z. (2.117)

The second term originates from the reflection of the primary evanescent wave (first term)
at the second interface and its magnitude (c2) depends on the material properties. Figure 2.8
shows typical transmission curves for two different angles of incidence. This figure also
shows that the decay measured in FTIR deviates from a simple exponential decay. In the
next section, the importance of evanescent waves for the rigorous theoretical description
of arbitrary optical fields near sources or material boundaries will be discussed.

2.15 Angular spectrum representation of optical fields

The angular spectrum representation is a mathematical technique to describe optical fields
in homogeneous media. Optical fields are described as a superposition of plane waves and
evanescent waves, both of which are physically intuitive solutions of Maxwell’s equations.
The angular spectrum representation has been found to be a very powerful method for
the description of laser-beam propagation and light focusing. Furthermore, in the paraxial
limit, the angular spectrum representation becomes identical with the framework of Fourier
optics, which extends its importance even further. We will use the angular spectrum rep-
resentation extensively in Chapters 3 and 4 to discuss strongly focused laser beams and
limits of spatial resolution.

By the angular spectrum representation we understand the series expansion of an arbi-
trary field in terms of plane (and evanescent) waves with variable amplitudes and propaga-
tion directions. Assume we know the electric field E(r) at any point r = (x, y, z) in space.
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�Fig. 2.8 Transmission in a system of three media with parallel interfaces as a function of the gap d between the two
interfaces. A p-polarized plane wave excites the system. The material constants are n1 = 2, n2 = 1, and n3 = 1.51.
This leads to critical angles θc of 30◦ and 49.25◦. For angles of incidence θ1 between 0◦ and 30◦ the gap dependence
shows interference-like behavior (here θ1 = 0◦, dash–dotted line, curve (a)). For angles between 30◦ and 49.25◦
the transmission (monotonically) decreases with increasing gap width (here θ1 = 35◦, full line, curve (b)). Curve (c)
shows the intensity of the evanescent wave in the absence of the third medium.
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For example, E(r) can be the solution of an optical scattering problem, as shown in Fig. 2.9,
for which E = Einc + Escatt. In the angular spectrum picture, we draw an arbitrary axis z
and consider the field E in a plane z= constant transverse to the chosen axis. In this plane
we can evaluate the two-dimensional Fourier transform of the field E as

Ê(kx, ky; z) = 1

4π2

∞∫
−∞

∫
E(x, y, z) e−i [kx x+ ky y] dx dy, (2.118)

where x, y are the Cartesian transverse coordinates and kx, ky the corresponding spatial
frequencies or reciprocal coordinates. Similarly, the inverse Fourier transform reads as

E(x, y, z) =
∞∫

−∞

∫
Ê(kx, ky; z) ei [kx x+ ky y] dkx dky. (2.119)

Notice that in the notation of Eqs. (2.118) and (2.119) the field E = (Ex, Ey, Ez) and its
Fourier transform Ê = (Êx, Êy, Êz) represent vectors. Thus, the Fourier integrals hold
separately for each vector component.

So far we have imposed no requirements on the field E, but we will assume that in the
transverse plane the medium is homogeneous, isotropic, linear and source-free. Then, a
time-harmonic, optical field with angular frequency ω has to satisfy the vector Helmholtz
equation

(∇2 + k2)E(r) = 0, (2.120)

where k is determined by k = (ω/c)n and n=√
με is the index of refraction. In order to

get the time-dependent field E(r, t) we use the convention

E(r, t) = Re{E(r)e−iωt}. (2.121)

Einc

Escatt

z

z = const.

�Fig. 2.9 In the angular spectrum representation the fields are evaluated in planes (z = constant) perpendicular to an
arbitrarily chosen axis z.
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On inserting the Fourier representation of E(r) (Eq. (2.119)) into the Helmholtz equation
and defining

kz ≡
√

(k2 − k2
x − k2

y ) with Im{kz} ≥ 0 (2.122)

we find that the Fourier spectrum Ê evolves along the z-axis as

Ê(kx, ky; z) = Ê(kx, ky; 0) e±ikz z. (2.123)

The ± sign specifies that we have two solutions that need to be superimposed: the +
sign refers to a wave propagating into the half-space z > 0 whereas the − sign denotes
a wave propagating into z < 0. Equation (2.123) tells us that the Fourier spectrum of E
in an arbitrary image plane located at z = constant can be calculated by multiplying the
spectrum in the object plane at z = 0 by the factor exp(±i kz z). This factor is called the
propagator in reciprocal space. In Eq. (2.122) we defined that the square root leading to kz

renders a result with positive imaginary part. This ensures that the solutions remain finite
for z → ±∞. On inserting the result of Eq. (2.123) into Eq. (2.119) we finally find for
arbitrary z

E(x, y, z) =
∞∫

−∞

∫
Ê(kx, ky ; 0) ei [kx x+ ky y± kz z] dkx dky, (2.124)

which is known as the angular spectrum representation. In a similar way, we can also
represent the magnetic field H by an angular spectrum as

H(x, y, z) =
∞∫

−∞

∫
Ĥ(kx, ky ; 0) ei [kx x+ ky y± kz z] dkx dky. (2.125)

By using Maxwell’s equation H = (iωμμ0)−1(∇ × E) we find the following relationship
between the Fourier spectra Ê and Ĥ:

Ĥx = Z−1
με [(ky/k)Êz − (kz/k)Êy], (2.126)

Ĥy = Z−1
με [(kz/k)Êx − (kx/k)Êz],

Ĥz = Z−1
με [(kx/k)Êy − (ky/k)Êx],

where Zμε =√
(μ0μ)/(ε0ε) is the wave impedance of the medium. Although the angular

spectra of E and H satisfy the Helmholtz equation they are not yet rigorous solutions
of Maxwell’s equations. We still have to require that the fields are divergence-free, i.e.
∇ · E= 0 and ∇ · H= 0. These conditions restrict the k-vector to directions perpendicular
to the spectral amplitudes (k · Ê = k · Ĥ = 0).

For the case of a purely dielectric medium with no losses the index of refraction n is a
real and positive quantity. The wavenumber kz is then either real or imaginary and turns
the factor exp(±i kz z) into an oscillatory or exponentially decaying function. For a certain
(kx, ky) pair we then find two different characteristic solutions:
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�Fig. 2.10 (a) Representation of a plane wave propagating at an angleϕ to the z axis. (b) Illustration of the transverse spatial
frequencies of plane waves incident from different angles. The transverse wavenumber (k2x + k2y )

1/2 depends on the
angle of incidence and is limited to the interval [0 . . . k]. (c) The transverse wavenumbers kx and ky of plane waves
are restricted to a circular area with radius k. Evanescent waves fill the space outside the circle.

Plane waves: ei [kx x+ ky y]e±i |kz|z, k2
x + k2

y ≤ k2,

Evanescent waves: ei [kx x+ ky y]e−|kz||z|, k2
x + k2

y > k2.
(2.127)

Hence, we find that the angular spectrum is indeed a superposition of plane waves and
evanescent waves. Plane waves are oscillating functions in z and are restricted by the con-
dition k2

x + k2
y ≤ k2. On the other hand, for k2

x + k2
y > k2 we encounter evanescent waves

with an exponential decay along the z-axis. Figure 2.10 shows that the larger the angle
between the k-vector and the z-axis is, the larger the oscillation frequency in the transverse
plane will be. A plane wave propagating in the direction of z has no oscillation frequency
in the transverse plane (k2

x + k2
y =0), whereas, in the other limit, a plane wave propagating

at right angles to z exhibits the highest spatial oscillation frequency in the transverse plane
(k2

x + k2
y =k2). Even higher spatial frequencies are covered by evanescent waves. In princi-

ple, an infinite bandwidth of spatial frequencies can be achieved. However, the higher the
spatial frequencies of an evanescent wave are, the faster the field decay along the z-axis
will be. Therefore, practical limitations make the bandwidth finite.

2.15.1 Angular spectrum representation of the dipole field

Strongly localized sources such as dipoles are most conveniently described in a spherical
coordinate system. The corresponding solutions of the wave equation are called multipoles.
In order to couple these solutions with the angular spectrum picture we need to express the
localized sources in terms of plane waves and evanescent waves. Let us start with the
vector potential A of an oscillating dipole with its axis aligned along an arbitrary z-axis.
The vector potential can be expressed as a one-component vector field as (cf. Eq. (2.92))

A(x, y, z) = A(x, y, z)nz = −ikZμε
4π

eik
√

x2 + y2 + z2√
x2 + y2 + z2

nz. (2.128)
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Besides a constant factor, the expression on the right-hand side corresponds to the scalar
Green function (2.84). According to Eqs. (2.76) and (2.91) the electric and magnetic fields
are obtained from A as

E(x, y, z) = iω

(
1 + 1

k2
∇∇ ·

)
A(x, y, z), (2.129)

H(x, y, z) = 1

μ0μ
∇ × A(x, y, z). (2.130)

Thus, the electromagnetic field of the dipole can be constructed from the function
exp(ikr)/r, where r = (x2 + y2 + z2)1/2 is the radial distance from the dipole’s ori-
gin. To find an angular spectrum representation of the dipole’s electric and magnetic field
we need first to find the angular spectrum of the function exp(ikr)/r. This is not a trivial
task because the function exp(ikr)/r is singular at r = 0 and therefore not divergence-free
at its origin. The homogeneous Helmholtz equation is therefore not valid in the present
case. Nevertheless, using complex contour integration it is possible to derive an angular
spectrum representation of the function exp(ikr)/r. Since the derivation can be found in
other textbooks [3] we state here only the result, which is

eik
√

x2 + y2 + z2√
x2 + y2 + z2

= i

2π

∞∫
−∞

∫
eikxx+ ikyy+ ikz|z|

kz
dkx dky. (2.131)

We have to require that the real and imaginary parts of kz stay positive for all values
of kx and ky in the integration. The result (2.131) is known as the Weyl identity [16].
In Chapter 10 we shall use the Weyl identity to calculate dipole emission near planar
interfaces.

Problems

2.1 Derive the dyadic Green function
↔
G by substituting the scalar Green function G0 into

Eq. (2.94). Discuss the distance dependence |r − r′|.
2.2 Consider an interface between two media 1 and 2 with dielectric constants ε1 =

2.25 and ε2 = 1, respectively. The magnetic permeabilities are equal to unity. A
p-polarized plane wave with wavelength λ = 532 nm is incident from medium 1
at an angle of incidence of θ1. Express the Fresnel reflection coefficient in terms of
amplitude A and phase�. Plot A and� as functions of θ1. What are the consequences
for the reflected wave?

2.3 Consider the refraction of a plane wave at a plane interface and derive Snell’s law by
using the invariance of the transverse wavevector k‖.

2.4 Show that the z-component of the time-averaged Poynting vector 〈S〉z vanishes for an
evanescent field propagating in the x-direction.

2.5 Analyze the polarization state of an evanescent field propagating in the x-direction
created by total internal reflection of a p-polarized plane wave. Calculate the time-
dependent electric field E2(x, t) = (E2,x(x, t), 0, E2,z(x, t)) just on top of the interface
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(z = 0). For a fixed position x, the electric field vector E2 defines a curve in the (x, z)
plane as the time runs from 0 to λ/c. Determine and plot the shapes of these curves
as a function of the position x. For numerical values choose θ1 = 60◦ and ñ = 1.5.

2.6 Calculate the transmitted intensity for a system of two glass half-spaces (n = 1.5)
separated by an air gap (d) and as a function of the angle of incidence θ1. Deter-
mine the transmission function for s-polarized excitation. Normalize the transmission
function with the value obtained for θ1 = 0◦. Repeat for p-polarized excitation.

2.7 Derive Eq. (2.123) by inserting the inverse Fourier transform in Eq. (2.119) into the
Helmholtz equation (2.120). Assume that the Fourier spectrum is known in the plane
z=0.

2.8 Using the Weyl identity (2.131), derive the spatial spectrum Ê(kx, ky; z) of an electric
dipole at r0 = (0, 0, z0) with dipole moment p = (p, 0, 0). Consider the asymptotic
limit z →∞ and solve for the electric field E.

2.9 Apply Eq. (2.67) to a small metallic particle described by a free-electron gas. For
which frequency is the energy density highest? How do losses scale with frequency?
When is the ratio of energy density to energy loss smallest?
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3 Propagation and focusing of optical fields

In this chapter we use the angular spectrum representation outlined in Section 2.15 to dis-
cuss field distributions in strongly focused laser beams. The same formalism is applied to
understand how the fields in a given reference plane are mapped to the far-field. The theory
is relevant for the understanding of confocal and multiphoton microscopy, single-emitter
experiments, and the understanding of resolution limits. It also defines the framework for
different topics to be discussed in later chapters.

3.1 Field propagators

In Section 2.15 we have established that, in a homogeneous space, the spatial spectrum
Ê of an optical field E in a plane z = constant (the image plane) is uniquely defined by
the spatial spectrum in a different plane z = 0 (the object plane) according to the linear
relationship

Ê(kx, ky; z) = Ĥ(kx, ky; z) Ê(kx, ky; 0), (3.1)

where Ĥ is the so-called propagator in reciprocal space

Ĥ(kx, ky; z) = e±ikz z, (3.2)

which is also referred to as the optical transfer function (OTF) in free space. Remember
that the longitudinal wavenumber is a function of the transverse wavenumber, i.e. kz =
[k2 − (k2

x + k2
y )]1/2, where k = nk0 = nω/c = n2π/λ. The ± sign indicates that the

field can propagate in the positive- and/or negative-z direction. Equation (3.1) can be inter-
preted in terms of linear response theory: Ê(kx, ky; 0) is the input, Ĥ is a filter function, and
Ê(kx, ky; z) is the output. The filter function describes the propagation of an arbitrary spec-
trum through space. Ĥ can also be regarded as the response function because it describes
the field at z due to a point source at z = 0. In this sense, it is directly related to the Green

function
↔
G.

The filter Ĥ is an oscillating function for (k2
x + k2

y ) < k2 and an exponentially decreas-

ing function for (k2
x + k2

y ) > k2. Thus, if the image plane is sufficiently separated from
the object plane, the contribution of the decaying parts (evanescent waves) is zero and
the integration can be reduced to the circular area (k2

x + k2
y ) ≤ k2. In other words, the

45
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image at z is a low-pass-filtered representation of the original field at z = 0. The spatial
frequencies (k2

x + k2
y ) > k2 of the original field are filtered out during propagation and

the information on high spatial variations gets lost. Hence, there is always a loss of infor-
mation on propagating from near- to far-field and only structures with lateral dimensions
larger than

�x ≈ 1

k
= λ

2π n
(3.3)

can be imaged with sufficient accuracy. Here, n is the index of refraction. This equation is
qualitative and we will provide a more detailed discussion in Chapter 4. In general, higher
resolution can be obtained by using a higher index of refraction of the embodying system
(substrate, lenses, etc.) or shorter wavelengths. Theoretically, resolutions down to a few
nanometers can be achieved by using far-ultraviolet radiation or X-rays. The central idea
of near-field optics is to increase the bandwidth of spatial frequencies by retaining the
evanescent components of the source fields.

Let us now determine how the fields themselves evolve. For this purpose we denote
the transverse coordinates in the object plane at z = 0 as (x′, y′) and those in the image
plane at z = constant as (x, y). The fields in the image plane are described by the angular
spectrum (2.124). We just have to express the Fourier spectrum Ê(kx, ky ; 0) in terms
of the fields in the object plane. Similarly to Eq. (2.118), this Fourier spectrum can be
represented as

Ê(kx, ky; 0) = 1

4π2

∞∫
−∞

∫
E(x′, y′, 0) e−i [kx x′ + ky y′] dx′ dy′. (3.4)

After insertion into Eq. (2.124) we find the following expression for the field E in the image
plane z = constant:

E(x, y, z) = 1

4π 2

∞∫
−∞

∫
E(x′, y′; 0)

∞∫
−∞

∫
ei[kx (x−x′)+ ky (y−y′)± kz z] dx′ dy′ dkx dky

= E(x, y; 0) ∗ H(x, y; z). (3.5)

This equation describes an invariant filter with the following impulse response (propagator
in direct space)

H(x, y; z) =
∞∫

−∞

∫
ei[kx x+ ky y± kz z] dkx dky. (3.6)

H is simply the inverse Fourier transform of the propagator in reciprocal space Ĥ
(3.2). The field at z = constant is represented by the convolution of H with the field
at z=0.
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3.2 Paraxial approximation of optical fields

In many optical problems the light fields propagate along a certain direction z and spread
out only slowly in the transverse direction. Examples include laser-beam propagation and
optical waveguide applications. In these examples the wavevectors k = (kx, ky, kz) in
the angular spectrum representation are almost parallel to the z-axis and the transverse
wavenumbers (kx, ky) are small compared with k. We can then expand the square root of
Eq. (2.122) in a series as

kz = k
√

1 − (k2
x + k2

y )/k2 ≈ k − k2
x + k2

y

2 k
. (3.7)

This approximation is called the paraxial approximation and it considerably simplifies the
analytical integration of the Fourier integrals. In the following we shall apply the paraxial
approximation to find a description for weakly focused laser beams.

3.2.1 Gaussian laser beams

We consider a fundamental laser beam with a linearly polarized, Gaussian field distribution
in the beam waist

E(x′, y′, 0) = E0e
− x′2 + y′2

w2
0 , (3.8)

where E0 is a constant-field vector in the transverse (x, y) plane. We have chosen z = 0
at the beam waist. The parameter w0 denotes the beam-waist radius. We can calculate the
spatial Fourier spectrum at z = 0 as1

Ê(kx, ky; 0) = 1

4π2

∞∫
−∞

∫
E0e

− x′2 + y′2
w2

0 e−i [kx x′ + ky y′] dx′ dy′

= E0
w2

0

4π
e−(k2

x+ k2
y )

w2
0

4 , (3.9)

which is again a Gaussian function. We now insert this spectrum into the angular spectrum
representation Eq. (2.124) and replace kz by its paraxial expression in Eq. (3.7)

E(x, y, z) = E0
w2

0

4π
eikz

∞∫
−∞

∫
e
−(k2

x+ k2
y )

(
w2

0
4 + i z

2k

)
ei[kx x+ ky y] dkx dky. (3.10)

This equation can be integrated and gives as a result the familiar paraxial representation of
a Gaussian beam

E(x, y, z) = E0 eikz

1 + 2iz/(kw2
0)

e
− (x2+y2)

w2
0

1
1+ 2iz/(kw2

0) . (3.11)

1 We have
∫∞
−∞ exp(−ax2 + ibx)dx=√

π/a exp[−b2/(4a)] and
∫∞
−∞ x exp(−ax2 + ibx)dx= ib

√
π exp[−b2/

(4a)]/(2a3/2).
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To get a better feeling for a paraxial Gaussian beam we set ρ2 = x2+y2, define a new
parameter z0 as

z0 = kw2
0

2
, (3.12)

and rewrite Eq. (3.11) as

E(ρ, z) = E0
w0

w(z)
e
− ρ2

w2(z) ei [kz−η(z)+ kρ2/(2R(z))] (3.13)

with the following symbols:

w(z) = w0(1 + z2/z2
0)1/2 beam radius,

R(z) = z(1 + z2
0/z

2) wavefront radius, (3.14)

η(z) = arctan(z/z0) phase correction.

The transverse size of the beam is usually defined by the value of ρ = √x2 + y2 for which
the electric field amplitude has decreased to a value of 1/e of its center value:

|E(x, y, z)|/|E(0, 0, z)| = 1/e. (3.15)

It can be shown that the surface defined by this equation is a hyperboloid whose
asymptotes enclose an angle

θ = 2

kw0
(3.16)

with the z-axis. From this equation we can directly find the correspondence between the
numerical aperture (NA = n sin θ ) and the beam angle as NA ≈ 2n/(kw0). Here we
used the fact that, in the paraxial approximation, θ is restricted to small beam angles.
Another property of the paraxial Gaussian beam is that, close to the focus, the beam stays
roughly collimated over a distance 2z0. z0 is called the Rayleigh range and denotes the
distance from the beam waist to where the beam radius has increased by a factor of

√
2.

It is important to notice that along the z-axis (ρ = 0) the phases of the beam deviate from
those of a plane wave. If at z→−∞ the beam was in phase with a reference plane wave,
then at z→+∞ the beam will be exactly out of phase with the reference wave. This phase

z

2/ (kw0)

ρ

2z0

ρ

θ

1/e

w(z)

|E|

�Fig. 3.1 Illustration and main characteristics of a paraxial Gaussian beam. The beam has a Gaussian field distribution in the
transverse plane. The surfaces of constant field strength form a hyperboloid along the z-axis.
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shift is called the Gouy phase shift and has practical implications in nonlinear confocal
microscopy [1]. The 180◦ phase change happens gradually as the beam propagates through
its focus. The phase variation is described by the factor η(z) in Eq. (3.14). The tighter the
focus the faster the phase variation will be.

A qualitative picture of a paraxial Gaussian beam and some of its characteristics are
shown in Fig. 3.1 and more detailed descriptions can be found in other textbooks [2, 3].
It is important to notice that, once the paraxial approximation is introduced, the field E
no longer satisfies Maxwell’s equations. The error becomes larger the smaller the beam-
waist radius w0 is. When w0 becomes comparable to the reduced wavelength λ/n we
have to include higher-order terms in the expansion of kz in Eq. (3.7). However, the series
expansion converges very poorly for strongly focused beams and one needs to find a more
accurate description. We shall return to this topic at a later stage.

Another important aspect of Gaussian beams is that they do not exist, no matter how rig-
orous the theory that describes them! The reason is that a Gaussian beam profile demands
a Gaussian Fourier spectrum. However, the Gaussian Fourier spectrum is infinite and con-
tains evanescent components that are not available in a realistic situation. Thus, a Gaussian
beam must always be regarded as an approximation. The tighter the focus, the broader the
Gaussian spectrum and the more contradictory the Gaussian beam profile will be. Hence,
it actually does not make much sense to include higher-order corrections to the paraxial
approximation.

3.2.2 Higher-order laser modes

A laser beam can exist in different transverse modes. It is the laser cavity that determines
which type of transverse mode is emitted. The most commonly encountered higher beam
modes are Hermite–Gaussian and Laguerre–Gaussian beams. The former are generated
in cavities with rectangular end mirrors whereas the latter are observed in cavities with
circular end mirrors. In the transverse plane, the fields of these modes extend over larger
distances and have sign variations in the phase.

Since the fundamental Gaussian mode is a solution of a linear homogeneous partial dif-
ferential equation, namely the Helmholtz equation, any combinations of spatial derivatives
of the fundamental mode are also solutions to the same differential equation. Zauderer [4]
pointed out that Hermite–Gaussian modes EH

nm can be generated from the fundamental
mode E according to

EH
nm(x, y, z) = wn+m

0
∂ n

∂xn

∂m

∂ym
E (x, y, z), (3.17)

where n and m denote the order and degree of the beam, respectively. Laguerre–Gaussian
modes EL

n,m are derived in a similar way as

EL
nm(x, y, z) = knw2n+m

0 eikz ∂ n

∂zn

(
∂

∂x
+ i

∂

∂y

)m {
E (x, y, z) e−ikz

}
. (3.18)

Thus, any higher-order modes can be generated by simply applying Eqs. (3.17)
and (3.18). It can be shown that Laguerre–Gaussian modes can be generated as a
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�Fig. 3.2 Intensity (|E|2) in the focal plane (z=0) of the first four Hermite–Gaussian modes: (a) (00) mode (Gaussian mode),
(b) (10) mode, (c) (01) mode, and (d) (11) mode. The wavelength and beam angle areλ=800 nm and θ=28.65◦,
respectively. The arrows indicate the polarization directions of the individual lobes.

superposition of a finite number of Hermite–Gaussian modes and vice versa. The two
sets of modes are therefore not independent. Note that the parameter w0 represents the
beam waist only for the Gaussian beam and that for higher-order modes the amplitude E0

does not correspond to the field at the focal point. Figure 3.2 shows the fields in the focal
plane (z = 0) for the first four Hermite–Gaussian modes. As indicated by the arrows, the
polarizations of the individual maxima are either in phase or 180◦ out of phase with each
other.

The commonly encountered doughnut modes with a circular intensity profile can be
described by a superposition of Hermite–Gaussian or Laguerre–Gaussian modes. Linearly
polarized doughnuts are simply defined by the fields EL

01 or EL
11. An azimuthally polarized

doughnut mode is a superposition of two perpendicularly polarized EH
01 fields and a radially

polarized doughnut mode is a superposition of two perpendicularly polarized EH
10 fields.

3.2.3 Longitudinal fields in the focal region

The paraxial Gaussian beam is a transverse electromagnetic (TEM) beam, i.e. it is assumed
that the electric and magnetic fields are always transverse to the propagation direction.
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�Fig. 3.3 Fields of the Gaussian beam depicted in the polarization plane (x, z). The wavelength and beam angle are
λ=800 nm and θ=28.65◦, respectively. (a) Time-dependent power density; (b) total electric field intensity (|E|2);
(c) longitudinal electric field intensity (|Ez|2).

However, in free space the only true TEM solutions are infinitely extended fields such as
plane waves. Therefore, even a Gaussian beam must possess field components polarized
in the direction of propagation. In order to estimate these longitudinal fields we apply the
divergence condition ∇ · E = 0 to the x-polarized Gaussian beam, i.e.

Ez = −
∫ [

∂

∂x
Ex

]
dz. (3.19)

Ez can be derived using the angular spectrum representation of the paraxial Gaussian
beam Eq. (3.10). In the focal plane z = 0 we obtain

Ez(x, y, 0) = −i
2 x

kw2
0

Ex(x, y, 0), (3.20)

where Ex corresponds to the Gaussian beam profile defined in Eq. (3.8). The prefactor
shows that the longitudinal field is 90◦ out of phase with respect to the transverse field
and that it is zero on the optical axis. Its magnitude depends on the tightness of the focus.
Figures 3.3 and 3.4 show the calculated total and transverse electric field distributions for
the Gaussian beam and the Hermite–Gaussian (10) beam, respectively. While the longitu-
dinal electric field of the fundamental Gaussian beam is always zero on the optical axis,
it exhibits two lobes to the sides of the optical axis. Displayed on a cross-section through
the beam waist, the two lobes are aligned along the polarization direction. The longitudi-
nal electric field of the Hermite–Gaussian (10) mode, on the other hand, has its maximum
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�Fig. 3.4 Fields of the Hermite–Gaussian (10) mode. Same scaling and definitions as in Fig. 3.3.

at the beam focus with a much larger field strength. This longitudinal field qualitatively
follows from the 180◦ phase difference and the polarization of the two corresponding field
maxima in Fig. 3.2, since the superposition of two similarly polarized plane waves prop-
agating at angles ±ϕ to the z-axis with 180◦ phase difference also leads to a longitudinal
field component. It has been proposed that one could use the longitudinal fields of the
Hermite–Gaussian (10) mode to accelerate charged particles along the beam axis in linear
particle accelerators [5]. The longitudinal (10) field has also been applied to image the spa-
tial orientation of molecular transition dipoles [6, 7]. In general, the (10) mode is important
for all experiments that require the availability of a longitudinal field component. We shall
see in Section 3.6 that the longitudinal field strength of a strongly focused higher-order
laser beam can even exceed the transverse field strength.

3.3 Polarized electric and polarizedmagnetic fields

If we send an optical beam through a polarizer, we eliminate one of the two transverse field
components. The transmitted field is then called polarized electric.

In fact, any propagating optical field can be split into a polarized electric (PE) and a
polarized magnetic (PM) field:

E = EPE + EPM. (3.21)

For a PE field, the electric field is linearly polarized when projected onto the transverse
plane. Similarly, for a PM field the magnetic field is linearly polarized when projected
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onto the transverse plane. Let us first consider a PE field for which we can choose EPE =
(Ex, 0, Ez). On requiring that the field is divergence free (∇ · EPE = 0) we find that

Êz(kx, ky ; 0) = −kx

kz
Êx(kx, ky ; 0), (3.22)

which allows us to express the fields EPE and HPE in the form

EPE(x, y, z) =
∞∫

−∞

∫
Êx(kx, ky ; 0)

1

kz
[kznx − kxnz] ei [kx x+ ky y± kz z] dkx dky, (3.23)

HPE(x, y, z) = Z−1
με

∞∫
−∞

∫
Êx(kx, ky ; 0)

1

kkz
[−kxkynx + (k2

x + k2
z )ny

− kykznz] ei [kx x+ ky y± kz z] dkx dky, (3.24)

where nx, ny, nz are unit vectors along the x, y, z axes. To derive HPE we used the relations
in Eq. (2.126).

To derive the corresponding PM fields we require that HPM = (0, Hy, Hz). After follow-
ing the same procedure as before one finds that in the PM solution the expressions for the
electric and magnetic fields are simply interchanged:

EPM(x, y, z) = Zμε

∞∫
−∞

∫
Ĥy(kx, ky ; 0)

1

kkz
[(k2

y + k2
z )nx − kxkyny

+ kxkznz] ei [kx x+ ky y± kz z] dkx dky, (3.25)

HPM(x, y, z) =
∞∫

−∞

∫
Ĥy(kx, ky ; 0)

1

kz
[kzny − kynz] ei [kx x+ ky y± kz z] dkx dky. (3.26)

It is straightforward to demonstrate that in the paraxial limit the PE and PM solutions are
identical. In this case they become identical with a TEM solution.

The decomposition of an arbitrary optical field into a PE field and a PM field has been
achieved by setting one transverse field component to zero. The procedure is similar to
the commonly encountered decomposition into transverse electric (TE) and transverse
magnetic (TM) fields for which one longitudinal field component is set to zero (see
Problem 3.2).

3.4 Far-fields in the angular spectrum representation

In this section we will derive the important result that Fourier optics and geometrical optics
naturally emerge from the angular spectrum representation.

Consider a particular (localized) field distribution in the plane z = 0. The angular spec-
trum representation tells us how this field propagates and how it is mapped onto other
planes z = z0. Here, we ask what the field will be in a very remote plane. Vice versa, we
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can ask what field will result when we focus a particular far-field onto an image plane. Let
us start with the familiar angular spectrum representation of an optical field

E(x, y, z) =
∞∫

−∞

∫
Ê(kx, ky ; 0) ei [kx x+ ky y± kz z] dkx dky. (3.27)

We are interested in the asymptotic far-zone approximation of this field, i.e. in the eval-
uation of the field at a point r = r∞ at an infinite distance from the object plane. The
dimensionless unit vector s in the direction of r∞ is given by

s = (sx, sy, sz) =
(x

r
,

y

r
,

z

r

)
, (3.28)

where r= (x2 + y2 + z2)1/2 is the distance of r∞ from the origin. To calculate the far-field
E∞ we require that r →∞ and rewrite Eq. (3.27) as

E∞(sx, sy) = lim
kr→∞

∫ ∫
(k2

x + k2
y )≤ k2

Ê(kx, ky ; 0) e
ikr
[

kx
k sx+ ky

k sy ± kz
k sz

]
dkx dky, (3.29)

where sz =
√

1 − (s2
x + s2

y). Because of their exponential decay, evanescent waves do not

contribute to the fields at infinity. We therefore reject their contribution and reduce the
integration range to (k2

x + k2
y ) ≤ k2. The asymptotic behavior of the double integral as

kr →∞ can be evaluated by the method of stationary phase. For a clear outline of this
method we refer the interested reader to Section 3.3 of Ref. [3]. Without going into details,

s
z

z = 0

�Fig. 3.5 Illustration of the far-field approximation. According to the angular spectrum representation, a point in the source
plane z = 0 emits plane waves in all possible directions. However, a distant detector (kr � 1) measures only the
plane wave that propagates towards it (in the direction of the unit vector s). The fields of all other plane waves are
cancelled out by destructive interference.
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the result of Eq. (3.29) can be expressed as

E∞(sx, sy) = −2π iksz Ê(ksx, ksy ; 0)
eikr

r
. (3.30)

This equation tells us that the far-fields are entirely defined by the Fourier spectrum of the
fields Ê(kx, ky; 0) in the object plane if we make the replacements kx → ksx and ky → ksy.
This simply means that the unit vector s satisfies

s = (sx, sy, sz) =
(

kx

k
,

ky

k
,

kz

k

)
, (3.31)

which implies that only one plane wave with the wavevector k = (kx, ky, kz) of the angular
spectrum at z= 0 contributes to the far-field at a point located in the direction of the unit
vector s (see Fig. 3.5). The effect of all other plane waves is cancelled out by destructive
interference. This beautiful result allows us to treat the field in the far-zone as a collection
of rays with each ray being characterized by a particular plane wave of the original angular
spectrum representation (geometrical optics). On combining Eqs. (3.30) and (3.31) we can
express the Fourier spectrum Ê in terms of the far-field as

Ê(kx, ky ; 0) = ire−ikr

2πkz
E∞

(
kx

k
,

ky

k

)
, (3.32)

keeping in mind that the vector s is entirely defined by kx and ky. This expression can be
substituted into the angular spectrum representation (Eq. 3.27) as

E(x, y, z) = ire−ikr

2π

∫ ∫
(k2

x + k2
y )≤ k2

E∞
(

kx

k
,

ky

k

)
ei[kx x+ ky y± kz z] 1

kz
dkx dky. (3.33)

Thus, as long as evanescent fields are not part of our system, the field E and its far-field
E∞ form essentially a Fourier-transform pair at z = 0. The only deviation is given by the
kz terms. In the approximation kz ≈ k, the two fields form a perfect Fourier-transform pair.
This is the limit of Fourier optics.

As an example consider the diffraction at a rectangular aperture with sides 2Lx and 2Ly

in an infinitely thin conducting screen, which we choose to be our object plane (z = 0).
A plane wave illuminates the aperture at normal incidence from the back. For simplicity
we assume that the field in the object plane has a constant field amplitude E0, whereas the
screen blocks all of the field outside of the aperture. The Fourier spectrum at z=0 is then

Ê(kx, ky; 0) = E0

4π2

∫ +Ly

−Ly

∫ +Lx

−Lx

e−i [kx x′ + ky y′] dx′ dy′

= E0
LxLy

π2

sin(kxLx)

kxLx

sin(kyLy)

kyLy
, (3.34)

With Eq. (3.30) we now determine the far-field as

E∞(sx, sy) = −ikszE0
2LxLy

π

sin(ksx Lx)

ksx Lx

sin(ksy Ly)

ksy Ly

eikr

r
, (3.35)

which, in the paraxial limit kz≈k, agrees with Fraunhofer diffraction.
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Equation (3.30) is an important result. It links the near-fields of an optical problem
with the corresponding far-fields. While in the near-field a rigorous description of fields is
necessary, the far-fields are well approximated by the laws of geometrical optics.

3.5 Focusing of fields

The limit of classical light confinement is achieved with highly focused laser beams. Such
beams are used in fluorescence spectroscopy to investigate molecular interactions in solu-
tions and the kinetics of single molecules on interfaces [6]. Highly focused laser beams
also play a key role in confocal microscopy and optical data storage, where resolutions on
the order of λ/4 are achieved. In optical tweezers, focused laser beams are used to trap
particles and to move and position them with high precision [8]. All these fields require a
theoretical understanding of strongly focused light.

The fields of a focused laser beam are determined by the boundary conditions of the
focusing optical element and the incident optical field. In this section we will study the
focusing of a paraxial optical field by an aplanatic optical lens as shown in Fig. 3.6. In our
theoretical treatment we will follow the theory established by Richards and Wolf [9, 10].
The fields near the optical lens can be formulated by the rules of geometrical optics. In
this approximation the finiteness of the optical wavelength is neglected (k →∞) and the
energy is transported along light rays. The average energy density is propagated with the
velocity v = c/n in the direction perpendicular to the geometrical wavefronts. To describe
an aplanatic lens we need two rules: (1) the sine condition and (2) the intensity law. These
rules are illustrated in Fig. 3.7. The sine condition states that each optical ray that emerges
from or converges to the focus F of an aplanatic optical system intersects its conjugate
ray on a sphere of radius f (the Gaussian reference sphere), where f is the focal length of
the lens. By “conjugate ray,” one understands the refracted or incident ray that propagates
parallel to the optical axis. The distance h between the optical axis and the conjugate ray
is given by

f

Einc

n1 n2

�Fig. 3.6 Focusing of a laser beam by an aplanatic lens.
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h = f sin θ , (3.36)

θ being the divergence angle of the conjugate ray. Thus, the sine condition is a prescrip-
tion for the refraction of optical rays at the aplanatic optical element. The intensity law is
nothing other than a statement of energy conservation: the energy flux along each ray must
remain constant. As a consequence, the electric field strength of a spherical wave has to
scale as 1/r, r being the distance from the origin. The intensity law ensures that the energy
incident on the aplanatic lens equals the energy that leaves the lens. We know that the
power transported by a ray is dP= (1/2)Z−1

με |E|2dA, where Zμε is the wave impedance and
dA is an infinitesimal cross-section perpendicular to the ray propagation. Thus, as indicated
in Fig. 3.7(b), the fields before and after refraction must satisfy

|E2| = |E1|
√

n1

n2

√
μ2

μ1
(cos θ)1/2. (3.37)

Since in practically all media the magnetic permeability at optical frequencies is equal
to one (μ = 1), we will drop the term

√
μ2/μ1 for the sake of having more convenient

notation.
Using the sine condition, our optical system can be represented as shown in Fig. 3.8. The

incident light rays are refracted by the reference sphere of radius f . We denote an arbitrary
point on the surface of the reference sphere by (x∞, y∞, z∞) and an arbitrary field point
near the focus by (x, y, z). The two points are also represented by the spherical coordinates
( f , θ ,φ) and (r,ϑ ,ϕ), respectively.

To describe refraction of the incident rays at the reference sphere we introduce the unit
vectors nρ , nφ , and nθ , as shown in Fig. 3.8. nρ and nφ are the unit vectors of a cylin-
drical coordinate system, whereas nθ and nφ are the unit vectors of a spherical coordinate
system. We recognize that the reference sphere transforms a cylindrical coordinate system
(incoming beam) into a spherical coordinate system (focused beam). Refraction at the ref-
erence sphere is most conveniently calculated by splitting the incident vector Einc into two
components denoted as E(s)

inc and E(p)
inc. The indices (s) and (p) stand for s-polarization and

p-polarization, respectively. In terms of the unit vectors we can express the two fields as

F

incident ray

f

h = f sin θ
θ

dA 2dA 1

E1

E2

dA 1 = dA 2 cos

(a) (b)

z

refracted ray

reference sphere

z Fθ

n1
n2

μ 1

μ 2

θ

�Fig. 3.7 (a) The sine condition of geometrical optics. The refraction of light rays at an aplanatic lens is determined by a
spherical surface with radius f . (b) The intensity law of geometrical optics. The energy carried along a ray must stay
constant.
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E(s)
inc =

[
Einc · nφ

]
nφ , E(p)

inc =
[
Einc · nρ

]
nρ . (3.38)

As shown in Fig. 3.8 these two fields refract differently at the spherical surface. While the
unit vector nφ remains unaffected, the unit vector nρ is mapped into nθ . Thus, the total
refracted electric field, denoted by E∞, can be expressed as

E∞ =
[
ts
[
Einc · nφ

]
nφ + tp

[
Einc · nρ

]
nθ
] √n1

n2
(cos θ )1/2. (3.39)

For each ray we have included the corresponding transmission coefficients ts and tp as
defined in Eqs. (2.52). The factor outside the brackets is a consequence of the intensity
law to ensure energy conservation. The subscript ∞ was added to indicate that the field is
evaluated at a large distance from the focus (x, y, z) = (0, 0, 0).

The unit vectors nρ , nφ , nθ can be expressed in terms of the Cartesian unit vectors nx,
ny, nz using the spherical coordinates θ and φ defined in Fig. 3.8:

nρ = cosφ nx + sinφ ny, (3.40)

nφ = −sinφ nx + cosφ ny, (3.41)

nθ = cos θ cosφ nx + cos θ sinφ ny − sin θ nz. (3.42)

On inserting these vectors into Eq. (3.39) we obtain

E∞(θ ,φ) = ts(θ )

⎡
⎣Einc(θ ,φ) ·

⎛
⎝−sinφ

cosφ
0

⎞
⎠
⎤
⎦
⎛
⎝−sinφ

cosφ
0

⎞
⎠ √n1

n2
(cos θ )1/2

+ tp(θ )

⎡
⎣Einc(θ ,φ) ·

⎛
⎝ cosφ

sinφ
0

⎞
⎠
⎤
⎦
⎛
⎝ cosφ cos θ

sinφ cos θ
−sin θ

⎞
⎠ √n1

n2
(cos θ )1/2,

(3.43)

which is the field in Cartesian vector components just to the right of the reference sphere
of the focusing lens. We can also express E∞ in terms of the spatial frequencies kx and ky

by using the substitutions

kx = k sin θ cosφ, ky = k sin θ sinφ, kz = k cos θ . (3.44)

(x∞,y∞,z∞) 

f

z
θ

Einc

y

x

φ

nρ

nθnφ

nφ

�Fig. 3.8 Geometrical representation of the aplanatic system and definition of coordinates.
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The resulting far-field on the reference sphere is then of the form E∞(kx/k, ky/k) and can
be inserted into Eq. (3.33) to rigorously calculate the focal fields. Thus, the field E near
the focus of our lens is entirely determined by the far-field E∞ on the reference sphere. All
rays propagate from the reference sphere towards the focus (x, y, z)= (0, 0, 0) and there are
no evanescent waves involved.

Owing to the symmetry of our problem it is convenient to express the angular spec-
trum representation Eq. (3.33) in terms of the angles θ and φ instead of kx and ky. This is
easily accomplished by using the substitutions in Eq. (3.44) and expressing the transverse
coordinates (x, y) of the field point as

x = ρ cosϕ, y = ρ sinϕ. (3.45)

In order to replace the planar integration over kx, ky by a spherical integration over θ , φ we
must transform the differentials as

1

kz
dkx dky = k sin θ dθ dφ, (3.46)

which is illustrated in Fig. 3.9. We can now express the angular spectrum representation of
the focal field (Eq. 3.33) as

E(ρ, ϕ, z) = − ikf e−ikf

2π

θmax∫
0

2π∫
0

E∞(θ ,φ) eikz cos θ eikρ sin θ cos(φ−ϕ) sin θ dφ dθ . (3.47)

We have replaced the distance r∞ between the focal point and the surface of the reference
sphere by the focal length f of the lens.2 We have also limited the integration over θ to
the finite range [0 . . . θmax] because any lens will have a finite size. Furthermore, since all
fields propagate in the positive-z direction we retained only the + sign in the exponent of
Eq. (3.33). Equation (3.47) is the central result of this section. Together with Eq. (3.43),
it allows us to calculate the focusing of an arbitrary optical field Einc by an aplanatic lens
with focal length f and numerical aperture

NA = n sin θmax (0 < θmax < π/2), (3.48)

k2 sinθ dθ dφ

kz
θ

dkx dky

dkx dky = cos θ [k2 sin θ dθ dφ]
�Fig. 3.9 Illustration of the substitution (1/kz)dkx dky = k sin θ dθ dφ. The factor 1/kz = 1/(k cos θ ) ensures that the

differential areas on the plane and on the sphere stay equal.

2 The ‘−’ sign originates from taking the farfield at z →−∞. In Eq. (3.33) the farfield is evaluated at z →+∞.
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where n = n2 is the index of refraction of the surrounding medium. The field distribution
in the focal region is entirely determined by the far-field E∞. As we shall see in the next
section, the properties of the laser focus can be engineered by adjusting the amplitude and
phase profile of E∞.

3.6 Focal fields

Typically, the back-aperture of a microscope objective is a couple of millimeters in diam-
eter. In order to make use of the full NA of the objective, the incident field Einc has to fill
or overfill the back-aperture. Thus, because of the large diameter of the incident beam, it
is reasonable to treat it in the paraxial approximation. Let us assume that Einc is entirely
polarized along the x-axis, i.e.

Einc = Eincnx. (3.49)

Furthermore, we assume that the waist of the incoming beam coincides with the lens so
that it hits the lens with a planar phase front. For simplicity we also assume that we have
a lens with good antireflection coating so that we can neglect the Fresnel transmission
coefficients,

tsθ = tpθ = 1. (3.50)

With these assumptions the far-field E∞ in Eq. (3.43) can be expressed as

E∞(θ ,φ) = Einc(θ ,φ)
[
cosφ nθ − sinφ nφ

] √
n1/n2 (cos θ )1/2

= Einc(θ ,φ)
1

2

⎡
⎣ (1 + cos θ ) − (1− cos θ ) cos(2φ)

−(1− cos θ ) sin(2φ)
−2 cosφ sin θ

⎤
⎦ √n1

n2
(cos θ )1/2,

(3.51)

where the last expression is represented in Cartesian vector components. To proceed we
need to specify the amplitude profile of the incoming beam Einc. We will concentrate on
the three lowest Hermite–Gaussian modes displayed in Fig. 3.2. The first of these modes
corresponds to the fundamental Gaussian beam and the other two can be generated accord-
ing to Eq. (3.17) of Section 3.2.2. On expressing the coordinates (x∞, y∞, z∞) in Fig. 3.8
in terms of the spherical coordinates ( f , θ ,φ) we find

(0,0) mode:

Einc = E0 e−(x2∞+y2∞)/w2
0 = E0 e−f 2 sin2θ/w2

0 , (3.52)

(1,0) mode:

Einc = E0(2x∞/w0)e−(x2∞+y2∞)/w2
0 = (2E0f /w0) sin θ cosφ e−f 2 sin2θ/w2

0 , (3.53)

(0,1) mode:

Einc = E0(2y∞/w0) e−(x2∞+y2∞)/w2
0 = (2E0f /w0) sin θ sinφ e−f 2 sin2θ/w2

0 . (3.54)
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The factor fw(θ ) = exp(−f 2 sin2θ/w2
0) is common to all modes. The focal field E will

depend on how much the incoming beam is expanded relative to the size of the lens. Since
the aperture radius of our lens is equal to f sin θmax we define the filling factor f0 as

f0 = w0

f sin θmax
, (3.55)

which allows us to write the exponential function in Eqs. (3.52)–(3.54) in the form

fw(θ ) = e
− 1

f 2
0

sin2θ
sin2θmax . (3.56)

This function is called the apodization function and can be viewed as a pupil filter. We
now have all the necessary ingredients to compute the field E near the focus. With the
mathematical relations

2π∫
0

cos(nφ)eix cos(φ−ϕ) dφ = 2π (in)Jn(x)cos(nϕ), (3.57)

2π∫
0

sin(nφ)eix cos(φ−ϕ) dφ = 2π (in)Jn(x)sin(nϕ)

we can carry out the integration over φ analytically. Here, Jn is the nth-order Bessel func-
tion. The final expressions for the focal field now contain a single integration over the
variable θ . It is convenient to use the following abbreviations for the integrals:

I00 =
θmax∫
0

fw(θ )(cos θ )1/2 sin θ (1+cos θ )J0(kρ sin θ ) eikz cos θ dθ , (3.58)

I01 =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θ J1(kρ sin θ ) eikz cos θ dθ , (3.59)

I02 =
θmax∫
0

fw(θ )(cos θ )1/2 sin θ (1−cos θ )J2(kρ sin θ ) eikz cos θ dθ , (3.60)

I10 =
θmax∫
0

fw(θ )(cos θ )1/2 sin3θ J0(kρ sin θ ) eikz cos θ dθ , (3.61)

I11 =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θ(1+3 cos θ )J1(kρ sin θ ) eikz cos θ dθ , (3.62)
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I12 =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θ (1−cos θ )J1(kρ sin θ ) eikz cos θ dθ , (3.63)

I13 =
θmax∫
0

fw(θ )(cos θ )1/2 sin3θ J2(kρ sin θ ) eikz cos θ dθ , (3.64)

I14 =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θ (1 − cos θ )J3(kρ sin θ ) eikz cos θ dθ , (3.65)

where the function fw(θ ) is given by Eq. (3.56). Notice, that these integrals are functions of
the coordinates (ρ, z), i.e. Iij= Iij(ρ, z). Thus, for each field point we have to evaluate these
integrals numerically. Using these abbreviations we can now express the focal fields of the
various modes as

(0,0) mode:

E(ρ,ϕ, z) = − ikf

2

√
n1

n2
E0e−ikf

⎡
⎣ I00 + I02 cos(2ϕ)

I02 sin(2ϕ)
−2iI01 cosϕ

⎤
⎦ ,

H(ρ,ϕ, z) = − ikf

2Zμε

√
n1

n2
E0e−ikf

⎡
⎣ I02 sin(2ϕ)

I00 − I02 cos(2ϕ)
−2iI01 sinϕ

⎤
⎦ ,

(3.66)

(1,0) mode:

E(ρ,ϕ, z) = − ikf 2

2w0

√
n1

n2
E0e−ikf

⎡
⎣ iI11 cosϕ + iI14 cos(3ϕ)
−iI12 sinϕ + iI14 sin(3ϕ)
−2I10 + 2I13 cos(2ϕ)

⎤
⎦ ,

H(ρ,ϕ, z) = − ikf 2

2w0Zμε

√
n1

n2
E0e−ikf

⎡
⎣ −iI12 sinϕ + iI14 sin(3ϕ)

i(I11+2I12)cosϕ − iI14 cos(3ϕ)
2I13 sin(2ϕ)

⎤
⎦ ,

(3.67)

(0,1) mode:

E(ρ,ϕ, z) = − ikf 2

2w0

√
n1

n2
E0e−ikf

⎡
⎣ i(I11+2I12) sinϕ + iI14 sin(3ϕ)

−iI12 cosϕ − iI14 cos(3ϕ)
2I13 sin(2ϕ)

⎤
⎦ ,

H(ρ,ϕ, z) = − ikf 2

2w0Zμε

√
n1

n2
E0e−ikf

⎡
⎣−iI12 cosϕ − iI14 cos(3ϕ)

iI11 sinϕ − iI14 sin(3ϕ)
−2I10 − 2I13 cos(2ϕ)

⎤
⎦ .

(3.68)

For completeness, we have also listed the magnetic fields for the three modes. They can
be derived in the same way by using the corresponding paraxial input fields H∞ with
the magnetic field axis along the y-axis. Notice that only the zeroth-order Bessel function
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�Fig. 3.10 Influence of the filling factor f0 of the back-aperture on the sharpness of the focus. A lens with NA=1.4 is assumed
and the index of refraction is 1.518. The figure shows the magnitude of the electric field intensity |E|2 in the focal
plane z=0. The dashed curves have been evaluated along the x-direction (plane of polarization) and the solid curves
along the y-direction. All curves have been scaled to an equal amplitude. The scaling factor is indicated in the figures.
The larger the filling factor, the bigger the deviation between the solid and dashed curves, indicating the importance
of polarization effects.

possesses a non-vanishing value at its origin. As a consequence, only the (1, 0) mode has a
longitudinal electric field (Ez) at its focus.

In the limit fw = 1 the fields for the (0, 0) mode are identical with the solutions of
Richards and Wolf [10]. According to Eq. (3.56), this limit is reached for f0 →∞, which
corresponds to an infinitely overfilled back-aperture of the focusing lens. This situation
is identical with that of a plane wave incident on the lens. Figure 3.10 demonstrates the
effect of the filling factor f0 on the confinement of the focal fields. In these examples we
used an objective with a numerical aperture of 1.4 and an index of refraction of 1.518,
which corresponds to a maximum collection angle of 68.96◦. It is obvious that the filling
factor is important for the quality of the focal spot and thus for the resolution in optical
microscopy. It is important to notice that with increasing field confinement at the focus
the focal spot becomes more and more elliptical. Whereas in the paraxial limit the spot is
perfectly circular, a strongly focused beam has a spot that is elongated in the direction of
polarization. This observation has important consequences: as we aim towards higher res-
olutions by using spatially confined light we need to take the vector nature of the fields into
account. Scalar theories become insufficient. Figure 3.11 shows field plots for the electric
field for a filling factor of f0=1 and an NA=1.4 objective lens. This figure depicts the total
electric field intensity E2 in the plane of incident polarization (x, z) and perpendicular to it
(y, z). The three images to the side show the intensities of the different field components
in the focal plane z=0. The maximum relative values are Max[E2

y ]/Max[E2
x ]=0.003 and

Max[E2
z ]/Max[E2

x ] = 0.12. Thus, an appreciable amount of the electric field energy is in
the longitudinal field.

How can we experimentally verify the calculated focal fields? An elegant method is
to use a single dipolar emitter, such as a single molecule, to probe the field (Fig. 3.12).
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�Fig. 3.11 Contour plots of constant |E|2 in the focal region of a focused Gaussian beam (NA=1.4, n = 1.518, f0=1): (a) in
the plane of incident polarization (x, z); (b) in the plane perpendicular to the plane of incident polarization (y, z). A
logarithmic scaling is used, with a factor of 2 difference between adjacent contour lines. Images (c), (d), and (e) show
the magnitudes of the individual field components |Ex|2, |Ey|2, and |Ez|2, respectively, in the focal plane (z=0).

The molecule can be embedded into the surrounding medium with index n and moved
with accurate translators to any position r = (x, y, z) = (ρ,ϕ, z) near the laser focus. The
excitation rate of the molecule depends on the product E · p, with p being the transition
dipole moment of the molecule. The excited molecule then relaxes with a certain rate
and probability by emitting a fluorescence photon. We can use the same aplanatic lens
to collect the emitted photons and direct them onto a photodetector. The fluorescence
intensity (photon counts per second) will be proportional to |E · p|2. Thus, if we know
the dipole orientation of the molecule, we can determine the field strength of the exciting
field at the molecule’s position. For example, a molecular dipole aligned with the x-axis
will render the x-component of the focal field. We can then translate the molecule to a new
position and determine the field at this new position. Thus, point by point we can establish
a map of the magnitude of the electric field component that points along the molecular
dipole axis. With the x-aligned molecule we should be able to reproduce the pattern shown
in Fig. 3.11(c) if we scan the molecule point by point in the plane z = 0. This has been
demonstrated in various experiments and will be discussed in Chapter 9.

3.7 Focusing of higher-order laser modes

So far, we have discussed focusing of the fundamental Gaussian beam. What about the
(10) and (01) modes? We have calculated those in order to synthesize doughnut modes
with arbitrary polarization. Depending on how we superimpose those modes, we obtain
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�Fig. 3.12 Single-molecule excitation patterns. A sample with isolated single molecules is raster scanned in the focal plane of a
strongly focused laser beam. For each pixel, the fluorescence intensity is recorded and encoded in the color scale. The
excitation rate in each pixel is determined by the relative orientation of the local electric field vector and the molecular
absorption dipole moment. Using the known field distribution in the laser focus allows the dipole moments to be
reconstructed from the recorded patterns. Compare the patterns marked x, y, and z with those in Fig. 3.11.

Linearly polarized doughnut mode:

LP = HG10 nx + i HG01 nx (3.69)

Radially polarized doughnut mode:

RP = HG10 nx + HG10 ny (3.70)

Azimuthally polarized doughnut mode:

AP = −HG01 nx + HG01 ny. (3.71)

Here, HGij nl denotes a Hermite–Gaussian (ij) mode polarized along the unit vector nl.
The linearly polarized doughnut mode is identical with the Laguerre–Gaussian (01) mode
defined in Eq. (3.18) and it is easily calculated by adding the fields of Eqs. (3.67) and (3.68)
with a 90◦ phase delay. To determine the focal fields of the other two doughnut modes we
need to derive the focal fields for the y-polarized modes. This is easily accomplished by
rotating the existing fields in Eqs. (3.67) and (3.68) by 90◦ around the z-axis. The resulting
focal fields turn out to be

Radially polarized doughnut mode:

E(ρ,ϕ, z) = − ikf 2

2w0

√
n1

n2
E0e−ikf

⎡
⎣ i(I11 − I12)cosϕ

i(I11 − I12)sinϕ
−4I10

⎤
⎦ ,

H(ρ,ϕ, z) = − ikf 2

2w0Zμε

√
n1

n2
E0e−ikf

⎡
⎣−i(I11 + 3I12)sinϕ

i(I11 + 3I12)cosϕ
0

⎤
⎦ ,

(3.72)
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Azimuthally polarized doughnut mode:

E(ρ,ϕ, z) = − ikf 2

2w0

√
n1

n2
E0e−ikf

⎡
⎣ i(I11 + 3I12)sinϕ
−i(I11 + 3I12)cosϕ

0

⎤
⎦ ,

H(ρ,ϕ, z) = − ikf 2

2w0Zμε

√
n1

n2
E0e−ikf

⎡
⎣ i(I11 − I12)cosϕ

i(I11 − I12)sinϕ
−4I10

⎤
⎦ .

(3.73)

With the definition of the integrals

Irad = I11 − I12 =
θmax∫
0

fw(θ )(cos θ )3/2 sin2θ J1(kρ sin θ ) eikz cos θ dθ , (3.74)

Iazm = I11 + 3I12 =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θ J1(kρ sin θ ) eikz cos θ dθ (3.75)

we see that to describe the focusing of radially polarized and azimuthally polarized dough-
nut modes we need to evaluate totally two integrals. The radial and azimuthal symmetries
are easily seen by transforming the Cartesian field vectors into cylindrical field vectors as

Eρ = cos ϕ Ex + sinϕ Ey,

Eφ = −sinϕ Ex + cosϕ Ey,
(3.76)

and similarly for the magnetic field. While the radially polarized focused mode has a rota-
tionally symmetric longitudinal electric field Ez, the azimuthally polarized focused mode
has a rotationally symmetric longitudinal magnetic field Hz. As shown in Fig. 3.13 the
longitudinal field strength |Ez|2 increases with increasing numerical aperture. At a numer-
ical aperture of NA≈ 1 the magnitude of |Ez|2 becomes larger than the magnitude of the
radial field |Eρ |2. This is important for applications that require strong longitudinal fields.
Figure 3.14 shows field plots for the focused radially polarized beam using the same param-
eters and settings as in Fig. 3.11. More detailed discussions of the focusing of radially and
azimuthally polarized beams are presented in Refs. [11–13]. The field distribution in the
beam focus has been measured using single molecules as probes [7] and by the knife-edge
method [13].

Although laser beams can be adjusted to a higher mode by manipulating the laser res-
onator, it is desirable to convert a fundamental Gaussian beam into a higher-order mode
externally without perturbing the laser characteristics. Such a conversion can be realized
by inserting phase plates into different regions in the beam cross-section [14]. As shown in
Fig. 3.15, the conversion to a Hermite–Gaussian (10) mode is favored by bisecting the fun-
damental Gaussian beam with the edge of a thin phase plate which shifts the phase of one
half of the beam by 180◦. The incident beam has to be polarized perpendicular to the edge
of the phase plate and subsequent spatial filtering has to be performed to reject higher-order
modes. A related approach makes use of half-coated mirrors to delay one half of the laser
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�Fig. 3.13 Ratio of the longitudinal and transverse electric field intensities |Ez|2/|Eρ |2 of a radially polarized doughnut mode as
a function of the numerical aperture ( f0=1, n = 1.518). |Eρ |2 has its maximum on a ring in the plane z=0,
whereas the maximum of |Ez|2 is at the origin (x, y, z)= (0, 0, 0). According to the figure, the maximum longitudinal
electric energy density can be more than five times larger than the maximum transverse electric energy density.

beam. In this case, the beam passes twice through the bisected part and hence the thick-
ness of the coated part must be λ/4. Other mode-conversion schemes make use of external
four-mirror ring cavities or interferometers [15, 16]. The approach shown in Fig. 3.16(a)
was developed by Youngworth and Brown to generate azimuthally and radially polarized
beams [11, 12]. It is based on a Twyman–Green interferometer with half-coated mirrors.
The polarization of the incoming Gaussian beam is adjusted to 45◦. A polarizing beam-
splitter divides the power of the beam into two orthogonally polarized beams. Each of the
beams passes a λ/4 phase plate which makes the beams circularly polarized. Each beam
then reflects from an end mirror. One half of each mirror has a λ/4 coating which, after
reflection, delays one half of the beam by 180◦ with respect to the other half. Each of the
two reflected beams passes through the λ/4 plate again and becomes converted into equal
amounts of orthogonally polarized Hermite–Gaussian (10) and (01) modes. Subsequently,
one of these modes will be rejected by the polarizing beamsplitter whereas the other will
be combined with the corresponding mode from the other interferometer arm. Whether
a radially polarized mode or an azimuthally polarized mode is generated depends on the
positioning of the half-coated end mirrors. To produce the other mode one needs to simply
rotate the end mirrors by 90◦. The two modes from the different interferometer arms need
to be in phase, which requires adjustability of the path length. The correct polarization
can always be verified by sending the output beam through a polarizer and by selectively
blocking the beam in one of the two interferometer arms. Since the mode conversion is
not 100% efficient one needs to spatially filter the output beam to reject any undesired
modes. This is accomplished by focusing the output beam onto a pinhole with adjusted
diameter.

To obviate the need for noise- and drift-sensitive interferometers, Dorn et al. imple-
mented a single-path mode-conversion scheme for radially and azimuthally polarized
beams [13]. As shown in Fig. 3.16(b), a laser beam is sent through a λ/2 waveplate
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�Fig. 3.14 (a) Contour plots of constant |E|2 in the focal region of a focused radially polarized doughnut mode (NA=1.4,
n = 1.518, f0=1) in the (ρ , z) plane. The intensity is rotationally symmetric with respect to the z-axis. A
logarithmic scaling is used with a factor of 2 difference between adjacent contour lines. Images (b), (c), and (d) show
the magnitudes of the individual field components |Ez|2, |Eρ |2, and |Ey|2, respectively, in the focal plane (z=0). A
linear scale is used.

consisting of four segments. The optical axis of each segment is oriented such that the field
is rotated to point in the radial direction. Subsequent spatial filtering extracts the desired
mode with very high purity. A phase plate as shown in Fig. 3.16(b) can be fabricated by
cutting two λ/2 plates into four quadrants each, and then assembling the pieces into two
new phase plates. This mode-conversion principle can be generalized to waveplates with
many elements such as liquid-crystal spatial light modulators.

3.8 The limit of weak focusing

Before we proceed to the next section we need to verify that our formulas for the focused
fields render the familiar paraxial expressions for the limit of small θmax. In this limit we
may make the approximations cos θ ≈ 1 and sin θ ≈ θ . However, for the phase factor
in the exponent of the integrals I00 . . . I14 we need to retain the second-order term, i.e.
cos θ ≈ 1−θ2/2, because the first-order term alone would cancel out the θ dependence. For
small arguments x, the Bessel functions behave like Jn(x)≈xn. Using these approximations,
a comparison of the integrals I00 . . . I14 shows that the integral I00 is of lowest order in θ ,
followed by I11 and I12. Whereas I00 defines the paraxial Gaussian mode, the other two
remaining integrals determine the paraxial Hermite–Gaussian (1, 0) and (0, 1) modes. In
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�Fig. 3.15 Generation of a Hermite–Gaussian (10) beam. A fundamental Gaussian beam is bisected at the edge of a 180◦ phase
plate. The polarization of the incident beam is perpendicular to the edge of the phase plate. The arrangement delays
one half of the beam by 180◦ and therefore favors the conversion to the Hermite–Gaussian (10) mode. A subsequent
spatial filter rejects any modes of higher order than the (10) mode.

principle, the integration of I00, I10 and I11 can now be carried out analytically. However,
since the results lead to inconvenient Lommel functions we reduce our discussion to the
focal plane z=0. Furthermore, we assume an overfilled back-aperture of the lens ( f0 � 1)
so that the apodization function fw(θ ) can be considered constant. Using the substitution
x = kρθ we find

I00 ≈ 2

kρ

kρθmax∫
0

x J0(x) dx = 2θ2
max

J1(kρθmax)

kρθmax
. (3.77)

The paraxial field of the focused Gaussian beam in the focal plane turns out to be

E ≈ −ikf θ2
maxE0 e−ikf J1(kρθmax)

kρθmax
nx. (3.78)

This is the familiar expression for the point-spread function in the paraxial limit. Abbe’s
and Rayleigh’s definitions of the resolution limit are closely related to the expression above
as we shall see in Section 4.1. The focal fields of the (1, 0) and (0, 1) modes in the paraxial
limit can be derived in a similar way as

(1,0) mode:

E ∝ θ3
max[J2(kρθmax)/(kρθmax)] cosϕ nx, (3.79)

(0,1) mode:

E ∝ θ3
max[J2(kρθmax)/(kρθmax)] sinϕ nx. (3.80)

In all cases, the radial dependence of the paraxial focal fields is described by Bessel func-
tions, not by the original Gaussian envelope. After passing through the lens the beam shape
in the focal plane becomes oscillatory. These spatial oscillations can be viewed as diffrac-
tion lobes and are a consequence of the boundary conditions imposed by the aplanatic
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�Fig. 3.16 Two different mode-conversion schemes for the generation of radially and azimuthally polarized modes. (a) Using a
Twyman–Green interferometer. The incident beam is polarized at 45◦ and is split by a polarizing beamsplitter into
two orthogonally polarized beams of equal power. Each beam is then turned circularly polarized and reflected off a
half-coated end mirror. (b) Using a “composite waveplate” consisting of four quadrants with different optical axes.
Each segment is oriented such that the field is rotated to point in the radial direction. In both schemes, the outgoing
beam needs to be spatially filtered to reject unwanted higher-order modes. (Abbreviations: circ. pol, circular
polarization; lin. pol, linear polarization). See the text for details.

lens. We have assumed f0 →∞ and we can reduce the oscillatory behavior by reducing
f0 (see Fig. 3.10). However, this is at the expense of the spot size. The fact that the spot
shape is described by an Airy function and not by a Gaussian function is very important.
In fact, there are no freely propagating Gaussian beams! The reason is, as outlined in Sec-
tion 3.2.1, that a Gaussian profile has a Gaussian Fourier spectrum, which is never zero and
only asymptotically approaches zero as kx, ky →∞. Thus, for a Gaussian profile we need
to include evanescent components, even if their contribution is small. The oscillations in
the Airy profile arise from the hard cut-off at high spatial frequencies. The smoother this
cut-off the less oscillatory the beam profile will be.

3.9 Focusing near planar interfaces

Many applications in optics involve laser beams that are strongly focused near planar sur-
faces. Examples are confocal microscopy, for which objective lenses with NA>1 are used,
optical microscopy or data storage based on solid immersion lenses, and optical tweezers,
whereby laser light is focused into a liquid to trap tiny particles. The angular spectrum
representation is well suited to solve for the fields since the planar interface is a constant
coordinate surface. For simplicity we assume that we have a single interface between two
dielectric media with indices n1 and n2 (see Fig. 3.17). The interface is located at z = z0

and the focused field Ef illuminates the interface from the left (z< z0). While the spatial
frequencies kx and ky are the same on each side of the interface, kz is not. Therefore, we
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�Fig. 3.17 Focusing of a laser beam near an interface at z= z0 between two dielectric media with refractive indices n1 and n2.

specify kz in the domain z < z0 by kz1 defined by kz1 = (k2
1 − k2

x − k2
y )1/2. Similarly we

define kz2 = (k2
2 − k2

x − k2
y )1/2 for the domain z> z0. The wavenumbers are determined by

k1 = (ω/c)n1 and k2 = (ω/c)n2, respectively.
The interface leads to reflection and transmission. Therefore, the total field can be

represented as

E =
{

Ef + Er, z < z0,
Et, z > z0,

(3.81)

where Er and Et represent the reflected and transmitted fields, respectively. The refraction
of plane waves at planar interfaces is described by Fresnel reflection coefficients (rs, rp)
and transmission coefficients (ts, tp), which were defined in Chapter 2 (Eqs. (2.51) and
(2.52)). As indicated by the superscripts, these coefficients depend on the polarization of
the field. We therefore need to split each plane wave component in the angular spectrum
representation of the field E into an s-polarized part and a p-polarized part,

E = E(s) + E(p). (3.82)

E(s) is parallel to the interface while E(p) is perpendicular to the wavevector k and E(s). The
decomposition of the incoming focused field Ef into s- and p-polarized fields has already
been done in Section 3.5. According to Eq. (3.39) we obtain the s- and p-polarized fields
by projecting Ef along the unit vectors nθ and nφ , respectively. Equation (3.43) represents
the refracted far-field as a sum of s- and p-polarized fields expressed in terms of θ and φ.
Using the substitutions of Eq. (3.44) we are able to express the far-field in terms of the
spatial frequencies kx and ky.

In the case in which Ef originates from a paraxial beam polarized in the x-direction we
can express the far-field as (cf. Eq. (3.51))

E∞ = Einc

(
kx

k
,

ky

k

)⎡⎣ k2
y + k2

x kz1/k1

−kxky + kxkykz1/k1

0− (k2
x + k2

y )kx/k1

⎤
⎦ √kz1/k1

k2
x + k2

y
, (3.83)
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where the first terms in the bracket specify the s-polarized field and the second ones the p-
polarized field. Notice that according to Fig. 3.16 we consider a lens with the same medium
on both sides, i.e. n1 = n = n′. E∞ is the asymptotic far-field in the direction of the unit
vector s = (kx/k, ky/k, kz1/k) and corresponds to the field on the surface of the reference
sphere of the focusing lens. In terms of E∞, the angular spectrum representation of the
incident focused beam is given by (c.f. Eq. (3.33))

Ef(x, y, z) = − if e−ik1f

2π

∫
kx,ky

∫
E∞

(
kx

k
,

ky

k

)
1

kz1

ei [kx x+ ky y+ kz1 z] dkx dky. (3.84)

To determine the reflected and transmitted fields (Er, Et) we define the following angular
spectrum representations:

Er(x, y, z) = − if e−ik1f

2π

∫
kx,ky

∫
E∞

r

(
kx

k
,

ky

k

)
1

kz1

ei [kx x+ ky y− kz1 z] dkx dky, (3.85)

Et(x, y, z) = − if e−ik1f

2π

∫
kx,ky

∫
E∞

t

(
kx

k
,

ky

k

)
1

kz2

ei [kx x+ ky y+ kz2 z] dkx dky. (3.86)

Notice that in order to ensure that the reflected field propagates in the backward direction
we had to change the sign of kz1 in the exponent. We also made sure that the transmitted
wave propagates with the longitudinal wavenumber kz2 .

In the next step we invoke the boundary conditions at z = z0, which leads to explicit
expressions for the as-yet-undefined far-fields E∞

r and E∞
t . Using the Fresnel reflection or

transmission coefficients we obtain

E∞
r = −Einc

(
kx

k
,

ky

k

)
e2ikz1z0

⎡
⎢⎣
−rsk2

y + rpk2
x kz1/k1

rskxky + rpkxkykz1/k1

0+ rp(k2
x + k2

y )kx/k1

⎤
⎥⎦
√

kz1/k1

k2
x + k2

y
, (3.87)

E∞
t = Einc

(
kx

k
,

ky

k

)
ei(kz1−kz2 )z0

⎡
⎢⎣

tsk2
y + tpk2

x kz2/k2

−tskxky + tpkxkykz2/k2

0− tp(k2
x + k2

y )kx/k2

⎤
⎥⎦ kz2

kz1

√
kz1/k1

k2
x + k2

y
. (3.88)

These equations together with Eqs. (3.83)–(3.86) define the solution of our problem. They
hold for an interface between two materials characterized by constant εi and μi. This is
straightforward to verify by evaluating the boundary conditions at z = z0 (Problem 3.7).
We are now able to evaluate the field distribution near a plane interface illuminated by a
strongly focused laser beam. The field depends on the amplitude profile Einc of the inci-
dent paraxial beam (cf. Eqs. (3.52)–(3.54)) and on the defocus z0. The defocus essentially
introduces a phase factor into the expressions for E∞

r and E∞
t . Although we concen-

trated on a single interface, the results are easily adapted to a multiply layered interface
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by introducing generalized Fresnel reflection/transmission coefficients that account for the
total structure (cf. Ref. [17]).

In the next step, we can use the relations (3.44) to perform a transformation to spherical
coordinates. As before, we are able to reduce the double integrals to single integrals by
involving Bessel functions. We avoid going into further details and instead discuss some
important aspects that result from this theory.

In the example of Fig. 3.18 a Gaussian beam is focused by an aplanatic objective lens of
NA=1.4 on a glass/air interface at z0=0. The most characteristic features in the field plots
are the standing-wave patterns in the denser medium. These standing-wave patterns occur
at angles θ beyond the critical angle of total internal reflection θc. To understand this let us
have a look at a single plane wave in the angular spectrum representation of the incident

y= 0

x = 0

x

z

y

z

8 λ

�Fig. 3.18 Contour plots of constant |E|2 in the focal region of a Gaussian beam (NA=1.4, n=1.518, f0=2) focused on a
glass/air interface (n1=1.518, n2=1). A logarithmic scaling is used, with a factor of 2 difference between adjacent
contour lines. The critical angle for total internal reflection is θc=41.2◦. All plane-wave components incident from
angles larger than θc are totally reflected at the interface and interfere with the incoming waves.
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focused field Ef. This plane wave is characterized by the two transverse wavenumbers kx

and ky, its polarization, and the complex amplitude given by the Fourier spectrum Êf. The
transverse wavenumbers are the same on each side of the interface, but the longitudinal
wavenumbers kz are not, since they are defined as

kz1 =
√

k2
1 − (k2

x + k2
y ) , kz2 =

√
k2

2 − (k2
x + k2

y ). (3.89)

On eliminating kx and ky we obtain

kz2 =
√

k2
z1
+ (k2

2 − k2
1). (3.90)

Let θ denote the angle of incidence of the plane wave so that

kz1 = k1 cos θ . (3.91)

Equation (3.90) can then be written as

kz2 = k2

√
1 − k2

1

k2
2

sin2θ . (3.92)

It follows that kz2 can be either real or imaginary, depending on the sign of the expression
under the square root. This in turn depends on the angle θ . We find that for angles larger
than

θc = arcsin

(
n2

n1

)
(3.93)

kz2 is imaginary. Thus, for θ >θc the plane wave considered is totally reflected at the inter-
face, giving rise to an evanescent wave on the other side of the interface. The standing-wave
patterns seen in Fig. 3.18 are a direct consequence of this phenomenon: all the supercrit-
ical (θ > θc) plane wave components of the incident focused field are totally reflected at
the interface. The standing-wave pattern is due to the equal superposition of incident and
reflected plane-wave components. Owing to total internal reflection an appreciable amount
of laser power is reflected at the interface. The ratio of reflected to transmitted power can be
further increased by using a larger filling factor or a higher numerical aperture. For exam-
ple, in applications based on solid immersion lenses with numerical apertures of 1.8–2 over
90% of the beam power is reflected at the interface.

An inspection of the focal spot reveals that the interface further increases the ellipticity
of the spot shape. Along the polarization direction (x) the spot is almost twice as big as
in the direction perpendicular to it (y). Furthermore, the interface enhances the strength
of the longitudinal field component Ez. At the interface, just outside the focusing medium
(z > −z0), the maximum relative intensity values for the different field components are
Max[E2

y ]/Max[E2
x ] = 0.03 and Max[E2

z ]/Max[E2
x ] = 0.43. Thus, compared with the sit-

uation in which no interface is present (cf. Fig. 3.11), the longitudinal field intensity is
roughly four times stronger. How can we understand this phenomenon? According to the
boundary conditions at the interface, the transverse field components Ex and Ey have to be
continuous across the interface. However, the longitudinal field scales as

Ez1ε1 = Ez2ε2. (3.94)
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With ε2 =2.304 we find that E2
z changes by a factor of 5.3 from one side to the other side

of the interface. This qualitative explanation is in reasonable agreement with the calculated
values. In the focal plane, the longitudinal field has its two maxima just to the side of the
optical axis. These two maxima are aligned along the polarization direction and give rise to
the elongated spot size. The relative magnitude of Max[E2

y ] is still small, but it is increased
by a factor of 10 by the presence of the interface.

In order to map the dipole orientation of arbitrarily oriented single molecules it is desir-
able that all three excitation field components (Ex, Ey, Ez) in the focus are of comparable
magnitude. It has been demonstrated that this can be achieved by annular illumination for
which the center part of the focused laser beam is suppressed [18]. This can be achieved
by placing a central obstruction such as a circular disk in the excitation beam. In this situa-
tion, the integration of plane-wave components runs over the angular range [θmin . . . θmax]
instead of, as before, over the full range [0 . . . θmax]. By using annular illumination we
reject the plane-wave components with propagation directions close to the optical axis,
thereby suppressing the transverse electric field components. As a consequence, the long-
itudinal field components in the focus will be enhanced compared with the transverse
components. Furthermore, the local polarization of the interface due to the longitudinal
fields gives rise to a strong enhancement of the Ey fields. Hence, strong longitudinal fields
are a prerequisite for generating strong Ey fields close to interfaces. It is possible to pre-
pare the annular beam such that the three patterns in Fig. 3.11(c)–(e) are of comparable
magnitude [18].

3.10 The reflected image of a strongly focused spot

It is interesting to further investigate the properties of the reflected field Er given by
Eqs. (3.85) and (3.87). The image of the reflected spot can be experimentally recorded as
shown in Fig. 3.19. A 45◦ beamsplitter reflects part of the incoming beam upwards where
it is focused by a high NA objective lens near a planar interface. The distance between the
focus (z = 0) and the interface is designated by z0. The reflected field is collected by the
same lens, transmitted through the beamsplitter and then focused by a second lens onto
the image plane. There are four different media involved and we specify them with the
refractive indices defined in Fig. 3.19. We are interested in calculating the resulting field
distribution in the image plane. It will be shown that, for the case in which the beam is
incident from the optically denser medium, the image generated by the reflected light is
strongly aberrated.

The reflected far-field E∞
r before it is refracted by the first lens has been calculated in

Eq. (3.87). It is straightforward to refract this field at the two lenses and refocus it onto the
image plane. The two lenses perform transformations between spherical and cylindrical
systems. In Section 3.5 it has been shown that the lens refracts the unit vector nρ into
the unit vector nθ , or vice versa, whereas the unit vector nφ remains unaffected. In order
to oversee the entire imaging process we follow the light path from the beginning. The
incoming field Einc is an x-polarized, paraxial beam defined as (Eq. (3.49))
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�Fig. 3.19 Experimental set-up for the investigation of the reflected image of a diffraction-limited focused spot. A linearly
polarized beam is reflected by a beamsplitter (BS) and focused by a high-NA objective lens with focal radius f onto an
interface between two dielectric media with refractive indices n1 and n2. The reflected field is collected by the same
lens, transmitted through the beamsplitter and refocused by a second lens with focal radius f ′.

Einc = Eincnx, (3.95)

where Einc is an arbitrary beam profile. Expressed in cylindrical coordinates the field has
the form

Einc = Einc
[
cosφ nρ − sinφ nφ

]
. (3.96)

After refraction at the first lens f it turns into

E = Einc
[
cosφ nθ − sinφ nφ

] √n0

n1
(cos θ )1/2. (3.97)

The field is now reflected at the interface. The Fresnel reflection coefficient rp accounts for
the reflection of nθ -polarized fields whereas rs accounts for the reflection of nφ-polarized
fields. We obtain for the reflected field

E = Eince2ikz1 z0
[−cosφ rp nθ − sinφ rsnφ

] √n0

n1
(cos θ )1/2, (3.98)

where z0 denotes the defocus (cf. Eq. (3.87)). Next, the field is refracted by the same
lens f as
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E = Eince2ikz1 z0
[−cosφ rpnρ − sinφ rsnφ

]
, (3.99)

and propagates as a collimated beam in the negative-z direction. Expressed in Cartesian
field components the field reads as

E∞
r = −Eince2ikz1 z0

[
[cos2φ rp − sin2φ rs]nx + sinφ cosφ[rp + rs]ny

]
. (3.100)

This is the field immediately after refraction at the reference sphere f . For an incident field
focused on a perfectly reflecting interface located at z0 = 0 the reflection coefficients are
rp = 1 and rs =−1.3 In this case we simply obtain E∞

ref = −Einc nx, which is, apart from
the minus sign, identical with the assumed input field of Eq. (3.49). The difference in sign
indicates that the reflected field is “upside down.”

In order to calculate the reflected collimated beam anywhere along the optical axis we
have to make the substitutions sin θ=ρ/f and cos θ= [1− (ρ/f )2]1/2, where ρ denotes the
radial distance from the optical axis (see Problem 3.8). This allows us to plot the field dis-
tribution in a cross-sectional plane through the collimated reflected beam. We find that the
Fresnel reflection coefficients modify the polarization and amplitude profile of the beam,
and, more importantly, also its phase profile. For the case of no defocus (z0 = 0) phase
variations arise only at radial distances ρ > ρc for which the Fresnel reflection coef-
ficients become complex numbers. The critical distance corresponds to ρc = f n2/n1

and is the radial distance associated with the critical angle of total internal reflection
(θc = arcsin(n2/n1)). Since ρc< f there are no aberrations if n2>n1.

We now proceed to the refraction at the second lens f ′. Immediately after refraction the
reflected field reads as

E = Eince2ikz1 z0
[−cosφ rpnθ ′ − sinφ rsnφ

] √n0

n3
(cos θ ′)1/2, (3.101)

where we introduced the new azimuth angle θ ′ as defined in Fig. 3.19. The field now
corresponds to the far-field E∞

r that we need in Eq. (3.33) to calculate the field distribution
in the image space. We express this field in Cartesian field components using the relations
in Eqs. (3.41)–(3.42) for nθ ′ and nφ and obtain

E∞
r = −Eince2ikz1 z0

⎡
⎢⎣ rp cos θ ′ cos2φ − rs sin2φ

rp cos θ ′ sinφ cosφ + rs sinφ cosφ
rp sin θ ′ cosφ + 0

⎤
⎥⎦√n0

n3
(cos θ ′)1/2.

(3.102)

This far-field can now be introduced into Eq. (3.47), which, after being adapted to the
current situation, reads as

E(ρ, ϕ, z) = − ik3 f ′e−ik3f ′

2π

θ ′max∫
0

2π∫
0

E∞
r (θ ′,φ)e−ik3 z cos θ ′eik3ρ sin θ ′ cos(φ−ϕ) sin θ ′ dφ dθ ′. (3.103)

3 Notice that the reflection coefficients rs and rp for a plane wave at normal incidence differ by a factor of −1,
i.e. rs(θ = 0) = −rp(θ = 0).
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Notice that we had to change the sign in one of the exponents in order to ensure that the
field propagates in the negative-z direction. To proceed, we could express the longitudinal
wavenumbers kz1 and kz2 in terms of the angle θ ′. This would also make the reflection and
transmission coefficients functions of θ ′. However, it is more convenient to work with θ
and transform the integral in Eq. (3.103) correspondingly.

As indicated in Fig. 3.19 the angles θ and θ ′ are related by

sin θ

sin θ ′
= f ′

f
, (3.104)

which allows us to express the new longitudinal wavenumber kz3 in terms of θ as

kz3 = k3

√
1 − ( f /f ′)2 sin2θ . (3.105)

With these relationships we can perform a substitution in Eq. (3.105) and represent the
integration variables by θ and φ. The Fresnel reflection coefficients rs(θ ) and rp(θ ) are
given by Eqs. (2.51) together with the expressions for the longitudinal wavenumbers kz1

and kz2 in Eqs. (3.91) and (3.92). For the lowest three Hermite–Gaussian beams, explicit
expressions for Einc(θ ,φ) have been stated in Eqs. (3.52)–(3.54) and the angular depen-
dence in φ can be integrated analytically by using Eq. (3.57). Thus, we are now able to
calculate the field near the image focus.

In practically all optical systems the second focusing lens has a much larger focal length
than the first one, i.e. f /f ′�1. We can therefore reduce the complexity of the expressions
considerably by making the approximation

[1 ± ( f /f ′)2 sin2θ ]
1/n ≈ 1 ± 1

n

(
f

f ′

)2

sin2θ . (3.106)

If we retain only the lowest orders in f /f ′, the image field can be represented by

E(ρ, ϕ, z) = − ik3 f ′e−ik3(z+f ′)

2π

f 2

f ′2

θmax∫
0

2π∫
0

E∞
r (θ ,φ)e(i/2)k3 z( f /f ′)2 sin2θ

× eik3ρ ( f /f ′)sin θ cos(φ−ϕ) sin θ cos θ dφ dθ , (3.107)

where E∞
r reads as

E∞
r (θ ,φ) = −Einc(θ ,φ)e2ik1z0 cos θ

⎡
⎣rp cos2φ − rs sin2φ

sinφ cosφ(rp + rs)
0

⎤
⎦√n0

n3
. (3.108)

In order to keep the discussion within bounds we will assume that the incident field Einc

is a fundamental Gaussian beam as defined in Eq. (3.52). Using the relations in Eq. (3.57)
we can integrate the φ dependence and finally obtain

E(ρ,ϕ, z) = E0
k3 f 2

2f ′ i
e−ik3(z+f ′)

√
n0

n3

[
(I0r−I2r cos(2ϕ))nx − I2r sin(2ϕ)ny

]
,

(3.109)
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with

I0r(ρ, z) =
θmax∫
0

fw(θ )cos θ sin θ
[
rp(θ ) − rs(θ )

]
J0(k3ρ sin θ f /f ′)

× exp
[
(i/2)k3z( f /f ′)2 sin2θ + 2ik1z0 cos θ

]
dθ , (3.110)

I2r(ρ, z) =
θmax∫
0

fw(θ )cos θ sin θ
[
rp(θ ) + rs(θ )

]
J2(k3ρ sin θ f /f ′)

× exp
[
(i/2)k3z( f /f ′)2 sin2θ + 2ik1z0 cos θ

]
dθ , (3.111)

where fw is the apodization function defined in Eq. (3.56). We find that the spot depends on
the Fresnel reflection coefficients and the defocus defined by z0. The latter simply adds an
additional phase delay for each plane-wave component. If the upper medium n2 is a perfect
conductor we have rp=−rs=1 and the integral I2r vanishes. In this case the reflected spot
is linearly polarized and rotationally symmetric.

In order to discuss the field distributions in the image plane we choose n1=1.518 for the
object space, n3 = 1 for the image space, and a numerical aperture of 1.4 (θmax = 67.26◦)
for the objective lens. For the ideally reflecting interface, the images in the lower row of
Fig. 3.20 depict the electric field intensity |Er|2 as a function of slight defocus. It is evi-
dent that the spot shape and size are not significantly affected by the defocus. However, as
shown in the upper row in Fig. 3.20 the situation is very different if the medium beyond
the interface has a lower index than the focusing medium, i.e. if n2 < n1. In this case,
the reflected spot changes strongly as a function of defocus. The spot shape deviates con-
siderably from a Gaussian spot and resembles the spot of an optical system with axial
astigmatism. The overall size of the spot is increased and the polarization is not preserved
since I0r and I2r are of comparable magnitude. The patterns displayed in Fig. 3.20 can
be verified in the laboratory. However, some care has to be applied when using dichroic
beamsplitters since they have slightly different characteristics for s- and p-polarized light.
In fact, the patterns in Fig. 3.20 depend sensitively on the relative magnitudes of the two
superposed polarizations. Using a polarizer in the reflected beam path allows us to exam-
ine the two polarizations separately, as shown in Fig. 3.21. Notice that the focus does not
coincide with the interface when the intensity of the reflected pattern is maximized. The
focus coincides with the interface when the center of the reflected pattern (I0(ρ, z)) has
maximum intensity. The images in Figs. 3.20 and 3.21 display the electric energy density,
which is the quantity that is detected by optical detectors such as a CCD. On the other
hand, the total energy density, and the magnitude of the time-averaged Poynting vector,
render rotationally symmetric patterns.

How can we understand the appearance of the highly aberrated spot in the case of a
glass/air interface? The essence lies in the nature of total internal reflection. All plane-
wave components with angles of incidence in the range [0 . . . θc], θc being the critical
angle of total internal reflection (≈41.2◦ for a glass/air interface), are partly transmitted
and partly reflected at the interface. Both reflection coefficients rs and rp are real numbers
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�Fig. 3.20 Reflected images of a diffraction-limited focused spot. The spot is moved in steps ofλ/4 across the interface. z0 is
positive (negative) when the focus is below (above) the interface. The primary focusing objective lens has a numerical
aperture of 1.4. The index of refraction is n1=1.518 and the filling factor f0=2. The upper row shows the situation
for a glass/air interface (n2=1) and the lower row is for a glass/metal interface (ε2→−∞). Large aberrations are
observed in the case of the glass/air interface because the totally internally reflected plane-wave components
generate a second virtual focus above the interface. The arrow indicates the direction of polarization of the primary
incoming beam, and the numbers indicate the factors by which the images have been multiplied to boost the contrast
of the images.

and there are no phase shifts between incident and reflected waves. On the other hand, the
plane-wave components in the range [θc . . . θmax] are totally reflected at the interface. In
this case the reflection coefficients become complex-valued functions imposing a phase
shift between incident and reflected waves. This can be viewed as an additional path dif-
ference between incident and reflected waves similar to the Goos–Hänchen shift [19]. It
displaces the apparent reflection point beyond the interface thereby creating a second, vir-
tual focus [21]. In order to visualize this effect we plot in Fig. 3.22 only the scattered field
(transmitted and reflected) of Fig. 3.18. If we detected this radiation on the surface of an
enclosing sphere with large radius, the direction of radiation would appear as indicated by
the two lines which obviously intersect above the interface. Although all reflected radiation
originates at the interface, there is an apparent origin above the interface. If we follow the
radiation maxima from the far-field towards the interface we see that close to the interface
the radiation bends towards the focus to ensure that the origin of the radiation does indeed
come from the focal spot.

We thus find the important result that the reflected light associated with the angular range
[0 . . . θc] originates from the real focal point on the interface, whereas the light associated
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(a) (b)

(c) (d)

�Fig. 3.21 Decomposition of the in-focus reflected image (center image of Fig. 3.20) into two orthogonal polarizations. Images
(a) and (c) show polarization in the direction of incident polarization (nx ); (b) and (d) show polarization perpendicular
to incident polarization (ny). Images (a) and (b) are calculated patterns and (c) and (d) are experimental patterns.
From [20].

with [θc . . . θmax] originates from a virtual point located above the interface. To be correct,
the “virtual” point above the interface is not really a geometrical point. Instead, it is made of
many points distributed along the vertical axis. The waves that emanate from these points
have different relative phases and give rise to a conically shaped wavefront similar to the
Mach cone in fluid dynamics. The resulting toroidal aberration was first investigated by
Maeker and Lehman [22].

The observation of the aberrations in the focal point’s reflected image has important con-
sequences for reflection-type confocal microscopy and data sampling. In these techniques
the reflected beam is focused onto a pinhole in the image plane. Because of the aberrations
of the reflected spot, most of the reflected light is blocked by the pinhole destroying the
sensitivity and resolution. However, it has been pointed out that this effect can dramati-
cally increase the contrast between metallic and dielectric sample features [21] because
the reflected spot from a metal interface appears to be aberration-free. Finally, it has to
be emphasized that the real focal spot on the interface remains greatly unaffected by the
interface; the aberrations are associated with the reflected image alone. The understand-
ing of the patterns in Figs. 3.20 and 3.21 proves to be very valuable for the alignment of
an optical system, for example to ensure that the focal plane of a laser coincides with the
glass/air interface (object plane).
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xy

z

�Fig. 3.22 Scattered radiation (reflected and transmitted) of a laser focused on a glass/air interface. Same parameters as in
Fig. 3.18. The lines indicate the apparent direction of radiation as seen by an observer in the far-field. The lines
intersect in a virtual focus located above the interface. While all plane-wave components in the angular range
[0 . . . θc] originate from the focal point on the interface, the supercritical plane-wave components emerge from an
apparent spot above the interface, giving rise to the aberrations in Fig. 3.20. Image size: 16λ×31λ. Logarithmic
scale.

Problems

3.1 The paraxial Gaussian beam is not a rigorous solution of Maxwell’s equations. Its
field is therefore not divergence-free (∇ · E �= 0). By requiring ∇ · E = 0 one
can derive an expression for the longitudinal field Ez. Assume that Ey = 0 every-
where and derive Ez to the lowest order for which the solution is non-zero. Sketch the
distribution of |Ez|2 in the focal plane.

3.2 Determine the decomposition of an arbitrary optical field into transverse electric (TE)
and transverse magnetic (TM) fields. The longitudinal field Ez vanishes for the TE
field, whereas Hz vanishes for the TM field.

3.3 Consider the fields emerging from a truncated hollow metal waveguide with a square
cross-section and with ideally conducting walls. The side length a0 is chosen in such
a way that only the lowest-order TE10 mode polarized in the x-direction is supported.
Assume that the fields are not influenced by the edges of the truncated side walls.
(a) Calculate the spatial Fourier spectrum of the electric field in the exit plane

(z=0).
(b) Calculate and plot the corresponding far-field (E · E∗).

3.4 Verify that energy is conserved for a strongly focused Gaussian beam as described
in Section 3.6. To do this, compare the energy flux through transverse planes on
both sides of the optical lens. It is advantageous to choose one plane at the origin
of the focus (z = 0). The energy flux is calculated most conveniently by evaluat-
ing the z-component of the time-averaged Poynting vector 〈Sz〉 and integrating it
over the area of the transverse plane. Hint: you will need the Bessel-function closure
relation
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∫ ∞

0
Jn(a1bx)Jn(a2bx)x dx = 1

a1b2
δ(a1 − a2). (3.112)

Check the units!
3.5 Consider a small circular aperture with radius a0 in an infinitely thin and ideally

conducting screen that is illuminated by a plane wave at normal incidence and polar-
ized along the x-axis. In the long-wavelength limit (λ� a0) the electric field in the
aperture (z = 0, x2 + y2 ≤ a2

0) has been derived by Bouwkamp [23] as

Ex(x, y) = −4ikE0

3π

2a2
0 − x2 − 2y2√
a2

0 − x2 − y2
,

Ey(x, y) = −4ikE0

3π

xy√
a2

0 − x2 − y2
,

(3.113)

where E0 is the incident field amplitude. The corresponding spatial Fourier spectrum
has been calculated by Van Labeke et al. [24] as

Êx(kx, ky) = 2ika3
0E0

3π2

[
3k2

y cos(a0kρ)

a2
0k4
ρ

− (a2
0k4

x + 3k2
y + a2

0k2
x k2

y )sin(a0kρ)

a3
0k5
ρ

]
,

(3.114)

Êy(kx, ky) = −2ika3
0E0

3π2

[
3kxky cos(a0kρ)

a2
0k4
ρ

− kxky (3 − a2
0k2
ρ)sin(a0kρ)

a3
0k5
ρ

]
,

(3.115)

with kρ = (k2
x + k2

y )1/2 being the transverse wavenumber.
(a) Derive the Fourier spectrum of the longitudinal field component Ez.
(b) Find expressions for the field E = (Ex, Ey, Ez) at an arbitrary field point (x, y, z).
(c) Calculate the far-field and express it in spherical coordinates (r,ϑ ,ϕ) and spher-

ical vector components E = (Er, Eϑ , Eϕ). Expand in powers of ka0 and retain
only the lowest orders. What does this field look like?

3.6 The reflected image of a laser beam focused on a dielectric interface is given
by Eqs. (3.109)–(3.111). Derive these equations starting from Eq. (3.100) which
is the collimated reflected field. Notice that the fields propagate in the negative
z-direction.

3.7 Show that the field E defined through Ef, Er, and Et in Section 3.9 satisfies the bound-
ary conditions at the interface z = z0. Furthermore, show that the Helmholtz equation
and the divergence condition are satisfied in each of the two half-spaces.

3.8 In order to correct for the aberrations introduced by the reflection of a strongly
focused beam from an interface we design a pair of phase plates. By using a polar-
izing beamsplitter, the collimated reflected beam (cf. Fig. 3.19 and Eq. (3.100)) is
split into two purely polarized light paths. The phase distortion in each light path is
corrected by a phase plate. After correction, the two light paths are recombined and
refocused on the image plane. Calculate and plot the phase distribution of each phase
plate if the incident field is a Gaussian beam ( f0 → ∞) focused by an NA = 1.4
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objective on a glass/air interface (z0 = 0) and incident from the optically denser
medium with n1 = 1.518. What happens if the focus is displaced from the interface
(z0 �= 0)?
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4 Resolution and localization

Localization refers to the precision with which the position of an object can be defined.
Spatial resolution, on the other hand, is a measure of the ability to distinguish two separated
point-like objects from a single object. The diffraction limit implies that optical resolution
is ultimately limited by the wavelength of light. Before the advent of near-field optics it
was believed that the diffraction limit imposes a hard boundary and that physical laws
strictly prohibit resolution significantly better than λ/2. It was then found that this limit
is not as strict as assumed and that access to evanescent modes of the spatial spectrum
offers a direct route to overcome the diffraction limit. However, further critical analysis
of the diffraction limit revealed that “super-resolution” can also be obtained by pure far-
field imaging under certain constraints. In this chapter we analyze the diffraction limit
and discuss the principles of different imaging modes with resolutions near or beyond the
diffraction limit.

4.1 The point-spread function

The point-spread function is a measure of the resolving power of an optical system. The
narrower the point-spread function the better the resolution will be. As the name implies,
the point-spread function defines the spread of a point source. If we have a radiating point
source then the image of that source will appear to have a finite size. This broadening is
a direct consequence of spatial filtering. A point in space is characterized by a delta func-
tion that has an infinite spectrum of spatial frequencies kx and ky. On propagation from
the source to the image, high-frequency components are filtered out. Usually the entire
spectrum (k2

x + k2
y )> k2 associated with the evanescent waves is lost. Furthermore, not all

plane-wave components can be collected, which leads to a further reduction in bandwidth.
The reduced spectrum is not able to accurately reconstruct the original point source and
the image of the point will have a finite size. The standard derivation of the point-spread
function is based on scalar theory and the paraxial approximation. This theory is insuffi-
cient for many high-resolution optical systems. With the “angular spectrum” framework
established thus far we are in a position to rigorously investigate image formation in an
optical system.

Consider the situation in Fig. 4.1, which has been analyzed by Sheppard and Wil-
son [1] and by Enderlein [2]. An ideal electromagnetic point source is located at the focus
of a high-NA aplanatic objective lens with focal length f . This lens collimates the rays
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�Fig. 4.1 Configuration used for the calculation of the point-spread function. The source is an arbitrarily oriented electric dipole
with momentp. The dipole radiation is collected with a high-NA aplanatic objective lens and focused by a second lens
on the image plane at z = 0.

emanating from the point source and a second lens with focal length f ′ focuses the fields
on the image plane at z= 0. The situation is similar to the problem in Fig. 3.19. The only
difference is that the source is a point source instead of the reflected field at an interface.

The smallest radiating electromagnetic unit is a dipole. In the optical regime most
subwavelength-sized particles scatter as electric dipoles. On the other hand, small apertures
radiate as magnetic dipoles. In the microwave regime, paramagnetic materials exhibit mag-
netic transitions, and in the infrared, small metal particles show magnetic dipole absorption
caused by eddy currents of free carriers produced by the magnetic field. Nevertheless, we
can restrict our analysis to an electric dipole since the field of a magnetic dipole is iden-
tical to the field of an electric dipole if we interchange the electric and magnetic fields,
i.e. E→H and H→−E.

In its most general form, the electric field at a point r of an arbitrarily oriented electric

dipole located at r0 with dipole moment p is defined by the dyadic Green function
↔
G (r, r0)

as (cf. Chapter 1)

E(r) = ω2

ε0c2

↔
G(r, r0)p. (4.1)

We assume that the distance between the dipole and the objective lens is much larger than
the wavelength of the emitted light. In this case, we do not need to consider the evanescent
components of the dipole field. Furthermore, we choose the dipole to be located at the
origin r0=0 and surrounded by a homogeneous medium with index n. In this case, we can

use the free-space far-field form of
↔
G, which, expressed in spherical coordinates (r, θ ,φ),

reads as (see Appendix D)

↔
G∞ (r, 0) = exp(ikr)

4π r

×
⎡
⎣ 1 − cos2φ sin2θ −sinφ cosφ sin2θ −cosφ sin θ cos θ
−sinφ cosφ sin2θ 1 − sin2φ sin2θ −sinφ sin θ cos θ
−cosφ sin θ cos θ −sinφ sin θ cos θ sin2θ

⎤
⎦.

(4.2)
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This is simply a 3 × 3 matrix that has to be multiplied by the dipole moment vector
p = (px, py, pz) to obtain the electric field.1 To describe refraction at the reference sphere
f we have to project the electric field vector along the vectors nθ and nφ as we did in
Section 3.5. After being refracted, the field propagates as a collimated beam to the second
lens f ′, where it is refracted once again. For a dipole aligned with the x-axis (p=pxnx) the
field just after the second lens becomes

E(x)∞ (θ ,φ) = ω2px

ε0c2

exp(ikf )

8π f

×
⎡
⎣1 + cos θ cos θ ′ − (1 − cos θ cos θ ′)cos(2φ)

−(1 − cos θ cos θ ′)sin(2φ)
−2 cos θ sin θ ′ cosφ

⎤
⎦√n cos θ ′

n′ cos θ
, (4.3)

where

sin θ ′ = f

f ′
sin θ , cos θ ′ = g(θ ) =

√
1 − ( f /f ′)2 sin2θ . (4.4)

The term (cos θ ′/cos θ )1/2 is a consequence of energy conservation as discussed in Sec-
tion 3.5. In the limit f � f ′ the contribution of cos θ ′ can be ignored, but cos θ cannot since
we are dealing with a high-NA objective lens. The fields for a dipole py and a dipole pz

can be derived in a similar way. For an arbitrarily oriented dipole p= (px, py, pz) the field
is simply obtained by the superposition

E∞(θ ,φ) = E(x)∞ + E(y)∞ + E(z)∞ . (4.5)

To obtain the fields E near the focus of the second lens we insert the field E∞ into
Eq. (3.47). We assume that f � f ′, which allows us to use the approximations in Eq. (3.106).
The integration with respect to φ can be carried out analytically and the result can be
written as

E(ρ,ϕ, z) = ω2

ε0c2

↔
GPSF(ρ,ϕ, z) p, (4.6)

where the dyadic point-spread function is given by

↔
GPSF = ik′

8π

f

f ′
ei(kf − k′f ′)

⎡
⎣Ĩ00 + Ĩ02 cos(2ϕ) Ĩ02 sin(2ϕ) 2i Ĩ01 cosϕ

Ĩ02 sin(2ϕ) Ĩ00 − Ĩ02 cos(2ϕ) 2i Ĩ01 sinϕ
0 0 0

⎤
⎦√ n

n′
, (4.7)

and the integrals Ĩ00–Ĩ02 are defined as

Ĩ00(ρ, z) =
θmax∫
0

(cos θ )1/2 sin θ (1 + cos θ )J0(k′ρ sin θ f /f ′)

× exp
{

ik′z[1 − (1/2)( f /f ′)2 sin2θ ]
}

dθ , (4.8)

1 The far-field at r of a dipole located at r0=0 can also be expressed as E = −ω2μ0[r×r×p] exp(ikr)/(4πr3).
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Ĩ01(ρ, z) =
θmax∫
0

(cos θ )1/2 sin2θ J1(k′ρ sin θ f /f ′)

× exp
{

ik′z[1 − (1/2)( f /f ′)2 sin2θ ]
}

dθ , (4.9)

Ĩ02(ρ, z) =
θmax∫
0

(cos θ )1/2 sin θ (1 − cos θ )J2(k′ρ sin θ f /f ′)

× exp
{

ik′z[1 − (1/2)( f /f ′)2 sin2θ ]
}

dθ . (4.10)

The first column of
↔
GPSF denotes the field of a dipole px, the second column the field of

a dipole py, and the third column the field of a dipole pz. The integrals Ĩ00–Ĩ02 are similar
to the integrals I00–I02 encountered in conjunction with the focusing of a Gaussian beam
(cf. Eqs. (3.58–3.60)). The main differences are the arguments of the Bessel functions and
the exponential functions. Furthermore, the longitudinal field Ez is zero in the present case
because we required f � f ′.

Equations (4.6)–(4.10) describe the mapping of an arbitrarily oriented electric dipole
from its source to its image. The result depends on the numerical aperture NA of the
primary objective lens

NA = n sin θmax (4.11)

and the (transverse) magnification M of the optical system defined as

M = n

n′
f ′

f
. (4.12)

In the following, we will use the quantity |E|2 to denote the point-spread function, since
it is the quantity relevant to optical detectors. We first consider the situation of a dipole
with its axis perpendicular to the optical axis. Without loss of generality, we can define
the x-axis to be parallel with the dipole axis, i.e. p = px nx. For a low-NA objective lens,
θmax is sufficiently small to allow us to make the approximations cos θ ≈ 1 and sin θ ≈ θ .
Furthermore, in the image plane (z=0, ϑ=π/2) the exponential terms in the integrals are
equal to one and the second-order Bessel function J2 goes to zero for small θ , making the
integral Ĩ02 disappear. We are then left with Ĩ00, which can be integrated analytically using∫

xJ0(x)dx = xJ1(x). (4.13)

The paraxial point-spread function in the image plane for a dipole oriented along the x-axis
turns out to be

lim
θmax�π/2

∣∣E(x, y, z = 0)
∣∣2 = π4

ε2
0 nn′

p2
x

λ6

NA4

M2

[
2

J1(2πρ̃)

(2πρ̃)

]2

, ρ̃ = NAρ

Mλ
. (4.14)

The functional form is given by the term in brackets which is known as the Airy func-
tion. It is depicted in Fig. 4.2(a) as the solid curve. The dashed and the dotted curves
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�Fig. 4.2 (a) The point-spread function depicted in the image plane (z=0) of a dipole with moment p=pxnx . The solid curve
is the paraxial approximation whereas the dashed and dotted curves are the results of exact calculations for an
NA=1.4 (n=1.518) objective lens. The dashed curve has been evaluated along the x-axis and the dotted curve
along the y-axis. (b) The point-spread function evaluated along the optical axis z. The solid curve is the paraxial
approximation and the dashed curve is the exact result for NA=1.4. (c) The point-spread function depicted in the
image plane of a dipole with moment p=pznz . The solid curve is the paraxial approximation and the dashed curve is
the exact result for NA=1.4. The figures demonstrate that the paraxial point-spread function is a good
approximation even for high-NA objective lenses!

show the exact calculation of the point-spread function for an NA = 1.4 objective lens
according to Eqs. (4.7)–(4.10). The dashed curve is depicted along the x-axis (the direc-
tion of the dipole axis) and the dotted curve along the y-axis. The field is purely polarized
(cos(2ϕ) = ±1, sin(2ϕ) = 0) along both axes, but the width along the x-axis is larger. This
is caused by the term Ĩ02, which is in one case subtracted from Ĩ00 and in the other case
added to Ĩ00. The result is an elliptically shaped spot. The ellipticity increases with increas-
ing NA. Nevertheless, it is surprising that the paraxial point-spread function is a very good
approximation even for high-NA objective lenses! If the average between the curves along
the x-axis and the y-axis is taken, the paraxial point-spread function turns out to be nearly
a perfect fit. The point-spread function can be measured by using a single quantum emit-
ter, such as a single molecule or a quantum dot, as a point emitter. Figure 4.3 shows such
a measurement together with a fit according to Eq. (4.14). The point-spread function has
been recorded by using an NA=1.3 lens to collect the fluorescence photons from a single
DiI molecule with a center wavelength of λ ≈ 580 nm.

The width of the point-spread function �x is usually defined as the radial distance for
which the value of the paraxial point-spread function becomes zero, or

�x = 0.6098
Mλ

NA
. (4.15)

This width is also denoted as the Airy disk radius. It depends in a simple manner on the
numerical aperture, the wavelength, and the magnification of the system.

We defined the point-spread function as proportional to the electric energy density, the
quantity to which optical detectors are sensitive. Since the magnetic field H is simply
proportional to the electric field rotated by 90◦ around the z-axis, we find that the point-
spread function for the magnetic field is also rotated by 90◦ compared with the point-spread
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�Fig. 4.3 Point-spread function measured with a single-molecule point source. Fluorescence photons emitted by a DiI molecule
are collected with an NA=1.3 objective lens. The center wavelength isλ ≈ 580 nm. The data points correspond to
a horizontal line cut through the center of the fluorescence rate image shown in the inset. The solid curve corresponds
to the Airy function.

function for the electric field. The total energy density and the time-averaged Poynting
vector are therefore rotationally symmetric with respect to the z-axis.

Let us now discuss the field strength along the optical axis z, denoted as the axial
point-spread function. The only non-vanishing integral is Ĩ00, implying that anywhere on
the z-axis the field stays polarized along the direction of the dipole axis x. In the paraxial
limit we can integrate Ĩ00 and obtain the result

lim
θmax�π/2

∣∣E(x = 0, y = 0, z)
∣∣2 = π4

ε2
0 nn′

p2
x

λ6

NA4

M2

[
sin(π z̃)

π z̃

]2

, z̃ = NA2z

2n′M2λ
.

(4.16)

This result is compared with the exact calculation in Fig. 4.2(b) for NA= 1.4. The curves
overlap perfectly, indicating that the paraxial result is an excellent fit even for large NA.
The distance �z for which the axial point-spread function becomes zero is

�z = 2n′ M2λ

NA2
, (4.17)

and is denoted as the depth of field. In contrast to the Airy disk, �z depends on the index
of refraction of the image space. Furthermore, it depends on the squares of M and NA.
Therefore, the depth of field is usually much larger than the Airy disk radius. For a typical
microscope objective with M = 60× and NA = 1.4 and for a wavelength of 500 nm we
obtain �x ≈13 μm and �z ≈1.8 mm.

So far, we have considered a dipole with its axis perpendicular to the optical axis. The
situation is very different for a dipole with its axis parallel to the optical axis, i.e. p=pznz.
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The focal fields turn out to be rotationally symmetric, radially polarized, and zero on the
optical axis. In the paraxial limit we find

lim
θmax�π/2

|E(x, y, z = 0)|2 = π4

ε2
0 n3n′

p2
z

λ6

NA6

M2

[
2

J2(2π ρ̃)

2π ρ̃

]2

, ρ̃ = NAρ

Mλ
, (4.18)

which is shown in Fig. 4.2(c). The comparison with the exact calculation using NA= 1.4
demonstrates again that the paraxial expression is a good approximation. Because of the
vanishing field amplitude on the optical axis it is difficult to define a characteristic width
for the point-spread function of a dipole with its axis along the optical axis. However, the
comparison between Fig. 4.2(a) and Fig. 4.2(c) shows that the image of a dipole pz is wider
than the image of a dipole px.

In many experimental situations it is desirable to determine the dipole orientation and
dipole strength of an emitter. This is an inverse problem which can be solved in our con-
figuration by detecting the field distribution in the image plane by using, for example, a
CCD [3, 4]. With Eqs. (4.6)–(4.10) we can then calculate back and determine the param-
eters of the emitter. This analysis can be made more efficient by splitting the collected
radiation into two orthogonal polarization states and focusing it onto two separate detec-
tors. The detection and analysis of single molecules on the basis of their emission and
absorption patterns will be further discussed in Chapter 9.

As a conclusion of this section we mention that the point-spread function depends
strongly on the orientation of the dipole moment of the emitting point source. For dipoles
aligned perpendicular to the optical axis we find excellent agreement with the familiar
paraxial point-spread function, even for high NA.

4.2 The resolution limit(s)

Now that we have determined how a single point emitter is mapped from its source to its
image, we ask ourselves how well are we able to distinguish two point emitters separated
by a distance�r|| = (�x2+�y2)1/2 in the object plane. Each point source will be identified
on the basis of its point-spread function having some characteristic width. If we move the
two emitters in the object plane closer and closer together, their point-spread functions in
the image plane will start to overlap and then reach a point where they become indistin-
guishable. We might state that the two point-spread functions can be distinguished only if
their maxima are separated by more than the characteristic width of one individual point-
spread function (Fig. 4.4). Thus, the narrower the point-spread function is the better the
resolution will be.

We have mentioned already in Section 3.1 that the resolving power of an optical system
depends on the bandwidth of spatial frequencies �k|| = (�k2

x +�k2
y )1/2 that are collected

by the optical system. Simple Fourier mathematics leads to

�k||�r|| ≥ 1, (4.19)
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�Fig. 4.4 Illustration of the resolution limit. Two simultaneously radiating point sources separated by�r|| in the object plane
generate a combined point-spread function in the image plane. The two point sources are optically resolved if they
can be distinguished by examination of their image patterns.

similar to the Heisenberg uncertainty principle in quantum mechanics. The product of
�r|| and �k|| is minimized for a Gaussian distribution of spatial frequencies. This Gaus-
sian distribution is the analog of the minimum-uncertainty wavefunction in quantum
mechanics.

In far-field optics, the upper bound for �k|| is given by twice the wavenumber
k = (ω/c)n = (2π/λ) n of the object medium because we discard spatial frequencies
associated with evanescent-wave components. In this case the resolution cannot be better
than2

Min
[
�r||
] = λ

4πn
. (4.20)

However, in practice we are not able to sample the entire spectrum of �k|| = [−k . . . k] and
the upper limit will be defined by the numerical aperture of the system, i.e.

Min
[
�r||
] = λ

4πNA
. (4.21)

This figure is the best case and, in fact, Abbe’s and Rayleigh’s formulations of the
resolution limit are less optimistic.

Abbe’s formulation considers the paraxial point-spread function of two dipoles with axes
perpendicular to the optical axis (cf. Eq. (4.14)). The distance�r|| between the two dipoles
in the object plane is mapped onto a distance M�r|| in the image plane. Abbe states that
the minimum distance Min

[
M�r||

]
corresponds to the distance between the two point-

spread functions for which the maximum of one point-spread function coincides with the
first minimum of the second point-spread function. This distance is given by the Airy disk
radius defined in Eq. (4.15). We find according to Abbe [5]

Abbe (1873): Min
[
�r||
] = 0.6098

λ

NA
. (4.22)

2 We have to account for both positive and negative spatial frequencies.
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This limit is a factor of ≈7.7 worse than the one defined in Eq. (4.21). It is based on the
paraxial approximation and applies to the special case of two parallel dipoles oriented per-
pendicular to the optical axis. Things look quite different for two dipoles aligned parallel
to the optical axis. We see that there is some arbitrariness in the definition of a resolu-
tion limit. This applies also to Rayleigh’s criterion [6], which is based on the overlap of
two point-spread functions in a two-dimensional geometry. Rayleigh’s criterion was for-
mulated in connection with a grating spectrometer rather than with an optical microscope.
However, it is often adopted in conjunction with optical microscopy.

In Abbe’s resolution limit the distance between the two point sources does not become
distorted for dipoles with unequal strengths. This is because the maximum of one point-
spread function overlaps with a minimum (zero) of the other point-spread function. Of
course, we can overlap the two point-spread functions further and still be able to distinguish
the two sources. In fact, in a noise-free system we will always be able to deconvolve the
combined response into two separate point-spread functions even if we are not able to
observe two separate maxima in the combined point-spread function. However, even if the
two sources, the optical instrument, and the detector are all noise-free there is always shot-
noise associated with the quantized nature of light, which puts a limit on this idealized
view of resolution.

According to Eq. (4.19) there is no limit to optical resolution if the bandwidth �k|| is
arbitrarily large. However, going beyond the limit of Eq. (4.20) requires the involvement of
evanescent field components. This is the subject of near-field optical microscopy and will
be discussed in subsequent chapters.

Many tricks can also be applied to stretch the resolution limit if prior information on
the properties of the point sources is available. For example, in Abbe’s formulation, prior
knowledge about the dipole orientation is necessary. If, in addition to Abbe’s assumption,
the two dipoles are perpendicular to each other, i.e. px and py, a polarizer in the detec-
tion path can increase the resolution further. Other prior knowledge might be available in
regard to coherence properties of the two emitters, i.e. |E1|2 + |E2|2 versus |E1 +E2|2.
In all cases, prior knowledge about the properties of a sample reduces the set of possi-
ble configurations and thereby improves the resolution. Object reconstruction with prior
knowledge about the properties of the object is one of the central topics of inverse scatter-
ing. In fluorescence microscopy prior knowledge is associated with the type of molecules
used to label specific parts of a biological specimen. Knowledge of the absorption and
emission properties of these molecules makes it possible to substantially increase resolu-
tion (see Section 5.2.3). A general theory of optical resolution must include a quantitative
measure of prior information. Since, however, information can exist in a variety of different
forms, it is certainly difficult to propose a generally valid concept.

4.2.1 Increasing resolution through selective excitation

In discussing the resolution limit we assumed that there were two radiating point sources
separated by a distance �r|| in the object plane. However, the sources do not radiate with-
out any external excitation. If, for example, we can make only one dipole radiate at a
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certain time, then we are in a position to assign the detected field in the image plane to this
particular dipole. We then scan the excitation to the other dipole and record its image in a
similar way. Thus, we are perfectly able to distinguish the two point sources no matter how
close they are. Therefore, the resolution criteria require some correction.

In practice, the point sources are excited by an excitation source Eexc with finite spatial
extent (Fig. 4.5). It is this extent which determines whether for a given dipole separation
�r|| we are able to excite only one dipole at a time or not. The resolution criteria formulated
before assume a broad illumination of the sample surface making all point sources radiate
simultaneously. Hence, we need to incorporate the effect of the excitation profile. This can
be done in a general way by considering the interaction between the excitation field Eexc

and a sample dipole

pn = f
[
material properties, Eexc(rs − rn)

]
, (4.23)

where rn is the (fixed) position vector of the dipole pn and rs is the (variable) position vec-
tor of the excitation field origin. The latter coordinate vector can be scanned in the object
space to selectively excite individual dipoles. With the relationship of Eq. (4.23), the point-
spread function becomes dependent on the excitation field and the specific light–matter
interaction. The resolution of the optical system will therefore depend on the type of inter-
action. This increases the number of parameters in our analysis considerably. The problem
becomes even more complicated if we have to consider interactions between the individual
dipoles. To keep our feet on the ground, we need to restrict our analysis somewhat.

Let us assume that the interaction between the dipole and the excitation field is given by
a general nonlinear relationship

Eexc

object space image space

rn

rs r

E

pn

�Fig. 4.5 Schematic representation of a general set-up using a confined excitation source for sample excitation. The dipole
strength pn of the point source depends on the excitation field Eexc. The point-spread function defined by the field E in
the image space depends on the nature of the interaction between pn and Eexc, and on the relative coordinates
rn− rs.
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pn(ω, 2ω, . . . ; rs, rn) = α(ω)Eexc(ω, rs − rn)

+β(2ω)Eexc(ω, rs − rn)Eexc(ω, rs − rn)

+ γ (3ω)Eexc(ω, rs − rn)Eexc(ω, rs − rn)Eexc(ω, rs − rn)
+ · · · , (4.24)

where the multiplications between field vectors denote outer products. In its most general
form, the polarizability α is a tensor of rank two, and the hyperpolarizabilities β and γ
are tensors of rank three and four, respectively. It is convenient to consider the different
nonlinearities separately by writing

pn(ω, 2ω, . . . ; rs, rn) = pn(ω, rs, rn) + pn(2ω, rs, rn) + pn(3ω, rs, rn) + · · · .

(4.25)

With the help of the dyadic point-spread function for a dipole in the object space at rn, the
focal field at r as a function of the position rs of the excitation beam becomes

E(r, rs, rn; nω) = (nω)2

ε0c2

↔
GPSF (r, rn; nω) · pn(nω, rs, rn). (4.26)

For multiple dipoles we have to sum over n.
Equation (4.26) demonstrates in a quite general way how the point-spread function can

be influenced by the excitation source. This tailoring of the point-spread function was
named point-spread function engineering and plays an essential role in high-resolution
confocal microscopy. The field in Eq. (4.26) depends on the coordinates of the excitation
source, the coordinates of the dipole in the object space, and the coordinates of the field
point in the image space. It is convenient to keep the coordinates of the excitation beam
fixed and to collect, after some spatial filtering, the total intensity in the image plane (inte-
gration over r). In this way, the detector signal will depend only on the coordinates rn of
the dipole. Similarly, the field in the image plane can be evaluated at a single point such as
on the optical axis. This is essentially what is done in confocal microscopy, which will be
discussed in the next section. Notice that the field E depends not only on the spatial coor-
dinates of the system but also on the material properties, represented by the polarizabilities
α, β, and γ . Any optical image of the sample will therefore be a mixture of spectroscopic
information and spatial information.

4.2.2 Axial resolution

To characterize the position of the dipole emitter, confocal microscopy uses the relative
coordinate rn − rs between the excitation beam and the dipole position. An image is gen-
erated by assigning to every coordinate rn − rs some property of the emitter measured in
the image plane.

To demonstrate the basic idea of axial resolution in confocal microscopy we discuss two
special situations. First we assume that the properties of a dipole located on the optical
axis are represented by the total integrated field intensity in the image plane. Using the
Bessel-function closure relations (see Problem 3.4) we find
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s1(z) ≡
2π∫

0

∞∫
0

E(ρ,ϕ, z) E∗(ρ,ϕ, z)ρ dρ dϕ

= π4n

24ε2
0λ

4n′
[
(p2

x + p2
y)(28 − 12 cos θmax − 12 cos2θmax − 4 cos3θmax)

+ p2
z (8 − 9 cos θmax + cos3θmax)

]
. (4.27)

The signal has units of V2 and depends on the NA of the system through θmax. The impor-
tant point is that the signal does not depend on the axial coordinate z! Thus, if the position
of the dipole is displaced from the object plane in the direction of the optical axis it
will render the same signal s1. There is no axial resolution associated with this type of
detection.

In order to achieve axial resolution we need to spatially filter the fields in the image plane
before they are sent to the detector. Usually, this is achieved by placing a pinhole with a
radius on the order of the Airy disk radius (Eq. (4.15)) into the image plane. In this way,
only the center part of the point-spread function reaches the detector. There are different
strategies for the choice of the pinhole size [7] but to illustrate the effect we can assume
that only the field on the optical axis passes through the pinhole. The resulting signal has
been calculated in Eq. (4.16) and reads as

s2(z) ≡ E(ρ = 0, z) E∗(ρ = 0, z) δA

= π4

ε2
0 nn′

p2
x + p2

y

λ6

NA4

M2

[
sin(π z̃)

π z̃

]2

δA, z̃ = NA2 z

2n′M2λ
. (4.28)

Here, dA denotes the infinitesimal area of the pinhole. We see that a dipole located on
the optical axis with a dipole moment parallel to the optical axis is not detected in this
scheme because its field is zero on the optical axis. In order to enable its detection we
have to increase the pinhole size or displace the dipole from the optical axis. However, the
important information in Eq. (4.28) is the dependence of the signal s2 on the axial coor-
dinate z which gives us axial resolution! To illustrate this axial resolution, let us consider
two dipoles on the optical axis near the object plane. While we keep one of the dipoles in
the image plane we move the other by a distance �r⊥ out of the image plane as shown in
Fig. 4.6. The lens maps a longitudinal distance �r⊥ in the object space into a longitudinal
distance ML�r⊥ in the image space, where ML is the longitudinal magnification defined as

ML = n′

n
M2. (4.29)

It depends on the transverse magnification M defined in Eq. (4.12) and the refractive indices
n and n′ of object and image space, respectively. We place the detector into the image plane
(z = 0). According to Eq. (4.28), the signal of the in-plane dipole is maximized whereas
the signal of the out-of-plane dipole gives3

3 We assume that the two dipoles radiate incoherently, i.e. |E|2 = |E1|2+|E2|2. The situation is essentially the
same for coherently radiating dipoles, i.e. |E|2=|E1+E2|2.
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Eexc

object plane image plane

Δr

M Δr2(n/n′)n n′

�Fig. 4.6 Illustration of axial resolution in confocal microscopy. A pinhole on the optical axis in the image plane spatially filters
the image before it is directed onto a detector. The pinhole passes only the fields near the optical axis, thereby
generating axial resolution.

s2(z) ∝ sin2[πNA2�r⊥/(2nλ)]

[πNA2�r⊥/(2nλ)]2
. (4.30)

To ensure that the entire signal can be assigned to the in-plane dipole we have to require
that the contribution of the out-of-plane dipole cancels out. This is achieved for a separation
�r⊥ between the dipoles of

Min[�r⊥] = 2
nλ

NA2
. (4.31)

This distance defines the axial resolution of the confocal system. Only dipoles within a
distance of Min[�r⊥] from the image plane will lead to a significant signal at the detec-
tor. Therefore, Min[�r⊥] is called the focal depth. Besides providing lateral resolution on
the order of Min

[
�r||
]
, confocal microscopy also provides axial resolution on the order of

Min[�r⊥]. Hence, a sample can be imaged in three dimensions. While the lateral resolution
scales linearly with NA, the axial resolution scales quadratically with NA. As an example,
Fig. 4.7 shows a multiphoton confocal microscopy image of a spiky pollen grain [8]. The
three-dimensional image was reconstructed from multiple sectional images that are dis-
placed in the z-direction by roughly 2nλ/NA2. More detailed experimental issues related
to axial resolution will be discussed in Chapter 5.

4.2.3 Resolution enhancement through saturation

We have discussed how the point-spread function can be squeezed by using nonlinear opti-
cal interactions, i.e. the width of E2n(r||) is narrower than the width of E2(r||). A similar
advantage can be achieved through saturation, as demonstrated in the pioneering work by
Hell and coworkers [9]. The necessary ingredients are (1) an intensity zero located at the
region of interest and (2) a target material with a reversible saturable linear transition.
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�Fig. 4.7 Multiphoton confocal image of a spiky pollen grain of diameter 25μm. Three-dimensional reconstruction based on
multiple sectional images (left), and a single sectional image (right). From [8].

To illustrate how saturation can be used to increase resolution in fluorescence
microscopy let us consider a dense sample made of randomly oriented molecules that are
well approximated by two-level systems as shown in Fig. 4.8(a). Each two-level system
interacts with two laser fields: (1) an excitation field Ee, which populates the excited state
|1〉, and (2) a field Ed used to deplete the excited state by stimulated emission. For suf-
ficiently high intensities the depletion field saturates the ground state |0〉. Figure 4.8(b)
shows typical intensity profiles of excitation and depletion fields. Far from saturation of
the excited state |1〉, the excitation rate of the system is given by

γe(r) = σ Ie(r)/(�ω0), (4.32)

where σ is the one-photon absorption cross-section and Ie is the intensity associated
with the excitation field Ee. Once the system is in its excited state the probability of
a spontaneous transition to the ground state |0〉 (emission of a fluorescence photon) is
given by

γr

γr + γd
. (4.33)

Here, γr is the spontaneous decay rate and γd the stimulated transition rate. The latter can
be written as

γd(r) = σ Id(r)/(�ω0), (4.34)

with Id being the intensity of the depletion field. By combining Eqs. (4.32) and (4.33) we
can express the fluorescence rate of the system as

γfl(r) = γe(r)
γr

γr + γd(r)
= σ

�ω0

Ie(r)

1 + dp(r)
, (4.35)

where we introduced the depletion parameter

dp(r) ≡ σ

�ω0γr
Id(r), (4.36)
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�Fig. 4.8 Illustration of resolution enhancement through saturation. (a) Energy level diagram of a two-state molecule with
excitation rate γe, radiative decay rate γr, and stimulated depletion rate γd. (b) Transverse intensity profiles of the
excitation field and the depletion field. The zero of the depletion field is placed at the maximum of the excitation field.
(c) Transverse fluorescence profiles (γr) for two different depletion parameters dp = 0 and dp = 100. The higher dp
the narrower the fluorescence peak will be.

which corresponds to the ratio of the rates of stimulated and spontaneous emission. For a
weak depletion field the stimulated emission is weak (dp → 0) and the fluorescence rate
reduces to the familiar expression given by Eq. (4.32).

Let us now discuss the relationship between this simple theory and the issue of resolution
in optical microscopy. Obviously, for dp = 0 the resolution in the fluorescence image
will be determined by the width of the excitation field shown in Fig. 4.8(b). However,
if we use a depletion field with a zero at the maximum of the excitation field then the
width can be narrowed significantly, depending on the magnitude of dp. This behavior is
illustrated in Fig. 4.8(c) for dp = 100. In principle, there is no limit for the narrowing of the
fluorescent region and, in principle, arbitrary resolution can be achieved. We can introduce
the depletion parameter into Abbe’s resolution criterion and obtain approximately

Min
[
�r||
] ≈ 0.6098

λ

NA
√

1 + dp
. (4.37)

Thus, any dp > 0 improves the spatial resolution. It should be noted that resolution
enhancement arising from saturation is not limited to imaging. The same idea can be
employed for lithography or for data storage, provided that a material with the desired
saturation/depletion properties can be found. Finally, we have to realize that resolution
enhancement through saturation makes use of very specific material properties as provided,
for example, by a fluorophore. In this sense, the electronic structure of the target material
has to be known in advance and hence there is no spectroscopic information to be gained.
Nevertheless, information on biological samples is normally provided through chemically
specific labeling with fluorophores.

4.3 Principles of confocal microscopy

Today, confocal microscopy is a technique that is applied in many scientific disciplines,
ranging from solid state physics to biology. The central idea is to irradiate the sample with
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focused light originating from a point source (or a single-mode laser beam) and direct the
response from the sample onto a pinhole as discussed in Section 4.2.2. The basic idea was
put forward in a patent application by Minsky in 1955 [10]. Over the years, different varia-
tions of confocal microscopy have been developed. They differ mostly in the specific type
of laser–matter interaction, such as scattering, fluorescence, multiphoton excited fluores-
cence, stimulated emission depletion, third-harmonic generation, or Raman scattering. In
this section we will outline the general ideas behind confocal microscopy using the theoret-
ical framework established so far. Experimental aspects will be covered later in Chapter 5.
More detailed treatments can be found in dedicated books on confocal microscopy such as
Refs. [11–13].

To understand image formation in confocal microscopy we will focus on the configu-
ration shown in Fig. 4.9. This is a special case of the general situation shown in Fig. 4.5.
In the present situation, excitation and detection are accomplished by the same objective
lens using an inverted light path. A beamsplitter is used to split the excitation path and
the detection path into two separate arms. In fluorescence microscopy, the beamsplitter is
usually replaced by a dichroic mirror that transmits or reflects only specific spectral ranges
thereby increasing the efficiency. To keep things as simple as possible we assume that a
sample with one single dipolar particle is translated in all three dimensions relative to the
fixed optical system. Thus, we can set rs = 0 and use the vector rn = (xn, yn, zn) to denote
the coordinates of the particle.

To generate an image we assign to each position rn a scalar quantity measured in the
image space. In confocal microscopy, this quantity corresponds to the signal s2 discussed
previously. Similarly, for non-confocal microscopy we use the signal s1. The process of
image formation embraces the following three steps.

object planeimage plane

nn′

ff'

detector

E

pn

rn

r

excitation beam

�Fig. 4.9 Schematic representation of an inverted confocal microscope. In this set-up, the light path is held fixed whereas the
sample is scanned in three dimensions. A beamsplitter divides the excitation path and detection path into two
separate arms. A laser beam is focused into the sample by a high-NA objective lens to provide a spatially confined
excitation source. The response of the sample is collected by the same objective lens and focused onto a pinhole in
front of a detector.
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1. Calculation of the excitation field in the object space (Sections 3.5 and 3.6)
→ excitation point-spread function.

2. Calculation of interaction.
3. Calculation of the response in the image space (Section 4.1)

→ detection point-spread function.

The first step provides the excitation field Eexc. It depends not only on the parameters of
the confocal system but also on the incident laser mode. For the interaction between the
excitation field Eexc and the dipolar particle we first assume a linear relationship, which
we write as

pn(ω) = ↔
αEexc(rn,ω). (4.38)

Finally, the response of the dipole in the image space is determined by (cf. Eq. (4.6))

E(r) = ω2

ε0c2

↔
GPSF · pn. (4.39)

The combination of these equations allows us to eliminate pn and thus to calculate the
image field as a function of the excitation field, the particle polarizability and the system
parameters.

To evaluate the equations above it is necessary to understand the mapping from object
space to image space. A field point in the image space is defined by the vector r. We have
learned before that a dipole pn at the origin (rn = 0) generates a field E(x, y, z) in the
image space according to Eqs. (4.6)–(4.10). If we translate the dipole from its origin to an
arbitrary position rn in the object space, the field in the image space will transform as

E(x, y, z) → E(x − xnM, y − ynM, z − znM2n′/n), (4.40)

where M is the transverse magnification defined in Eq. (4.12). The pinhole filters this field
and the detector behind it performs an integration over x and y. To keep things simple, we
can assume that the pinhole is sufficiently small, allowing us to replace the detected signal
by the field intensity at r=0 multiplied by an infinitesimal detector area dA (cf. Eq. (4.28)).
The detector signal is then dependent only on the coordinates of the dipole

s2(xn, yn, zn) =
∣∣∣E(xnM, ynM, znM2n′/n)

∣∣∣2 δA. (4.41)

The field E (xnM, ynM, znM2 n′/n) is obtained from Eqs. (4.6)–(4.10) by using the
substitutions ρ→ρnM, z→znM2n′/n, and ϕ→ϕn. Then, the detector signal becomes

s2(xn, yn, zn) = ω4

εz
0c4

∣∣∣↔GPSF(ρn,ϕn, zn) · pn

∣∣∣2 δA, (4.42)

with

↔
GPSF(ρn,ϕn, zn) ∝ k

8π

1

M

⎡
⎣Ĩ00 + Ĩ02 cos(2ϕn) Ĩ02 sin(2ϕn) −2i Ĩ01 cosϕn

Ĩ02 sin(2ϕn) Ĩ00 − Ĩ02 cos(2ϕn) −2i Ĩ01 sinϕn

0 0 0

⎤
⎦

(4.43)
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and the integrals Ĩ00–Ĩ02 are

Ĩ00(ρn, zn) =
θmax∫
0

(cos θ )1/2 sin θ (1 + cos θ )J0(kρn sin θ )e−
i
2kzn sin2θ dθ ,

Ĩ01(ρn, zn) =
θmax∫
0

(cos θ )1/2 sin2θ J1(kρn sin θ )e−
i
2kzn sin2θ dθ , (4.44)

Ĩ02(ρn, zn) =
θmax∫
0

(cos θ )1/2 sin θ (1 − cos θ )J2(kρn sin θ )e−
i
2kzn sin2θ dθ .

The field depends on the magnitude and orientation of the dipole pn, which, in turn,
depends on the nature of the interaction between the excitation field Eexc and the dipo-
lar particle. The excitation field can be an arbitrary focused laser mode as discussed in
Section 3.6. Let us choose a fundamental Gaussian beam as this is used in most confocal
set-ups. We assume that the beam is focused on the object plane and that its propagation
direction coincides with the optical axis. According to Eqs. (3.66) and (4.38) the dipole
moment can be written as

pn(ω) = ikfE0e−ikf 1

2

⎡
⎢⎢⎣
αxx (I00 + I02 cos(2ϕn))

αyy (I02 sin(2ϕn))

αzz (−2iI01 cosϕn)
√

n′/n

⎤
⎥⎥⎦ , (4.45)

where αii denote the diagonal elements of the polarizability and E0 is the field amplitude of
the incident paraxial Gaussian beam. The integrals I00–I02 are defined in Eqs. (3.58)–(3.60)
and read as

I00(ρn, zn) =
θmax∫
0

fw(θ )(cos θ )1/2 sin θ (1 + cos θ )J0(kρn sin θ )eikzn cos θ dθ ,

I01(ρn, zn) =
θmax∫
0

fw(θ )(cos θ )1/2 sin2θJ1(kρn sin θ )eikzn cos θ dθ , (4.46)

I02(ρn, zn) =
θmax∫
0

fw(θ )(cos θ )1/2 sin θ (1 − cos θ )J2(kρn sin θ )eikzn cos θ dθ ,

where the function fw defines the expansion of the incident beam relative to the back-
aperture of the objective lens.

The integrals Ĩnm and the integrals Inm differ only by the term fw(θ ) and in the exponen-
tial terms, which become identical in the small-angle limit (cos θ ≈ 1 − 1

2θ
2, sin2θ ≈ θ2).

Using Eq. (4.42), we are now in a position to exactly calculate the confocal signal in
the image plane. However, in order to see the essence of confocal microscopy we need
to reduce the complexity somewhat. We assume that the incident beam is sufficiently
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expanded, i.e. fw(θ )=1, and that the slight difference in the exponential terms is marginal
so that the two sets of integrals become identical. Furthermore, we neglect the contribution
of I02 relative to I00 and assume that the dipole is rigidly aligned along the polarization
direction, i.e. αyy = αzz = 0. The resulting detector signal is then identical to the signal
that would result from a purely scalar calculation and reads as

confocal: s2(xn, yn, zn; ω) ∝
∣∣∣αxxI2

00

∣∣∣2 δA. (4.47)

The important outcome is the fact that the integral appears squared. This means that
the point-spread function in confocal microscopy is essentially the square of the point-
spread function in ordinary microscopy! Thus, in addition to the axial resolution, confocal
microscopy has increased transverse resolution – and this is simply the result from placing
a pinhole in front of the detector. If the pinhole is removed and all radiation in the image
plane is directed on the detector, the signal turns out to be

non-confocal: s1(xn, yn, zn; ω) ∝
∣∣∣αxxI00

∣∣∣2 δA. (4.48)

This seems somewhat surprising since in the previous section we concluded that ordi-
nary far-field microscopy has no axial resolution. However, we assumed before that we
have a uniform illumination of the object space. The axial resolution in the present case is
achieved by the spatially confined excitation source provided by the focused laser beam
and by having only a single dipolar emitter in the sample volume. If we had a dense
sample of dipoles (see Problem 4.3) we would lose any axial resolution in non-confocal
microscopy. Nevertheless, we clearly see that the pinhole in confocal microscopy increases
both transverse and longitudinal resolution.

The total point-spread function of the system can be regarded as the product of an
excitation point-spread function and a detection point-spread function

TOTAL PSF ≈ EXCITATION PSF × DETECTION PSF, (4.49)

where the former is determined by the field distribution of the focused excitation beam
and the latter by the spatial filtering properties of the pinhole in the image plane. However,
we have to keep in mind that the increase in transverse resolution achieved by confocal
microscopy is marginal, often only a small percentage. While the zeros of the point-spread
function remain unchanged, the width of the central lobe becomes slightly narrower. The
benefit of confocal microscopy lies much more in the axial sectioning capabilities in dense
samples (see Problem 4.3). It has to be emphasized that it is a rough approximation to
reduce the two sets of integrals in Eqs. (4.44) and (4.46) to a single set. This can only be
done for a Gaussian excitation beam because the symmetries of detection and excitation
turn out to be the same. The analysis becomes more complicated if we use a higher-order
beam mode as an excitation source.

Figure 4.10 shows an experimentally measured point-spread function. It has been
recorded by raster scanning a gold particle through the focal region of a focused exci-
tation beam and recording, for each image pixel, the scattered light intensity. Because of
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�Fig. 4.10 The total point-spread function (PSF) measured by scanning a gold particle through the laser focus and detecting the
scattered intensity at each position. From [9].

its spherical symmetry, the particle has no preferred dipole axis and hence αxx = αyy =
αzz. Experimental aspects of confocal microscopy will be discussed in more detail in
Section 5.2.1.

It is straightforward to extend the analysis to account for nonlinear interactions between
the particle and the excitation beam. For example, with the same assumptions and
approximations as before we find for a second-order nonlinear process

confocal: s2(xn, yn, zn; 2ω) ∝
∣∣∣βxxxI00(2ω)I2

00(ω)
∣∣∣2 δA, (4.50)

non-confocal: s1(xn, yn, zn; 2ω) ∝
∣∣∣βxxxI2

00(ω)
∣∣∣2 δA. (4.51)

Here, we had to consider that excitation occurs at a frequency ω, whereas detection occurs
at a frequency of 2ω. It is often claimed that nonlinear excitation increases resolution.
However, this is not true. Although a nonlinear process squeezes the point-spread function
it requires longer excitation wavelengths. While the Airy disk radius scales proportionally
with the wavelength it is not so strongly influenced by being multiplied by itself. Therefore,
the wavelength scaling dominates.

4.4 Axial resolution inmultiphotonmicroscopy

We have determined that the benefit of confocal microscopy is not necessarily an increase
of the transverse resolution but rather an increase of the longitudinal resolution. This lon-
gitudinal resolution provides sectioning capability for true three-dimensional imaging.
The same benefits are achieved in multiphoton microscopy even without using confocal
arrangements. In multiphoton fluorescence microscopy the signal generated at a position r
is qualitatively given by

s(r) ∝ σn
[
E(r) · E∗(r)

]n , (4.52)
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�Fig. 4.11 Localization of the excitation volume in multiphoton microscopy. The figure depicts the signal that is generated in a
dense sample within a sphere of radius Rwhen excited by a focused Gaussian beam by n-photon excitation. In
contrast to multiphoton excitation (n > 1), one-photon excitation (n = 1) cannot restrict the excitation volume
without the use of a confocal pinhole.

where σn is the n-photon absorption cross-section and E is the excitation field. In a dense
sample of fluorophores the total signal generated in a spherical volume of radius R is
calculated as

stotal ∝ σn

2π∫
0

π∫
0

R∫
0

|E(r, θ ,φ)|2nr2 sin θ dr dθ dφ. (4.53)

For large distances from the exciting laser focus, the excitation fields decay as r−1 and
consequently the integral does not converge for n = 1. Thus, without the use of a confocal
pinhole, it is not possible to axially localize the signal in one-photon excitation. However,
for n > 1 the situation is different. The signal is generated only in the vicinity of the
laser focus. This is illustrated in Fig. 4.11 where we evaluated Eq. (4.53) for a Gaussian
beam with beam waist radius w0 = λ/3. Although we used the paraxial approximation and
ignored the fact that longer wavelengths are used in multiphoton microscopy, it is a general
finding that localization of the excitation volume requires a process with n > 1. It is this
property that makes multiphoton microscopy such an attractive technique. Multiphoton
microscopy will be discussed in more detail in Chapter 5.

4.5 Localization and position accuracy

We have seen that a dipole emitter, such as a fluorescent molecule, gives rise to a charac-
teristic point-spread function in image space. Vice versa, the point-spread function can be
recorded to reconstruct the position of the emitter [14–17]. The accuracy of determining
the position of a point-like emitter is much better than the spatial extent of the point-spread
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�Fig. 4.12 Simulated CCD camera image patterns of two partially overlapping emission spots with background. The emitters are
simulated to exhibit Gaussian patterns with Poissonian noise that is uncorrelated to the Poissonian background noise.
(a) Two emission spots without discrimination of photons. Images (b) and (c) show Individual emission spots resolved
by spectral or temporal discrimination of photons. The centroids of the individual patterns are displaced by finite
distance�x.

function and, as will be discussed in the following, is limited only by the “quality” of the
data, that is the amount of noise present in the data. For example, a fluorescent molecule
can be localized with a precision of a few nanometers even if the emitters are single fluores-
cent molecules. Furthermore, if the photons that arrive at the detector can be distinguished
by any observable, e.g. energy, polarization, or arrival time, as discussed before, they may
be attributed to separate objects even if two objects are very close and their image patterns
overlap. This idea is illustrated in Fig. 4.12. In Fig. 4.12(a) a composite pattern consisting
of two partially overlapping spots is shown. If the photons that contribute to these spots can
be distinguished by any observable, e.g. color or arrival time, Figs. 4.12(b) and (c), then the
individual positions and therefore also the distance between the two emitters can be deter-
mined with nearly molecular-scale precision, limited only by background and counting
noise. This way of attaining subwavelength position accuracy even for very weak emit-
ters, such as single fluorescent molecules, has important applications in astronomy [14],
single-molecule localization and tracking [17], analytical chemistry [18], and localization
microscopy [19–21].

4.5.1 Theoretical background

In principle, there are numerous ways to find the position of an isolated emitter. For
example, one could calculate the “center of mass” or centroid of a given pattern from
the intensities of the pixels or use appropriate correlation filtering techniques. In order to
quantify the precision with which a position is found, a statement about the uncertainty
in the position measurement is required. It is therefore common to approximate the point-
spread function by a suitable model and to fit this model to the obtained data by minimizing
χ2, the sum of the squares of the deviation between data and model at each data point.
Because χ2 reflects the likelihood that a certain set of parameters is correct, it can be used
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�Fig. 4.13 Similarity of the Airy function and a fitted Gaussian. The deviations are negligible for noisy data.

to establish well-defined error limits to each fit parameter. Thus, by exploiting the χ2 statis-
tics it is possible to obtain not only the set of best fit parameters for a given model but also
the standard deviations associated with this set based on the measured data. The analysis
given here follows the work of Bobroff [14], which relies on a maximum likelihood cri-
terion for data with a Gaussian error distribution. More general approaches are discussed
in the literature [16]. We limit ourselves here to the specific case of least-squares fitting
of two-dimensional Gaussian distributions. A two-dimensional Gaussian fits very well to
the intensity patterns of subwavelength emitters obtained in optical microscopy. Although
fitting an Airy pattern would be the more realistic choice, usually the signal quality is not
good enough to result in significant systematic deviations (Fig. 4.13) [16]. In special cases,
however, the use of more complex models might be necessary or advantageous depending
on the problem. For example, the complex patterns obtained by annular illumination con-
focal microscopy and illumination with higher-order modes certainly have to be fitted by
more complex models. The present analysis can be adapted to such cases.

For a two-dimensional Gaussian intensity distribution

G(x, y) = B + A exp

[
− (x − x0)2 + (y − y0)2

2γ 2

]
(4.54)

there are five parameters that have to be determined, i.e. the spatial coordinates of the max-
imum x0 and y0 (i.e. the spot position), the amplitude A, the width γ , and the background B.
Sometimes the width γ of the point-spread function is assumed to be known from indepen-
dent measurements. This reduces the number of fit parameters and increases the accuracy
of the remaining parameters by roughly 10% as shown below. Typically, experimental
data are recorded at a finite number of points (xi, yj), e.g. corresponding to the pixels of
a CCD chip or of a scan image. Each data point (xi, yj) is associated with a signal Di,j

and a corresponding uncertainty σi,j, e.g. due to Poissonian counting statistics. The sum
of the squares of the deviation between data and model, χ2, over all data points (i, j) then
reads as

χ2 =
N∑

i,j=1

1

σ 2
i,j

[
Gi,j − Di,j

]2 , (4.55)

where N is the number of pixels in the x- and y-directions. Here, Gi,j are the values of
the model at the point (xi, yj), and 1/σ 2

i,j is used as a weighting factor to ensure that data
points with small uncertainties are more important. The set of parameters that minimizes
χ2, which then becomes equal to χ2

min, is denoted as
[
x0,min, y0,min, γmin, Amin, Bmin

]
. For
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this set of data Gi,j is called Gi,j,min. It is obvious that the uncertainty in each of the param-
eters depends on the shape of χ2 around its minimum χ2

min. To a good approximation, for
small variations of a single parameter about the minimum, χ2 has the shape of a parabola.
Depending on whether the parabola has a small or large opening factor, the statistical error
associated with the respective parameter is smaller or larger. In order to find these opening
factors and thus quantify the uncertainties we write the Taylor expansion of χ2 around its
minimum χ2

min:

χ2 �
N∑

i,j=1

1

σ 2
i,j

[(
Gi,j,min − Di,j

)+ (∂Gi,j

∂x0

)
x0,min

(x0 − x0,min)

+
(
∂Gi,j

∂y0

)
y0,min

(
y0 − y0,min

)+ (∂Gi,j

∂γ

)
γmin

(γ − γmin)

+
(
∂Gi,j

∂A

)
Amin

(A − Amin)+
(
∂Gi,j

∂B

)
Bmin

(B − Bmin)

]2

, (4.56)

where the first term describes χ2
min. The deviation � of χ2 from this minimum can then be

expressed as

� = χ2 − χ2
min

�
N∑

i,j=1

1

σ 2
i,j

[(
∂Gi,j

∂x0

)2

x0,min

(x0 − x0,min)2

+
(
∂Gi,j

∂y0

)2

y0,min

(
y0 − y0,min

)2 + (∂Gi,j

∂γ

)2

γmin

(γ − γmin)
2

+
(
∂Gi,j

∂A

)2

Amin

(A − Amin)
2 +

(
∂Gi,j

∂B

)2

Bmin

(B − Bmin)
2

+ cross terms

]
. (4.57)

The cross terms can be shown to vanish [14]. Some contain the partial derivatives of χ2

that vanish because χ2 has a minimum at
[
x0,min, y0,min, γmin, Amin, Bmin

]
. The other cross

terms are negligible because they are sums over products of symmetric and antisymmetric
functions. This leads to an important intermediate result, i.e. the approximative behavior
of � for small deviations from the minimum

� �
N∑

i,j�1

1

σ 2
i,j

[(
∂Gi,j

∂x0

)2

x0,min

(x0 − x0,min)2 +
(
∂Gi,j

∂y0

)2

y0,min

(
y0 − y0,min

)2

+
(
∂Gi,j

∂γ

)2

γmin

(γ − γmin)
2 +

(
∂Gi,j

∂A

)2

Amin

(A − Amin)
2

+
(
∂Gi,j

∂B

)2

Bmin

(B − Bmin)
2

]
. (4.58)
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�Fig. 4.14 Two Gaussians displaced by a small amount. It is obvious that the main contribution to the differences between the
two curves (shaded in gray) occurs where the slope is large. This is expressed in Eq. (4.58).

This result describes by how much χ2 is increased with respect to its minimal value by
a variation of the parameters around their optimal values. The surfaces of constant � are
“ellipses” in the parameter space. According to Eq. (4.58) the strongest contributions to
χ2 come from the regions where G has steep slopes. For the position parameters (x0, y0)
this can be easily verified by displacing a Gaussian fit curve from the best fit parameters
(x0,min, y0,min) illustrated in Fig. 4.14.

4.5.2 Estimating the uncertainties of fit parameters

As � increases, the statistical likelihood of the parameter set being the correct one
decreases. It is possible to establish a connection between the magnitude of � and the
statistical likelihood associated with the fit parameters [22, 23]. Once the value of � for
a given level of confidence of the fit is substituted, Eq. (4.58) can be used to estimate the
uncertainty in the parameters. The normalized probability distribution function for � with
ν fitting parameters4 is given by (see e.g. [22] Appendix C-4)

P(�, ν) = �
ν−2

2 e−�
2

2ν/2�(ν/2)
. (4.59)

If we integrate P(�, ν) up to infinity starting from the value of �a that leads to a value of
the integral of 0.317, ∫ ∞

�a

P(�, ν)d� = 0.317, (4.60)

then with a probability of 1 − 0.317 = 0.683 the correct parameters lie within the region
of parameter space for which � is smaller than �a, corresponding to a 1σ confidence
level. The value of �a increases with the number of free fit parameters ν since usually
correlations between the different parameters exist. Table 4.1 provides the respective values

4 Also called “degrees of freedom.”
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Table 4.1 Values of�a obtained from Eq. (4.60) for up to seven fit parameters

ν 1 2 3 4 5 6 7
�a 1 2.3 3.5 4.7 5.9 7.05 8.2

of �a for up to seven fit parameters for a 68.3% confidence level. Other values can be
calculated using Eqs. (4.59) and (4.60).

For example, in order to estimate the uncertainty of the position x0 we assume that all
parameters apart from x0 have their optimum values. In Eq. (4.58), in this case all terms
except the one containing x0 vanish. From Eq. (4.58) we then obtain

σx ≡
(
x0 − x0,min

) = �
1/2
a

⎛
⎝ N∑

i,j=1

1

σ 2
i,j

(
∂Gi,j

∂x0

)2

x0,min

⎞
⎠
− 1

2

. (4.61)

The sum over i and j can either be calculated directly numerically from the result of the fit or
be approximated by an integral to yield an analytical expression for the uncertainty σx. The
latter approach has the advantage that it allows us to discuss the dependence of the posi-
tional uncertainty on various experimental parameters. To obtain an analytical expression
we exploit the fact that

1

N2

N∑
i,j=1

1

σ 2
i,j

(
∂Gi,j

∂x0

)2

x0,min

≈ 1

L2

L/2∫
−L/2

∫
δx δy

1

σ 2(x, y)

(
∂Gi,j

∂x0

)2

x0,min

, (4.62)

where L = N δx = N δy is the side length of the quadratic fitting area with δx and δy
being the dimensions of individual square pixels,5 and N is the number of pixels within
the length L. To evaluate the integral on the right-hand side of Eq. (4.62) we have to make
some assumptions about the noise of the data σ 2(x, y). We assume uncorrelated Poissonian
(or Gaussian) noise of the background and the signal. Thus we have σ 2(x, y) = σ 2

B + σ 2
A ,

where, according to Eq. (4.54), σ 2
B = B and σ 2

A = A exp
[−((x − x0)2 + (y − y0)2)/(2γ 2)

]
.

On introducing this expression into Eq. (4.62) it is difficult to arrive at an analytical result.
We therefore apply the following approximations. (i) We assume that the signal dominates
the background around the maximum of the Gaussian peak up to a distance of κγ . This
means that only the Poissonian noise of the signal σA is assumed to contribute in this
region. (ii) For distances larger than κγ we assume that the Poissonian noise of the back-
ground σB dominates. The parameter κ allows us to adjust the transition point depending
on the relative magnitude of signal and background that may occur in specific experi-
ments. The sum of Eq. (4.62) can now be approximated by a sum of three integrals as
follows

5 This assumption is not mandatory but simplifies the analysis.
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N∑
i,j=1

1

σ 2
i,j

(
∂Gi,j

∂x0

)2

x0,min

≈ N2

L2

κγ∫
−κγ

∫
δx δy

1

σ 2
A(x, y)

(
∂Gi,j

∂x0

)2

x0,min

+N2

L2

−κγ∫
−L/2

∫
δx δy

1

σ 2
B

(
∂Gi,j

∂x0

)2

x0,min

+N2

L2

L/2∫
κγ

∫
δx δy

1

σ 2
B

(
∂Gi,j

∂x0

)2

x0,min

, (4.63)

where the last two terms yield identical results due to the symmetry of the problem.
With this approximative description using Eq. (4.61), we can write for the normalized
uncertainty in the position in the x-direction

σx

γ
= 2t

N

√
�a[

c(κ)A + (A2/B)F(t, κ)
] = δx

γ

√
�a[

c(κ)A + (A2/B)F(t, κ)
] . (4.64)

Here we have introduced the dimensionless parameter t = L/(2γ ) which describes the
width of the fitting area in units of the width of the peak. The function F(t, κ) and the
constant c(κ) in Eq. (4.64) are defined as

F(t, κ) =
√
π

2
[Erf(κ)− Erf(t)]

[√
π

2
[Erf(κ)− Erf(t)] + te−t2− κe−κ2

]
,

c(κ) = 2 Erf

(
κ√
2

)[
π Erf

(
κ√
2

)
−√

2πκe−
κ2
2

]
,

(4.65)

with

Erf(z) = 2√
π

∫ z

0
e−u2

du (4.66)

being the so-called error function. From our definitions it follows that 0 ≤ κ ≤ t, where
κ = t and κ = 0 correspond to the limiting cases of totally negligible background noise and
dominating background noise, respectively. In the first case we find that the uncertainty in
the position scales as 1/

√
A whereas in the latter case it scales as

√
B/A. The volume of the

Gaussian in Eq. (4.54), which describes the total number of signal counts n, is proportional
to the amplitude A according to n = 2πAγ 2. Thus, decreasing the background becomes
very important at low light levels.

We are now in a position to provide hard numbers for the uncertainty in the peak posi-
tion σx/γ for a given experimental situation (see Problem 4.6). It is obvious that a similar
analysis can be used to obtain uncertainties in other parameters such as the width of the
spot (see Problem 4.7). To visualize the dependence of the normalized uncertainty in posi-
tion σx/γ on the various parameters we plot σx as a function of the number of pixels,
the signal amplitude, and the background level for a spot size of 250 nm (FWHM) as
achieved by a high-NA oil immersion objective. We observe by inspection of Figs. 4.15(a)–
(c), that a position accuracy down to a few nanometers can be achieved by increasing
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the number of pixels, increasing the signal and lowering the background level. On the
other hand, increasing the width of the fitted area decreases the position accuracy linearly
for t ≥ 2.5, which is where F(t, 1.6) saturates (see Fig. 4.15(d)) unless the number of
pixels N is also increased. Also, the number of free parameters has an influence on the
uncertainty. Roughly, increasing the number of parameters by one decreases the accuracy
of all parameters by 10% which would be relevant e.g. for elliptical instead of circular spot
shapes.

The conditions to achieve nanometer-scale position accuracy in single-molecule fluo-
rescence detection according to Figs. 4.15(a)–(c) are a rather large signal amplitude A,
e.g. about 1000 counts, and a background B that is small enough, e.g. around 100 counts.
Furthermore, the number of pixels N that is used to display and fit a single Gaussian peak
has to be rather large, e.g. around 16 with t ≈ 5. All these conditions were met in [17].
Examples of measured spots are shown in Fig. 4.16(a). This plot shows the high quality
of the data obtained from single fluorescent molecules during an integration time of 0.5 s.
Using the parameter set just mentioned, we obtain a position accuracy of better than 3 nm
using Eq. (4.64) with κ = 1.6. In [17] the step size of the molecular motor myosin V
has been investigated. To this end the motor protein was labeled using single fluorescent
molecules and the positions of the individual marker molecules were observed over time
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�Fig. 4.15 Position uncertainlyσx as a function of number of pixels (N), signal amplitude (A), and background (B).
γ = 125 nm. (a) Plot ofσx vs. number of pixels N. Other parameters: A = 500, B = 10, t = 5,�a = 5.9,
κ = 1.6. (b) Plot ofσx vs. the amplitude of the signal A. Other parameters: B = 10, t = 5,�a = 5.9, N = 10,
κ = 1.6. (c) Plot ofσx vs. the background level B. Other parameters: A = 500, t = 5,�a = 5.9, N = 10,
κ = 1.6. (d) Plot of F(t, κ ) vs. t for κ = 1.6.
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�Fig. 4.16 Nanometer position accuracy with single dye labels. (a) A three-dimensional representation of an image of single
Cy3-dyes recorded at an integration time of 0.5 s. Note the high amplitudes of up to 3000 counts and the low
background. The variation in amplitude is due to non-uniform illumination. (b) Displacement of individual markers
linked to a myosin V motor protein vs. time. The stepwise motion of the marker is clearly resolved. Adapted from [17].

while the motor was stepping ahead. Individual steps of down to ∼25 nm could be easily
discerned as shown in Fig. 4.16(b) [17]. The traces in Fig. 4.16(b) nicely show that the
position accuracy is within the estimated range.

Apart from applications in tracing the motion of individual molecules, the high posi-
tion accuracy can also be used to address questions such as whether two molecules that
are distinguishable in a certain observable are co-localized or not. This question is of
major importance e.g. in the evaluation of binding assays at the level of individual or few
molecules [18].

We have shown that it is possible to achieve nanometer precision in position measure-
ments using optical imaging. The precision depends on the noise level of the data and
can be as high as a few nanometers even when detecting individual fluorescent molecules.
It should be emphasized again that this type of precision is not to be confused with high
resolution, although it can be used to determine distances between closely spaced individ-
ual emitters. The latter distance determination is possible only if prior information about
the molecules exists, i.e. if the photons that are emitted can be assigned to one or other
emitter by means of differences in a certain observable, such as the energy of the photon.
Thus, this type of “resolution enhancement” falls into the categories of tricks discussed
in Section 4.2. The application of these principles for the implementation of localization
microscopy is discussed in Section 5.2.3.

4.6 Principles of near-field optical microscopy

So far we assumed that the spatial frequencies (kx, ky) associated with evanescent waves
are lost upon propagation from source to detector. The loss of these spatial frequencies
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leads to the diffraction limit and hence to different criteria, which impose a limit on the
spatial resolution, i.e. the ability to distinguish two separate point-like objects. The central
idea of near-field optical microscopy is to retain the spatial frequencies associated with
evanescent waves thereby increasing the bandwidth of spatial frequencies. In principle,
arbitrary resolution can be achieved, provided that the bandwidth is infinite. However, this
is at the expense of strong coupling between the source and the sample, a feature not present
in standard microscopy, where the properties of the light source (e.g. laser) are negligibly
affected by the light–matter interaction with the sample. In this section we will ignore this
coupling mechanism and simply extend the concepts of confocal microscopy to include
the optical near-field.

A near-field optical microscope is essentially a generalization of the confocal set-up
shown in Fig. 4.9, where the same objective lens was used for excitation and collection. If
we use two separate lenses we end up with the situation shown in Fig. 4.17(a). In general,
for high optical resolution we require high spatial confinement of the light flux through the

�Fig. 4.17 Near-field optical microscopy viewed as a generalization of confocal microscopy. (a) In a far-field microscope the
propagating field components are focused onto the object plane in the sample. The bandwidth of spatial frequencies
is limited to�k‖<2k, where k=n2π/λ, which sets a limit for the maximum achievable resolution. (b) In a
near-field optical microscope the focusing lens is replaced by an object (aperture), which extends the bandwidth of
spatial frequencies beyond k. Because the field components with spatial frequencies beyond k do not propagate, the
object has to be placed close to the sample.
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object plane. This spatial confinement can be viewed as the product of excitation confine-
ment and detection confinement as stated in Eq. (4.49). To achieve a highly confined light
flux we need to include a broad spectrum of spatial frequencies (kx, ky), which requires
the use of high-NA objective lenses. However, in far-field optics we encounter a strict cut-
off of the spatial spectrum: only the free propagating plane-wave components with k‖< k

(k=n2π/λ, k‖ = kρ =
√

k2
x + k2

y ) can be included.

In order to extend the spectrum of spatial frequencies we need to include evanescent
waves with k‖ ≥ k. Unfortunately, these do not propagate and thus cannot be guided
towards the sample by using standard optical elements. Evanescent waves are bound to
the surfaces of material structures, which necessitates that we bring an “evanescent-wave-
carrying object” close to the sample in order to extend the spectrum of spatial frequencies.
Such an object can be a favorably illuminated metal tip or a tiny illuminated aperture in
a metal screen as shown in Fig. 4.17(b). The price that we have to pay for the inclusion
of evanescent waves is high! The object that is brought close to the sample becomes part
of the system and the interactions between object and sample complicate data analysis
considerably. Furthermore, the extended spatial spectrum is available only close to the
object; since in most cases we cannot move with the object into the sample, near-field
optical imaging is limited to sample surfaces.

Beyond the source plane the confined fields spread out very rapidly. Indeed, this is a
general observation: the more we confine a field laterally the faster it will diverge. This is a
consequence of diffraction and it can be nicely explained in terms of the angular spectrum
representation. Let us consider a confined field in the plane z = 0 (the source plane). We
assume that the x-component of this field has a Gaussian amplitude distribution according
to Eq. (3.8). In Section 3.2.1 we have determined that the Fourier spectrum of Ex is also a
Gaussian function, i.e.

Ex(x, y, 0) = E0e
− x2+y2

w2
0 → Êx(kx, ky; 0) = E0

w2
0

4π
e−(k2

x+k2
y )

w2
0

4 . (4.67)

Figures 4.18(a) and (b) demonstrate that for a field confinement better than λ/(2n) we
require the inclusion of evanescent field components with k‖ ≥ k. The shaded area in
Fig. 4.18(b) denotes the spectrum of spatial frequencies associated with evanescent waves.
The better the confinement of the optical field is the broader the spectrum will be. Notice
that we have displayed only the field component Ex and that in order to describe the dis-
tribution of the total field |E| we need to include the other field components as well (see
Problem 4.4). Beyond the plane z = 0 the field spreads out as defined by the angular
spectrum representation Eq. (3.23). Using cylindrical coordinates, the field component Ex

evolves as

Ex(x, y, z) = E0
w2

0

2

∞∫
0

e−k2‖ w2
0/4k‖J0(k‖ρ)eikz z dk‖. (4.68)

This field distribution is plotted along the z-axis in Fig. 4.18(c). It can be observed that
a highly confined field in the source plane decays very fast along the optical axis. The rea-
son for this decay is the fact that the spectrum of a strongly confined field contains mainly
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�Fig. 4.18 (a) Gaussian field distributions with different confinements in the source plane z=0:w0=λ (solid curve),
w0=λ/2 (dashed curve) andw0=λ/8 (dash–dotted curve). (b) Spectrum of spatial frequencies corresponding to
the field distributions in (a). The shaded area denotes the range of spatial frequencies associated with evanescent
fields. The better the confinement of the optical field is, the broader the spectrum of spatial frequencies will be.
(c) Field decay along the optical axis z corresponding to the field distributions in (a). The better the confinement in
the source plane is, the faster the field decay will be.

evanescent field components that do not propagate but exponentially decay along the z-axis.
However, this is not the only reason. Another contribution to the fast decay stems from the
fast divergence of a highly confined field. As shown in Fig. 4.19, the more we squeeze the
fields at z = 0 the faster they spread out (like a bunch of half-cooked spaghetti). Thus, to
achieve high resolution with a strongly confined light field we need to bring the source
(aperture) very close to the sample surface. It has to be emphasized that Ex does not rep-
resent the total field strength. In fact, the inclusion of the other field components leads to
even stronger field divergence than displayed in Fig. 4.19.

Notice that the conclusions of this section are consistent with the findings of Section 3.2,
where we discussed the behavior of a Gaussian field distribution in the paraxial approxi-
mation. In particular we found that the Rayleigh range r0 and the beam divergence angle θ
are related to the beam confinement w0 as

z0 = kw2
0

2
, θ = 2

k w0
. (4.69)

Hence, the stronger the field confinement is, the faster the decay along the optical axis will
be and the faster the fields will spread out.

Each near-field source (tip, aperture, particle, . . . ) has its own unique field distribu-
tion. The electromagnetic properties of these sources will be discussed in Chapter 6. The
unavoidable interaction between sample and source is also different for each source. To
investigate these issues it is necessary to perform elaborate field computations. In general,
the configurations need to be strongly simplified in order to achieve analytical solutions.
On the other hand, the intuitive insight of such calculations is very valuable and provides
helpful guidelines for experiments. Examples of analytical models are the fields near a
small aperture as derived by Bethe and Bouwkamp [24, 25], and models for dielectric and
metal tips as formulated by Barchiesi and Van Labeke [26, 27].
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�Fig. 4.19 Divergence of optical fields with different confinements in the source plane. The same parameters are used as in
Fig. 4.18. A point on a line denotes the radial distance for which the field strength of Ex decays to 1/e of its on-axis
value. The better the confinement in the source plane at z=0, the faster the fields will diverge.

4.6.1 Information transfer from near-field to far-field

In near-field optics, the electromagnetic field of a source interacts with a sample surface in
close proximity and then propagates to the far-field, where it is detected and analyzed. But
how does information about subwavelength-sized structures get encoded in the radiation?
How is it possible at all to retrieve near-field information in the far-field where evanescent
waves do not contribute? We shall discuss the problem in a rather general way specifying
neither the illumination field distribution, which may be due to a near-field probe or a
focused spot, nor the specific properties of the sample. We also neglect interaction of probe
and sample. A more detailed discussion can be found in Refs. [28, 29].

Let us consider three different planes as shown in Fig. 4.20: (1) the source plane at
z = −z0, (2) the sample plane at z = 0, and (3) the detection plane at z = z∞. The source
plane corresponds to the end face of an optical probe used in near-field optical microscopy
but it could also be the focal plane of a laser beam employed in confocal microscopy.
The sample plane z = 0 forms the boundary between two different media characterized by
indices n1 and n2, respectively. Using the framework of the angular spectrum representation
(cf. Section 2.15), we express the source field in terms of its spatial spectrum as

Esource(x, y;−z0) =
∞∫

−∞

∫
Êsource(kx, ky;−z0)ei[kxx+ kyy] dkx dky. (4.70)

Using the propagator (3.2), the field that arrives at the sample is given by

Esource(x, y; 0) =
∞∫

−∞

∫
Êsource(kx, ky;−z0)ei

[
kxx+ kyy+ kz1 z0

]
dkx dky, (4.71)
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�Fig. 4.20 Mapping of information from a sample plane (z = 0) to a detector plane (z = z∞ � λ) using a confined source
field at z = −z0. The high spatial frequencies of the sample can be detected by using a strongly confined source field
in close proximity to the sample (z0 � λ).

where Esource(x, y; 0) is the field at the sample surface before any interaction takes place.
Because of the proximity of the sample to the source (z0 � λ), Esource is a superposition of
plane and evanescent waves. However, as qualitatively shown in Fig. 4.21, the magnitude
of the evanescent waves is attenuated as their transverse wavenumber increases. Since we
know Esource at the surface of the sample, we can determine the interaction separately for
each plane or evanescent wave and then obtain the total response by integrating over all
incident waves, i.e. over the entire (kx, ky) plane.

To keep the discussion focused, we assume the sample to be an infinitely thin object
characterized by a transmission function T(x, y), which we aim to determine in this thought
experiment. This choice allows us to ignore topography-induced effects [30]. Very thin
samples can be produced, for example by microcontact printing [31]. Immediately after
being transmitted, the field is calculated as

Esample(x, y; 0) = T(x, y) · Esource(x, y; 0) . (4.72)

We have to keep in mind that this treatment is a rough approximation since e.g. the influ-
ence of the sample on the probe field is neglected. A more rigorous description could
be accomplished e.g. by adopting the concept of the equivalent surface profile [28]. The
multiplication of T and Esource in direct space becomes a convolution in Fourier space.
Therefore, the Fourier spectrum of Esample can be written as
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�Fig. 4.21 Attenuation of the bandwidth of spatial frequencies upon propagation from the source (z = −z0) to the sample
(z = 0). Evanescent components (

∣∣k‖∣∣ = ∣∣(kx, ky)∣∣ > k) are exponentially attenuated. The attenuation is stronger
the larger

∣∣k‖∣∣ is. The spatial spectrum arriving at the sample can be written as a sum over discrete spatial
frequencies represented by delta functions (see Eq. (4.77)). Five representative spatial frequencies are depicted as
black dots for illustration: δ(k‖), δ(k‖ ± k1), and δ(k‖ ± k2), where |k1| = k and |k2| = 2k.

Êsample(κx, κy; 0) =
∞∫

−∞

∫
T̂(κx− kx, κy− ky)Êsource(kx, ky; 0)dkx dky,

=
∞∫

−∞

∫
T̂(κx− kx, κy− ky)Êsource(kx, ky;−z0)eikz1 z0 dkx dky,

(4.73)

with T̂(k′x, k′y) being the Fourier transform of T and k′i = κi − ki, i ∈ {x, y}.
We now propagate the sample field Esample to the detector in the far-field at z = z∞. We

have seen in Section 3.4 that the far-field simply corresponds to the spatial spectrum in the
source plane. However, here we are interested in the spatial spectrum in the detector plane
and therefore propagate Êsample as

Edetector(x, y; z∞) =
∞∫

−∞

∫
Êsample(κx, κy; 0) ei[κxx+κyy] eiκzz∞ dκx dκy. (4.74)

Because of the propagator exp[iκzz∞] only plane-wave components will reach the detector.
These plane waves fulfill ∣∣κ‖∣∣ ≤ k3 = ω

c
n3, (4.75)

where the transverse wavenumber κ‖ is defined as κ‖ = [κ2
x +κ2

y ]1/2. If the finite collection
angle of a lens with numerical aperture NA is taken into account we obtain∣∣κ‖∣∣ ≤ k3NA. (4.76)

Now, this appears just to be a restatement of the diffraction limit. What can we learn from
this?
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To simplify the interpretation, let us rewrite the spectrum of the source field as

Êsource(kx, ky; 0) =
∞∫

−∞

∫
Êsource(k̃x, k̃y; 0) δ(k̃x−kx) δ(k̃y−ky) dk̃x dk̃y, (4.77)

which, as illustrated in Fig. 4.21, is simply a sum over discrete spatial frequencies. Thus,
we can imagine the source field as consisting of an infinite number of partial source fields
with discrete spatial frequencies. For each pair of partial fields having spatial frequen-
cies ±(k̃x, k̃y) we calculate separately the interaction with the sample and the resulting
far-field at the detector. Pairs are considered here since they correspond to the equal
amplitudes of plane or evanescent waves that interfere in the sample plane, leading to
a stationary standing-wave pattern. In the end, we may sum over all the individual pair
responses.

Recall that we performed a convolution of T̂(k′x, k′y) and Êsource(kx, ky; 0). A source field
consisting of a single pair of spatial frequencies k‖ = ±(kx, ky) will simply shift the
transverse wavevectors of the sample k′‖ as

κ‖ = k‖ ± k′‖, (4.78)

i.e. it translates the spectrum T̂ by ±k‖. Figure 4.22 illustrates the shifting of the sample
spectrum T̂ for three pairs of transverse wavevectors of the source field: δ(k‖), δ(k‖ ± k),
and δ(k‖ ± 2k) already highlighted in Fig. 4.21. A plane wave at normal incidence is repre-
sented by δ(k‖) and does not shift the original spectrum. The plane waves with the largest
transverse wavevector travel parallel to the surface and are represented by δ(k‖ ± k). This
wavenumber shifts the original spectrum by ±k, thereby bringing a range of previously
inaccessible spatial frequencies of T(kx′, ky′) into the circular region of the k-space corre-
sponding to propagating waves

∣∣κ‖∣∣ < k. Finally, δ(k‖ ±2k) represents a pair of evanescent
waves. It shifts T̂ by ±2k and brings spatial frequencies up to k′‖ = 3k into the range sup-
ported by the OTF. Hence, the large spatial frequencies of the sample are combined with
the large spatial frequencies of the probe field, such that the difference wavevector cor-
responds to a propagating wave in the angular spectrum that travels towards the detector.
The effect that occurs here is similar to the creation of the long-wavelength Moiré patterns
that occur when the transmissions of two high-frequency gratings are multiplied by each
other. We conclude that using a confined source field with a large bandwidth of spatial fre-
quencies makes high spatial frequencies of the sample become accessible in the far-field!
The better the confinement of the source field is, the better the resolution of the sample
will be.

Let us estimate the highest spatial frequencies that can be sampled using a specific probe
field. According to Eqs. (4.76) and (4.78)

∣∣∣k′‖,max ± k‖,max

∣∣∣ = 2πNA

λ
. (4.79)
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For a confined source field with a characteristic lateral dimension L (aperture diame-
ter, tip diameter, ...) the highest spatial frequencies are on the order of k‖,max ≈ π/L
and thus

k′‖,max ≈
∣∣∣∣πL ∓ 2πNA

λ

∣∣∣∣ . (4.80)

For L � λ we can neglect the last term and find that the source confinement entirely
defines the highest detectable spatial frequencies of the sample. However, one has to keep
in mind that the detection bandwidth is restricted to a circle with radius k3 and that the
high spatial frequencies are always intermixed with low spatial frequencies, which makes
image reconstruction a challenging task!

4.7 Structured-illuminationmicroscopy

Structured-illumination microscopy (SIM) is a super-resolving far-field optical imaging
technique based on the concepts we have just developed. It consists of illuminating the
sample with sinusoidal standing wave patterns created by discrete pairs of plane waves
that interfere in the sample plane. The fact that the source field spectrum now consists of
three delta peaks can be exploited to recover – by means of simple mathematical opera-
tions in Fourier space – a larger portion of such parts of the sample’s Fourier spectrum
that usually would not contribute to the far field. Overall the procedure to be described
exploits the information content of multiple images recorded under different illumination
conditions.

The fact that structured illumination can lead to improved spatial resolution was first
noted in 1963 [32] by Lukosz and Marchand, [32] who used a periodic intensity variation
along the optical axis. Laterally structured illumination was suggested and experimentally
demonstrated by Gustafsson [33, 34], Heintzmann & Cremer [35], and Frohn [36] as well
as by Neil et al., who demonstrated optical sectioning capability in addition [37].

To discuss the principle of the technique we assume an imaging system as sketched
in Fig. 4.5 for which we set the magnification M = 1 for convenience. We assume that
the sample contains a distribution of fluorescent molecules S(x, y) that needs to be deter-
mined. For example, the fluorescent molecules could be specific biological labels that
mark certain cellular structures. We further assume for now that the fluorescent molecules
are excited in the linear regime (for details see Chapter 9). For illumination we use a
one-dimensional sinusoidal intensity grating whose intensity distribution in the sample
plane can be described by I(x, y) = Io [1 + cos (ux +�)] where 2π/u is the spatial wave-
length of the modulation and � is an adjustable phase shift. The spatial distribution of
fluorescence in the sample plane F(x, y) is then given by F(x, y) = S(x, y) · I(x, y) =
S(x, y) [1 + cos (ux +�)], where we suppress all proportionality constants. This multi-
plicative relation is in complete analogy to Eq. (4.72) and an equivalent analysis can be
performed, except that now the particular form of the illumination field I(x, y) allows us
to obtain analytical expressions when performing the Fourier analysis. As discussed in the
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�Fig. 4.22 Convolution of the spatial spectra of sample transmission (T̂) and source field (Êsource). Dashed circles have a radius of
k or 2k. Three pairs of spatial frequencies of Êsource are shown. Convolution with δ(k‖ ± mk) shifts the spatial
spectrum of T̂ by±mk;m=0 corresponds to a plane wave at normal incidence,m= ±1 to a pair of
counterpropagating plane waves at parallel incidence, andm= ±2 to a pair of counterpropagating evanescent
waves. In the far-field, the resulting spectrum of Êsample can be detected only in the range

∣∣k‖∣∣ < k. The figure
illustrates that high spatial frequencies associated with the sample can be shifted into the propagating region
supported by the optical transfer function, Eq. (3.2), which is marked by the thick black circle.

previous section, we need to calculate the Fourier spectrum F̂(κx, κy; 0) of F(x, y) according
to Eq. (4.73) to find the Fourier components of S(x, y) that can be recovered in the far field.
The resulting convolution integral can be evaluated to yield the discrete sum

F̂(κx, κy; 0)=√2π Ŝ(κx, κy) +
√
π

2
e−i�Ŝ(κx − u, κy) +

√
π

2
ei�Ŝ(κx + u, κy). (4.81)

This sum consists of a term containing the unshifted Fourier spectrum Ŝ (representing the
conventional far-field image) as well as two more terms containing copies of Ŝ that are
shifted by ±u as sketched in Fig. 4.23(a). Owing to this shift, new parts of Ŝ fall within
the range of spatial frequencies that can be converted to propagating waves depicted by
the thick circle in Fig. 4.23(a) (representing far-field images containing information about
higher spatial frequencies). The additional ranges of higher spatial frequencies that become
available to far-field observation are highlighted by the hatched areas. If the three shifted
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�Fig. 4.23 Reconstruction of super-resolved images in structured-illumination microscopy. (a) Once the individual shifted and
unshifted sample spectra Ŝ within the circle with radius k0 have been determined by solving a system of linear
equations they can (b) be used to reconstruct the extended F̂detector(κx , κy ; z∞). The hatched areas in (a) and (b)
highlight the additional portions of the Fourier plane that become accessible due to the shifting of Ŝ after correct
stitching of the Fourier spectra. (c) A Fourier transformation finally yields the resulting image Fdetector(x, y) with
enhanced resolution mostly along the x-direction in this example.

and unshifted Fourier spectra Ŝ inside the thick circles were known, we could easily com-
bine those parts of the Fourier spectra that are not redundant into a combined and extended
Fourier spectrum as sketched in Fig. 4.23(b). Upon inverse Fourier transformation of this
stitched Fourier spectrum a better-resolved image of the unknown distribution of fluo-
rescent molecules S(x, y) would be obtained (Fig. 4.23(c)). Unfortunately, the far-field
fluorescence image that results from propagating the expression Eq. 4.81 to the far-field
contains a superposition of far-field images corresponding to a complicated Moiré-pattern.

The strategy employed to separately determine the unknown shifted Fourier spectra
Ŝ(κx ± u, κy) is as follows. Experimentally F̂(κx, κy; 0) for the range of propagating waves
can be determined from a recorded fluorescence image by applying a numerical Fourier
transformation. Now Eq. (4.81) represents one equation for the three unknowns, Ŝ(κx, κy),
Ŝ(κx − u, κy), and Ŝ(κx + u, κy). Two further independent equations are needed in order to
obtain a system of equations that can be solved for the set of unknowns. This is achieved
by recording two further images, each with a different phase shift � of the sinusoidal illu-
mination pattern, however. This yields two more equations analogous to Eq. (4.81). It is
convenient to set the phase shift of the first image to zero and the phase shifts for the two
additional images e.g. to � = 2π/3 and � = 4π/3 to obtain a total of three linearly
independent equations. Experimentally, phase shifts are adjusted by physically shifting the
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illumination pattern in the sample plane. Once the three unknowns have been determined,
the extended Fourier spectrum Ŝstitch(κx, κy) can be reconstructed in the computer (see
Fig. 4.23 (b)). This is then Fourier transformed to yield Sstitch(x, y) with enhanced resolu-
tion along the x-direction (see Fig. 4.23 (c)). It is obvious that the method can be extended
to using multiple orientations of the sinusoidal illumination gratings. By doing so nearly
isotropic resolution enhancement can be achieved [34, 36].

To what degree can the spatial resolution be enhanced by structured illumination? The
highest value of a modulation frequency in a standing-wave pattern that can theoretically
be created by means of far-field optics is u = 4πn/λ. This could be achieved e.g. by the
interference of two counter-propagating plane waves at grazing angle of incidence with
respect to the sample surface. From this we conclude that compared with the standard
optical microscope whose resolution limit is given by Eq. (4.21), in structured-illumination
microscopy the optical resolution can be increased by up to a factor of 2. Let us also remark
here that it was pointed out that a focused laser beam can be interpreted as a special case
of structured illumination. Using a two-dimensional detector instead of a point detector
and appropriate image reconstruction, the resolution in scanning confocal microscopy can
reach that of structured-illumination microscopy [38].

In section 4.2.3 we saw that optical resolution can be enhanced if nonlinear optical
effects are involved. Also in the case of structured-illumination microscopy the resolution
can be further enhanced by making use of nonlinear effects, e.g. fluorescence saturation
[39]. Of course, other nonlinear optical effects can in principle serve the same pur-
pose. While increasing the modulation frequency in a standing wave beyond the limit of
u = 4πn/λ is impossible using linear far-field optics, it can be increased by taking advan-
tage of the nonlinear relation between excitation intensity and fluorescence emission due to
saturation (see chapter 9 for details). Such a nonlinear relation leads to a distorted effective
excitation pattern, which therefore needs to be described with the help of higher harmonics
of the modulation frequency u. Figure 4.24 illustrates this effect. The presence of higher
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harmonics can be exploited to further increase spatial resolution in full analogy to what
we have discussed for linear structured-illumination microscopy by adding the respective
higher harmonic terms to Eq. (4.81). Since the number of unknowns increases it is nec-
essary to record a correspondingly larger number of images. This is done by shifting the
phase of the excitation pattern in even finer steps in order to be able to construct the stitched
Fourier transform of the image by solving the resulting larger set of linear equations. Also,
to guarantee isotropic enhancement of resolution, the illumination pattern has to be turned
in finer angular steps. In general, the highest spatial frequency that becomes accessible by
means of nonlinear structured illumination is

k‖,max = (2 + l)2πn

λ
, (4.82)

where l is the number of higher harmonics present in the signal. According to Eq. (4.21)
the smallest separation of two point-like particles that can be resolved is then given by

Min
[
�r||
] = λ

2π (2 + l)NA
, (4.83)

being limited only by the number of harmonics that contribute to the image reconstruction.
In experimental nonlinear structured-illumination microscopy a resolution of < 50 nm has
been demonstrated using three harmonic orders [39].

Problems

4.1 A continuously fluorescing molecule is located at the focus of a high-NA objective
lens. The fluorescence is imaged onto the image plane as described in Section 4.1.
Although the molecule’s position is fixed (there is no translational diffusion), it
is rotating in all three dimensions (rotational diffusion) with high speed. Calcu-
late and plot the averaged field distribution in the image plane using the paraxial
approximation.

4.2 Consider the set-up of Fig. 4.1. Replace the single dipole emitter by a pair of inco-
herently radiating dipole emitters separated by a distance �x=λ/2 along the x-axis.
The two dipoles radiate at λ= 500 nm and they have the same dipole strength. One
of the dipoles is oriented transverse to the optical axis whereas the other dipole is
parallel to the optical axis. The two dipoles are scanned in the object plane and for
each position of their center coordinate a signal is recorded in the image plane using
an NA=1.4 (n=1.518), M=100× objective lens.
(a) Determine the total integrated field intensity (s1) in the image plane.
(b) Calculate and plot the recorded image (s2) if a confocal detector is used. Use the

paraxial approximation.
(c) Discuss how s1 and s2 change if the dipoles are scanned at a constant height

�z=λ/4 above the image plane.
4.3 Consider a sample with a uniform layer of dipolar particles with fixed dipole orien-

tations along the x-axis. The layer is transverse to the optical axis and each element
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of the layer has a constant polarizability αxx. The sample is illuminated by a focused
Gaussian beam and is translated along the optical axis z. We use both non-confocal
(s1) and confocal (s2) detection. The two signals are well approximated by Eqs. (4.47)
and (4.48), respectively.
(a) Calculate the non-confocal signal as a function of z.
(b) Calculate the confocal signal as a function of z.
(c) What is the conclusion?
Hint: use the Bessel-function closure relations of Eq. (3.112).

4.4 Calculate the longitudinal fields corresponding to the Gaussian field distribution in
Eq. (4.67). Assume that Ey = 0 everywhere in space. Show how the longitudinal
field evolves in transverse planes z = constant. State the result in cylindrical coor-
dinates as in Eq. (4.68). Plot the longitudinal field strength in the planes z = 0 and
z=λ.

4.5 Consider a plane z = constant transverse to the optical axis of a paraxial Gaussian
beam E with focus at z = 0, beam waist w0 = λ, and wavelength λ = 500 nm.
Assume that the plane is covered with a layer of incoherently radiating fluores-
cent molecules. Calculate the power of the generated fluorescence P as a function
of z by assuming that the fluorescence intensity generated at a point (x, y, z) is
given by
(a) Iω(x, y, z) = A |E(x, y, z)|2 (one-photon excitation),
(b) I2ω(x, y, z) = B |E(x, y, z)|4 (two-photon excitation).
Plot P for the two cases. Normalize such that P(z = 0) = 1.

4.6 In order to verify the validity of Eq. (4.64) perform a Monte Carlo simulation of
the fitting process. To this end, simulate a large number (∼1000) of point images
by creating Gaussian peaks with uncorrelated Poissonian noise superimposed on
the background and on the amplitude. In terms of Eq. (4.54), in the absence of the
background B, this means that for each data point a random number drawn from a
Poissonian distribution with maximum at G(x, y) and width

√
G(x, y) is added to the

originally calculated G(x, y). Now perform a nonlinear least-squares fit on each of the
peaks using a suitable software package (the use of a Levenberg–Marquard algorithm
is recommended). Plot the distribution of positions x0,min and y0,min that results from
the fits. Compare the width of this distribution with the value for σ obtained from
Eq. (4.64).

4.7 Determine analytical expressions for the uncertainties of the other parameters in
Eq. (4.54) using the same analysis as that which led to Eq. (4.64).

4.8 Structured illumination. Assume that you would like to obtain a far-field image of a
fluorescent pattern in which the density of fluorescent labels varies sinusoidally with
a spatial frequency of 3k/2, which is larger than k and is therefore not resolvable in
conventional far-field microscopy. Apply an appropriate structured-illumination pat-
tern with sinusoidal intensity distribution and plot the resulting Moiré pattern. Show
by direct calculation that three exposures of the fluorescent pattern with appropriately
(phase-)shifted illumination patterns will suffice to recover the Fourier spectrum of
the fluorescent pattern. Assume all refractive indices to be equal to unity.



128 Resolution and localization

References

[1] C. J. R. Sheppard and T. Wilson, “The image of a single point in microscopes of large
numerical aperture,” Proc. Roy. Soc. A 379, 145–158 (1982).

[2] J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective
with high numerical aperture,” Opt. Lett. 25, 634–636 (2000).

[3] R. M. Dickson, D. J. Norris, and W. E. Moerner, “Simultaneous imaging of individual
molecules aligned both parallel and perpendicular to the optic axis,” Phys. Rev. Lett.
81, 5322–5325 (1998).

[4] M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single molecule orientations deter-
mined by direct emission pattern imaging,” J. Opt. Soc. B 21, 1210–1215 (2004).

[5] E. Abbe, “Beiträge zur Theorie des Mikroskops und des mikroskopischen
Wahrnehmung,” Arch. Mikrosk. Anat. 9, 413–468 (1873).

[6] Lord Rayleigh, “On the theory of optical images with special reference to the
microscope,” Phil. Mag. 5, 167–195 (1896).

[7] R. H. Webb, “Confocal optical microscopy,” Rep. Prog. Phys. 59, 427–471 (1996).
[8] V. Andresen, A. Egner, and S. W. Hell, “Time-multiplexed multifocal multiphoton

microscope,” Opt. Lett. 26, 75–77 (2001).
[9] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy

with diffraction resolution barrier broken by stimulated emission,” Proc. Nat. Acad.
Sci. 97, 8206–8210 (2000).

[10] M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10,
128–138 (1988).

[11] C. J. R. Sheppard, D. M. Hotton, and D. Shotton, Confocal Laser Scanning
Microscopy. New York: BIOS Scientific Publishers (1997).

[12] G. Kino and T. Corle, Confocal Scanning Optical Microscopy and Related Imaging
Systems. New York: Academic Press (1997).

[13] T. Wilson, Confocal Microscopy. New York: Academic Press (1990).
[14] N. Bobroff, “Position measurement with a resolution and noise-limited instrument,”

Rev. Sci. Instrum. 57, 1152–1157 (1986).
[15] R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization

analysis for individual fluorescent probes,” Biophys. J. 82, 2775–2783 (2002).
[16] R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule

microscopy,” Biophys. J. 86, 1185–1200 (2004).
[17] A. Yildiz, J. N. Forkey, S. A. McKinney, et al., “Myosin V walks hand-over-

hand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061–2065
(2003). Reprinted with permission from AAAS.

[18] W. Trabesinger, B. Hecht, U. P. Wild, et al., “Statistical analysis of single-molecule
colocalization assays,” Anal. Chem. 73, 1100–1105 (2001).

[19] E. Betzig, G. H. Patterson, R. Sougrat, et al., “Imaging intracellular fluorescent
proteins at nanometer resolution,” Science 313, 1642–1645 (2006).

[20] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic
optical reconstruction microscopy (STORM),” Nature Methods 3, 793–795 (2006).



129 References

[21] S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by
fluorescence photoactivation localization microscopy,” Biophys. J. 91, 4258–4272
(2006).

[22] P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the
Physical Sciences. New York: McGraw-Hill, p. 212 (1994).

[23] M. Lampton, B. Margon, and S. Bowyer, “Parameter estimation in X-ray astronomy,”
Astrophys. J. 208, 177–190 (1976).

[24] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182
(1944).

[25] C. J. Bouwkamp, “On Bethe’s theory of diffraction by small holes,” Philips Res. Rep.
5, 321–332 (1950).

[26] D. Van Labeke, D. Barchiesi, and F. Baida, “Optical characterization of nanosources
used in scanning near-field optical microscopy,” J. Opt. Soc. Am. A 12, 695–703
(1995).

[27] D. Barchiesi and D. Van Labeke, “Scanning tunneling optical microscopy: theoretical
study of polarization effects with two models of tip,” in Near-field Optics, ed. D. W.
Pohl and D. Courjon. Dordrecht: Kluwer, pp. 179–188 (1993).

[28] J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci.
56, 133–237 (1997).

[29] B. Hecht, H. Bielefeld, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of
detection conditions on near-field optical imaging,” J. Appl. Phys. 84, 5873–5882
(1998).

[30] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, “Facts and artifacts
in near-field optical microscopy,” J. Appl. Phys. 81, 2492–2498 (1997).

[31] Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. Edn. Engl. 37,
551–575 (1998).

[32] W. Lukosz and M. Marchand, “Optische Abbildung unter Überschre-
itung der beugungsbedingten Auflösungsgrenze,” J. Mod. Opt. 10, 241–255
(1963).

[33] M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Method and apparatus for three-
dimensional microscopy with enhanced depth resolution,” US patent 5671085, cols.
23–25 (1997).

[34] M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using
structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).

[35] R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy:
improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196
(1999).

[36] J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the
Rayleigh limit achieved by standing wave illumination,” Proc. Nat. Acad. Sci. 97,
7232–7236 (2000).

[37] M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning
by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907
(1997).



130 Resolution and localization

[38] C. B. Müller and J. Enderlein, “Image scanning microscopy,” Phys. Rev. Lett. 104,
198101 (2010).

[39] M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field flu-
orescence imaging with theoretically unlimited resolution,” Proc. Nat. Acad. Sci.
102, 13081–13086 (2005). Copyright 2005 National Academy of Sciences, U.S.A.



5 Nanoscale optical microscopy

Optical measurement techniques, and near-field optical microscopy in particular, exist in
a broad variety of configurations. In the following we will derive an interaction series
to understand and categorize different experimental configurations. The interaction series
describes multiple scattering events between an optical probe and a sample and is similar to
the Born series in light scattering. We will start out by discussing far-field microscopy first
and then proceed with selected configurations encountered in near-field optical microscopy.

5.1 The interaction series

The interaction of light with matter can be discussed in terms of light scattering events
[1, 2]. Figure 5.1 is a sketch of a generic geometry considered in the following. The sam-
ple and – in the case of near-field optical microscopy – also an optical probe, which is
positioned in close proximity, are assumed to be described by dielectric susceptibilities
η(r) and χ (r), respectively. An incident light field Ei is illuminating the probe–sample
region. Ei is assumed to be a solution of the homogeneous Helmholtz equation (2.35).
The incoming field causes a scattered wave Es, which is detectable in the far-field. The
total field is then given by E = Ei + Es. In a qualitative picture, there are several pro-
cesses that can convert an incoming photon into a scattered photon. For example, the
incoming photon may be scattered only at the probe or only at the sample before trav-
eling into the far-field. Alternatively the first scattering event may occur at the sample,
directly followed by a second scattering event at the probe and only then by propagation
into the far-field. More complicated multiple-scattering processes may of course also occur,
e.g. probe–sample–probe scattering. One may assume that the overall scattering is well
described by a sum of the contributions of different scattering processes and that the sum
converges after a few orders since multiple scattering is expected to become negligible with
increasing order. In the following we outline the derivation of a series representation that
is based on the Born series of multiple-scattering processes which supports this intuitive
picture [1].

Formally, the Helmholtz equation for the total field,
(∇2 + k2

)
E = 0, can be written

as
(∇2 + k2

0

)
E = −k0[ε(r) − 1]E = −k2

0[η(r) + χ (r)]E, where k0 is the magnitude of
the wavevector in vacuum. If we make use of the property of the incoming field (∇2 +
k2

0)Ei = 0, we obtain
131
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(∇2 + k2
0)Es = −k2

0[η(r) + χ (r)]E, (5.1)

which is an inhomogeneous Helmholtz equation for the scattered field Es in which the
probe and sample susceptibilities appear in the source terms. Equation (5.1) can be for-
mally solved by using G(r, r′), the dyadic Green function of the system consisting of two
semi-infinite half-spaces of background dielectric constants, which we assume to be n1 = 1
and n2, respectively. An explicit expression for this particular Green dyadic is given in Sec-
tion 10.4. However, for the present purpose we need only assume that G(r, r′) is known in
order to write a formal solution for Eq. (5.1).

Es(r,ω) = k2
0

∫
dV ′ G(r, r′)[η(r) + χ (r)]E. (5.2)

In order to simplify the notation, we introduce some abbreviations.1 We define S · E =∫
dV ′ S(r, r′)E and T0 · E = ∫ dV ′ T0(r, r′)E with S(r, r′) = k2

0G(r, r′)η(r′) and T0(r, r′)
= k2

0G(r, r′)χ (r′), which allows us to rewrite Eq. (5.2) as

Es(r,ω) = (S + T0) · E. (5.3)

Equation (5.3) is a recursive integral equation for the scattered field Es, which can be
solved by iteration. The idea of such an iterative solution is that the lowest-order solution
can be obtained by assuming that the total field E is well approximated by Ei. This then

r E iEs

r
0

z

n1
E = E i + Es

n2

χ

η

�Fig. 5.1 Geometry and definitions for the discussion of light scattering from the probe–sample region.

1 We use the symbol T for scattering processes at the probe (“tip”) in order to be consistent with the literature.
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allows us to calculate a first approximation to Es, and can then be used to obtain a refined
approximation for E, and so on. By following this scheme we obtain

Es(r,ω) =
∞∑

n=1

(S + T0)
n · Ei, (5.4)

which is the so-called Born series [2]. The expression for Es provided in Eq. (5.4) is still
valid without approximation. We now consider the case in which the sample is absent (but
the plane interface remains). This will provide us with an expression for the field scattered
by the probe alone, which is assumed to be known. In this particular case, the scattered
field according to Eq. (5.4) can be expressed as

Es
probe(r,ω) =

∞∑
n=1

(T0)
n · Ei = T · Ei, (5.5a)

where

T =
∞∑

j=1

(T0) j, (5.5b)

the effective probe operator, is introduced.
We are now in a position to obtain a perturbative solution for the scattered field by

assuming that the sample is scattering only weakly. As a consequence, in the series expan-
sion of Eq. (5.4) only terms up to linear order in η(r) (and therefore in S) are retained.
After proper rearrangement, and by making use of Eq. (5.5a), we obtain

Es(r,ω) = [T + (I + T) · S · (I + T)+ · · · ] · Ei

= [T + S + TS + ST + TST + · · · ] · Ei, (5.6)

where I is the identity operator. Equation (5.6) shows that the intuitive picture of multiple-
scattering events occurring between the probe and the sample is fully supported within
the Born approximation. We are now in a position to categorize different types of opti-
cal microscopy techniques according to which term of Eq. (5.6) is the leading term in
the interaction series. The respective graphical representations of the dominant scatter-
ing processes are displayed in Fig. 5.2. For example, conventional far-field microscopy
and related high-resolution derivatives such as stimulated emission depletion and localiza-
tion microscopy techniques are characterized by the S term only; see Fig. 5.2(a), whereas
illumination-mode near-field optical microscopy relies on the ST term of Eq. (5.6) and
is sketched in Fig. 5.2(b). Collection-mode near-field optical microscopy, Fig. 5.2(c),
and scattering-type near-field optical microscopy using antenna probes, Fig. 5.2 (d), are
represented by the TS and TST terms, respectively. It is important to keep in mind
that the operators T and S are tensorial in nature, which means that polarization effects
play an important role and can even be used to suppress certain higher-order inter-
actions in the Born series. Furthermore, one should keep in mind that the individual
interaction steps can involve different frequencies, which is relevant in the context of
spectroscopy.
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5.2 Far-field optical microscopy techniques

5.2.1 Confocal microscopy

Confocal microscopy employs focused light to achieve a diffraction-limited illumination
spot in combination with a point-like detector. The relevant theory has been discussed
in Section 4.3. Despite the limited bandwidth of spatial frequencies imposed by far-field
illumination and detection, confocal microscopy is successfully employed for high-
precision localization measurements as explained in Section 4.5 and for high-resolution
imaging by exploiting nonlinear or saturation effects discussed in Section 4.2.3. Let
us start out here by considering experimental aspects of conventional confocal optical
microscopy.

Experimental set-up

Figure 5.3 shows the set-up of the simplest type of scanning confocal microscope. Its beam
path is fixed and the sample is raster scanned to record an image. In such an instrument,
light from a laser source is typically spatially filtered, e.g. by sending it through a single-
mode optical fiber or a pinhole. The purpose of the spatial filtering is to arrive at a beam
with a perfect Gaussian beam profile. After propagating through the fiber or the pinhole,
the light is collimated by a lens. The focal length of the collimation lens should be chosen
such that the beam diameter is large enough to overfill the back-aperture of the microscope
objective used to focus the light onto the sample. It is advantageous if the microscope
objective is designed to work with collimated beams. Such objectives are called “infin-
ity corrected”. The spotsize �x that is achieved at the sample depends on the numerical

S

T

Ei Es = S .E i

S

T

Ei

Es = TS .E i

S

T

Ei
Es = ST .E i

S

T

Ei

Es = TST .E i

(a)

(b)

(c)

(d)

�Fig. 5.2 Different types of nanoscale microscopy techniques categorized according to the leading term in the Born series.
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aperture NA of the objective and the wavelength used for illumination (see Section 4.2). It
is usually limited by diffraction of the laser light at the entrance aperture of the objective
to (cf. Section 4.2)

�x = 0.61
λ

NA
, (5.7)

where λ is the light wavelength. For NA = 1.4 the lateral spotsize for green light (λ =
500 nm) is about 220 nm, slightly better than λ/2.

The laser light interacts with the sample and produces reflected and scattered light at the
excitation wavelength and possibly also at wavelengths shifted with respect to the exci-
tation. The microscope objective that is used for illumination can also be used to collect
light emanating from the sample. It is possible to collect the light with a second objective
facing the first one, however this is experimentally more demanding because it requires
the alignment of two objectives with respect to each other with a precision much better
than λ/2. On the other hand, the dual-objective configuration opens up new possibilities
for excitation, e.g. by overlapping the foci of two counterpropagating beams [3]. We come
back to these issues later on in this chapter.

DM

M

F
L2

L1

O

SPAD

S

La
se

r

xyz scanner

�Fig. 5.3 Set-up of a simple scanning epi-illumination confocal optical microscope. A laser light source is spatially filtered,
e.g. by sending the light through a single-mode optical fiber or a pinhole, and collimated by a lens. A (dichroic)
beamsplitter reflects the light into a high-numerical-aperture microscope objective. The back-aperture of the
objective should be overfilled to achieve the optimal spotsize (see Chapter 4). The optical signal (e.g. fluorescence)
and scattered light created at the focus are collected by the same objective and converted into a collimated beam. The
dichroic beamsplitter transmits light in a restricted spectral range, which is then filtered further and finally focused
onto another pinhole in front of a detector. Images are obtained pixel by pixel by scanning the sample relative to the
focus.
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When using a single objective, once the incoming beam of light is collimated, the beam
of collected light is also collimated for a chromatically corrected microscope objective.
Working with collimated beams makes it possible to introduce filters and other optical ele-
ments anywhere into the beam path without introducing offsets in the light path. Ultrafast
laser sources with few-femtosecond pulse durations deliver excitation light with a very
broad spectrum (>400 nm). In order to work with such sources the use of Cassegrain
objectives may be favorable.

The collected light has to be separated from the incoming light. This can be done by
exploiting the difference in wavelength using a dichroic mirror, by exploiting changes
in the polarization using a polarizing beamsplitter, by time gating if pulsed excitation is
used, or simply by exploiting different directions of propagation using a non-polarizing
beamsplitter. Figure 5.3 depicts the case in which a dichroic mirror that transmits e.g. red-
shifted fluorescence is used. The filtered beam of collected light is now focused by a
second lens onto a pinhole in front of a detector. Certain detectors such as the widely
used single-photon counting avalanche photodiodes have rather small active areas. They
can be used without an additional pinhole. The size of the detection pinhole must be cor-
rectly matched to the diameter of the focal spot (Airy disk) produced by the second lens
in order to efficiently reject out-of-focus signals. A larger pinhole diameter impairs the
rejection of out-of-focal-plane signals but can help to optimize the effective transmission
of light through the pinhole. It is found that a spotsize two times smaller than the pinhole
diameter still yields good results in terms of both lateral resolution and out-of-focal-plane
rejection.

Another point of view one may take when designing the detection path is the following.
The lateral spotsize from which to a good approximation light is efficiently and uniformly
collected corresponds to the size of the demagnified image of the detection aperture in
the focal plane of the microscope objective. Using geometrical optics, the demagnification
factor is given by the ratio of the two focal distances of the objective lens and the lens
focusing to the pinhole (tube lens). This point of view becomes very important when imple-
menting e.g. a scanning probe near-field microscope, for which one has to make sure that
the full scan range of the probe remains well within the detectable area.

At this point we note that the beam profile at the output of a single-mode optical fiber is a
fundamental Gaussian mode. As discussed in Section 3.7, other beam modes can be created
and some of them can lead to particular properties of the fields in the focal region includ-
ing e.g. reduced spotsize or longitudinal polarization. If higher-order modes are required,
a mode-conversion unit (see Section 3.7) can be introduced to the excitation beam path
before the beamsplitter in order to keep the detection beam path unperturbed.

The confocal principle

Confocal detection is based on the fact that light not originating from the focal area will
not be able to pass through the detection pinhole and hence cannot reach the detector.
Laterally displaced beams will be blocked by the detector aperture and beams originating
from points displaced along the optical axis will not be focused in the detection plane
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�Fig. 5.4 The confocal principle. The detection path of a scanning confocal optical microscope is shown. Three objects in the
sample are depicted. Only the object (circle) on the optical axis lying in the conjugated detection plane in the object
space is imaged onto the pinhole and can be detected. The other objects (triangle and square) are either focused to
the side of the pinhole (triangle) or arrive at the pinhole unfocused such that their signals are suppressed.

and therefore will be strongly attenuated by the detection pinhole. This effect has been dis-
cussed theoretically in Section 4.2.2 and is illustrated qualitatively in Fig. 5.4. The imaging
properties of a confocal microscope are best discussed in terms of the total point-spread
function introduced in Section 4.3, which is represented by the product of an excitation
and a detection point-spread function. One may think of the total point-spread function as
the volume out of which the probability of exciting and detecting a photon is larger than a
chosen threshold value. It was discussed previously that the point-spread function of a con-
focal microscope has the shape of an ellipsoid that is elongated along the optical axis and
whose center coincides with the geometrical focus of the objective lens. For an NA = 1.4
objective and visible light, its extent is 220 nm in the lateral direction and 750 nm along
the optical axis, providing the possibility of optical sectioning. The lateral resolution of a
confocal microscope is not significantly increased by the multiplication of illumination and
detection point-spread function as compared with a wide-field illumination microscope due
to the fact that the zero-field points in the total point-spread function remain unchanged.
Squaring the Airy pattern merely reduces the fullwidth at half-maximum by a factor of 1.3.
However, side lobes are suppressed significantly, leading to a significant increase in the
dynamic range of images, meaning that weak signals may be detected in the proximity of
strong ones. For a detailed discussion of these issues see e.g. Ref. [4].

Images can be recorded in a number of different ways in a confocal microscope by
raster scanning either the sample or the excitation beam. At each pixel either the number of
counts per integration time or the output voltage of a photomultiplier tube is sampled. The
brightness (or color) of a pixel is defined by the sampled detector value. The information
from all the pixels can then be represented in the form of a digital image. In particular, due
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to the finite extent of the confocal point-spread function, it is possible to perform optical
slicing of thick samples. In this way, three-dimensional reconstructions of samples can be
obtained. A more detailed description of instrumentation and reconstruction techniques
can be found in Refs. [4, 5].

The spatial resolution in confocal microscopy can be optimized by “point-spread func-
tion engineering.” The underlying idea is that the total point-spread function is the product
of the illumination and detection point-spread functions. If either or both are modified,
e.g. by means of nonlinear optical interactions, or by being displaced or tilted with respect
to each other, their spatial extent and/or spatial overlap decreases. This can lead to an
effective point-spread function with a smaller volume. In addition, interference effects
between coherent counterpropagating beams can be exploited. These principles form the
basis of confocal microscopy techniques known as 4π [6], theta [7], and 4π–theta confocal
microscopy [8]. The respective configurations of detection and illumination point-spread
functions are illustrated in Fig. 5.5.
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�Fig. 5.5 Point-spread-function engineering. (a) Standard epi-illumination confocal microscopy. (b) The confocal theta
configuration. (c) The 4π–theta confocal configuration. Adapted from [5].
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Nonlinear excitation and saturation

The possibility that a transition in a quantum system could be achieved by the simultaneous
absorption of two or more photons was first investigated theoretically by Maria Göppert-
Mayer in 1929 [9]. The phenomenon could only be demonstrated experimentally in 1961
[10] after the invention of the laser, which provided the necessary high photon densities.
Today, with the availability of femtosecond-pulsed lasers, two-photon and multiphoton
excitation is a standard tool in high-resolution confocal microscopy [11]. Chromophores
with transitions in the blue and green can be excited by using infrared light. At the same
time, multiphoton microscopy leads to improved and simplified optical sectioning capa-
bilities since excitation takes place only in the regions of highest intensity (Section 4.4),
i.e. in a tight focus, which makes the technique an indispensable tool, not only in biology,
for studying the three-dimensional morphology of samples.

Figure 5.6 summarizes the basics of two-photon excitation. Two low-energy photons
are absorbed simultaneously and excite a molecule from the ground state to a vibronic
level of the first excited electronic state. Much the same as for one-photon fluorescence,
the excited molecule relaxes to the lowest vibrational level of the excited state and then,
after a few nanoseconds, decays to the ground state either non-radiatively or by emitting
a photon. While for one-photon excitation the fluorescence rate scales linearly with the
excitation intensity (see Chapter 9), for two-photon excitation it scales as the excitation
intensity squared. The low cross-section for two-photon excitation, which is on the order
of 10−50 cm4 s per photon,2 requires the use of pulsed lasers with pulse duration ∼100 fs
at high repetition rates. The pulses have to be short in order to limit the total irradiation
dose of a sample and still provide the peak intensities required to make up for the low
cross-section of two-photon excitation. The repetition rate has to be high since per pulse a
maximum of one fluorescence photon is produced per molecule. Typically, 100-fs-pulsed

excitation intensity

etar ecnecseroulf

(a) (b) (c) (d)

�Fig. 5.6 Two-photon excitation of a fluorescent molecule. (a) The energy-level scheme. A fluorophore with a one-photon
absorption in the blue is excited by simultaneous absorption of two near-infrared photons. The emission of the
molecule occurs in the green. (b) The fluorescence rate increases as the square of the excitation intensity. This leads to
the fact that, while for one-photon excitation the whole beam path in a fluorescent medium lights up (c), for
two-photon excitation. (d) Notable fluorescence is excited only in regions of the highest field strength, e.g. in the
focus of a laser beam (indicated by the arrow). Images (c) and (d) have been adapted from [12].

2 Also denoted as 1 GM (Göppert-Mayer).
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Ti:sapphire lasers operating at around 850 nm at repetition rates of 80 MHz are used to
excite two-photon excited fluorescence of suitable dyes.

A method that exploits focal engineering is the so-called stimulated emission depletion
(STED) technique already discussed in Section 4.2.3. The basic principle of STED is the
use of stimulated emission to selectively reduce the excited-state population of suitable flu-
orescent dyes in certain spatial regions in the focal area, while in other regions it remains
largely unchanged. In principle, this requires subwavelength control over the spatial field
distribution which induces the stimulated emission. Such control is indeed possible by
exploiting the pronounced saturation behavior of the degree of stimulated emission deple-
tion as a function of the depletion beam power. Saturation allows the creation of extremely
sharp transitions between regions with and without depletion of the excited state. In partic-
ular, if there exists in the focus a region where the intensity of the depletion beam is zero,
a tiny volume of undiminished fluorescence is created around it.

The principle of STED microscopy is summarized in Fig. 5.7. The set-up includes two
pulsed laser beams. One is used to induce one-photon excitation of dye molecules present
in the focal volume. The second, more powerful laser beam is redshifted in order to produce
stimulated emission from the excited to the ground state.3 The delay between the pulses
is chosen such that the vibrational relaxation in the first excited electronic state, which
takes a few picoseconds, has time to complete. This ensures that the excited electron is
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�Fig. 5.7 The principle of stimulated emission depletion confocal microscopy. (a) Set-up of the STED confocal microscope. A
short excitation pulse and a long depletion pulse are coupled into a microscope objective. The depletion beam is
engineered so that it exhibits zero intensity at the geometrical focus (right panel of (b)) while the excitation beam
shows the usual focus (left panel of (b)). (c) Fluorescence from the confocal volume as a function of the depletion
beam intensity. Note the strongly nonlinear behavior. The point-spread function (d) without and (e) with the
depletion beam (right panel of (b)) switched on. Adapted from [13].

3 For a detailed discussion of molecular fluorescence see Chapter 9.
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in a relatively long-lived state where stimulated emission can become effective. This is
important since the probability of stimulated emission increases with time. This is also
the reason why the STED pulse has to be substantially longer than the excitation pulse
as indicated in Fig. 5.7(a). The wavelength of the depletion pulse has to be chosen such
that it cannot excite fluorescence. This can be ensured by introducing a relatively large
redshift. The large redshift has the additional advantage that it opens up a spectral window
between the excitation and depletion wavelengths in which fluorescence can be recorded.
Time gating of the fluorescence can be used to increase the signal-to-background ratio. In
STED, the foci of the excitation and depletion beams are made to overlap, but the field
distribution in the focal region of the STED beam is engineered such that the intensity is
zero at the geometrical focus. This guarantees that the STED beam depopulates the excited
states everywhere but in a small region centered around the zero-intensity point. Because
of saturation, this region can be made smaller than a diffraction-limited spot. Thus, the
spatial extent of the fluorescent region can be narrowed down substantially. This effect is
illustrated in Figs. 5.7(d) and (e) (see Problem 5.3).

Confocal fluorescence microscopy methods, such as STED microscopy or multiphoton-
excitation microscopy, rely on the presence of fluorescent markers in a sample, e.g. in a
living cell. However, it is not always possible or even desirable to attach a dye marker
to an entity of interest. This is especially true e.g. for small bio-molecules that would be
significantly altered by the labeling. If chemical contrast via optical microscopy is the
goal, an obvious way to go is to exploit the energy transfer between photons and molec-
ular vibrations. Since the energies of molecular vibrations cover the far infrared spectral
region, it is difficult to achieve high spatial resolution since the diffraction-limited spots
are technically difficult to achieve and anyway quite large. A work-around for this prob-
lem is to use Raman spectroscopy. Here, photons interacting with the sample can either
lose or accept quanta of vibrational energy (see Figs. 5.8(a)–(c)). In essence, Raman scat-
tering is the analog of the amplitude modulation used in broadcasting: the frequency of
the carrier (laser) is mixed with the frequencies of the signal (molecular vibrations). As
a result, the frequencies of Raman scattered light correspond to sums and differences of
the frequencies of laser and vibrations. Because a Raman scattering spectrum contains
information about the characteristic molecular vibrations it constitutes a highly specific
fingerprint for the chemical composition of the sample under investigation. The likelihood
that a photon interacting with a molecule undergoes Raman scattering is very small. Typ-
ical Raman-scattering cross-sections are up to 14 orders of magnitude smaller than the
cross-sections for fluorescence. These low cross-sections usually make the use of Raman
scattering for microscopy very difficult. Long integration times, which require very stable
and static samples, are necessary. However, the cross-section can be strongly increased
near metal surfaces with nanoscale roughness or near metal nanoparticles. This effect,
called surface-enhanced Raman scattering (SERS), is limited to regions near the very sur-
face of a sample as discussed later on (see Section 12.4.3), and cannot be employed for
long-range subsurface imaging and three-dimensional sectioning. Nevertheless, for bulk
imaging the cross-section of Raman scattering can be enhanced by applying a coherent
(resonant) pumping scheme. Coherent pumping gives rise to an in-phase oscillation of the
molecular vibrations in the illuminated sample volume, leading to constructive interference
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in certain directions. The so-called coherent anti-Stokes Raman-scattering (CARS) pro-
cess [14, 15] is a four-wave mixing process that uses two (pulsed) tunable lasers with
a wavelength difference that can be adjusted to coincide with the energy of a molecular
vibration, which then leads to an increased efficiency of the Raman-scattered signal. The
CARS energy diagram and phase-matching condition are shown in Figs. 5.8(d) and (e),
respectively. Owing to the fact that CARS is proportional to the intensity squared of the
pump beam at ωp and the intensity of the Stokes beam at ωs a sizable signal is generated
only in regions of high pump intensities. Therefore, the optical sectioning capabilities of
CARS microscopy are similar to those of two-photon microscopy. Furthermore, a combi-
nation with point-spread-function engineering techniques as they are used in 4π and theta
microscopy is conceivable to improve spatial resolution.

Another label-free spectroscopic imaging technique, which allows three-dimensional
optical sectioning, is stimulated Raman scattering (SRS) microscopy [16]. In SRS the
energy difference � = ωp − ωs between two picosecond-pulsed focused laser beams is
adjusted such that the energy difference � coincides with the energy of a vibronic transi-
tion. The first beam is the so-called pump beam, which excites a molecule from the ground
state to a virtual state. The second beam, the Stokes beam, stimulates a transition from
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�Fig. 5.8 Energy diagram of spontaneous Raman scattering and coherent anti-Stokes Raman scattering (CARS). Light scattering
from a molecule can result in (a) Stokes-shifted photons, (b) Rayleigh scattering, or (c) anti-Stokes emission. (d) CARS
is a four-wave mixing process using two tunable (pulsed) lasers atωp andωs. If the difference in frequency between
the two lasers hits the energy of a vibration, the CARS signalωas is enhanced and emitted preferentially into a
direction determined by the phase-matching condition (e). (f) An image of fibroplast cells stimulated to produce
lipids. The lipid droplets can be visualized using CARS when tuning to the aliphatic C—H vibration. The
100μm× 100 image was taken in 2.7 s. Image courtesy of X. S. Xie, Harvard University.
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the virtual state to one of the vibrational states of the electronic ground state, similarly to
Stokes Raman scattering. This procedure diminishes the intensity Ip of the pump beam and
increases the intensity Is of the Stokes beam. Both intensity changes,�Ip and�Is, are small
but measurable. Typically, a high-frequency modulation (MHz regime) is applied to either
the pump or the Stokes beam, and the resulting intensity modulation on the respective other
beam is detected using a lock-in amplifier. The observed intensity changes depend linearly
on the number of molecules in the focal region, on their Raman cross-sections, as well as
on the product of the two intensities. The advantage of SRS over CARS is that there is
no non-resonant background signal. Therefore SRS allows highly specific and chemically
sensitive, as well as quantitative, optical microscopy with three-dimensional sectioning
capability.

5.2.2 The solid immersion lens

According to Eq. (5.7) a higher numerical aperture (NA) leads to better spatial resolu-
tion. Solid immersion lenses have been put forward to optimize the NA available in a
microscope. A solid immersion lens (SIL) can be viewed as a variant of an oil-immersion
microscope objective. It was introduced in 1990 for optical microscopy [17] and applied in
1994 for optical recording [18]. As shown in Fig. 5.9, a SIL produces a diffraction-limited,
focused light spot directly at the SIL/object interface. The resulting spotsize scales as λ/n,
where n can be as large as 3.4 when using SILs made out of gallium phosphate (GaP). Such
a reduction in the focused spotsize has led to advances in optical-disk storage schemes with
fast read-out rates for addressing media with very high bit density [18]. The prospect of
using such lenses in combination with a shorter-wavelength blue semiconductor laser diode
makes SIL techniques potentially very attractive not only for data-storage devices but also
in the area of high-light-throughput super-resolution optical microscopy and spectroscopy
with high sensitivity.

The SIL is a solid plano-convex lens of high refractive index that provides an optimum
focus for a Gaussian beam. There are two configurations with a semispherical lens that
achieve diffraction-limited performance. One focus exists at the center of the sphere, with
incoming rays perpendicular to the surface and is generally termed a SIL (cf. Fig. 5.9(a)).
Also, a second focus exists at a set of aplanatic points some distance below the center of
the sphere; rays from this focus are refracted at the spherical surface. This type is generally
referred to as a super-SIL [18], or Weierstrass optic (see Fig. 5.9(b)). While the super-
SIL configuration has a greater magnification (∝ n2 versus n) and increased numerical
aperture, it suffers from strong chromatic aberration. The applications of SIL microscopy
fall into two categories: surface and subsurface imaging [19]. In the latter, the SIL (or
super-SIL) is used to image objects below the lens and into the sample under study. In this
sort of subsurface imaging, a good match in index between the lens and substrate must be
maintained.

The principle of subsurface imaging is schematically shown in Fig. 5.10. Without the
SIL, most of the light rays emanating from a subsurface structure would undergo total inter-
nal reflection (TIR) at the surface of the sample. The remaining propagating rays would
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(a) (b)

(c) (d)

�Fig. 5.9 Solid immersion lens (SIL) configurations. In (a), a hemispherical lens increases resolution by∼n. (b) A Weierstrass
optic, or super-SIL, has a resolution increase of∼n2. There are two types of imaging modes, surface SIL microscopy (c)
and subsurface SIL microscopy (d).

be confined to a narrow cone around the surface normal, thereby drastically reducing the
numerical aperture. By placing an index-matched SIL on the surface of the device, the
numerical aperture can be considerably increased. This type of SIL is therefore referred
to as a numerical-aperture-increasing lens (NAIL) [19]. The dimensions of the SIL have
to be adjusted to the depth X of the subsurface structure to be imaged (cf. Fig. 5.10). The
vertical thickness D of the lens has to satisfy

D = R(1 + 1/n) − X, (5.8)

which is the same design condition as encountered in Weierstrass-type SILs. Equation (5.8)
ensures that the subsurface object plane coincides with the aplanatic points of the NAIL’s
spherical surface, which satisfies the sine condition yielding spherical aberration-free or
stigmatic imaging.

The addition of a NAIL to a standard microscope increases the NA by a factor of n2,
up to NA = n. As an example, Figs. 5.10(c) and (d) demonstrate how a NAIL improves
resolution well beyond the state of the art in through-the-substrate imaging of silicon cir-
cuits [20]. Image (c) was obtained using a 100× objective with NA = 0.5, whereas image
(b) was recorded with a 10× objective (NA = 0.25) and a NAIL. The resulting NA is
3.3. At a wavelength of λ = 1 μm, the resolution can be as good as 150 nm. Ünlü and
coworkers applied the NAIL technique to thermal subsurface imaging, which makes sam-
ple illumination unnecessary [19]. In this case, the emitted infrared radiation originates
from heating due to electric currents.

Figure 5.11(a) shows a schematic representation of a NAIL confocal microscope. The
NAIL is in fixed contact with the sample surface. To obtain an image, the sample and the
NAIL are raster scanned using piezoelectric transducers. However, in applications such
as data storage and photolithography it is desirable to retain the ability to alter relative
positioning of the lens and surface. In order not to sacrifice the NA and not to introduce
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�Fig. 5.10 Subsurface imaging using a numerical-aperture-increasing lens (NAIL). (a) In a high-index material, light rays
emanating from subsurface structures can undergo total internal reflection, thereby reducing the NA of an imaging
system. (b) Addition of a SIL enlarges the NA up to NA = n. Images (c) and (d) show a comparison of images of an
electronic circuit in silicon taken with, (d), and without, (c), NAIL. From [20] with permission ( c© 2002 IEEE).

unwanted abberations, the end-face of the SIL must be kept parallel and in close prox-
imity to the sample surface. Naturally, this demands a SIL with small dimensions or a
cone-shaped SIL that guarantees that the closest point to the surface is the focal spot. Two
approaches have been put forward to control the distance between SIL and surface. The first
is based on a cantilever as used in atomic force microscopy (AFM) [21]. The AFM tip is
replaced by a miniature conically shaped SIL that is illuminated from the top, Fig. 5.11(b).
This combined AFM–SIL technique has successfully been applied to microscopy and pho-
tolithography with spatial resolutions on the order of 150 nm [21, 22]. Another approach
for controlling the SIL–sample distance is based on a flying head [18]. Rotating the sam-
ple at high speeds relative to the stationary SIL results in an air-bearing that keeps the
SIL–surface distance at a few tenths of a nanometer (see Fig. 5.11(c)). This approach
was originally developed by the IBM company as part of a SIL-based magneto-optical
recording system.

An obvious extension of SIL techniques is their marriage with concepts developed in
near-field optical microscopy. For example, it has been proposed that one could microfab-
ricate a tiny aperture in the end-face of a SIL [23], implant into the end-face a tiny metal
structure acting as a local field enhancer [20], or deposit onto the sides of a conical SIL a
bowtie antenna consisting of two electrodes with a small gap [24].

5.2.3 Localization microscopy

The possibility of localizing single emitters on the basis of determining the centroids
of their point-spread functions has been discussed in Section 4.5. Here we discuss how
this ability can be exploited for super-resolution imaging. Let’s first assume that we have
densely labeled a structure of interest with a certain type of point-like fluorescent emitter.
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�Fig. 5.11 SIL technology in three different instruments: (a) numerical-aperture-increasing lens microscopy with SIL in contact
with sample, (b) SIL microscopy using an AFM cantilever for distance control, (c) a flying-head configuration based on
a rotating sample surface for magneto-optical data storage.

Let us further assume that the fluorescence emitter can be switched from a bright state
(A) to a dark state (B) by some external stimulus, e.g. by means of photons of a certain
energy. For the reverse transition B → A we assume that it is either spontaneous, albeit
with a sufficiently slow rate, or also occurs only upon external stimulation. Since only a
few molecules in state A will be imaged in the presence of a large amount of molecules in
state B, the contrast in emission intensity between A and B must be large.

In the first step we assume that all emitters present in the sample are in the dark state
(B). Then, an external stimulus is uniformly applied to the system in a low dose. This
will result in a sparse subset of emitters getting switched into the bright state (A) in a
stochastic manner but with a spatially uniform probability. Now that some of the emitters
have been turned bright, their fluorescence is imaged onto a two-dimensional detector, e.g.
a CCD. To optimize the speed of image acquisition, the stimulation dose may be optimized
in such a way that the distance between individual emitters becomes as small as possible
but overlapping diffraction-limited image patterns still remain rare. An image of this first
subset of emitters is then recorded and stored for further analysis. Since the image contains
only isolated spots, the position of each emitter can be determined with high accuracy as
explained in Section 4.5. The required acquisition time depends on many parameters of the
experimental set-up and the sample, but it is estimated that a total of 500 photons need to
be collected per emitter to achieve a position accuracy of 20 nm [25], roughly one order of
magnitude beyond the diffraction limit (c.f. Fig. 4.15). A way of representing the result of a
localization of a single emitter is to construct a two-dimensional probability density map in
which each emitter is represented by a two-dimensional Gaussian probability distribution
having its maximum at the spatial coordinate that was found by the least-square fitting
algorithm and a full width at half-maximum determined by the uncertainty of this position.
A super-resolved image is recorded when the accumulated probability density function
appears to be sufficiently densely populated according to Nyquist sampling theory. The
process is stopped if the required structural detail is obtained or if no further emitters can be
switched to the bright state (A) because they have all been photobleached. The normalized
total probability density function that is finally obtained is a continuous function describing
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the probability of finding a certain number of emitters at any point of the image normalized
by the total number of localizations. Assuming uniform labeling of the structure of interest
and uniform activation, the total probability density function therefore represents a super-
resolved two-dimensional image of the structure of interest (see Fig. 5.12).

The different experimental realizations of the outlined technique mostly vary in the type
of single emitter that is used and which external stimulus is needed for photo-switching.
One method uses cyanine dyes, which are photo-switched from A to B by the excitation
laser which also excites the fluorescence signal. This technique is called stochastic optical
reconstruction microscopy (STORM) [27]. Another implementation, known as photoacti-
vated localization microscopy (PALM) [28], uses photoactivatable fluorescent proteins. It
should be pointed out that photo-switching to a dark state (B) can be viewed as a transi-
tion that is saturable at very low intensities and as such could also be used in STED-like
imaging [29].

While the achievements of localization microscopy are impressive, the basic method
described so far is applicable only to two-dimensional imaging; that is, it has been assumed
that all the emitters are located in a single plane. One possibility to extend localization
microscopy to three dimensions is by making use of the fact that the point-spread func-
tion of a single-dipole emitter is a function of all three coordinates in the image space
as discussed in Section 4.1. Thus, defocusing techniques can be applied to obtain axial
resolution [30]. A method to differentiate between positive and negative defocus is based

�Fig. 5.12 Wide-field fluorescence (B) and PALM images (E) of the protein hemagglutinin tagged with photoactivatable green
fluorescent protein (PA-GFP) in a fixed HAb2 fibroblast. Zoom-ins of selected regions to show agreement with
wide-field fluorescence, (A) and (C), and illustrate the improvement in resolution achieved by PALM, (D) and (F). Note
that the contrast was adjusted in (E) for visualization. The pairs of images (A) and (D), (B) and (E), and (C) and (F) have
the same scale. From Ref. [26].
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on a cylindrical lens that is introduced into the detection path. This lens induces slight
astigmatism, which results in elliptical spot shapes. The ellipticity of the spot increases
for increasing defocus. Discrimination between positive and negative defocus is possible
since the orientation of the main axis of the elliptical spots turns by 90◦ upon crossing zero
defocus [31].

The compatibility with standard biological fluorescence imaging modalities, such as TIR
fluorescence and multi-color imaging, as well as three-dimensional image reconstruction
clearly is among the main advantages of PALM and STORM. However, it should be noted
that temporal resolution is limited due to the sequential imaging procedure. Furthermore,
labeling of structures of interest has to be very dense and homogeneous and, furthermore,
the size of intermediate tags or of the labels themselves becomes an issue if the localization
accuracy is pushed to the few-nanometer regime.

5.3 Near-field excitationmicroscopy

In this section we discuss near-field microscopy techniques that are dominated by the ST
term of the Born series (5.6), that is, incident light first interacts with the probe (T) and then
with the sample (S). In general, spatial resolution in optical imaging depends on the band-
width of transverse spatial frequencies �k‖. The numerical aperture (NA) of the optical
system limits this bandwidth to �k‖ = [−NAω/c . . .NAω/c]. The NA, as we saw, can
be maximized by using a large index of refraction (n) or by increasing the focusing angle.
In the best case, NA = n, which imposes a strict resolution limit. However, as discussed
in Section 4.6, the considerations leading to this resolution limit ignore spatial frequencies
associated with evanescent waves. In fact, if evanescent waves are taken into account, the
bandwidth of spatial frequencies is in principle unlimited and resolution can be enhanced,
in principle, arbitrarily. In this section, we consider optical microscopy with a near-field
excitation source, i.e. a source with evanescent field components. The near-field interacts
with the sample and the scattered light resulting from this interaction is recorded with stan-
dard far-field collection optics, see Fig. 5.1(b). While Section 4.6 provided the necessary
theoretical background, this section concentrates on experimental issues. The near-field
source is commonly referred to as an “optical probe.”

5.3.1 Aperture scanning near-field optical microscopy

The light path of an aperture-type scanning near-field optical microscope differs from a
confocal set-up only in that the excitation beam is replaced by the field emanating from
a tiny aperture placed near the sample surface, Fig. 5.13 (cf. Fig. 4.17). Most commonly,
apertures are formed by coating the sides of a sharply pointed optical fiber with a metal.
The uncoated apex of the pointed fiber represents an aperture. The optical properties of
aperture probes will be discussed in more detail in Chapter 6. The scattered light origi-
nating from the interaction between the near-field of the aperture and the sample surface
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is recorded with the same scheme as employed in confocal microscopy. The possibility of
easily switching back and forth between near-field and far-field illumination modes is an
advantage of the similarity between the two techniques.

Since in aperture-type near-field optical microscopy we now have two separate elements
for illumination and detection, the two elements must finally share the same optical axis.
This requires some means of adjustment for the lateral position of the optical probe. If
the sample is scanned, the optical path does not change during image acquisition. This
guarantees e.g. the same collection efficiency throughout the image. If probe scanning is
required, the back-projected image of the detection aperture has to be large enough to
accommodate the whole scan range of the probe.

When a perfect aperture probe is used it is in principle not necessary to use confocal
detection optics. However, it turns out that aperture probes are hardly ever as perfect as
desired. Pinholes in the metal coating or spurious light escaping from the uncoated upper
parts of a probe may contribute to a significant background signal. Limiting the detection
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�Fig. 5.13 Typical set-up for a near-field optical microscope operating in illumination mode. Note the similarity to the confocal
set-up in Fig. 5.3. Laser light is injected into an optical fiber that holds an optical probe at its far end. The probe is held
within near-field distance of the sample using e.g. a tuning-fork shear-force feedback (see Chapter 7). The light
interacts with the sample and is collected by a microscope objective that is aligned with respect to the fiber axis. In
the case of fluorescence imaging, a dichroic mirror reflects most of the excitation light. Residual excitation light is
removed by additional filters and the redshifted fluorescence is focused onto a detector or spectrometer. M, mirror; L,
lens; DM, dichroic mirror. The dashed mirror can be flipped in and out of the beam path.
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of light to the finite confocal volume can improve this problem. For larger apertures the
resolution of near-field microscopy can be influenced by the numerical aperture of the
collection optics. A large numerical aperture optimizes the collection efficiency, which is
important in fluorescence applications. For pure absorption and scattering contrast, light
collected below and above the critical angle (allowed and forbidden light, respectively,
see Chapter 10) can show inverted contrast [32]. For such applications, high numerical
apertures have to be used with care.

5.4 Near-field detectionmicroscopy

In the previous section, the sample was excited locally using a near-field source and the
light scattered or emitted by the sample was collected with standard far-field optics. In this
section, we consider the reverse situation, i.e. the sample is excited from the far-field and
the response is detected locally using a near-field optical probe. The interaction is therefore
best described by the TS term of the Born series (5.6).

5.4.1 Scanning tunneling optical microscopy

In photon scanning tunneling microscopy (PSTM) [33, 34] a laser beam undergoes total
internal reflection at the surface of the sample-support, usually a prism or a hemisphere (c.f.
Fig. 5.14). The resulting evanescent surface wave has a typical decay length on the order
of 100 nm (see Chapter 2). A bare tapered glass fiber is dipped into this evanescent field
to locally couple some of the light into the probe, where it is converted into propagating
modes that are guided towards a detector. This conversion is in analogy to the frustrated
total internal reflection discussed in Chapter 2. The preparation of sharply pointed fiber
probes is described in Chapter 6.

Using a bare fiber probe has both advantages and disadvantages. Counting as an advan-
tage is the fact that a dielectric probe perturbs the field distribution much less than would
any kind of metallized probe, justifying the fact that the Born series, Eq. (5.6), may be ter-
minated after the TS term. On the other hand, the spatial confinement of the effective area
out of which the dielectric probe is collecting light is not very small and not well defined.
Since the probe is not a point-like scatterer, the collection efficiency can depend in a com-
plicated way on the specific three-dimensional structure of the probe. Nevertheless, for
samples that predominantly exhibit evanescent fields PSTM can resolve field distributions
with features down to about 100 nm. An illustrative example is shown in Fig. 2.5. Here,
PSTM was used to map a purely evanescent standing wave obtained by the interference
of two equal-amplitude counterpropagating evanescent waves obtained by total internal
reflection. The observed modulation depth provides information about the effective size of
the probe.
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Notice that bare fiber probes can generate severe artifacts when imaging scattering sam-
ples. These artifacts originate from the fact that fields are most efficiently coupled into the
fiber along the probe shaft rather than at the tip apex (cf. Chapter 6).

Recording amplitude and phase of field distributions

A unique feature of photon tunneling microscopy is the possibility to measure not only
the time-averaged intensity in the near-field but also its amplitude and phase [35]. These
measurements can even be made in a time-resolved manner by employing heterodyne inter-
ferometry [36]. The experimental set-up for this type of measurement is shown in Fig. 5.15.
The light frequency ω0 in the reference branch is shifted by acousto-optic modulation by an
amount δω. The signal recorded via the fiber probe and the reference field can be described
as [35]

ES(x, y) = AS(x, y)exp
[
i(ω0t + φS(x, y) + βS)

]
, (5.9)

ER = AR exp[i(ω0t + δω t + βR)] . (5.10)

Here, AS(x, y) and AR are the real amplitudes of the signal and the reference field,
respectively. φS(x, y) is the relative phase of the optical signal at the sample. Both the
signal amplitude and the phase depend on the position of the fiber probe. The factors βS

and βR are constant phase differences due to the different optical paths in the reference and
signal branches. The sampled field is then made to interfere with the reference field and
the result is recorded by a photodetector. The resulting signal becomes
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�Fig. 5.14 Photon scanning tunneling optical microscopy (PSTM). (a) Typical set-up. A transparent sample on top of a prism is
irradiated by total internal reflection. (b) Close-up of the gap region, showing a dielectric probe dipping into the
evanescent field above the sample. (c) Exponential decay with increasing gapwidth of the optical signal guided to the
detector recorded by approaching a flat air/glass interface with a tapered glass-fiber probe.
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I = |AS(x, y)|2 + |AR|2
+ 2AR · AS(x, y)cos

[−δω t + φS(x, y) + βS − βR
]

. (5.11)

This signal has a DC offset and an oscillating component at δω. The amplitude and phase
of this component contain the relevant information. They can be extracted by a dual-output
lock-in amplifier locked at the frequency δω. For pulsed excitation, interference can occur
only if signal and reference pulses arrive at the detector at the same time. In this way,
by varying the delay via the delay line in Fig. 5.15, the propagation of a pulse through a
structure of interest can be monitored [36].

As an application example, Fig. 5.16 shows a temporal snap shot (one fixed position
of the delay line) of the near-field intensity distribution of a light pulse passing through
a photonic crystal waveguide coupler. Figure 5.16(a) shows the structure of the coupler,
which in the center consists of two parallel line-defect waveguides that are close enough to
allow for electromagnetic coupling. Figure 5.16(b) shows the optical signal, which consists
of the product of the sine of the phase and the local field amplitude. The visualized behavior
of the pulse shows in direct space that the structure performs very well as a directional
coupler. For more details and movies of the propagating pulse see [37].
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�Fig. 5.15 Photon tunneling microscopy combined with time-resolved heterodyne interferometry. The light from a
fixed-frequency laser source is divided into a reference and a signal branch. In the reference branch the frequency is
shifted by means of an acousto-optic modulator (AOM). Furthermore, in the reference branch there is a delay line for
time-resolved experiments. The signal branch undergoes total internal reflection inside a prism and provides
evanescent field illumination at a structure of interest. An evanescent field can also be created by coupling the signal
branch into a waveguide. A sharp fiber probes the evanescent field above the sample and directs the sampled light to
a beamsplitter, where the sampled light interferes with the reference field. The resulting signal is analyzed with a
lock-in amplifier.
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5.4.2 Field-enhanced near-field microscopy with crossed polarization

Imaging of the near-field intensity distribution of strongly scattering samples, such as
metallic nanoparticles exhibiting plasmon resonances (see Chapter 12) requires both very
high spatial resolution due to the small effective wavelengths involved and the abil-
ity to suppress the detection of scattered homogeneous waves. This is possible using
field-enhanced scanning near-field optical microscopy with polarization control [38].
Figure 5.17 shows the principle of the method. The sample is illuminated by a moder-
ately focused s-polarized beam of light, which allows one to excite plasmon resonances of
isolated metal nanoparticles on the sample. The optical probe, a sharply pointed probe, is
only weakly excited by this polarization in the first place since it exhibits a strong polariz-
ability only along its main axis (see Section 6.5). However, the interaction of the incident
radiation with strongly scattering sample features gives rise to “polarization scrambling”
and hence to localized fields that are polarized along the probe axis. These field compo-
nents can now be efficiently scattered by the optical probe and recorded in the far field.
In order to suppress multiple scattering between probe and sample, the scattered light is
again sent through a polarizer, which selects the field component parallel to the probe
axis. The detection scheme is completed by mixing the detected signal with a reference
beam in order to determine also the phase of the scattered field and to boost the signal by
using lock-in detection referenced to the oscillation frequency of the optical probe. The
use of the cross-polarization scheme terminates the Born series after the TS term. This
near-field imaging technique makes it possible to record amplitude and phase distributions
near nanoplasmonic structures, such as the gold discs shown in Fig. 5.17(b). Note that
reversing the polarization directions of illumination and detection converts this imaging
technique into the ST mode described before.
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�Fig. 5.16 Light-pulse propagation through a photonic crystal waveguide coupler. (a) Scanning electron microscopy overview
image of the photonic crystal and the light-guiding line defects. Inset: zoom showing the structure of the photonic
crystal membrane and the line defect. (b) Snapshot of an optical pulse recorded while it passes through the junction.
The image shows the interferometric signal (field amplitude multiplied by the sine of the phase). A fiber probe with a
metal coating and a rather large aperture was used to optimize background suppression. Adapted from [37].
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5.5 Near-field excitation and detectionmicroscopy

We now consider configurations of near-field microscopy in which multiple scattering
between probe and sample occurs. The leading term in the Born scattering series is the TST
term. Accordingly, excitation of the sample occurs predominantly via the optical probe’s
enhanced near-field, i.e. sample excitation by external irradiation is comparatively weak.
Furthermore, the emission or scattering of light from the sample into the far-field is also
weak. However, the presence of the optical probe in close proximity to the sample helps to
scatter the localized sample fields towards the detector. In this mode, the optical probe acts
like an optical antenna.

5.5.1 Field-enhanced near-field microscopy

Aperture-type near-field microscopy is limited in resolution because the effective diameter
of an aperture cannot be smaller than twice the skin depth of the metal used for coating
the glass taper. The skin depth is between 6 and 10 nm for good metals at optical frequen-
cies. As a consequence, even if the physical aperture size is zero, there exists an effective
aperture of diameter about 20 nm. It is not at all straightforward to then achieve such a
resolution in an experiment because for apertures of such a small size the transmission
becomes exceedingly low, as will be discussed in Chapter 6. When working with aper-
ture probes on a routine basis, for signal-to-noise reasons, aperture diameters are usually
kept between 50 and 100 nm unless the taper angle of the pointed probe can be drastically
increased (see Chapter 6).

)b()a(

�Fig. 5.17 Field-enhanced scanning near-field microcopy with polarization control. (a) Overview of the set-up showing the
beam path with respective polarization as well as the probe-sample interaction region. Depolarization effects at the
sample lead to a polarization of the probe along its main axis. The sensitivity is enhanced by using both a reference
field and lock-in detection. (b) Images of gold disks on glass. Top, AFM topography; middle, measured field
amplitude; bottom, the phase of the field. From [38].
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�Fig. 5.18 Field-enhanced near-field fluorescence imaging. (a) Sketch of the set-up. (b) Far-field confocal fluorescence image
showing erythrocyte membranes with fluorescently labeled calcium-ion-channel proteins. The protein density is too
high for individual proteins to be resolved confocally. Scale bar: 5μm. (c) Near-field fluorescence image of the area
indicated in (b) showing individually resolved proteins. The image was acquired with a gold nanoparticle antenna of
size∼60 nm irradiated by a tightly focused radially polarized laser beam. The inset shows a cross-section through one
of the fluorescence spots, indicating a resolution of∼50 nm. Scale bar: 1μm. Adapted with permission from [39].

To go beyond the light confinement that is achievable with aperture probes, one can
rely on the fact that an optical near-field is created by any irradiated small material struc-
ture. This near-field is localized to the surface of the material and, depending on the
material properties, the near-field intensity can be enhanced over the intensity of the irra-
diating light. The goal, of course, is to find specific structures that yield particularly strong
near-field confinement and enhancement. One possibility is to exploit laser-irradiated
metal particles and sharp, tip-like metal structures that provide “field-line crowding” (the
lightning-rod effect). Another possibility is to take advantage of geometry-dependent plas-
mon resonances that occur for high-enough frequencies near or in the optical regime. These
plasmon resonances are associated with strong field enhancement and can be employed for
the realization of efficient near-field probes. Plasmons will be discussed in more detail in
Chapter 12.

Using a resonant probe consisting of a single spherical gold particle attached to a dielec-
tric fiber tip Hoeppener has [39] have shown that it is possible to image single fluorescently
labeled proteins in their natural environment. Figure 5.18(a) shows a sketch of the set-up.
Pure confocal imaging cannot resolve individual proteins as shown in the overview scan
Fig. 5.18(b). The resonant spherical gold particle enhances the fluorescence of nearby sin-
gle emitters (see also Fig. 9.21) by a factor of 8–10 (see Section 13.4). As long as the
surface density of labeled structures is not too high, it is possible to obtain high-resolution
imaging of individual labeled proteins at the sample surface on top of a background of
fluorescence due to the external illumination (Fig. 5.18(c)).

The background due to external illumination generally causes a deterioration of the
signal-to-noise ratio. Although the intensity associated with the external irradiation is
weak, the irradiated sample area is much larger than the area associated with the confined
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near-field. To discriminate the signal generated by the near-field interaction from the signal
generated by the far-field irradiation, nonlinear interactions such as two-photon excitation
or sum-frequency generation can be employed.

For a diffraction-limited excitation spot, the ratio between the areas associated with
external excitation and with near-field excitation is on the order of 103. Hence, assum-
ing a uniform surface coverage of molecules, the near-field intensity has to be enhanced
by a factor of at least 103 in order to generate a near-field signal that is as strong as the
signal associated with far-field irradiation. On the other hand, for a second-order nonlinear
process, which scales with the square of the excitation intensity, the required enhance-
ment factor is only

√
103 ≈ 32. Of course, for very low surface coverage the problem

of near-field vs. far-field discrimination is less important. With only a single species or
an isolated cluster in the far-field illumination focus, such background can even become
negligible.

The use of nonlinear optical processes can also pose problems because new sources of
background may appear. Prominent examples are broad-band photoluminescence [40] and
second-harmonic generation [41] at increased illumination levels. Being disturbing effects
in luminescence measurements, both effects can be exploited, e.g. to generate local light
sources for spectroscopy or lithography.

Another way to solve the background problem was demonstrated by Frey et al. [42].
Tips can be grown on the end-faces of aperture probes. Excitation through the aperture
instead of using a far-field illumination spot drastically reduces the far-field background.

Field-enhanced scanning near-field optical microscopy has also been combined with
types of vibrational spectroscopy such as Raman scattering [43] and CARS [44]. In this
context the method is generally referred to as tip-enhanced Raman scattering (TERS).
Since in the presence of a field-enhancing structure not only the excitation field but also
the Raman-scattered radiation is enhanced according to the TST character of the interac-
tion, usually the Raman signal is assumed to scale with the fourth power of the local field
strength [45]. As an example, Fig. 5.19 shows near-field Raman scattering images of a
sample of carbon nanotubes [46]. Carbon nanotubes possess comparatively large Raman
scattering cross-sections and are easily imaged at low sample coverage. The Raman image
in Fig. 5.19 was obtained by integrating over a narrow spectral band centered around the
G band at ν = 1580 cm−1.

Modulation techniques

Modulation techniques are used to discriminate the near-field signal generated near
the probe apex against the background signal associated with the external irradiation of
the sample. Most commonly, the distance between probe and sample is modulated and the
optical signal is detected at the same modulation frequency, or at higher harmonics, using
lock-in amplifiers. Modulation techniques are mostly applied to Rayleigh-scattered light at
the same frequency as the external excitation. The excitation field induces a dipole in the
probe tip, which itself induces an image dipole in the sample. The signal that is observed
is the light scattered by the effective dipole emerging from the combination of probe and
sample dipoles, again highlighting the TST character of the interaction. Using a model that
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replaces the probe by a spherical particle above a plane interface, the following effective
polarizability of the coupled probe–sample system can be derived:

αeff = α(1 + β)

1 − αβ/[16π (a + z)3]
, (5.12)

where α = 4πa3(εprobe − 1)/(εprobe + 2), β = (εsample − 1)/(εsample + 1), a is the radius of
curvature of the probe tip, and z is the gapwidth between probe and sample [47]. For a small
particle, the scattered field amplitude is proportional to the polarizability αeff. Therefore,
changing the wavelength of illumination will lead to changes in the scattering efficiency
because the values of the dielectric constants of the sample, εsample, and the probe, εprobe,
will be subject to change. This type of spectroscopy allows one to distinguish between
different materials if the probe’s response is flat in the spectral region of interest.

Usually it is found that detection of the optical signal at the fundamental probe oscilla-
tion frequency is not very favorable since scattering from the probe shaft can also contribute
a modulation of the signal. This problem can be solved by demodulation at higher harmonic
frequencies of the fundamental probe oscillation frequency. Since the probe–sample dis-
tance dependence of the near-field optical signal is strongly nonlinear (see e.g. Eq. (5.12)),
it will introduce higher harmonics in the detected signal. These higher harmonics can be
extracted by using lock-in detection in combination with heterodyne or homodyne interfer-
ometry in a similar way to that described in Section 5.4.1. Figure 5.20 shows the set-ups
used in this context as well as the effect of demodulation at higher harmonics. Exploiting
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�Fig. 5.19 Tip-enhanced Raman scattering (TERS) of a single-walled carbon nanotube. (a) Near-field image representing the
spatial distribution of the G-band intensity. (b) Corresponding confocal Raman image. (c) Cross-section along the line
in (a) indicating a resolution of 15 nm and a high signal-to-noise ratio. (d) Near-field Raman spectrum showing
characteristic vibrational bands. Adapted with permission from [46].
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higher harmonics, the near-field can be extracted more specifically. The possible order of
the harmonics to be used is, however, limited by the measurement noise, which is usu-
ally the shot-noise of the detected signal. Detecting at the third harmonic seems to be a
good compromise between good background suppression and tolerable noise. Figure 5.20
demonstrates the effect of demodulation at the third harmonic on the image quality. The
set-up of Fig. 5.20(a) is used to image a latex sphere projection pattern. The topography is
shown in Fig. 5.20(c). Figures 5.20(d) and (e) show the optical signals demodulated at the
fundamental frequency and at the third harmonic, respectively. The third-harmonic picture
is much clearer since far-field contributions are better suppressed. This can also be seen by
comparing the respective approach curves beneath the optical images [47].

Modulation techniques have also been implemented for discrete signals, such as streams
of single photons. In photon time-stamping, for example, the arrival times of individual
photons (the so-called time-stamps) are recorded and only those photons that fall into a
predefined time-window are retained [48]. Typically, only those photons that arrive during
a short period starting before and ending after the probe reaches its shortest distance to
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�Fig. 5.20 Set-ups for scattering-type near-field microscopy using heterodyne (a) and homodyne (b) detection. (c) Topography
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From [47].
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−

�Fig. 5.21 Correlation of photon arrival times with the vertical oscillation of the near-field probe. In time-stamping only photons
that fall into periodic time-windows (shaded areas) with preset widths (arrows) are counted.

the sample surface are considered. Besides better sensitivity, a further advantage of this
method is that different analysis techniques can be applied to the raw data, depending on
the signal properties that are to be extracted. Figure 5.21 illustrates the relation between
the time-stamps of optical and probe-position data.

It was also shown that discrete voltage pulses as they occur in single-photon counting
can be directly fed into a lock-in amplifier referenced to the frequency of the probe–sample
distance modulation. The technique even works for low count rates down to the single-
emitter level. This possibility has been exploited to image fluorescent quantum dots at high
resolution [49] as well as membrane proteins labeled with single molecules [50].

5.5.2 Double-passage near-field microscopy

In this section we briefly discuss configurations of near-field microscopy which are dom-
inated by the TST term of the interaction series, but do not require external far-field
illumination of the probe. A first configuration falling into this category is shown in
Fig. 5.22. In this microscope a fiber probe or an aperture probe is used to excite the
sample and, at the same time, to collect the optical response. In the case of a bare fiber
probe, light has to pass through the probe twice and hence the resolution is improved
compared with configurations that use fiber probes only for illumination. Resolutions of
about 150 nm at a wavelength of 633 nm have been demonstrated using fiber probes
both for excitation and for collection [51]. Aperture-type probes are more difficult to be
used in the “double-passage” configuration, because of signal-to-noise limitations. Light
throughput through a subwavelength aperture is very small and if light has to pass twice
the throughput is even lower (cf. Chapter 6). Nevertheless, the throughput can be opti-
mized by making use of metal-coated fibers with large taper angles or probes with a double
taper. In fact, Hosaka and Saiki have demonstrated single-molecule imaging with resolu-
tion ≈20 nm using “double-passage” through aperture probes [52]. Near-field microscopy
in the “double-passage” configuration is attractive because of its numerous conceivable
technical applications to non-transparent samples, including data storage. To overcome the
limitation of low throughput, a combination with local field enhancement is desirable.

An early version of a near-field microscope working in the “double-passage” mode was
devised by the pioneers of near-field optics, U. Fischer and D. W. Pohl, in 1988 [53].
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�Fig. 5.22 Concept of near-field microscopy in the “double-passage” mode. The probe is used both for excitation and for
collection. Implementation with (a) an external beamsplitter and (b) a y-shaped fiber coupler. F, filter; BS,
beamsplitter; FC, fiber coupler.

A sketch is shown in Fig. 5.23. A subwavelength aperture in a metal screen is illuminated
by a waveguide mode supported by a glass slab. Light scattered at the aperture is recorded
as a function of the aperture–sample distance and as a function of the lateral scan coordi-
nates [53]. The scattering strength depends on the local effective index of refraction in the
vicinity of the aperture. High-resolution optical images were obtained using this type of
microscopy.

5.6 Conclusion

The interaction of an optical probe and a sample can be described using the intuitive pic-
ture of multiple consecutive scattering events. As a result near-field optical microscopes
can be classified according to which term of this interaction series dominates over the
others. It is not always possible to extract a single term from the interaction series and in
exotic situations the series even fails to converge. In general, what is measured in near-field
microscopy is not the field of the sample but the interaction between probe and sample.

Problems

5.1 Interaction series. Derive Eq. (5.6) by explicit calculation and rearrangement of the
resulting terms.

5.2 Surface-enhanced spectroscopy. Using Ref. [45] discuss why the enhancement of
Raman scattering near nanostructure is proportional to the fourth power of the field-
enhancement factor. Does the same scaling also hold for other spectroscopic signals?

5.3 Use the formalism of Section 3.6 to determine the diameter of the on-axis phase plate
that should be used in STED microscopy in order to exactly cancel out the total field
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�Fig. 5.23 Reflection-mode near-field microscopy. A subwavelength aperture is illuminated by a waveguide mode in a glass
slab. The scattering from the aperture is recorded as a function of the local environment of the aperture. From [53].

in the geometrical focus. Discuss why it is important to really achieve zero field with
a high degree of accuracy.

5.4 Derive Eq. (5.12) assuming a small spherical particle above a plane interface. The
particle is treated as a single dipole which induces an image dipole in the substrate.

5.5 Imaging artifacts in localization microscopy. Consider a molecule located at the geo-
metrical focus of an objective with numerical aperture NA. The fluorescence of
the molecule is imaged onto a CCD, from which we determine the center position
with an accuracy of 10 nm. The imaging system is characterized by the transverse
magnification M.

We now place a nanoparticle (radius a0, dielectric constant ε) to the side of the
molecule. The distance between molecule and nanoparticle (center-to-center) is d.
We end up with the emission from two coherent dipoles, the molecule and the dipole
induced in the nanoparticle.

Calculate the effects of a a0, d, and ε on the measured center position and its
accuracy. What conclusions do you draw?
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6 Localization of light with near-field probes

Near-field optical probes, such as laser-irradiated apertures or metal tips, are the key com-
ponents of the near-field microscopes discussed in the previous chapter. No matter in which
configuration a probe is used, the achievable resolution depends on how well the probe
is able to confine the optical energy. This chapter discusses light propagation and light
confinement in different probes. Fundamental properties are discussed and an overview
of fabrication methods is provided. The most common optical probes are (1) uncoated
tapered glass fibers, (2) aperture probes, and (3) pointed metal/semiconductor structures
and resonant-particle probes. The reciprocity theorem of electromagnetism states that a
signal remains unchanged upon exchange of source and detector (see Chapter 2.13). We
therefore consider all probes as localized sources of light.

6.1 Light propagation in a conical transparent dielectric probe

Transparent dielectric probes can be modeled as infinitely long glass rods with a conical
and pointed end. The analytically known HE11 waveguide mode, incident from the infinite
cylindrical glass rod and polarized in the x-direction, excites the field in the conical probe.
For weakly guiding fibers, the modes are usually designated LP (linearly polarized). In
this case, the fundamental LP01 mode corresponds to the HE11 mode. The tapered, conical
part of the probe may be represented as a series of disks with decreasing diameters and
infinitesimal thicknesses. At each intersection, the HE11 field distribution adapts to the dis-
tribution appropriate for the next slimmer section. This is possible without limit because
the fundamental mode HE11 has no cut-off [1]. With each step, however, part of the radia-
tion is reflected, and the transmitted HE11 mode becomes less confined as the field extends
more and more into the surrounding medium (air). One hence expects high throughput but
poor confinement for this type of probe.

The calculated field distribution in Fig. 6.1 qualitatively supports the expected behavior
but reveals some interesting additional features: the superposition of incident and reflected
light leads to an intensity maximum at a diameter of approximately half the internal wave-
length. Further down the cone, the light penetrates the sides of the probe so that at the tip
apex there is an intensity minimum. Thus, the fiber probe is not a local illumination source
and one can expect that the best field confinement is on the order of λ/(2ntip), with ntip

being the refractive index of the fiber.
165
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To understand the efficiency of the fiber probe in the collection mode we apply time-
reversal to the illumination-mode configuration. The essence is as follows: in illumination
mode, the HE11 mode propagating in the fiber is converted into radiation near the end of
the tip. The radiation field can be decomposed into plane waves and evanescent waves
propagating/decaying into various directions with different magnitudes and polarizations
(angular spectrum, see Section 2.15). Reversing the propagation directions of all plane
waves and evanescent waves will excite in the fiber probe a HE11 mode with the same
magnitude as was used in the illumination mode. Hence, at first glance it seems that high
resolution cannot be achieved with a fiber probe in collection mode. However, as long as
the fields to be probed are purely evanescent, such as along a waveguide structure, the
fiber probe will collect only the evanescent modes available and the recorded images will
represent the local field distribution. But if the sample contains scatterers that convert the
evanescent modes into propagating modes, then there is a good chance that the measured
signal is dominated by radiation that is coupled into the probe along the tip shaft and images
become obscured. Therefore, the fiber probe turns out to be an unfavorable near-field probe
for radiating structures.

6.2 Fabrication of transparent dielectric probes

Transparent dielectric probes are often used for the fabrication of more complex probes,
e.g. aperture probes. Transparent dielectric probes can be produced by tapering of optical
fibers, yielding conical shapes, by suitable breaking of glass slides to produce tetrahe-
dral tips, by polymer molding processes, or by silicon (nitride or oxide) microfabrication
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�Fig. 6.1 Contours of constant power density on two perpendicular planes through the center of a transparent dielectric probe
(with a factor of 3 difference between adjacent lines). The fields are excited by the HE11 mode (polarization indicated
by symbols) incident from the upper cylindrical part, withλ = 488 nm and εtip = 2.16.
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techniques. Probes at the end of glass fibers have the distinct advantage that the coupling
of light into the taper region can be done easily by exciting the guided modes in the fiber at
the far fiber end. In the following we discuss the most important methods that can be used
to create sharp transparent dielectric probes.

6.2.1 Tapered optical fibers

Tapering of optical fibers can be achieved by chemical etching, or by local heating and
subsequent pulling. Here we compare the results of different etching and pulling techniques
and discuss their respective features, advantages, and disadvantages.

Etching

Chemical etching of glass fibers has the potential for batch fabrication of a large number
of identical probes. Initially, etching of glass fibers was performed using Turner’s method
[3, 4]. Here, fibers with their plastic coating stripped off are dipped into a 40% HF solution.
A thin overlayer of an organic solvent is usually added (i) to control the height of the menis-
cus of the HF forming at the glass fiber and (ii) to prevent dangerous vapors escaping from
the etching vessel. By using different organic overlayers the opening angle of the result-
ing conical tapers can be tuned [4]. Large taper angles are of interest because, as we shall
see, they result in high-throughput optical probes. Taper formation in the Turner method
takes place because the height of the meniscus is a function of the diameter of the remain-
ing cylindrical fiber. The initial meniscus height depends on the type of organic overlayer.
Since the fiber diameter shrinks during etching, the meniscus height is reduced, so pre-
venting higher parts of the fiber from being etched further. Finally, if the fiber diameter
approaches zero the etching process in principle should be self-terminating.

The Turner method has some important drawbacks. (i) The process is not really self-
terminating. Diffusion of the small HF molecules into the organic solvent overlayer
degrades the tip if it is not removed immediately after it has formed. (ii) The surface of the
conical taper is usually rather rough. This roughness is most probably due to the fact that
the meniscus of HF does not move continuously and smoothly during etching but rather
jumps from one stable position to the next. This results in a faceted, rather rough surface
structure, which can pose problems in later processing steps, e.g. resulting in mediocre
opacity of metal coatings.

This roughness problem can be overcome by applying the so-called tube-etching method
[5]. Here, the fibers are dipped into the HF solution with an organic solvent overlayer
(p-xylene or iso-octane) without stripping off their plastic coating. The plastic coatings of
standard optical fibers are chemically stable against HF. Figure 6.2 shows schematically
the progress of the etching process for (a) HF impermeable and (b) permeable cladding.
The insets show photographs of the etched fibers in situ. Both types of cladding result in
different pathways for tip formation. For more details the reader is referred to the origi-
nal publication [5]. Figure 6.3 shows typical results for fiber tips etched by the different
techniques. Note the difference in roughness between Turner and tube-etched probes.
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�Fig. 6.2 Time evolution of the tube-etching process. The insets show in situ video frames of the etching process. Cleaved fibers
are dipped into a 40% HF solution with an organic overlayer (p-xylene or iso-octane). The etching proceeds along
different pathways depending on whether or not the polymer fiber cladding is permeable to HF. In the case of a
non-permeable cladding the tip forms at the end of the fiber and keeps its shape while shortening inside the tube (a).
In the case of a permeable cladding the tip forms at the meniscus between HF and the organic overlayer (b). From [5].

Besides the Turner and the tube-etching methods there are other etching methods that
result in sharp tips. A prominent method is based on dipping cleaved fibers into a buffered
HF solution consisting of a mixture with volume ratio NH4F:HF:H2O = X:1:1, where X
denotes a variable volume [6]. In general, mixtures with X > 1 are used. The opening
angle of the tips monotonically decreases for increasing X and tends to a stationary value
for X > 6. The magnitude of the stationary angle depends strongly on the Ge concentration
in the fiber core. It varies between 100◦ and 20◦ for doping ratios of 3.6 and 23 mol%,
respectively. The method relies on the fact that in such a solution Ge-rich parts of optical
fibers are etched at a lower rate. Since the core of a suitable fiber is doped with Ge, the
core starts protruding from an otherwise flat fiber. Figure 6.4 shows the typical shape of
fiber probes created by Ohtsu’s method. The fiber is flat apart from a short and sharp
protrusion sitting on the fiber core. For the method to work, the Ge concentration in the
core has to have a suitable profile, which is not the case for all types of standard commercial
single-mode fibers. More involved techniques have been applied to achieve tapers with
discontinuous opening angles, so-called multiple tapers [7].

Heating and pulling

Another successful method to produce tapered optical fibers is by locally heating a stripped
fiber and subsequently pulling it apart. The technology used here was originally developed
for electrophysiology studies of cells using the patch-clamp technique. The patch-clamp
technique was developed in the 1970s by Erwin Neher and Bert Sakmann [9], for which
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�Fig. 6.3 Etched fiber probes. Left: Turner’s method. Right: tube-etched probe. The upper panels show optical images obtained
with a conventional optical microscope. The lower panel shows higher-resolution scanning electron micrographs of
the surface roughness of the tips sputtered with 3 nm of platinum at 77 K. From [5].

they were awarded the 1991 Nobel prize in medicine. Micropipettes for patch-clamp exper-
iments are produced from quartz capillaries by local heating and pulling. The overall shape
and the apex diameter of heat-pulled pipettes depend on many parameters, including the
pulling speed, the size of the heated area, and the heating time.

For applications in nano-optics, as mentioned before, tapered optical fibers should
exhibit a short and robust taper region with a large opening angle at the apex. In order
to achieve this goal, the length of the heated area of the fiber should be smaller than or
equal to the fiber diameter. In order to achieve a symmetric tip shape, the temperature dis-
tribution in the glass should have cylindrical symmetry. Also, heating of the glass should
be moderate because a certain minimum viscosity of the glass before pulling is necessary
in order to achieve short enough tips. Too low a viscosity leads to the formation of thin
filaments upon pulling. In many labs CO2 lasers at a wavelength of 10.6 μm are used to
heat the glass, which at this wavelength is a very efficient absorber. Alternatively, a per-
forated heating foil or a heating coil can be used. Figure 6.5 shows a typical set-up for
heating and pulling of fibers. There exist commercial pipette pullers that can be used to
pull optical fibers since they provide control over the magnitude and timing of all relevant
process parameters. A detailed study on how to adapt a pipette puller for fiber pulling can
be found e.g. in Ref. [10].

Close inspection of fiber tips by scanning electron microscopy reveals that pulled tips
tend to show a flat plateau at the apex. The diameter of the plateau is a function of the
pulling parameters. A probable explanation for the occurrence of the plateau is that there
is brittle rupture once the diameter of the glass filament has become very small and then
cooling is very effective. This would imply that the diameter of the plateau should scale
with the heating energy applied to the fiber. This was actually observed. Figure 6.6 shows
a series of pulled tips with decreasing heating power. There is also a distinct correlation
between the opening angle and the heating energy supplied. The angle becomes larger as
less heating energy is supplied. Unfortunately, concomitantly the diameter of the flat facet
at the apex increases, as can be seen in the insets of Fig. 6.6.
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�Fig. 6.4 Scanning electron microscopy images of fiber probes etched by Ohtsu’s method. Left: highly Ge-doped special fiber.
From [6] with permission. Right: commercial fiber. From [8].

It is important to note that tapers created by etching and by pulling are not completely
identical. Some groups report problems with pulled probes when polarization of light is an
issue. Stress relaxation over time probably creates a time-dependent polarization behavior
of pulled probes [11]. Also, for pulled probes the refractive-index profile in the taper is
changed since both the fiber core and the cladding are affected by the heating and pulling.
On the other hand, the tapers of pulled fibers show very little surface roughness, which is
favorable for subsequent processing, such as metal coating.

While the shape of tapered fibers can be accurately determined in scanning electron
microscopes, the optical properties, e.g. the effective optical diameter, are more difficult to
assess experimentally in a standard way. We point the interested reader to a method that
relies on imaging a pattern of standing evanescent waves [12]. By comparing the measured
with the expected fringe contrast using a simple model for the probe’s collection function,
one can estimate the effective optical diameter of a given probe (see Problem 6.1). It is
found that for pulled glass-fiber probes this effective diameter is about 50–150 nm.

An alternative to a tapered optical fiber is the so-called tetrahedral probe [13] which
can be obtained by cleaving a rectangular slab of glass twice at an angle. The result is
a fragment with triangular cross-section. The fragment can be produced from a 170 μm-
thick cover slip, so that the overall size of the fragment is rather small. In order to couple
in light that is focused to the tip a coupling prism has to be used. A particular feature of
tetrahedral probes is that they are not rotationally symmetric, which, after metal coating
and aperture formation, can lead to interesting field distributions [14].

6.3 Aperture probes

Probes based on metal-coated dielectrics with a transparent spot at the apex are referred
to as aperture probes. The metal coating basically prevents the fields from leaking through
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�Fig. 6.5 Sketch of a typical set-up for pulling of optical fibers using a CO2 laser. The laser is focused onto the fiber. For heating,
a laser pulse of duration some milliseconds is applied. The pulling starts after the laser pulse and follows a distinct
velocity profile. See [10] for details.

the sides of the probe (cf. Fig. 6.1). The most common example is a tapered optical fiber
coated with a metal, most often aluminum. In order to understand the light propagation
in such a probe we note that it can be viewed as a hollow metal waveguide filled with a
transparent dielectric. Towards the probe apex, the diameter of the waveguide is constantly
decreasing. The mode structure in a tapered hollow waveguide changes as a function of the
characteristic dimension of the transparent core [15]. For large diameters of the transparent
dielectric core there will be a number of guided modes in the waveguide. These run into
cut-off one after the other as the diameter decreases on approaching the apex. Finally, at a
well-defined diameter even the last guided mode runs into cut-off. For smaller diameters of
the dielectric core the energy in the core decays exponentially towards the apex because the
propagation constants of all modes become purely imaginary. This situation is visualized in
Fig. 6.7. The mode cut-off is essentially the reason for the low light throughput of aperture
probes. The low light throughput of metal-coated dielectric waveguides is the price for
their superior light confinement.

The behavior described above determines some of the design goals and limitations of
aperture probes. (i) The larger the opening angle of the tapered structure, and the higher
the refractive index of the dielectric core, the better the light transmission of the probe will
be. This is because the final cut-off diameter approaches the probe apex [17]. (ii) In the
region of cut-off, about two thirds of the incoming energy will be absorbed in the metal
layer. This can result in significant heating of the metal coating in this region, which, as a
consequence, might be destroyed. The maximum power that can be sent down such a probe
is therefore limited. Improving the heat dissipation in the relevant region or increasing the
thermal stability of the coating can increase this destruction threshold [18]. These effects
will be analyzed in more detail in the following section.

6.3.1 Power transmission through aperture probes

Figure 6.8 shows the calculated power density inside an aperture probe. The probe is
excited by the analytically known cylindrical HE11 waveguide mode at a wavelength of λ =
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�Fig. 6.6 Scanning electron microscopy images of pulled glass fibers sputtered with 20 nm of gold. The insets show
magnifications of the respective tip apex. There is a trend that the shorter the tip and therefore the larger the opening
angle is, the more pronounced the plateau that occurs at the apex will be. This plateau defines the smallest possible
aperture that can be achieved after metal coating.

488 nm. At this wavelength the dielectric constants of the dielectric core and the aluminum
coating are εcore = 2.16 and εcoat = −34.5 + 8.5i, respectively.1 The corresponding skin
depth is 6.5 nm. The core has a diameter of 250 nm at the upper cylindrical part and is
tapered towards the aperture end.

In the cylindrical part the HE11 mode is still in the propagating regime, i.e. its propaga-
tion constant has a negligibly small imaginary part. As the core radius becomes smaller,
the modes of the tapered part become evanescent and the field decays extremely fast, faster
than exponentially, towards the aperture. Since roughly a third of the incident power is
reflected backwards this leads to a standing-wave pattern at the upper part of the probe.
To the sides of the core the field penetrates into the aluminum coating, where roughly two
thirds of the incident power is dissipated into heat.

The fast power decay inside the aperture probe can be well explained by a mode-
matching analysis. In this approach, the tapered part of the probe is subdivided into small
cylindrical waveguide pieces as shown in Fig. 6.9. For a lossy waveguide the propagation
constant kz can be written as

kz = β + iα, (6.1)

where β is the phase constant and α the attenuation constant. According to waveguide
theory, the power loss in the nth waveguide section is

Ploss(n dz) = P(n dz)(1 − e−2α11(n dz)dz), (6.2)

where P(n dz) is the incident power and α11(n dz) the attenuation constant of the HE11

mode in the nth waveguide section. α11 depends on the diameter of the waveguide section,

1 The complex dielectric function of aluminum for visible wavelengths can be well described by a plasma disper-

sion law (see Chapter 12), ε(ω) = 1 − ω2
p ·
(
ω2 + iγω

)−1
, where a plasma frequency of ωp = 15.565 eV/�

and a damping constant of γ = 0.608 eV/� yield a good approximation for the dielectric function [15].
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on the wavelength and on the material properties. A more detailed discussion on lossy
waveguide modes can be found in Ref. [19]. On summing Eq. (6.2) over all waveguide
sections, using

P([n + 1]dz) = P(n dz) − Ploss(n dz), (6.3)

and taking the limit dz → 0 we obtain the power distribution

P(z) = P(z0) e
−2
∫ z

z0
α11(z)dz

. (6.4)

In Fig. 6.10 this formula is compared with the computationally determined power along the
probe axis (curve a). The power in the probe can also be plotted against the core diameter
D using the geometrical relationship

z = −D − Da

2 tan δ
, (6.5)

where δ is the half-cone angle and Da the diameter of the aperture. Note that z0 ≤ z ≤ 0 for
the coordinates chosen in Fig. 6.9. The asymptotic values of P(z) are indicated by curves
d and e, which describe the decay of the HE11 mode in the cylindrical part of the aperture
probe and the decay of a wave inside bulk aluminum, respectively. Since the presence of the
aperture has hardly any influence on P(z) the curve may be applied in good agreement to
any Da. The power transmission of aperture probes with Da = 100 nm, 50 nm and 20 nm
therefore is approximately 10−3, 10−6, and 2 × 10−12, respectively. The steep decay of
the transmission curve (see Fig. 6.10) indicates that for the chosen cone angle it is very
unfavorable to decrease the aperture size considerably below 50–100 nm, which is actually
the diameter most commonly used for aperture probes.

For an aperture probe with a thick (infinite) coating, Fig. 6.11 shows α and β for the
HE11 mode as functions of z and D. The transition from the propagating to the evanescent
region occurs at D ≈ 160 nm. The agreement of the computed decay (curve α/k0 in

dielectric
evanescent
decay

11

d ~ 250 nm d ~ 160 nm
metal

�Fig. 6.7 Illustration of the successive cut-off of guided modes and exponential decay of the fields towards the aperture in a
tapered, metal-coated waveguide. Adapted from [16].
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Fig 6.11) and the power decay obtained by Eq. (6.4) is dependent on the lower integration
limit z0. Excellent fits are obtained if z0 is chosen to be in the evanescent region of the
HE11 mode, where α11(z) is well described by an exponential function

α11(D) = Im{ncoat}k0e−AD, (6.6)

where ncoat is the index of refraction of the metal coating, k0 = 2π/λ is the propagation
constant in free space, and A is a constant determined to be 0.016 nm−1 in the present
example (cf. Fig. 6.11). If Eq. (6.6) is inserted into Eq. (6.4) and the integration in the
exponent is carried out, we arrive at

P(z) = P(z0)exp[a − b(e2Az tan δ)] (6.7)

with the two constants

a = Im{ncoat}k0

A tan δ
e−AD0 , b = Im{ncoat}k0

A tan δ
e−ADa ,

where D0 is the core diameter at z = z0. The analysis above is valid for a δ that is not
too large since reflections in the probe were neglected. This also explains the deviation of
curve b in Fig. 6.10, where z0 was chosen to be in the propagating region of the probe.

The mode-matching analysis outlined above can be simplified if a perfectly conducting
metal coating is assumed. In this case, the propagation constant kz of the lowest-order TE11

mode can be calculated as

kz(D) =
√
εcorek2

0 − (3.68236/D)2, (6.8)
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�Fig. 6.8 Contours of constant power density on two perpendicular planes, parallel and perpendicular to the electric field,
through the center of an aperture probe with infinitely thick coating (with a factor of 3 difference between adjacent
lines). The field is excited by the HE11 mode incident from the cylindrical part.
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dz
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�Fig. 6.9 Mode-matching approximation for the power P(z) in the aperture probe. In each waveguide section the attenuation of
the HE11 mode is calculated analytically. The contributions of all sections are added and the limit dz → 0 is applied.

with εcore being the dielectric constant of the core. For large core diameters D the prop-
agation constant is real and the TE11 mode propagates without attenuation. However, for
diameters D < 0.586λ

√
εcore the propagation constant becomes purely imaginary and

the waveguide mode decays exponentially in the z-direction. Therefore, in the attenuated
regime, we can write

α11(D) =
√

(3.68236/D)2 − εcorek2
0, (6.9)

which can be inserted into Eq. (6.4). A similar analysis has been carried out by Knoll and
Keilmann for a perfectly conducting aperture probe with a square cross-section [20].

The throughput of the aperture probe also depends strongly on the taper angle. As the
half-cone angle δ is increased the spotsize will become larger because more and more
radiation penetrates through the edges of the aperture. Surprisingly, the spotsize remains
almost constant over a large range of δ and increases rapidly for δ > 50◦ [21]. However,
as shown in Fig. 6.12 the power transmission behaves very differently. A strong variation
is observed in the range between 10◦ and 30◦. The data points in the figure are calculated
by three-dimensional computations for a probe with an aperture diameter of 20 nm and
excitation at λ = 488 nm. The solid line, on the other hand, is calculated according to
mode-matching theory, i.e. by using Eqs. (6.4)–(6.7). The analysis leads to

Pout

Pin
∝ e−B cot δ , (6.10)

with B being a constant. While the above theory leads to a value of B=3.1, the best fit to the
numerical results is found for B=3.6. Figure 6.12 shows that the agreement is excellent for
10◦ < δ < 50◦. The deviation above 50◦ is mainly due to neglected reflections in the mode-
matching model. Changing the taper angle from 10◦ to 45◦ increases the power throughput
by nine orders of magnitude while the spotsize remains almost unaffected. Thus, methods
that produce sharp fiber tips with large taper angles are of utmost importance.

However, the cut-off of light propagation in hollow metal waveguides is not always
disadvantageous. For example, the rapidly decaying field inside a waveguide with diameter
below cut-off has been used for single-molecule studies [22]. Such zero-mode waveguides
typically consist of holes of diameter ∼70 nm fabricated into a metal film ∼100 nm thick
deposited on a glass substrate. When the film is irradiated from the glass side, the field
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�Fig. 6.10 Power decay in an infinitely coated aperture probe as a function of distance from the aperture z and of the core
diameter D. Curve a, computed decay; curve b, mode-matching approximation with z0 = −600 nm; curve c,
mode-matching approximation with z0 = −400 nm; curve d, decay of the HE11 mode in the cylindrical part of the
probe; curve e, decay of a wave inside bulk aluminum. The vertical line indicates the transition from the cylindrical to
the tapered part of the probe.

inside the holes decays exponentially, which defines very high field confinement. Typically,
the observation volume within a single zero-mode waveguide is as low as ∼20 zeptoliters.
The interior of the zero-mode waveguide can be functionalized in order to capture target
molecules from a solution. The small observation volume ensures that single molecules can
be detected and monitored with high sensitivity even at very high analyte concentrations.

6.3.2 Field distribution near small apertures

To understand light–matter interactions near aperture probes we need a model for the field
distribution near subwavelength-sized apertures. In classical optics, the Kirchhoff approx-
imation is often applied to study the diffraction of light by an aperture in an infinitely thin,
perfectly conducting screen. The Kirchhoff approximation assumes that the field inside the
aperture is the same as the excitation field in the absence of the aperture. Of course, this
assumption fails near the edges of the aperture, and consequently the Kirchhoff approxima-
tion becomes inaccurate for small apertures. For an aperture considerably smaller than the
wavelength of the exciting radiation it is natural to consider the fields in the electrostatic
limit. Unfortunately, for a wave at normal incidence the fields in the electrostatic limit
become identically zero because the exciting electric field consisting of a superposition of
incident and reflected waves disappears at the surface of the metal screen. Therefore, the
electric field has to be calculated by using a first-order perturbative approach. On the other
hand, it is possible to derive a solution of the magnetostatic problem.

In 1944 Bethe derived an analytical solution for the electromagnetic field near a small
aperture [23]. He also showed that in the far-field the emission of the aperture is equal to
the radiation of a magnetic and an electric dipole located at the center of the aperture. The
electric dipole is excited only if the exciting plane wave is incident from an oblique angle.
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�Fig. 6.11 The attenuation constantα11 and phase constantβ11 of the cylindrical HE11 mode as functions of the core diameter
D. z is the corresponding distance from the aperture. The vertical line indicates the transition from the cylindrical to
the tapered part of the aperture probe. From [19].

In 1950 Bouwkamp revealed that the electric field derived by Bethe is discontinuous in the
hole, contrary to what is required by the boundary conditions [24].

To derive the correct solution, Bouwkamp first calculated the solution for a disk and then
used Babinet’s principle to obtain the magnetic currents for the case of the aperture. The
solution is derived from an integral equation containing the current distribution function
on the disk as an unknown function. The integral equation is then solved using a series-
expansion method and making use of the singularity condition at the rim of the disk. This
condition states that the electric field component tangential to the edge of the disk must
vanish as the square root of the distance from it. Furthermore, the electric field component
normal to the edge must become infinite as the inverse square root of the distance from
the edge. This boundary condition had already been used by Sommerfeld in the study of
diffraction by a semi-infinite metal plate. An alternative approach for solving the fields
near a small disk can be found in Ref. [25].

Babinet’s principle is equivalent to replacing the electric currents and charges induced
in the metal screen by magnetic currents and charges located in the aperture. The magnetic
surface current density K and magnetic charge density η in the aperture give rise to a
magnetic vector potential A(m) and a magnetic scalar potential �(m) as

A(m) = ε0

∫
K

eikR

4πR
dS, �(m) = 1

μ0

∫
η

eikR

4πR
dS, (6.11)

where R = |r − r′| denotes the distance between the source point r′ and the field point r,
and the integration runs over the surface of the aperture. Similarly to the electric case, A(m)

and �(m) are related to the electric and magnetic fields as

E = 1

ε0
∇ × A(m), H = iωA(m) − ∇�(m) ≈ −∇�(m). (6.12)
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�Fig. 6.12 Dependence of power transmission on taper angle (δ is the half-cone angle). The aperture diameter is 20 nm and the

wavelengthλ = 488 nm. Changing the taper angle from 10◦ to 45◦ increases the power throughput by nine orders
of magnitude. Results from three-dimensional computation (points) and according to Eq. (6.10) with a value of
B = 3.6 (solid line) are shown.

In what follows, we neglect the first term in the expression for H because it is proportional
to k = ω/c and therefore negligible in the limit of a small aperture a (ka � 1).

To solve for A(m) and �(m) it is convenient to introduce oblate-spheroidal coordinates
r = (u, v,ϕ) defined by

z = auv, x = a
√

(1 − u2)(1 + v2) cosϕ, y = a
√

(1 − u2)(1 + v2) sinϕ, (6.13)

where 0 ≤ u ≤ 1, −∞ ≤ v ≤ ∞, 0 ≤ ϕ ≤ 2π . The surfaces v = 0 and u = 0 correspond
to the aperture and the screen, respectively.

Plane wave at normal incidence

For a plane wave at normal incidence, the Laplace equation ∇2�(m) = 0 yields the solution

�(m) = −H0
2a

π
P1

1(u)Q1
1(iv)sinϕ, (6.14)

where Pm
n and Qm

n are associated Legendre functions of the first and second kind, respec-
tively [26], and E0 and H0 = E0

√
ε0/μ0 are the magnitudes of the electric and magnetic

fields of the incident plane wave polarized in the x-direction (ϕ = 0). The solution for the
magnetic vector potential A(m) is much more difficult to derive since it cannot be calculated
statically. The expression derived by Bouwkamp reads as

A(m)
x = −ε0E0

ka2

36π
P2

2(u)Q2
2(iv) sin(2ϕ),

A(m)
y = ε0E0

ka2

36π

[
−48Q0(iv) + 24P2(u)Q2(iv) + P2

2(u)Q2
2(iv) cos(2ϕ)

]
,

(6.15)

and is different from Bethe’s previous calculation.
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The electric and magnetic fields are now easily derived by substituting �(m) and A(m)

into Eq. (6.12). The electric field becomes

Ex/E0 = ikz − 2

π
ikau

[
1 + v arctan v + 1

3

1

u2 + v2
+ x2 − y2

3a2(u2 + v2)(1 + v2)2

]
,

Ey/E0 = − 4ikxyu

3πa(u2 + v2)(1 + v2)2
, (6.16)

Ez/E0 = − 4ikxv

3π (u2 + v2)(1 + v2)
,

and the magnetic field turns out to be

Hx/H0 = − 4xyv

πa2(u2 + v2)(1 + v2)2
,

Hy/H0 = 1 − 2

π

[
arctan v + v

u2 + v2
+ v(x2 − y2)

πa2(u2 + v2)(1 + v2)2

]
,

Hz/H0 = − 4ayu

πa2(u2 + v2)(1 + v2)
. (6.17)

By evaluating the electric and magnetic fields on the metal screen it is straightforward
to solve for the electric charge density σ and the electric surface current density I as

σ (ρ,φ) = ε0E0
8i

3
ka

a/ρ√
ρ2/a2 − 1

cosφ,

I(ρ,φ) = H0
nρ
π2

[
arctan

(√
ρ2/a2 − 1

)
+ a

ρ

√
1 − a2/ρ2

]
cosφ (6.18)

−H0
nφ
π2

[
arctan

(√
ρ2/a2 − 1

)
+ 1 + a2/ρ2√

ρ2/a2 − 1

]
sinφ.

Here, a point on the metal screen is defined by the polar coordinates (ρ,φ), and nρ and
nφ are the radial and azimuthal unit vectors, respectively. It is important to notice that the
current density is independent of the parameter ka, indicating that it is equal to the magne-
tostatic current for which ∇ · I = 0. On the other hand, the charge density is proportional
to ka and therefore cannot be derived from electrostatic considerations. At the edge of the
aperture (ρ = a) the component of the current normal to the edge vanishes whereas the
tangential component of the current and the charge density become infinitely large.

The fields determined above are valid only in the vicinity of the aperture, i.e. within a
distance R � a. To derive expressions for the fields at larger distance one can calculate
the spatial spectrum of the fields in the aperture plane and then use the angular spectrum
representation to propagate the fields [27]. However, as shown in Problem 3.5 this approach
does not correctly reproduce the far-fields because the near-field is correct only up to order
ka, whereas the far-field requires orders up to (ka)3. Bouwkamp calculates the fields in
the aperture up to order (ka)5 [28]. These fields are sufficiently accurate to be used in an
angular spectrum representation that is valid from near-field to far-field.

Bethe and Bouwkamp show that the far-field of a small aperture is equivalent to the
far-field of a radiating magnetic dipole located in the aperture and with axis along the
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�Fig. 6.13 Comparison between Bouwkamp’s solution (left) and the fields in front of an aperture probe with aluminum coating
(λ = 488 nm) (right). Contours of constant |E|2 (with a factor of 2 difference between adjacent lines). The incident
polarization is along the x-axis.

negative y-direction, i.e. opposite to the magnetic field vector of the incident plane wave.
The magnetic dipole moment m turns out to be

m = −8

3
a3

0H0. (6.19)

It scales with the third power of a0, indicating that the aperture behaves like a three-
dimensional polarizable object.

Plane wave at arbitrary incidence

Bouwkamp derived the fields for a small disk irradiated by a plane wave with arbitrary
incidence [28]. Using Babinet’s principle it is straightforward to translate the solution to
the case of an aperture. It turns out that the far-field is no longer equivalent to the radiation
of a magnetic dipole alone. Instead, the electric field also induces an electric dipole oriented
perpendicular to the plane of the aperture and antiparallel to the driving field component.
Thus, the far-field of a small aperture irradiated by an arbitrary plane wave is given by the
radiation of an electric dipole and a magnetic dipole with the following moments [23]:

μ = −4

3
ε0a3

0

[
E0 · nz

]
nz, m = −8

3
a3

0

[
nz × (E0 × nz)

]
, (6.20)

with nz being the unit vector normal to the plane of the aperture pointing in the direction
of propagation.

Bethe–Bouwkamp theory applied to aperture probes

Figure 6.13 compares the near-fields behind the aperture probe and the ideal aperture. The
fields look very similar at first glance but there are significant differences. The field of the
ideal aperture is singular at the edges in the plane of polarization and zero along the y-axis
outside the aperture. This is not the case for an aperture probe with a metal coating of finite
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conductivity. The Bouwkamp approximation further shows higher confinement of the fields
and much higher field gradients, which would lead, if they were real, for instance, to larger
forces being exerted on particles next to the aperture. Notice that the infinitely conducting
and infinitely thin screen used in the Bethe–Bouwkamp theory is a strong idealization.
At optical frequencies, the best metals have skin depths of 6–10 nm, which will enlarge
the effective aperture size and smooth out the singular fields at the edges. Furthermore, any
realistic metal screen will have a thickness of at least λ/4. The exciting field of the aperture
is therefore given by the waveguide mode in the hole rather than by a plane wave.

An ideal aperture radiates as a coherent superposition of a magnetic and an electric
dipole [23]. In the case of an ideal aperture illuminated by a plane wave at normal inci-
dence the electric dipole is not excited. However, the fields in the aperture of a realistic
probe are determined by the exciting waveguide mode. A metal coating with finite con-
ductivity always gives rise to an exciting electric field with a net forward component in
the plane of the aperture. One therefore might think that a vertical dipole moment must be
introduced. However, since such a combination of dipoles leads to an asymmetric far-field,
it is not a suitable approximation. Also, the magnetic dipole alone gives no satisfactory
correspondence to the radiation of the aperture probe. Obermüller and Karrai proposed an
electric and a magnetic dipole, both lying in the plane of the aperture and perpendicular
to each other [29]. This configuration fulfills the symmetry requirements for the far-field
radiation and is in good agreement with experimental measurements.

6.3.3 Field distribution near aperture probes

Figure 6.14 shows the fields in the aperture region of an aperture probe in vacuum and
above a dielectric substrate. The coating is tapered towards the aperture and the final thick-
ness is 70 nm. The aperture diameter is chosen to be 50 nm, and the exciting HE11 mode
is polarized along the x direction.

Part of the field penetrates the edges of the aperture into the metal thereby increasing the
effective width of the aperture. When a dielectric substrate is brought towards the aperture
the power transmission through the probe increases. This can be seen in Fig. 6.14 by com-
paring the contour lines in the probe. Part of the emitted field is scattered around the probe
and couples to external surface modes propagating backwards along the coating surface.

External surface modes can also be excited in the forward direction by the field trans-
mitted from the core through the coating. In analogy to cylindrical waveguides they have
hardly any attenuation [19]. Most of the energy associated with these modes therefore
propagates towards the aperture plane. If the coating chosen is too thin it may happen that
the light from the surface of the coating is stronger than the light emitted by the aperture.
In this case the field is strongly enhanced at the outer edges of the coating, leading to the
field pattern shown in Fig. 6.15 (right panel). To avoid such an unfavorable situation a suf-
ficiently thick coating has to be chosen. A tapered coating could be a reasonable way to
reduce the coating thickness near the aperture. It has to be emphasized that surface modes
cannot be excited by illumination from outside since they possess propagation constants
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�Fig. 6.14 Contours of constant |E|2 on three perpendicular planes near the foremost end of an aperture probe (with a factor of
2 difference between successive lines). The arrows indicate the time-averaged Poynting vector. The incident
polarization is in the plane y = 0. The transmission through the probe is increased when a dielectric substrate
(ε = 2.25) is brought close (right figure).

that are larger than the k-vector of freely propagating light, being in this regard similar to
surface plasmons (see Chapter 12).

The Bethe–Bouwkamp theory has been used by various authors to approximate the
near-field of aperture probes. Single-molecule experiments have shown a good qualita-
tive agreement [30] and are the perfect tool with which to analyze the field distribution of
a given aperture (see Chapter 9).

6.3.4 Enhancement of transmission and directionality

Ebbesen and coworkers have demonstrated that the transmission through a metal screen
with subwavelength-sized holes can be increased if a periodic arrangement of holes is
used [31]. The effect originates from the constructive interference of scattered fields at the
irradiated surface of the metal screen and thus depends strongly on the excitation wave-
length. The periodic arrangement of holes increases the energy density on the surface of
the metal screen through the creation of standing surface waves. These surface waves delo-
calize the energy of the aperture and are responsible for the enhanced transmission. One
can view the enhanced transmission of an aperture array as an antenna problem: while the
radiation from a single aperture is Prad ∝ |m|2, with m being the induced magnetic dipole
(Eq. 6.19), the radiation from an aperture array can be as high as Prad ∝ N2|m|2, where N
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50nm

�Fig. 6.15 Contours of constant |E|2 (with a factor of 31/2 difference between successive lines) in the aperture planes of three
aperture probes with different coating thicknesses. Left: infinite coating. Middle: finite coating, the field is dominated
by the flux emitted by the aperture. Right: finite coating, the field is dominated by the flux from the outside coating
surface.

is the total number of apertures. The multiplication with N2 is an interference effect that is
exploited, for example, in phased-array antennas.

The enhanced transmission in a periodically perforated metal screen was at first ascribed
to the creation and interference of surface plasmons until it was pointed out that the same
effect persists in an ideal metal that does not support any surface modes. The debate was
resolved by realizing that a periodically perforated ideal metal acts as an effective medium
supporting surface modes that “mimic” surface plasmons encountered on noble-metal sur-
faces [32]. Thus, even though an ideal metal cannot support any “bound” surface modes, it
is the periodic arrangement of holes that helps the ideal metal to mimic a noble metal.
Within the effective-medium framework, Pendry and coworkers derived the following
dispersion relation for a perforated metal screen [32]:

k‖(ω) = ω

c

√√√√1 + 64a4

π4d4

ω2

ω2
pl − ω2

. (6.21)

Here, k‖ represents the propagation constant along the surface of the perforated metal
screen, c is the vacuum speed of light, a is the hole diameter, and d is the hole spacing. The
plasma frequency ωpl of the effective medium is defined as

ωpl = πc

a
√
εμ

, (6.22)

with ε andμ being the material constants of the material filling the holes. Equation (6.21) is
similar to the familiar dispersion relation of surface plasmons supported by a Drude metal
(see Chapter 12). However, whereas for a Drude metal the plasmon resonance (k‖ → ∞)
occurs at a lower frequency than the plasma frequency, the plasmon resonance for the
perforated metal screen is identical with the plasma frequency ωpl. The interesting outcome
is that it is possible to simulate real surface plasmons by a perforated metal screen and that
the dispersion relation can be tailored by the hole size and the hole periodicity. Notice that
the periodicity of the holes implies a periodicity of 2π/d in the dispersion relation as in
the theory of photonic crystals or the electronic theory of semiconductors. This property
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is not reflected in Eq. (6.21), implying that it is impossible to reach the surface plasmon
resonance k‖ → ∞.

In similar experiments, Lezec and coworkers have used a single aperture with a concen-
tric microfabricated grating to delocalize the radiation in the near-zone of the aperture [33].
This delocalization leads to either an increased transmission or improved directionality of
the emitted radiation. To better understand this effect, we note that the theory of Bethe and
Bouwkamp predicts that the light emerging from a small irradiated aperture propagates
in all directions. The smaller the aperture, the stronger the divergence of the radiation
will be. A significant portion of the electromagnetic energy does not propagate and stays
“attached” to the back surface of the aperture. This energy never reaches a distant observer
(see Fig. 6.16(a)). With the help of a concentric grating, Lezec and coworkers convert the
non-propagating near-field into propagating fields that can be seen by a distant observer
(see Fig. 6.16(b)). Because the grating at the exit plane artificially increases the radiating
area it also destroys the light confinement in the near-field, which limits applications in
near-field optical microscopy. However, if the grating is placed on the front side of the
aperture, the light throughput can be strongly increased. In this case the gratings redirect
the radiation hitting the opaque screen towards the aperture, thereby enhancing the light
intensity at the aperture.

6.4 Fabrication of aperture probes

In order to create aperture probes in the laboratory, dielectric tips have to be metal-
coated. Among all of the metals, aluminum has the smallest skin depth in the visible
spectrum [34]. Coating of dielectric tips with aluminum can be done e.g. by thermal
evaporation, electron-beam (e-beam)-assisted evaporation or sputtering. Thermal and
e-beam evaporation have the advantage of being directed processes. Sputtering, on the
other hand, is an isotropic process. All surfaces, even of complex bodies, will be coated

(a) (b)

without grating with grating

�Fig. 6.16 Improving the directionality of light emission by use of a grating fabricated on the exit side of a small aperture. (a)
Without the grating radiation diffracts into all directions. (b) The grating delocalizes the near-field and converts it into
directional radiation.
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at the same rate. The formation of apertures at the apex of fiber tips can be accomplished
by exploiting the shadowing effect supported by thermal and e-beam evaporation. In this
process, the tips are positioned and oriented such that the stream of metal vapor hits the tip
at an angle. At the same time the tips are being rotated. The deposition rate of metal at the
tip apex is then much smaller than on the sides, which leads to the formation of an aperture
at the apex as illustrated in Fig. 6.17.

Evaporation and sputtering suffer from the tendency of aluminum to form rather large
grains. These grains have a typical size of about 100 nm and can be observed very well
with a focused ion-beam microscope (see e.g. [35]). Figure 6.18 shows images of apertures
formed by focused ion-beam milling and by tip shadowing during evaporation. The pres-
ence of grains is manifested by the faceted surface texture of the metal coating. The grain
formation in aluminum films is unfavorable for two reasons: (i) leakage of light at grain
boundaries and related imperfections can occur, which interferes with the weak wanted
emission at the apex; and (ii) the optical apertures are rather ill-defined since the aperture
size is usually smaller than the average grain size. Grains, as illustrated in Fig. 6.18(b),
also prevent the actual optical aperture from approaching close to the sample because of
protruding particles. E-beam evaporation often produces smoother aluminum coatings than
does thermal evaporation.

The small amount of light that is emitted by a near-field aperture is a limiting factor in
experiments. Therefore one is tempted to increase the input power at the fiber far end. How-
ever, aperture probes can be destroyed by too strong an illumination. This happens because
of the pronounced energy dissipation in the metal coating, which, as a consequence, is
strongly heated. Temperature measurements along a taper of aluminum-coated fiber probes
have been performed (see e.g. [36]), and showed that the strongest heating occurs far away
from the tip in the upper part of the taper, consistently with the discussion in Section 6.3.1.
Here temperatures of several hundred degrees Celsius can be reached for input powers up
to 10 mW. For larger input powers the aluminum coating breaks down, which leads to a
strong increase of light emission from the structure. Breakdown usually happens either by

aluminum

glassgl

aluminum vapor

�Fig. 6.17 Self-aligned formation of an aperture by thermal evaporation. The evaporation takes place at an angle slightly from
behind while the tip is being rotated. Adapted from [16].
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�Fig. 6.18 Aluminum-coated aperture probes. (a) Aperture formed by cutting off the apex in a focused ion beam apparatus.
Image courtesy of N. F. van Hulst. (b) Aperture formed by thermal evaporation and tip shadowing. From [16]. Scale
bars: 300 nm.

straightforward melting of the aluminum layer or by fracture and subsequent rolling up of
the metal sheets due to internal stress.

6.4.1 Aperture formation by focused-ion-beammilling

The availability of high-resolution focused-ion beams creates new possibilities for micro-
machining with nanometer-scale resolution [37]. Current focused-ion-beam (FIB) instru-
ments operate with liquid-metal sources. To ensure a constant supply of ions for the beam,
a tungsten coil with a tip [37] is wetted by gallium or indium, which is then field ionized
and accelerated towards the sample. Using conventional electromagnetic lenses as in SEM,
such an ion beam can be focused down to a diameter of ∼10 nm. At an ion flux of ∼11 pA
at 30 kV, aluminum can be locally removed. The ablated material can be chemically
analyzed using mass spectrometry [37]. At much lower ion flux (1 pA), the microma-
chined structure can be inspected with nearly negligible material ablation. Modern FIB
microscopes combine an ion column and an electron column in the same machine.

The standard procedure of probe processing by FIB is to cut conventional aluminum-
coated probes by slicing them perpendicular to the optical axis [38]. Depending on where
the cut is performed, either an existing aperture can be smoothed and improved by remov-
ing protruding grains or a closed tip can be opened to any desired aperture radius. An
example of the result of such micromachining is shown in Fig. 6.18(a). FIB-treated probes
have superior performance since there are no grains to prevent the probe from coming very
close to the sample. This is a prerequisite to exploiting the full confinement of the opti-
cal near-field. Using single molecules as local field probes, it was found that the optical
near-field distribution could be recorded reproducibly and that it very much resembles the
fields of a Bethe–Bouwkamp aperture [38]. For conventional non-smoothed apertures such
patterns were observed very rarely [30] and could not be reproduced before the advent
of FIB-treated optical probes. One challenge that is encountered when using FIB-milled
apertures is the adjustment of the aperture plane parallel to the sample surface. Typically,



187 6.4 Fabrication of aperture probes

the lateral size of the probe is up to 1 μm and, to ensure high resolution, its aperture has to
be placed as close as 5–10 nm from the sample surface.

A particular strength of FIB milling is that it provides the possibility to micromachine
prototype structures at the apices of tips that are more complex than simple apertures.
This can lead to improved probe structures with very high field confinement and strong
enhancement (see Section 6.5).

6.4.2 Alternative aperture-formation schemes

Various other techniques for aperture probe fabrication have been explored. Here we review
two electrochemical methods and then a mechanical method.

Electrochemistry is usually performed in liquid environments, which is problematic in
its application to micromachining. In the presence of a liquid, in general large areas are
wetted and nanometer-scale material processing cannot be achieved. However, there exist
solid electrolytes that allow significant transport of metal ions in the solid phase. Such
electrolytes have been used to perform controlled all-solid-state electrolysis (CASSE).
A prominent solid electrolyte for silver ions is amorphous silver metaphosphate iodide
(AgPO3:AgI) [39], which is appreciated for its high ionic conductivity, optical trans-
parency, and ease of fabrication [40]. The aperture formation is induced by carefully
contacting a fully silver-covered tapered transparent tip with the flat solid electrolyte and
transferring silver ions from the tip to the solid electrolyte by means of an applied voltage
until an aperture is formed.

Another electrochemical method that actually involves light-induced corrosion of alu-
minum was introduced in Ref. [41]. In this approach, an aperture is produced in the metal
layer at the probe apex by a simple, one-step, low-power, laser-thermal oxidation process in
water. The apex of a tip is locally heated due to the absorption of light from an evanescent
field created by total internal reflection at a glass/water interface. Owing to the heating, the
passivation layer that normally covers aluminum is dissolved in an aqueous environment.

The formation of small apertures by nanomechanical interaction of a probe with a
sample is another means by which to obtain subwavelength apertures. Aperture punching,

(a)

100 nm 100 nmprotrusion

(b)

�Fig. 6.19 Scanning electron micrographs of (a) a side view and (b) a front view of an aperture with a diameter of 100 nm
produced by aperture punching. Adapted from [42].
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or, in other words, the opening of a small aperture at the apex of a completely metal-
coated dielectric tip by plastic deformation of the metal near the apex, was the method
used in the very first near-field optical experiments [43]. This method was later adapted
and perfected by other groups [14, 42]. Figure 6.19 shows the result of punching an etched
optical fiber sputtered with 200 nm of gold. A circular aperture with a flat rim can be
observed.

6.5 Optical antenna probes

Optical near-field probes are optical analogs of classical antennas. Briefly, considering the
case of a receiving antenna, electromagnetic energy has to be channeled to the near-field
zone of the antenna. Vice versa, the energy has to be released from the near-field zone
if the antenna is operated in transmission mode. An antenna is a device that establishes
efficient coupling between the near-field and the far-field. Although antenna theory has
been developed for the radiofrequency and the microwave range of the electromagnetic
spectrum it holds great promise for inspiring new concepts in the optical frequency range
[43]. Field enhancement is a natural phenomenon in antenna theory. It occurs because an
antenna concentrates electromagnetic energy into a tight space, thereby generating a zone
of high energy density. In the context of near-field optics one would like to use this property
to create a highly confined light source. A simple type of antenna is a pointed tip acting as
a lightning-rod antenna.

Optical antennas will be discussed in depth in Chapter 13.

6.5.1 Solid metal tips

Near-field optical microscopy based on local field enhancement was proposed by Synge as
early as in 1928, long before the invention of atomic force microscopy [44]. Since then var-
ious related implementations have been demonstrated, most of them using a sharp vibrating
tip to locally scatter the near-field at the sample surface. Homodyne or heterodyne detection
using lock-in techniques is commonly applied to discriminate the small scattered signal
from the tip apex against the background from a diffraction-limited illumination area.

It has been shown that under certain conditions a scattering object can also act as a
local light source [45, 46]. As discussed before, this light source is established by the
field-enhancement effect, which has similar origins as to the lightning-rod effect in elec-
trostatics. Thus, instead of using an object to scatter the sample’s near-field, the object is
used to provide a local near-field excitation source to record a local spectroscopic response
of the sample. This approach enables simultaneous spectral and subdiffraction spatial
measurements, but it depends sensitively on the magnitude of the field-enhancement fac-
tor [47]. The latter is a function of wavelength, material, geometry, and the polarization
of the exciting light field. Although theoretical investigations have led to an inconsistent
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spread of values for the field-enhancement factor, these results are consistent with respect
to polarization conditions and local field distributions.

Figure 6.20 shows the field distribution near a sharp gold tip in water irradiated by two
different monochromatic plane-wave excitations. In Fig. 6.20(a), a plane wave is incident
from the bottom with the polarization perpendicular to the tip axis, whereas in Fig. 6.20(b)
the tip is illuminated from the side with the polarization parallel to the tip axis. A strik-
ing difference is seen for the two different polarizations: in Fig. 6.20(b), the intensity
near the tip end is strongly increased over the illuminating intensity, whereas there is no
enhancement beneath the tip in Fig. 6.20(a). This result suggests that it is crucial to have
a large component of the excitation field along the axial direction in order to obtain a high
field enhancement. Calculations for platinum and tungsten tips show lower enhancements,
whereas the field beneath a dielectric tip is reduced compared with the excitation field
(cf. Section 6.1).

Figure 6.21 shows the induced surface charge density for the two situations shown in
Fig. 6.20. The incident light drives the free electrons in the metal along the direction
of polarization. While the charge density is zero inside the metal at any instant of time
(∇ · E= 0), charges accumulate on the surface of the metal. When the incident polariza-
tion is perpendicular to the tip axis (Fig. 6.20(a)), diametrically opposed points on the
tip surface have opposite charges. As a consequence, the foremost end of the tip remains
uncharged. On the other hand, when the incident polarization is parallel to the tip axis
(Fig. 6.20(b)), the induced surface charge density is axially symmetric and has the highest
amplitude at the end of the tip. In both cases the surface charges form oscillating standing
waves (surface plasmons) with wavelengths shorter than the wavelength of the illuminating
light, indicating that it is essential to include retardation in the analysis.

�Fig. 6.20 The near-field of a gold tip (5 nm tip radius) in water illuminated by two different monochromatic waves at
λ = 810 nm. The direction and polarization of the incident wave are indicated by the k and E vectors. The figures
show contours of E2 (with a factor of 2 difference between successive lines). The fields are almost axially symmetric in
the vicinity of the tip.
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�Fig. 6.21 Induced surface charge densityσ corresponding to Fig. 6.20(a) (left) and Fig. 6.20(b) (right). The surface charges
form an oscillating standing wave in each case. In (a) the surface-charge wave has a node at the end of the tip,
whereas in (b) there is a large accumulation of surface charge on the foremost part, which is responsible for the field
enhancement.

The magnitude of the field-enhancement factor is crucial for imaging applications. The
direct illumination of the sample surface gives rise to a far-field background signal. If
we consider an optical interaction that is based on an nth-order nonlinear process and
assume that only the sample surface is active, then the far-field background will be
proportional to

Sff ∼ AIn
0 , (6.23)

where A is the illuminated surface area and I0 is the laser intensity. The signal that we wish
to detect and investigate (the near-field signal) is excited by the enhanced field at the tip.
If we designate the enhancement factor for the electric field intensity (E2) by fi then the
near-field signal of interest is proportional to

Snf ∼ a( fiI0)n, (6.24)

where a is a reduced area given by the tip size. If we require that the signal be stronger
than the background (Snf/Sff > 1) and use realistic numbers for the areas (a = (10 nm)2,
A = (500 nm)2) then we find that an enhancement factor of

fi >
n
√

2500 (6.25)

is required. For a first-order process (n = 1), such as scattering or fluorescence, an
enhancement factor of three to four orders of magnitude is required, but for a second-
order nonlinear process the required enhancement factor is only 50. This is the reason why
the first tip-enhanced experiments were performed with two-photon excitation [46]. To
maximize the field enhancement various alternative probe shapes and materials have been
proposed. It has been found that elongated subwavelength particles exhibit very low radia-
tion damping and therefore provide very high enhancement factors [48, 49]. Even stronger
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enhancement is found for tetrahedral shapes [46]. It is found that, whatever the magnitude
of the enhancement factor is, the field distribution in the vicinity of a sharp tip can be quite
accurately described by the fields of an effective dipole p(ω) located at the center of the tip
apex (see Fig. 6.22) and with the magnitude

p(ω) =
⎡
⎣ α⊥ 0 0

0 α⊥ 0
0 0 α‖

⎤
⎦E0(ω), (6.26)

where the z-axis coincides with the tip axis, E0 is the exciting electric field in the
absence of the tip, and α⊥ and α‖ denote the transverse and longitudinal polarizabilities
defined by

α⊥(ω) = 4πε0r3
0
ε(ω) − 1

ε(ω) + 2
(6.27)

and

α‖(ω) = 2πε0r3
0 fe(ω), (6.28)

respectively. Here, ε denotes the bulk dielectric constant of the tip, r0 the tip radius, and fe
the complex field-enhancement factor. For a wavelength of λ = 830 nm, a gold tip with
ε = −24.9 + 1.57i and a tip radius of r0 = 10 nm, numerical calculations based on the
MMP method lead to fe = −7.8 + 17.1i. While α⊥ is identical to the polarizability of a
small sphere, α‖ arises from the requirement that the magnitude of the field produced by
p(ω) at the surface of the tip be equal to the computationally determined field, which we set

�Fig. 6.22 Comparison of the near-fields of a metal tip and a metal sphere. Images (a) and (b) show excitation with an on-axis,
focused (NA = 1.4) Gaussian beam. Images (c) and (d) show excitation with an on-axis, focused Hermite–Gaussian
(1, 0) beam. The strong field enhancement in (c) is due to the longitudinal field of the excitation beam. The
cross-sections are evaluated in a plane 1 nm beneath the tip. The results indicate that the field distribution near the
tip is well approximated by the dipole fields of a small sphere. However, the field strength for longitudinal excitation
(c) is much stronger than the field strength of an irradiated sphere (d). While in (a) and (b) the fields are in-phase,
they are 155◦ out of phase in (c) and (d).
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equal to feE0. Once the tip dipole has been determined, the electric field E in the vicinity
of the tip is calculated as

E(r,ω) = E0(r,ω) + 1

ε0

ω2

c2

↔
G(r, r0,ω) p(ω), (6.29)

where r0 specifies the origin of p and
↔
G is the dyadic Green function.

In fluorescence studies, the enhanced field is used to locally excite the sample under
investigation to a higher electronic state or band. Image formation is based on the subse-
quent fluorescence emission. However, the fluorescence can be quenched by the presence
of the probe, i.e. the excitation energy can be transferred to the probe and be dissipated
through various channels into heat [50] (cf. Problem 8.8). Thus, there is competition
between field enhancement and fluorescence quenching (cf. Section 13.4). Whether or not
enhanced fluorescence from a molecule placed near a laser-irradiated tip can be observed
depends critically on factors such as the tip shape and excitation conditions. Also, not only
the magnitude of the field enhancement factor but also its phase play a role.

It has been shown that metal tips are a source of second-harmonic radiation and of
broadband luminescence if excited with ultrashort laser pulses. The local second-harmonic
generation has been used as a localized photon source for near-field absorption studies [51].
While second-harmonic generation is an instantaneous effect, the lifetime of the tip’s
broadband luminescence has been measured to be shorter than 4 ps [52].

Fabrication of solid metal tips

Fabrication procedures for sharp metal tips have been established mainly in the context of
field ion microscopy [53] and scanning tunneling microscopy (STM) (see e.g. [54]). The
actual geometrical shape of the tip is not so important for applications in STM on flat sam-
ples as long as there is a foremost atom and there is sufficient conductivity along the tip
shaft. On the other hand, in optical applications one also cares about the tip’s mesoscopic
structure, i.e. its roughness, cone angle, radius of curvature, and crystallinity. Not all etch-
ing techniques yield tips of sufficient “optical” quality. Therefore, FIB milling can be an
alternative means by which to produce very well-defined tips [55].

In electrochemical etching, a metal wire is dipped into the etching solution and a voltage
is applied between the wire and a counter-electrode immersed into the solution. The surface
tension of the solution forms a meniscus around the wire. Etching proceeds most rapidly
at the meniscus. After the wire has been etched through, the immersed lower portion of
the wire drops down into the supporting vessel. By this time, a tip has been formed at both
ends, at the rigidly supported upper portion of the wire and the lower portion that dropped
down. By the time of drop-off, the upper tip is still in contact with the solution because of
meniscus formation. Therefore, if the etching voltage is not switched off immediately after
drop-off, etching will proceed on the upper tip and the sharpness of the tip will be affected.
Hence, it is crucial to switch off the etching voltage as soon as drop-off has occurred.

Various electronic schemes have been introduced to control the drop-off event. Most of
them use DC etching voltages. However, it has been observed that for certain materials DC
etching produces relatively rough tip surfaces. Especially for gold and silver, AC etching is
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�Fig. 6.23 Schematic diagram of an AC etching circuit for gold tips. The etching voltage is automatically switched off after
drop-off. The circuit also works for other tip materials if HCl is replaced by a suitable etching solution. See the text for
details.

favorable. A schematic diagram of the procedure for fabrication of sharp gold tips is shown
in Fig. 6.23. A function generator provides a periodic voltage overlaid with a certain offset.
The voltage is sent through an analog switch and applied to a gold wire that is vertically
dipped into a solution of hydrochloric acid (HCl) and centered into a circular counter-
electrode (Pt) placed just below the surface of the solution. The counter-electrode, held at
virtual ground, directs the etching current to a current-to-voltage converter. The resulting
voltage is averaged by an r.m.s. converter and then compared with an adjustable threshold
voltage by means of a comparator. At the beginning of the etching process, the diameter of
the wire and thus the etching current are at a maximum. With ongoing time, the diameter
of the wire and the current decrease. The diameter of the wire decreases more rapidly at the
meniscus, giving rise to tip formation. When the diameter at the meniscus becomes small
enough, the lower portion of the tip drops off and the etching current decreases abruptly.
Consequently, the r.m.s. voltage at the input of the comparator drops below the preset
voltage threshold and the output of the comparator opens the analog switch, thereby inter-
rupting the etching process. Because of the r.m.s. conversion, the circuit cannot respond
faster than the time of 2–10 periods of the waveform provided by the function generator. It
turns out that the speed of the circuit is not the limiting factor for achieving good tip qual-
ity. The waveform, threshold voltage, concentration of HCl, depth of counter-electrode,
and length of wire are factors that are much more important. These factors vary from set-
up to set-up and have to be determined empirically. With a good set of parameters one can
achieve tip diameters of less than 20 nm with a yield of 50%.

It has to be stressed that the fabricated tips are not monocrystalline, i.e. the metal atoms
do not have a periodic arrangement throughout the tip volume. Instead, the tip consists of
an arrangement of crystalline grains with sometimes varying lattice configurations. The
origin of this grain formation lies in the fabrication process of the original metal wire and
has been known since the early days of field-ion microscopy. Because of grain formation
it is only a rough approximation to describe the tip’s electromagnetic properties by a
macroscopic dielectric function ε(ω). In fact, it is commonly noticed that the observed
field-enhancement factors are weaker than those predicted by calculations and show high
variability from tip to tip. This observation is likely to be related to the grain structure of
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the tips. A quantitative comparison of theory and experiment and the assessment of non-
local effects demand the development of single-crystal metal tips or related structures [57].

Resonant probes

While the semi-infinite solid metal probes provide near-field intensity enhancement mainly
due to the lightning-rod effect, finite-sized metal particles can support plasmon resonances,
which can lead to a resonant enhancement of the near-field intensity. Frey et al. [58] pio-
neered the so-called tip-on-aperture (TOA) probe mainly to reduce the background signal
associated with exposure of the sample to the irradiating laser beam. In this approach, a
minitip is grown on the end-face of an aperture probe in a scanning electron microcope.
Taminiau et al. [56] perfected this approach by means of FIB milling and demonstrated
antenna-enhanced single-molecule imaging. A resonant aluminum wire of well-defined
length was fabricated next to the opening of an aperture probe as shown in Figs. 6.24(a)
and (b). The length of the wire is chosen such that the λ/4 resonance of a single-rod antenna
on conducting ground is obtained. Figure 6.24(c) shows the resulting electric field distri-
bution if the tip is illuminated via the adjacent small aperture using the correct polarization
that leads to a field maximum at the aperture rim at the position of the minitip (see Sec-
tion 6.3.2). The electric field maximum at the end is consistent with the presence of a λ/4
resonance characterized by the current and field distribution sketched in Fig. 6.24(d).

An elegant early demonstration of the principle of a resonant plasmon probe was the
experiment by Fischer and Pohl in 1989 [59]. It is shown schematically in Fig. 6.25(a).
A 20 nm-thick gold film covers polystyrene beads that are adsorbed on a gold-coated
glass substrate. Kretschmann-type illumination is used (see Chapter 12) to launch sur-
face plasmons on the gold film. The surface-plasmon scattering from a selected protrusion
(indicated in Fig. 6.25(a)) is recorded as a function of the distance between the scatterer
and an approaching glass surface (Fig. 6.25(b)). A peak is observed for p-polarized exci-
tation and for small separations, which is indicative of a surface plasmon resonance. The

(a) (b) (c)

(d)

|I|

|E|

�Fig. 6.24 Tip-on-aperture geometry: (a) and (b) SEM images of a tip-on-aperture probe; (c) calculated field distribution and (d)
illustration of the current and field-strength of aλ/4 antenna. Adapted with permission from [56].
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�Fig. 6.25 Resonant particle plasmon probe. (a) A polystyrene bead on a flat glass substrate is covered with a 20 nm gold layer
and illuminated in the Kretschmann configuration. The scattering of the protrusion is recorded as a sample is
approached from the other side. (b) Recorded scattering intensity versus particle–surface distance for both p- and
s-polarization. (c) Image recorded in constant-height mode using electron-tunneling feedback. Adapted from [59].

peak is absent for s-polarization, which reinforces the surface-plasmon interpretation. It is
evident that the existence of the resonance peak can be used for near-field optical imaging
in reflection, i.e. backscattered light is very sensitive to local variations of the dielectric
constant near the protrusion. Figure 6.25(c) shows that the technique is able to resolve
metal patches on glass with high resolution. A similar approach was adopted later to image
magnetic domains on opaque materials [60]. Also, gold-coated dielectric particles, called
nanoshells, found applications in diverse sensing applications as demonstrated in the work
of Halas et al. [61].

Another very well-controlled approach that can be used to obtain a resonant probe is the
attachment of a spherical or elliptical metal nanoparticle to the apex of a dielectric tip. Fol-
lowing early demonstrations of the feasibility of the approach and applications to scanning
near-field optical microscopy [62], and its combination with single-molecule spectroscopy
[63, 64], the method is now being used successfully to image fluorescent biological surface
structures under physiological conditions [65] and at very high densities [66]. Figure 6.26
shows different realizations of resonant probes. The topic of resonant optical antenna-like
probes and optical antennas in general will be picked up again in Chapter 13.

6.6 Conclusion

This chapter provided an overview of the types of probes used in near-field optical
microscopy. Besides the theoretical background necessary to understand and correctly
apply the respective probe structures we have also discussed fabrication procedures and
possible problems that might arise during applications. Many more probe structures and
fabrication procedures can be found in the literature. We selected the most important and
representative schemes to provide a concise overview.
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�Fig. 6.26 Resonant particle probes. Scanning electron microscopy images of (a) a chemically grafted gold particle (diameter
∼80 nm) at the apex of a glass tip, (b) a single gold nano rod taken up by a micropipette, and (c) a glass probe
featuring a sequence of attached gold particles of decreasing diameter.

Problems

6.1 Calculate the intensity distribution in a standing evanescent wave above a glass/air
interface created by counterpropagating evanescent waves of the same intensity and
polarization. Take a line profile perpendicular to the interference fringes and calculate
the convolution with a Gaussian of a given full width at half-maximum. How does
the full width at half-maximum influence the fringe visibility? Discuss applications
to the characterization of glass-fiber probes.

6.2 Calculate the difference in transmission through an aluminum-coated aperture probe
and an aperture probe with an infinitely conducting coating. Assume an aperture
diameter of 100 nm and a taper angle of δ = 10◦.

6.3 Apply Babinet’s principle to derive the fields near an ideally conducting disk. Use
Bouwkamp’s solution and state the fields in the plane of the disk.

6.4 Calculate the second-harmonic generation at a laser-illuminated metal tip. Assume
that the fields near the tip are given by Eqs. (6.26)–(6.29) and that second-harmonic
generation at the tip originates from a local surface nonlinear polarizability χ (2)

s . The
nonlinear surface polarization is determined by the field En normal to the surface of
the tip as

Ps
n(r′, 2ω) = χ s

nnn(−2ω;ω,ω) E(vac)
n (r′,ω) E(vac)

n (r′,ω), (6.30)
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where the index n denotes the surface normal, r′ is a point on the surface of the
tip, and the superscript (vac) indicates that the fields are evaluated on the vacuum
side of the surface. The field at the second-harmonic frequency generated by Ps is
calculated as

E(r, 2ω) = 1

ε0

(2ω)2

c2

∫
surface

↔
G(r, r′, 2ω) Ps(r′, 2ω)d2r′. (6.31)

Consider only the near-field of
↔
G and assume a semispherical integration surface.

Determine an effective tip dipole oscillating at the second-harmonic frequency.
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7 Probe–sample distance control

In order to measure localized fields one needs to bring a local probe into close proxim-
ity to a sample surface. Typically, the probe–sample distance is required to be smaller
than the size of lateral field confinement and thus smaller than the spatial resolution to be
achieved. An active feedback loop is required in order to maintain a constant distance dur-
ing the experiment. However, the successful implementation of a feedback loop requires a
sufficiently short-ranged interaction between the optical probe and the sample. The depen-
dence of this interaction on the probe–sample distance should be monotonic in order to
ensure a unique distance assignment. A typical block diagram of a feedback loop applied
to scanning probe microscopy is shown in Fig. 7.1. A piezoelectric element P(ω) is used to
transform an electric signal into a displacement, whilst the interaction measurement I(ω)
takes care of the reverse transformation. The controller G(ω) is used to optimize the speed
of the feedback loop and to ensure stability according to well-established design rules.
Most commonly, a so-called PI controller is used, which is a combination of a proportional
gain (P) and an integrator stage (I).

Using the (near-field) optical signal itself as a distance-dependent feedback signal seems
to be an attractive solution at first glance. However, it turns out that this is problematic. (1)
In the presence of a sample of unknown and inhomogeneous composition, unpredictable
variations in the near-field distribution give rise to a non-monotonic distance dependence.
Such behavior inevitably leads to frequent probe damage. (2) The detected near-field signal
is often small and masked by far-field contributions. (3) The decay length of the near fields
of optical probes is often too long to serve as a reliable measure for distance changes on
the nanometer scale. For these reasons, usually an auxiliary distance feedback is required
for the operation of optical probes.

Standard scanning probe techniques basically employ two different types of interactions,
i.e. electron tunneling (STM) [1] and interaction forces normal and lateral to the surface
(AFM) [2]. Electron tunneling requires a conductive sample. This is a strong limitation
in view of the spectroscopic capabilities of optical microscopy that are lost by covering
the sample with a metallic layer. Therefore, optical experiments most commonly employ
feedback loops based on short-range interaction forces, for example the measurement of
lateral shear forces or normal van der Waals forces.

Before we go into more details an important note has to be made. In standard commer-
cial AFMs and STMs the short-ranged interaction used for feedback is also the physical
quantity of interest. This is not the case in near-field microscopy with auxiliary feedback.
The use of an auxiliary feedback mechanism inherently bears the danger of introducing
into the optical signal artifactual changes that are related not to the optical properties of
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the sample but to changes in the probe–sample distance induced by the auxiliary feedback.
These problems and possible solutions are discussed in detail in the final section of this
chapter and also in Refs. [3, 4]. In the following we will concentrate lateral shear forces,
but similar analysis can be done for normal forces.

7.1 Shear-force methods

The vibration of a probe in a direction parallel to the sample surface is influenced by the
proximity of the sample. Typically, the probe is oscillated at the resonance frequency of
its mechanical support (vertical beam, tuning fork) and the amplitude, phase, and/or fre-
quency of the oscillation are measured as a function of the probe–sample distance. The
interaction range is 1–100 nm, depending on the type of probe and the particular imple-
mentation. The nature of this so-called shear force is still under debate. It is accepted that
under ambient conditions the effect originates from the interaction with a surface humid-
ity layer. However, the shear force can even be measured under high-vacuum conditions
and at ultralow temperatures [5, 6], and thus there must be more fundamental interaction
mechanisms such as electromagnetic friction (cf. Section 15.3.2) [7]. Whatever the origin,
the distance-dependent shear force is an ideal feedback signal for maintaining an optical
probe in close proximity to a sample surface.

7.1.1 Optical fibers as resonating beams

The simplest type of shear-force sensor is the oscillating beam. It consists of a clamped
short piece of a glass fiber or a metal rod with a tip at its end. The resonance frequency
of the beam depicted in Fig. 7.2 scales with the square of its free length L. This scaling

setpoint
−

controller
G(ω)

amplification
A(ω)

interaction I(ω)

piezo
P(ω)

+

feedback

setpoint
feedback

=
G(ω)A(ω)P(ω)I(ω)

1 + G(ω)A(ω)P(ω)I(ω)

�Fig. 7.1 Characteristic diagram of a feedback loop employed in scanning probe microscopy. Ideally, the measured interaction
signal corresponds to the externally defined setpoint. The speed and stability of the feedback loop depend on the
parameters of the controller G(ω).
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holds for any type of cantilever fixed at one end. The fundamental resonance frequency of
an oscillating beam with circular cross-section is calculated as [8]

ω0 = 1.76

√
E

ρ

R

L2
, (7.1)

where E is Young’s modulus, ρ the specific mass density, R the radius of the beam, and
L the length of the beam. For the example of an optical fiber with radius R = 125 μm
and length L = 3 mm we obtain f0 = ω0/(2π ) ≈ 20 kHz. A typical quality factor of
such a probe in air is about 150. Changing the length of the fiber will strongly change the
resonance frequency according to Eq. (7.1).

When the end of the beam starts to interact with a surface the resonance frequency will
shift and the oscillation amplitude will drop. This situation is depicted in Figs. 7.3(a) and
(b) for a beam that is externally driven at a variable frequency ω. The amplitude and phase
of the beam oscillation are shown for two different distances d between the beam-end and
the sample surface. Figures 7.3(c) and (d) show the amplitude shift and the phase shift,
respectively, as functions of the distance d for the case in which the beam is driven at its
resonance frequency ω = ω0. The distance range over which the amplitude and phase
vary depends on the diameter of the beam, i.e. the tip diameter in the case of a sharp
probe. Because of the monotonic behavior of the curves in Figs. 7.3(a) and (b), ampli-
tude and phase are well-suited feedback signals. Usually they are detected with a lock-in
amplifier. As will be discussed later on, in high-sensitivity applications that require a high
Q-factor (narrow resonances) it is favorable not to drive the beam at a fixed frequency ω.
Instead, with a self-oscillating circuit the beam can be vibrated at its distance-dependent
resonance frequency [9]. As illustrated in Figs. 7.3(a) and (b), the resonance frequency
shifts as the oscillating probe is advanced towards the sample surface and thus the fre-
quency shift�ω can be used as an alternative feedback signal. A further possibility is to use
the Q-factor of the resonance as a feedback signal, which would correspond to operation in
constant-dissipation mode. Which type of feedback signal to use depends on the particu-
lar type of experiment. In general, complementary information about the probe–sample

x

z

y = yz(y, t)

2R

L

y

�Fig. 7.2 Sketch of a quartz beam of length L used to calculate the resonances of an oscillating fiber probe.
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�Fig. 7.3 Resonance of a vibrating beam. The amplitude (a) and phase (b) of a beam driven at a frequencyω. As the beam-end
starts to interact with a sample surface, the resonance shifts and the amplitude drops. Images (c) and (d) show the
amplitude and phase at frequencyω = ω0 as functions of the distance between the beam-end (tip) and the surface.
The distance range over which the amplitude and phase vary depends on the interaction area (tip sharpness).

interaction can be accessed by recording the amplitude, phase, frequency shift, and
Q-factor simultaneously as auxiliary signals, as in standard atomic-force microscopy.

There are several ways of directly detecting the vibration of an oscillating optical probe.
The simplest method (see Fig. 7.4(a)) is to project the light emitted or scattered from
an optical probe onto a suitably positioned aperture and to detect the transmitted light
intensity. The modulation amplitude of the optical signal at the dither frequency of the
tip will reflect the amplitude and phase of the tip oscillation [10]. In a near-field optical
microscope, this method interferes with the detection path of the optical signal and thus
can be influenced by the optical properties of the sample. Therefore, alternative optical
detection schemes employing a beam path perpendicular to the optical detection path of
the microscope have been developed. An auxiliary laser can be pointed to the probe and
the resulting diffraction pattern is detected by a split photodiode (see Fig. 7.4(b)). This
scheme works well but it can suffer from mode hopping of the laser diode or drifts in
the mechanical set-up leading to changes in the (interference) pattern on the photodiode.
Also, it is clear that the motion sensed along the shaft of the probe is not identical to the
motion of the tip apex itself. This can be a problem if higher-order oscillation modes of
the probe are excited. The same arguments may apply to interferometric detection schemes,
e.g. using differential interferometry [11] or a fiber interferometer [12, 13] (see Figs. 7.4(c)
and (d)). The latter methods are, however, very sensitive and can detect amplitudes well
below 1 nm. However, the direct optical detection of probe oscillation is no longer widely
employed because indirect methods, using quartz or piezoceramic sensors, have proven to
be favorable in terms of sensitivity and simplicity of implementation.
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�Fig. 7.4 Different methods for the direct detection of the oscillation of an optical probe. (a) Aperture detection scheme: the
light emitted or scattered by the probe is focused onto a pinhole. The detected light is modulated at the mechanical
resonance frequency of the probe. (b) Laser deflection scheme: an infrared diode laser is scattered or deflected by the
fiber probe. The resulting oscillating fringe pattern is directed to a split photodiode. (c) Differential interferometry
using a Wollaston prism. (d) Interferometry using a fiber-optic interferometer.

7.1.2 Tuning-fork sensors

When using optical methods to detect the optical probe’s lateral vibration there is the dan-
ger that the optical detection interferes with the detection of a generally weak near-field
optical signal. This is especially important when spectroscopic experiments are performed
or photosensitive samples are investigated. Therefore, alternative sensing methods, that do
not employ light, have been developed. Many of them are based on measuring changes in
the admittance of piezoelectric devices that are related to a change in the resonant behav-
ior upon interaction with the sample of the piezoelectric device itself or an optical probe
attached to it. The piezoelectric element can be a piezo plate [14] or tube [15]. However,
the most successful and widespread method of shear-force detection today is based on
microfabricated quartz tuning forks [16], which were originally developed for use as time
standards in quartz watches.

Figure 7.5(a) shows a photograph of a typical quartz tuning fork. It consists of a micro-
machined quartz element shaped like a tuning fork with electrodes deposited on the surface
of the device. At the base, the tuning fork is supported by an epoxy-resin mounting (left
side). The overall length of the element without mount is about 5.87 mm. The width is
1.38 mm and the thickness of the element is 220 μm. It has two electric connections that
contact the electrodes of the tuning-fork element as sketched in Fig. 7.5(b). For use in
clocks and watches, the tuning fork is encapsulated by a metal cap in order to protect it
against ambient parameters such as humidity. The metal capsule has to be removed if the
tuning fork is to be used as a shear-force sensor. Tuning-fork crystals are fabricated in dif-
ferent sizes and laid out for different resonance frequencies. The most common frequencies
are 215 Hz = 32 768 Hz and 100 kHz.
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(a)

(b)

�Fig. 7.5 Quartz tuning fork. (a) Enlarged photograph. The dimensions of the quartz element shown are
5870μm× 1380μm× 220μm. (b) Connection scheme of a quartz tuning fork for a cut perpendicular to the
prongs. Adapted from [17].

The mechanical oscillation of the tuning-fork prongs induces surface charges that are
picked up by the electrodes and measured by an external electronic circuit. Hence, the
tuning fork acts as a mechanical–electrical converter similar to a piezoceramic actuator.
Vice versa, an alternating voltage applied to the tuning-fork electrodes gives rise to a
mechanical oscillation of the prongs. The particular electrode layout on the tuning fork
ensures that only movements of the prongs against each other can be excited and detected
electronically. This is because contraction and dilatation occur perpendicular to the field
lines sketched in Fig. 7.5(b). If the tuning-fork oscillation is excited via mechanical cou-
pling to a separate oscillator (e.g. a dither piezo) one has to make sure that the correct mode
is excited because otherwise no signal can be detected. The advantages of quartz tuning
forks compared with other piezoelectric elements, apart from their small size, are their
standardized properties and low price due to large-scale production. The small size allows
optical (fiber) probes to be attached to one prong of a fork such that even a weak interac-
tion of the probe apex with the sample will rigidly couple to the motion of the tuning-fork
element and influence its oscillation. Figure 7.6 shows a sketch of a typical setting. In this
scheme of shear-force detection, the tuning-fork prongs act as oscillating beams and not
the probe itself. It is important that the probe itself does not oscillate at the frequency of
the tuning fork in order to prevent a coupled-oscillator type of operation. Hence, the length
of the probe protruding from the tuning-fork end has to be kept as short as possible. For a
tuning fork operating at ≈32 kHz with an attached glass-fiber probe, Eq. (7.1) implies that
the protruding fiber length needs to be shorter than ∼2.3 mm.

7.1.3 The effective-harmonic-oscillator model

For small oscillation amplitudes x(t) of the driven tuning-fork oscillation, the equation of
motion for the tuning fork is that of an effective harmonic oscillator:
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�Fig. 7.6 Cartoon of a quartz tuning-fork sensor with attached tapered glass fiber (to scale) showing the relative dimensions of
the fiber probe and tuning-fork sensor. Left: sensor. Right: sample.

mẍ(d, t) + mγ (d)ẋ(d, t) + mω2
0(d) x (d, t) = Fe−iωt. (7.2)

Here, γ is the damping constant, f0 = ω0/(2π ) the resonance frequency, and F a constant
driving force, which is, for example, supplied by an external dither piezo shaking the tuning
fork. The parameter d indicates the dependence on probe–sample distance. For ease of
notation, the explicit dependence on d will be suppressed. The steady-state solution of
Eq. (7.2) is

x(t) = F/m

ω2
0 − ω2 − iγω

e−iωt. (7.3)

The amplitude of this oscillation is a Lorentzian lineshape function with a Q-factor

Q = f0
�f

= ω0

γ
√

3
, (7.4)

where �f is the full width at half-maximum of the resonance. Similarly to γ and ω0, the
Q-factor and the oscillation amplitude x(t) depend on the probe–sample distance d (see
Fig. 7.3(a)). The Q-factor of a tuning fork is on the order of 103–104 under ambient con-
ditions and can be several orders of magnitude higher in vacuum. Such a high Q originates
from the fact that there is no center-of-mass motion. While one prong moves to the left, the
other prong moves to the right, so there is no net mass displacement.

The interaction of the probe with the sample surface affects two types of forces: (1) a dis-
sipative friction force associated with the second term in Eq. (7.2) and (2) a reactive elastic
force due to the third term in Eq. (7.2). We will derive expressions for both of these forces
and estimate their magnitude. Let us first note that both the damping constant γ and the
spring constant k = mω2

0 have two different contributions: (1) a static or intrinsic one asso-
ciated with the physical properties of the tuning fork itself and (2) an interaction-mediated
contribution due to the probe–sample interaction. An expression for the interaction part
of γ can be derived from the oscillation amplitude Eq. (7.3) evaluated at the resonance
frequency, i.e.

γ (d) = γstat + γint(d) = F/m

ω0(d) x 0(d)
, (7.5)
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with x0 being the oscillation amplitude and γint the interaction-mediated damping constant.
Notice that γint(d→∞) = 0, which implies that

γint(d) = γstat

[
ω0(∞) x0(∞)

ω0(d)x0(d)
− 1

]
. (7.6)

According to the second term in Eq. (7.2), the amplitude of the interaction-induced friction
force is calculated as

Ffriction
int (d) = mγint(d) ω0(d) x0(d) =

[
1 − ω0(d)x0(d)

ω0(∞)x0(∞)

]
kstat x0(∞)√

3 Q(∞)
, (7.7)

where we used Eq. (7.4) and the property m = kstat/ω
2
0(∞). Next, we use the fact that the

amplitude x0 changes faster with distance than does the resonance frequency ω0, which
allows us to drop the dependence on ω0 in the expression inside the brackets. Furthermore,
the voltage V due to the induced surface charge at the surface of the tuning fork is directly
proportional to the oscillation amplitude and thus

Ffriction
int (d) =

[
1 − V(d)

V(∞)

]
kstat√

3 Q(∞)
x0(∞). (7.8)

This is the key expression for estimating the friction forces in shear-force microscopy. All
the parameters in this expression are directly accessible. It can be shown that the ratio
x0/Q is independent of the probe–sample distance d, which supports the hypothesis of a
viscous origin of the friction force, i.e. the friction is proportional to the velocity [5]. Thus,
as the probe is advanced towards the sample surface a reduction in oscillation amplitude
corresponds to a proportional reduction of the quality factor.

Let us now work out the numbers for a realistic situation. The expression in brackets
takes on the value of 0.1 if we assume a feedback setpoint corresponding to 90% of the
original voltage V(∞). A 32-kHz tuning fork with spring constant kstat = 40 kN m−1 can
be operated at an oscillation amplitude of x0(∞) = 10 pm (less than a Bohr radius!),
and a typical quality factor with attached tip is Q(∞) ≈ 1200. With these parameters, the
interaction-induced friction force turns out to be Ffriction

int ≈ 20 pN, which is comparable to
AFM measurements obtained using ultrasoft cantilevers.

If a tuning-fork prong with kstat = 40 kN m−1 is displaced by an amount of x0 = 10 pm a
surface charge difference of roughly 1000 electrons is built up between the two electrodes.
Typically, the piezo-electromechanical coupling constant is of the order of

α = 10 μC m−1. (7.9)

The exact value depends on the specific type of tuning fork. For an oscillation with 32 kHz,
this corresponds to a current-to-displacement conversion of 2 A m−1, which has been
confirmed experimentally with a laser-interferometric technique [18]. Using a current-to-
voltage conversion with a resistance of 10 M�, an oscillation amplitude of x0 = 10 pm
gives rise to an oscillating voltage with amplitude V = 200 μV. This voltage must be
further amplified before it is processed, for example, by a lock-in amplifier. While an
oscillation amplitude of 10 pm seems very small, it is nevertheless more than a factor
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of 20 larger than the thermally induced oscillation amplitude. The latter is calculated with
help of the equipartition principle as

1

2
kstatx

2
rms =

1

2
kBT , (7.10)

where T is the temperature and kB the Boltzmann constant. At room temperature we obtain
xrms = 0.32 pm, which corresponds to a peak noise amplitude of 0.45 pm.

Finally, we turn our attention to the elastic force associated with the third term in
Eq. (7.2). Similarly to the case of the damping constant, the spring constant k is character-
ized by a static part and an interaction-induced part. Because the mass m is independent of
the probe–sample distance we obtain

m = kstat + kint(d)

ω2
0(d)

= kstat

ω2
0(∞)

→ kint(d) = kstat

[
ω2

0(d)

ω2
0(∞)

− 1

]
. (7.11)

Introducing this relationship into the expression for the amplitude of the interaction-
induced elastic force gives

Felastic
int (d) = kint(d)x 0(d) =

[
ω2

0(d)

ω2
0(∞)

− 1

]
kstatx 0(d). (7.12)

As an example, we consider a small frequency shift of 5 Hz and assume that this shift is
again associated with a reduction of the oscillation amplitude x0(∞) = 10 pm to 90%, so
that x0(d) = 9 pm. For the same parameters as used before, the elastic force amplitude
turns out to be Felastic

int ≈ 110 pN, which demonstrates that typically the elastic force is
stronger than the friction force. However, as will be discussed later on, measurements of
Ffriction

int rely on measurements of amplitude variations which are inherently slow for high
Q-factors. Therefore, measurements of frequency shifts and thus of Felastic

int are often a good
compromise between sensitivity and speed.

7.1.4 Response time

The higher the Q-factor of a system is, the longer it takes to respond to an external signal.
On the other hand, a high Q-factor is a prerequisite for high sensitivity. Thus, short response
time and high sensitivity tend to counteract each other and a compromise between the two
has to be found. The parameters of a tuning fork used for probe–sample distance control
have to be adjusted so that there is sufficient sensitivity to prevent probe or sample damage
and the response time is sufficiently short to guarantee reasonable scanning speeds. For
example, the use of ductile gold tips as near-field probes demands interaction forces smaller
than ≈200 pN. The same is true if soft biological tissue is to be imaged. Such small forces
require a high Q-factor, which limits the image-acquisition time.

To illustrate the relationship between the Q-factor and the response time, let us consider
the amplitude and phase of the complex steady-state solution of the harmonic-oscillator
model (cf. Eq. (7.3))
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x0 = F/m√
(ω2

0 − ω2)2 + ω2
0ω

2/(3Q2)
, (7.13)

ϕ0 = tan−1

[
ω0ω√

3Q (ω2
0 − ω2)

]
, (7.14)

where we expressed the damping constant in terms of the quality factor using Eq. (7.4). In
terms of x0 and ϕ0 the solution can be written as

x(t) = x0 cos(ωt + ϕ0). (7.15)

We will now consider what happens if the probe–sample distance d is abruptly changed
from one value to another [9]. As an initial condition we assume that the resonance fre-
quency changes instantaneously from ω0 to ω′0 at the time t = 0. The solution is provided
by Eq. (7.2), and with the proper boundary conditions we obtain

x(t) = x′0 cos
(
ωt + ϕ′0

)+ xte
−ω′0t/(2

√
3Q) cos(ωtt + ϕt). (7.16)

The solution consists of a steady-state term (left) and a transient term (right). x′0 and ϕ′0
are the new steady-state amplitude and phase, respectively. Similarly, xt and ϕt and ωt are
the corresponding parameters of the transient term. Their exact values follow from the
boundary conditions.

Figure 7.7 shows the envelope of typical transient behavior described by Eq. (7.16) for
a tuning fork with a typical Q-factor of 2886. Upon a change of distance at t = 0 it takes
about 2Q oscillation cycles to reach the new steady state. The response time of the tuning
fork can be defined as

τ = 2
√

3Q

ω′0
≈ 2

√
3Q

ω0
, (7.17)
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�Fig. 7.7 Transient response of an oscillating tuning fork (Q = 2886) upon a change in probe–sample distance d at t = 0.
The step causes a resonance-frequency shift of 16.5 Hz from 33 000 to 33 016.5 Hz following Eq. (7.16). Only after
approximately 2Q = 10 000 oscillation periods is the new steady state reached. Individual oscillations cannot be
resolved – only the envelope is visible.
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which is as large as ∼300 ms. Thus, the bandwidth of the feedback loop becomes very
small and the scanning speeds very slow if the amplitude serves as a feedback signal.
To overcome this problem, it was proposed that one could use the resonance-frequency
shift as a feedback signal [9]. In a first approximation, the resonance frequency responds
instantaneously to a perturbation; however, one has to keep in mind that it takes at least one
oscillation period to define a frequency. The frequency shift can be monitored, for example,
by using a phase-locked loop (PLL) as in FM demodulators used in radios. However, here
also the available bandwidth is not unlimited because of the low-pass filtering used in the
process. In other words, one needs a number of oscillation cycles in order to compare the
phase to be measured with a reference.

7.1.5 Equivalent electric circuit

So far, we have assumed that the tuning fork is driven by a constant driving force F. This
force can be supplied mechanically by an external dither piezo attached in the vicinity
of the tuning fork. This type of mechanical excitation is favorable in the sense that the
driving circuit is electrically decoupled from the system and hence provides better stability
and noise performance. On the other hand, mechanical shaking gives rise to center-of-mass
oscillation of the tuning fork that does not correspond to the desired “asymmetric” mode of
operation (prongs oscillating out of phase). Consequently, mechanical excitation provides
poor coupling to the tuning-fork oscillation. Electrical excitation can be more favorable
because of the simplicity of implementation. When using the fully electric operation of a
tuning fork, the measurement of the dither motion reduces to a simple impedance Z(ω) or
admittance Y(ω) measurement.

The admittance of a piezoelectric resonator can be modeled by a Butterworth–Van Dyke
equivalent circuit [17] as shown in Fig. 7.8(a). It can be expressed as

LRC

C0

(a)

(b)

^

Uin(ω)
+

–

–A

Cp

Rp

Cx

~ Uout(ω)

�Fig. 7.8 Equivalent electric circuit of a tuning fork and its measurement. (a) Symbol and Butterworth–Van Dyke equivalent
circuit. (b) Measurement of the tuning-fork admittance. The capacitor Cx and the gain of−A compensate for the
tuning fork’s stray capacitance C0.
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Y(ω) = 1

Z(ω)
= 1

R + (iωC)−1 + iωL
+ iωC0. (7.18)

Here, the inductance L, the resistance R, and the capacitance C are characteristic values for
a certain type of resonator. The parallel capacitance C0 originates from the pick-up elec-
trodes and external leads connecting to the resonator. Equation (7.18) can be represented
by a Nyquist plot (see Fig. 7.9(a)), in which Im(Y) is plotted against Re(Y) parameterized
by the frequency ω. The resulting plot, characteristically for a resonator, is a circle in the
complex admittance plane that is offset along the imaginary axis by ωC0. Plotting the abso-
lute value of Y(ω) as a function of ω using a logarithmic scale yields the resonance curve
of the oscillator shown in Fig. 7.9(b). Using the parameters of a typical tuning fork listed
in the caption of Fig. 7.9 gives rise to a resonance at 32 765 Hz. The resonance frequency
is determined by f0 = 1/(2π

√
LC) and the quality factor by Q = √

L/(CR2). The small
negative peak at higher frequencies is a consequence of the stray capacitance C0, which
can be traced back to the offset of the circular admittance locus in Fig. 7.9(a). Increasing
C0 hardly influences the position of the resonance peak, but distorts the shape of the curve
by moving the second peak closer to the actual resonance.

A scheme for measuring the admittance is depicted in Fig. 7.8(b). The transfer function
of this circuit is determined as

Uout

Uin
(ω) = − Rp

1 + iωRpCp

iωC + (1 − ω2CL + iωRC)(iωC0 − AiωCx)

1 − ω2CL + iωRC
. (7.19)

It can be seen that by adjusting the variable negative gain −A it is possible to compensate
for the influence of C0, which, if left uncompensated, results in a suboptimal signal-to-
noise ratio due to the high- and low-frequency offsets introduced to Uout. The first term in
Eq. (7.19) corresponds to a low-pass filter due to the feedback resistor’s stray resistance.
Notice that the current through the tuning fork is directly determined by the applied volt-
age Uin. Thus, following our previous example, an interaction-induced friction force of
Ffriction

int = 20 pN (oscillation amplitude 10 pm) requires an input voltage of Uin ≈ 200 μV.
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�Fig. 7.9 Plots of the admittance Y(ω). (a) Nyquist plot of the admittance in the complex plane. The values used for the plot are
C0 = 1.2 pF, L = 8.1365 kH, R = 27.1 k�, and C = 2.9 fF. For the thin curve the stray capacitance was increased
by a factor of 10. (b) The absolute value of the admittance as a function of the frequency.
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Such a small voltage is difficult to deliver and requires voltage dividers close to the tuning-
fork circuit if a reasonable signal-to-noise ratio is to be achieved. From this perspective,
mechanical excitation can be favorable over electrical excitation. Finally, it should be noted
that the piezo-electromechanical coupling constant α (Eq. (7.9)) can be determined if both
the mechanical constants and the equivalent electrical constants of the tuning fork are
known [17]. For example, by equating the potential energies Q2/(2C) = kstatx2

0/2 and
replacing the charge Q by αx0 one finds

α = √kstatC. (7.20)

Similar relationships can be derived by considering the equivalence of kinetic energies.

7.2 Normal-force methods

Using shear-force interactions to control the probe–sample distance has the advantage that
any type of probe tip can be used as long as it is shaped approximately like a pencil and is
small enough to be attached to a tuning fork. The disadvantage of this configuration is that
the spring constant of the probe normal to the surface is very high. This means that a small
instability or even the unavoidable small error in probe–sample distance control (as might
occur at steep steps in the sample) is immediately translated into a very high normal force
acting on the probe apex. Thus, shear-force feedback is a risky operation if there is little
information on surface topology. In AFM, this problem is less important since commercial
AFM cantilevers have well-defined and rather small spring constants normal to the probing
tip. As a consequence, small instabilities result in only small excess forces acting on the
probe apex. For these reasons, and with the goal of mass production, integration, and user
friendliness in mind, there have been several attempts to integrate optical probes onto AFM
cantilevers. In the following, we will discuss two different implementations working in
normal-mode operation.

7.2.1 Tuning fork in tapping mode

By using the arrangement shown in Fig. 7.10 a probe attached to a tuning fork can also
be operated in the normal-force mode. For optical fibers it was found necessary to break
the fiber just above the fixation point on the tuning fork in order to allow free vibration
of the prong [19]. Light is then delivered via a second cleaved fiber that is positioned just
above the probe fiber. In normal-force operation, the attached fiber probe is allowed to
protrude several millimeters beyond the attachment point because the normal motion is
not able to excite fiber vibration. For example, the protruding fiber can be dipped into a
liquid cell without wetting the tuning fork, which is very favorable for biological imaging.
Also, since tuning-fork prongs are very stiff cantilevers they can be used for non-contact
AFM in UHV since snap-into-contact effects appear only at very small probe–sample
distances [20].
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7.2.2 Bent-fiber probes

Cantilevered aperture probes with reasonably soft spring constants can be created by
deforming standard fiber probes during the fabrication process using a CO2 laser. The fiber
is aligned parallel to the sample surface with the end of the bent fiber facing the sample
perpendicularly. During raster scanning, the vertical motion of the fiber can be read out by
standard AFM beam-deflection techniques. Figure 7.11 shows a selection of cantilevered
fiber probes found in the literature. Because of their soft spring constants and the good
Q-factors, bent-fiber probes have been used for imaging of soft samples under liquids, see
e.g. Refs. [21, 22].

7.3 Topographic artifacts

In any type of scanning probe microscopy, image formation relies on recording a strongly
distance-dependent physical interaction between probe and sample. The information
encoded in the recorded images depends on the tip shape and on the path the tip takes.
In AFM, for example, non-ideal tip shapes are an important source of misinterpretations.
Blunt tips lead to low-pass-filtered images, i.e. deep and narrow trenches cannot be
recorded because the tip does not fit in (see e.g. [23]). In some scanning probe techniques a
single tip is capable of measuring several interactions simultaneously. For example, AFM
can record force and friction by simultaneously measuring cantilever bending and torsion.
However, only one of these measurements can be used as a feedback signal for controlling
the probe–sample distance. While the feedback keeps one signal constant, it can introduce
artifacts into the other signal. For example, as the shear-force feedback in a near-field opti-
cal microscope adjusts for a distance change, the vertical motion of the optical probe can
lead to intensity variations that are not related to the optical properties of the sample. In
this section we will analyze potential artifacts in near-field optical imaging that arise from
the fact that the optical signal is an auxiliary signal not used in the feedback loop.

Let us denote by X the distance-dependent feedback signal originating from a specific
probe–sample interaction such as shear force or normal force. The respective X image
will reflect the piezo movements that were necessary in order to keep X constant during
scanning. All other signals are auxiliary signals that result from the boundary condition

)b()a(

�Fig. 7.10 A tuning fork operated in the normal-force mode. The tuning fork is aligned parallel to the sample while the
probe is oscillating perpendicularly. (a) Side view. (b) Front view. The fork is tilted slightly in order not to affect
the second arm.
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X = constant. In principle, any distance-dependent signal can serve as the feedback signal.
It must, however, fulfill the following conditions. (1) The probe–sample distance depen-
dence must be short-ranged in order to maintain the probe in close proximity to the sample
and thus to guarantee high resolution. (2) The distance dependence must be a piecewise
monotonic function in order to guarantee that we have a stable feedback loop. Typically,
a near-field optical microscope renders two simultaneously recorded images: (1) a topo-
graphic image originating from keeping the shear-force feedback signal constant and (2)
an optical near-field image due to spatially varying optical properties of the sample and
probe–sample distance variations. The optical image can result, for example, from local
variations of sample transmission or from spatially distributed fluorescent centers.

In most cases, the optical interaction is not suitable as a feedback signal because it
is neither short-ranged nor monotonically dependent on the probe–sample distance. For
example, the optical transmission of an aperture probe near a transparent substrate was
discussed in Chapter 6. If the emission is integrated over a large range of angles that also
covers angles larger than the critical angle of the substrate, an increase of the transmission
for small distances is observed. For larger distances, however, interference undulations
render the optical response non-monotonic. Furthermore, the local light transmission could
be completely suppressed when the probe is scanned over a metal patch. This would result
in a loss of the feedback signal in an unpredictable way. As a consequence, optical signals
are recorded under the condition that the shear-force interaction is maintained constant.
This condition can be responsible for topographic artifacts in the near-field optical signal.

A representative sample with large topographic variations is depicted in Fig. 7.12. It
exhibits uniform optical properties but its topographic features are large compared with
the overall shape of the optical probe. From the discussion in Chapter 6 we know that
aperture probes have a more or less conical shape with a flat facet at the apex. For the
following we assume that the short-range probe–sample distance dependence of the optical
signal decreases monotonically. This is reasonable because of the confined and enhanced
fields near the aperture. The topography of the sample (S) is assumed to be measured via
shear-force feedback and, since the probe’s profile is not a delta function, the measured

)c()b()a(

�Fig. 7.11 Cantilevered fiber probes. (a) A bent-fiber probe with a mirror facet for beam deflection. The resonance frequency of
the cantilevered probe is∼14 kHz and the Q-factor is∼30 in water, which is sufficient to perform near-field imaging
on soft samples in liquid cells. From [21]. (b) A different type of bent-fiber probe. The resonances are typically in the
range 30–60 kHz, the Q-factors are larger than 100, and the measured spring constants are 300–400 N m−1.
From [22]. (c) A commercially available cantilevered fiber probe. Image courtesy of Nanonics Imaging Ltd.
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profile (T) will always differ from the actual sample profile S. The “mechanical” point of
contact changes during scanning and gives rise to variations in the “optical” probe–sample
distance. This distance can be defined as the vertical distance between the center of the
aperture and the sample profile S. Since the optical signal is distance-dependent, it will
reflect differences between S and T. The resulting optical signal is sketched in Fig. 7.12,
trace O. It demonstrates the appearance of features in the optical image that are related
purely to a topographic artifact.

A second limiting case is a sample with uniform optical properties with topographic
features that are small compared with the overall shape of the probe (see Fig. 7.13). The
end of an aperture probe is typically not smooth but exhibits grains that result from the
metal-evaporation process (cf. Fig. 6.18). These grains often act as minitips that mediate
the shear-force interaction. Here we assume that a single minitip is active. Because of the
minitip, the apparent topography T will match the actual topography S very well. The
probe produces an excellent high-resolution topographic image. However, while scanning
over the small features of the sample S in force feedback, the average distance between the
optical probe and the sample surface will change because of the distance-dependent optical
signal. This leads to an optical image that contains small features that are highly correlated
to the topography. In particular, it is possible that the size of these optical features turns
out to be much smaller than what could be expected from the available optical resolution,
e.g. estimated from the aperture diameter of the optical probe determined independently
by SEM.

7.3.1 Phenomenological theory of artifacts

In order to put the discussion on more solid ground, we introduce system signal functions
SNFO(x, y, z) and SSF(x, y, z) which represent the optical signal and the distance-dependent
feedback signal, respectively [3]. Both signals depend on the coordinates (x, y, z) of the
probe relative to the sample. The signal SNFO can represent, for example, the locally trans-
mitted or reflected light, polarized or depolarized components of locally scattered light,
or the fluorescence due to local excitation by the near-field probe. SNFO can also be the
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�Fig. 7.12 Near-field optical imaging of a sample with large topographic variations. Left panel: S, sample profile; T, apparent
topography measured by the probe; O, detected optical signal resulting from the particular probe–sample distance
dependence (right panel).
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�Fig. 7.13 Near-field optical imaging of a sample with small topographic variations. Left panel: S, sample profile; T, apparent
topography as measured by the probe; O, detected optical signal resulting from the particular probe–sample distance
dependence (right panel).

amplitude or phase of a modulated signal if differential techniques such as probe dithering
are employed. Typically, SNFO exhibits a weaker probe–sample distance dependence than
that of the feedback signal SSF.

The signals that are actually recorded during an experiment can be derived from
SNFO(x, y, z) and SSF(x, y, z) by specifying a path that the probe takes. This path depends
on the mode of operation of the microscope. Let these recorded signals be RNFO(x, y) and
RSF(x, y), where

RNFO(x, y) = SNFO[x, y, zscan(x, y)], (7.21)

RSF(x, y) = SSF[x, y, zscan(x, y)]. (7.22)

Here, zscan(x, y) is the path of the probe. It can be derived from the voltage applied to the
distance-controlling piezo element. The relation between the different signals is illustrated
in Fig. 7.14.

Constant-height mode

In constant-height mode, the probe is scanned in a plane parallel to the average object
surface, resulting in

zscan = zset, (7.23)

RNFO(x, y) = SNFO(zset) + δSNFO(x, y, zset), (7.24)

where we separated a constant background SNFO from the signal. Any structure visible
in the scan image corresponds to a lateral variation of SNFO originating from optical or
surface-related properties of the sample.

Constant-gapmode

In constant-gap mode, the feedback forces the probe to follow a path of (nearly) constant
probe–sample separation. Consequently,

RSF(x, y) = SSF(x, y; zscan) ≈ Rset, (7.25)
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zscan = z + δz(x, y), (7.26)

RNFO(x, y) = SNFO(z) + δSNFO(x, y, z) + ∂SNFO

∂z

∣∣∣
z
· δz. (7.27)

In Eq. (7.25) the ≈ symbol indicates possible deviations caused by technical limitations of
the electromechanical feedback circuit. Such deviations can become significant when the
topography undergoes rapid changes and/or the scan speed is too high. Furthermore, z is
the average z-position of the probe, and δz(x, y) describes the variations of the z-position
around z due to the feedback. It should be emphasized that the following considerations
are valid for any path that the probe may take, no matter whether it follows the topography
exactly or not.

The signal RNFO(x, y) in Eq. (7.27) is developed into a power series of δz of which only
the first terms are retained. The first two terms render the same signal as is obtained for
operation in constant-height mode. However, the third term represents the coupling of the
vertical z-motion with the optical signal. It is this term that leads to common artifacts. For
the optical properties to dominate, the variations of light intensity in a scan image have to
satisfy

δSNFO(x, y; z) � ∂SNFO

∂z

∣∣∣
z
· δz. (7.28)

This condition becomes more difficult to achieve the stronger the light confinement
of the optical probe is. This is because a laterally confined field decays very rapidly
with distance from the probe. Therefore, probe–sample distance variations have a much
stronger effect and can easily overshadow any contrast originating from the optical
properties of the sample.

�Fig. 7.14 Influence of probe geometry on recorded scan images. The optical signal SNFO is represented by solid lines and the
feedback signal SSF by dashed lines. Both scan lines are plotted relative to the center of the aperture probe. The
minitip on the rim of the aperture is oversized in order to better visualize the resulting effects. Images (c) and (d) show
for cases (a) and (b), respectively, recorded scan lines for different modes of operation: constant-gap mode (CGM) and
constant-height mode (CHM). CGM introduces artifacts because of the varying probe–sample distance. From [3].
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For two different probes, Figs. 7.14(c) and (d) show the signals that are recorded in
constant-height mode and in constant-gap mode. Only the probe with the small aperture
provides an optical image that is representative of the sample. The large-aperture probe
cannot generate any high-resolution optical image, and for operation in constant-gap mode
the scan lines are dominated by the shear-force response specific to the passage over the
bump. In Fig. 7.14(c), the true near-field signal can still be recognized, but in Fig. 7.14(d)
the CGM trace is not at all related to the optical properties of the sample.

7.3.2 Example of optical artifacts

A simple experiment will serve as an illustration of artifacts originating from differ-
ent modes of operation. Figure 7.15 shows topographic images and near-field optical
transmission-mode images of a so-called Fischer projection pattern [24]. Such patterns
are created by evaporating a thin layer of metal onto a closely packed monolayer of latex
spheres. The triangular voids between the spheres are filled with metal. After metal evapo-
ration, the latex spheres are washed away in an ultrasonic bath. The result is a sample with
periodically arranged triangular patches. These patches, when imaged at close proximity,
show strong optical-absorption contrast. The process of using microspheres for creating
nanostructured surfaces is also called nanosphere lithography.

The same sample was imaged using two different aperture probes: (1) a probe with
an aperture on the order of 50 nm (a good probe) and (2) a probe with a large aperture
of 200 nm (a bad probe). Because the metal patches are created using spheres of diam-
eter 200 nm, the resulting triangular patches have a characteristic size of about 50 nm,
which can be resolved only using the good probe. For both probes, two sets of images

�Fig. 7.15 Imaging of a latex-sphere projection pattern in constant-gap mode (upper row) and constant-height mode (lower
row) with two different near-field probes, a “good” probe with an aperture of 50 nm (left side) and a “bad” probe
with an aperture of 200 nm (right side). The constant-gap topographic and optical images show sharp features for
both probes but only the constant-height-mode image for the “good” probe shows optical contrast.
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were recorded: one in constant-gap mode, using shear-force feedback, and one in constant-
height mode. The left panel shows the results for the good probe: in constant-gap mode
the topography of the sample is well reproduced, probably due to a mini-tip on the aper-
ture. The optical image strongly resembles the topographic image. It is difficult to tell how
much the optical signal is influenced by the feedback. When the same area is imaged using
constant-height mode (lower left row), the topographic signal is constant apart from iso-
lated spots where the feedback becomes activated to prevent the probe from touching the
surface (white spots). However, the optical signal completely changes its appearance. The
contrast becomes much clearer and the metal patches are well resolved. For the bad probe,
we observe an optical image with fine details only in constant-gap mode. As soon as we
switch to constant-height mode the optical resolution becomes much worse. This shows
clearly that the apparent optical resolution observed in the constant-gap optical image is
purely artificially induced by the feedback loop.

7.3.3 Discussion

We have determined that if a force feedback is applied to control the probe–sample dis-
tance of samples with structured surfaces it is not possible to record optical images with
pure optical contrast. Images recorded in constant-height mode are more likely to reflect
the true optical resolution and contrast. Constant-height imaging does not use feedback
control while scanning. The probe is raster scanned in a plane parallel to the mean sample
surface. The measured optical signal thus cannot be influenced by feedback movements of
the tip. Although constant-height images are more likely to represent the optical properties
of the sample, they are still subject to misinterpretations because of the varying distance
between probe and sample when scanning over structured surfaces. Real optical contrast
can be expected only if the aperture size is sufficiently small compared with the charac-
teristic size of sample features and the local optical coupling between probe and sample is
large. Although the contrast originating from a varying probe–sample distance is a purely
topographic effect, it should not be considered an artifact but is rather a property inherent to
near-field optical imaging. Since the minimum distance between probe and sample is given
by the highest topographic feature within the scan range, high resolution can be expected
only for samples with low topography. Features on the bottom of surface depressions will
be poorly resolved. In short, only features interacting with the highly localized near-field
of the optical probe can be imaged with high resolution.

Image interpretation can be greatly facilitated by taking spectroscopic information
into account. For example, fluorescence spectra and Raman spectra provide a highly
specific fingerprint for the chemical composition of the sample (e.g. the structure of a
carbon nanotube). Thus, near-field optical imaging combined with spectroscopy is able to
unambiguously localize certain target molecules. Consequently, the recorded images are
artifact-free maps of the spatial distribution of the target species. Despite this clear advan-
tage, varying probe–sample distances will still pose a problem for quantifying the local
concentration of the target species.
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Problems

7.1 In tip-enhanced microscopy, a pointed gold wire is attached to one arm of a tuning
fork. Assume that the wire is cylindrical with a diameter of 100 μm and that the
tuning fork’s resonance frequency is 32.7 kHz. In order that the attached gold wire
follows the oscillation of the tuning fork more or less instantaneously, the resonance
frequency of the protruding wire must be at least twice the tuning-fork frequency.
Determine the maximum length of the protruding wire.

7.2 With the help of the equipartition principle we determined the thermally activated
oscillation xrms of the tuning fork. Here we calculate the spectral force density SF( f )
in units of N2 Hz−1. SF is the spectral noise force that excites the end of a tuning-fork
prong to a vibration amplitude xrms. It has a flat frequency dependence (white noise)
and can be determined through

x2
rms =

∫ ∞

0
SF

f 2
0 /k

( f 2
0 − f 2) + i f f0/Q

df .

Here, the Lorentzian term following SF is the transfer function of the tuning fork.
(1) Determine SF in terms of the spring constant k, the Q-factor Q, the temperature

T , and the resonance frequency f0. Hint: evaluate the integral in the limit Q � 1
and apply the equipartition theorem.

(2) Use k = 40 kN m−1, T = 300 K, f0 = 32.7 kHz, and Q = 1000 to determine the
thermal force in a spectral bandwidth of 100 Hz.

7.3 Owing to the typically high Q-factor of a tuning fork it takes a long time for the
oscillation amplitude to respond to a sudden change of the feedback signal.
(1) Derive the solution given in Eq. (7.16) for a tuning fork whose frequency

changes abruptly from one frequency to another at the time t = 0. Determine
the values of xt, ϕt and ωt.

(2) Repeat the calculation but assume that the driving force F changes abruptly from
one value to another at t = 0.

(3) Discuss the main difference between the solutions in parts (1) and (2).
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8 Optical interactions

At the heart of nano-optics are light–matter interactions on the nanometer scale. For
example, optically excited single molecules are used to probe local environments and
metal nanostructures are exploited for extreme light localization and enhanced sens-
ing. Furthermore, various nanoscale structures are used in near-field optics as local light
sources.

The scope of this chapter is to discuss the interactions of light with nanoscale systems.
The light–matter interaction depends on many parameters, such as the atomic composition
of the materials, their geometry and size, and the frequency and intensity of the radiation
field. Nevertheless, there are many issues that can be discussed from a more or less general
point of view.

To rigorously understand light–matter interactions we need to invoke quantum elec-
trodynamics (QED). There are many textbooks that provide a good understanding of
optical interactions with atoms or molecules, and we especially recommend the books in
Refs. [1–3]. Since nanometer-scale structures are often too complex to be solved rigorously
by QED, one often needs to stick to classical theory and invoke the results of QED in a
phenomenological way.

8.1 Themultipole expansion

In this section we consider an arbitrary material system that is small compared with the
wavelength of light. We call this material system a particle. Although it is small compared
with the wavelength, this particle consists of many atoms or molecules. On a macroscopic
scale the charge density ρ and current density j can be treated as continuous functions of
position. However, atoms and molecules are made of discrete charges that are spatially
separated. Thus, the microscopic structure of matter is not considered in the macroscopic
Maxwell equations. The macroscopic fields are local spatial averages over microscopic
fields.

In order to derive the potential energy for a microscopic system we have to give up the
definitions of the electric displacement D and the magnetic field H and consider only the
field vectors E and B in the empty space between a set of discrete charges qn. We thus make

224



225 8.1 The multipole expansion

r0
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qn
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�Fig. 8.1 In the microscopic picture, optical radiation interacts with the discrete charges qn of matter. The collective response of
the charges with coordinates rn can be described by a multipole expansion with origin r0.

the replacements D = ε0E and B = μ0H in Maxwell’s equations (cf. Eqs. (2.1)–(2.4))
and set

ρ(r) =
∑

n

qnδ[r − rn], (8.1)

j(r) =
∑

n

qnṙnδ[r − rn], (8.2)

where rn denotes the position vector of the nth charge and ṙn its velocity (Fig. 8.1). The
total charge and current of the particle are obtained by a volume integration over ρ and j.

To derive the polarization and magnetization of the charge distribution we consider the
total current density as defined in Eq. (2.10),

j = dP
dt

+∇ × M. (8.3)

We ignored the contribution of the source current js which generates the incident field Einc

since it is not part of the considered particle. Furthermore, we incorporated the conduction
current jc into the polarization current. To solve for P we apply the operator ∇ · to both
sides of Eq. (8.3). The last term on the right-hand side vanishes because ∇ · ∇× = 0, and
the term on the left can be related to the time derivative of the charge density through the
continuity equation for charge (2.5). We then obtain

ρ = −∇ · P. (8.4)

If the particle is not charge neutral we need to add the net charge density to the right-hand
side. Using Eq. (8.1) for the charge density it is possible to solve for P as [1]

P(r) =
∑

n

qnrn

∫ 1

0
δ[r − srn]ds. (8.5)
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Together with the current density in Eq. (8.2) this expression can be introduced into
Eq. (8.3). It is then possible to solve for M as [1]

M(r) =
∑

n

qnrn×ṙn

∫ 1

0
sδ[r − srn]ds. (8.6)

To calculate the potential energy of the particle in the incident field we first consider fixed
charges, i.e. the charge distribution is not induced by the incident field. Instead, the charge
distribution is determined by the atomic and interatomic potentials. Of course, the particle
is polarizable, but for the moment we consider this to be a secondary effect.

We now consider the interaction between a discrete charge distribution and an elec-
tromagnetic field. The incident field in the absence of the charge distribution is denoted
as Einc. The electric potential energy of the permanent microscopic charge distribution is
determined as [4]

VE = −
∫

V
P · Einc dV = −

∑
n

qn

∫ 1

0
rn · Einc(srn)ds. (8.7)

Next, we expand the electric field Einc in a Taylor series with origin at the center of the
particle. For convenience we choose this origin at r = 0 and obtain

Einc(srn) = Einc(0) + [srn · ∇]Einc(0) + 1

2!
[srn · ∇]2Einc(0) + · · · . (8.8)

This expansion can now be inserted into Eq. (8.7) and the integration over s can be carried
out. Then, the electric potential energy expressed in terms of the multipole moments of the
charges becomes

VE = −
∑

n

qnrn · Einc(0) −
∑

n

qn

2!
rn · [rn · ∇]Einc(0)

−
∑

n

qn

3!
rn · [rn · ∇]2Einc(0) − · · · . (8.9)

The first term is recognized as the electric dipole interaction

V (1)
E = −p · Einc(0), (8.10)

with the electric dipole moment defined as

p =
∑

n

qnrn. (8.11)

The next higher term in Eq. (8.9) is the electric quadrupole interaction, which can be
written as

V (2)
E = −[

↔
Q ∇] · Einc(0), (8.12)

with the electric quadrupole moment defined as

↔
Q= 1

2

∑
n

qnrnrn, (8.13)
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where rnrn denotes the outer product. Therefore,
↔
Q becomes a tensor of rank two.1 Since

∇ · Einc = 0 we can subtract any multiple of ∇ · Einc from Eq. (8.12). We can therefore
rewrite Eq. (8.12) as

V (2)
E = −1

2
[(
↔
Q −A

↔
I )∇] · Einc(0), (8.14)

with an arbitrary constant A, which commonly is chosen as A = (1/3) |rn|2 because
this generates a traceless quadrupole moment. Thus, we can also define the quadrupole
moment as

↔
Q= 1

2

∑
n

qn

[
rnrn −

↔
I
3
|rn|2

]
. (8.15)

We avoid writing down the next higher multipole orders but we note that the rank of every
next higher multipole increases by one.

The dipole interaction is determined by the electric field at the center of the charge
distribution, whereas the quadrupole interaction is defined by the electric field gradient at
the center. Thus, if the electric field is sufficiently homogeneous over the dimensions of
the particle, the quadrupole interaction vanishes. This is why in small systems of charge,
such as atoms and molecules, often only the dipole interaction is considered. This dipole
approximation leads to the standard selection rules encountered in optical spectroscopy.
However, the dipole approximation is not necessarily sufficient for nanoscale particles
because of their larger size compared with that of an atom. Furthermore, if the particle
interacts with an optical near-field it will experience strong field gradients. This increases
the importance of the quadrupole interaction and modifies the standard selection rules.
Thus, the strong field gradients encountered in near-field optics have the potential to excite
usually forbidden transitions in larger quantum systems and thus extend the capabilities of
optical spectroscopy.

A similar multipole expansion can be performed for the magnetic potential energy VM.
The lowest-order term is the magnetic dipole interaction

V (1)
M = −md · Binc(0), (8.16)

with the magnetic dipole moment defined as

md =
∑

n

[qn/(2mn)]rn × (mnṙn). (8.17)

The magnetic moment is often expressed in terms of the angular momenta In = mnrn×ṙn,
where mn denotes the mass of the nth particle. We avoid deriving higher-order magnetic
multipole terms since the procedure is analogous to the electric case.

So far we have considered the polarization and magnetization of a charge distribution
that is not affected by the incident electromagnetic field. However, it is clear that the inci-
dent radiation will act on the charges and displace them from their unperturbed positions.

1 If we denote the Cartesian components of rn by (xn1 , xn2 , xn3 ) we can write Eq. (8.12) as V(2)
E =

−(1/2)
∑

i,j

[∑
n qnxni xnj

] [
(∂/∂xi)Ej(0)

]
.
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This gives rise to an induced polarization and magnetization. The interaction of the inci-
dent field Einc with the particle causes a change dP in the polarization P. The change in the
electric potential energy dVE due to this interaction is

dVE = −
∫

V
Einc · dP dV . (8.18)

To calculate the total induced electric potential energy VE,ind we have to integrate dVE over
the polarization range Pp . . . Pp+i, where Pp and Pp+i are the initial and final values of the
polarization. We now assume that the interaction between the field and the particle is linear
so that we can write P = ε0χEinc. In this case we find for the total differential d(P · Einc)

d(P · Einc) = Einc · dP + P · dEinc = 2 Einc · dP, (8.19)

and the induced potential energy becomes

VE,ind = −1

2

∫
V

[∫ Pp+i

Pp

d(P · Einc)

]
dV . (8.20)

Using Pp+i = Pp + Pi we finally obtain

VE,ind = −1

2

∫
V

Pi · Einc dV . (8.21)

This result states that the induced potential energy is smaller than the permanent potential
energy by a factor 1/2. The other 1/2 portion is related to the work needed to build up
the polarization. For Pi > 0 regions of high electric field create an attracting force on
polarizable objects, a property that is used in optical trapping (cf. Section 14.4) .

A similar derivation can be performed for the induced magnetization Mi and its associ-
ated energy. The interesting outcome is that objects with Mi>0 are repelled from regions
of high magnetic field. This finding underlies the phenomenon of eddy-current damping.
However, at optical frequencies induced magnetizations are practically zero.

8.2 The classical particle–field Hamiltonian

So far we have been concerned with the potential energy of a particle in an external electro-
magnetic field. However, for a fundamental understanding of the interaction of a particle
with the electromagnetic field we need to know the total energy of the system consisting
of particle and field. This energy remains conserved; the particle can borrow energy from
the field (absorption) or it can donate energy to it (emission). The total energy corresponds
to the classical Hamiltonian H, which constitutes the Hamiltonian operator Ĥ encoun-
tered in quantum mechanics. For particles consisting of many charges, the Hamiltonian
soon becomes a very complex function: it depends on the mutual interaction between the
charges, their kinetic energies, and the exchange of energy with the external field.

To understand the interaction between a particle and an electromagnetic field we first
consider a single point-like particle with mass m and charge q. Later we generalize the
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situation to systems consisting of multiple charges and with finite size. The Hamiltonian for
a single charge in an electromagnetic field is found by first deriving a Lagrangian function
L(r, ṙ) that satisfies the Lagrange–Euler equation

d

dt

(
∂L

∂ q̇

)
− ∂L

∂q
= 0, q = x, y, z. (8.22)

Here, q = (x, y, z) and q̇ = (ẋ, ẏ, ż) denote the coordinates and velocities of the charge,
respectively.2 To determine L, we first consider the (non-relativistic) equation of motion
for the charge

F = d

dt
[mṙ] = q(E + ṙ × B) , (8.23)

and replace E and B by the vector potential A and scalar potential φ according to

E(r, t) = − ∂

∂t
A(r, t) − ∇φ(r, t), (8.24)

B(r, t) = ∇ × A(r, t). (8.25)

Now we consider the vector components of Eq. (8.23) separately. For the x-component
we obtain

d

dt
[mẋ]=−q

[
∂φ

∂x
+ ∂Ax

∂t

]
+ q

[
ẏ

(
∂Ay

∂x
− ∂Ax

∂y

)
− ż

(
∂Ax

∂z
− ∂Az

∂x

)]

= ∂

∂x

[−qφ + q
(
Axẋ + Ayẏ + Azż

)]
− q

[
∂Ax

∂t
+ ẋ

∂Ax

∂x
+ ẏ

∂Ay

∂y
+ ż

∂Az

∂z

]
. (8.26)

Identifying the last expression in brackets with dAx/dt (total differential) and rearranging
terms, the equation above can be written as

d

dt

[
mẋ + qAx

]− ∂

∂x

[−qφ + q
(
Axẋ + Ayẏ + Azż

)] = 0. (8.27)

This equation has almost the form of the Lagrange–Euler equation (8.22). Therefore, we
seek a Lagrangian of the form

L = −qφ + q
(
Axẋ + Ayẏ + Azż

) + f (x, ẋ), (8.28)

with ∂f /∂x = 0. With this choice, the first term in Eq. (8.22) leads to

d

dt

(
∂L

∂ q̇

)
= d

dt

[
qAx + ∂f

∂ ẋ

]
. (8.29)

This expression has to be identical with the first term in Eq. (8.27), which leads to
∂f /∂ ẋ = mẋ. The solution f (x, ẋ) = mẋ2/2 can be substituted into Eq. (8.28) and, after
generalizing to all degrees of freedom, we finally obtain

L = −qφ + q
(
Axẋ + Ayẏ + Azż

)+ 1

2
m
(

ẋ2 + ẏ2 + ż2
)

, (8.30)

2 It is a convention of the Hamiltonian formalism to designate the generalized coordinates by the symbol q. Here,
it should not be confused with the charge q.
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which can be written as

L = −qφ + qv ·A + m

2
v ·v. (8.31)

To determine the Hamiltonian H we first calculate the canonical momentum3 p =
(px, py, pz) conjugate to the coordinate q = (x, y, z) according to pi = ∂L/∂ q̇i. The
canonical momentum turns out to be

p = mv + qA, (8.32)

which is the sum of mechanical momentum mv and field momentum qA. According to
Hamiltonian mechanics, the Hamiltonian is derived from the Lagrangian according to

H(q, p) =
∑

i

[
piq̇i − L(q, q̇)

]
, (8.33)

in which all the velocities q̇i have to be expressed in terms of the coordinates qi and conju-
gate momenta pi. This is easily done by using Eq. (8.32) as q̇i = pi/m− qAi/m. Using this
substitution in Eqs. (8.30) and (8.33) we finally obtain

H = 1

2m
(p − qA)2 + qφ. (8.34)

This is the Hamiltonian of a free charge q with mass m in an external electromagnetic
field. The first term renders the kinetic mechanical energy and the second term the poten-
tial energy of the charge. Notice that the derivation of L and H is independent of gauge,
i.e. we did not imply any condition on ∇ · A. Using Hamilton’s canonical equations
q̇i = ∂H/∂pi and ṗi = −∂H/∂qi it is straightforward to show that the Hamiltonian in
Eq. (8.34) reproduces the equations of motion stated in Eq. (8.23).

The Hamiltonian of Eq. (8.34) is not yet the total Hamiltonian Htot of the system “charge
plus field” since we did not include the energy of the electromagnetic field. Furthermore, if
the charge is interacting with other charges, as in the case of an atom or a molecule, we must
take into account the interaction between the charges. In general, the total Hamiltonian for
a system of charges can be written as

Htot = Hparticle + Hrad + Hint. (8.35)

Here, Hrad is the Hamiltonian of the radiation field in the absence of the charges and
Hparticle is the Hamiltonian of the system of charges (particle) in the absence of the elec-
tromagnetic field. The interaction between the two systems is described by the interaction
Hamiltonian Hint. Let us determine the individual contributions.

The particle Hamiltonian Hparticle is determined by the sum of the kinetic energies
pn · pn/(2mn) of the N charges and the potential energies V(rm, rn) between the charges
(intramolecular potential), i.e.

Hparticle =
∑
n,m

[
pn · pn

2mn
+ V(rm, rn)

]
, (8.36)

3 Careful, we’re using the same symbol for the dipole moment and the canonical momentum!
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where the nth particle is specified by its charge qn, mass mn, and coordinate rn. Notice that
V(rm, rn) is determined in the absence of the external radiation field. This term is solely
due to the Coulomb interaction between the charges. Hrad is defined by integrating the
electromagnetic energy density W of the radiation field (Eq. (2.57)) over all space as4

Hrad = 1

2

∫ [
ε0E2 + μ−1

0 B2
]

dV , (8.37)

where E2 = |E|2 and B2 = |B|2. It should be noted that the inclusion of Hrad is essen-
tial for a rigorous quantum-electrodynamical treatment of light–matter interactions. This
term ensures that the system consisting of particles and fields is conservative; it permits
the interchange of energy between the atomic states and the states of the radiation field.
Spontaneous emission is a direct consequence of the inclusion of Hrad and cannot be
derived by semiclassical calculations in which Hrad is not included. Finally, to determine
Hint we first consider each charge separately. Each charge contributes to Hint a term that
can be derived from Eq. (8.34) as

H − p · p
2m

= − q

2m

[
p · A + A · p

]+ q2

2m
A · A + qφ. (8.38)

Here, we subtracted the kinetic energy of the charge from the classical “particle–field”
Hamiltonian since this term is already included in Hparticle. Using p · A = A · p and then
summing the contributions of all N charges in the system we can write Hint as5

Hint =
∑

n

[
− qn

mn
A(rn, t) · pn + q2

n

2mn
A(rn, t) · A(rn, t) + qnφ(rn, t)

]
. (8.39)

In the next section we will show that Hint can be expanded into a multipole series similar
to our previous results for VE and VM.

8.2.1 Multipole expansion of the interaction Hamiltonian

The Hamiltonian expressed in terms of the vector potential A and scalar potential φ is not
unique. This is caused by the freedom of gauge, i.e. if the potentials are replaced by new
potentials Ã and φ̃ according to

A → Ã +∇χ and φ → φ̃ − ∂χ/∂t, (8.40)

with χ (r, t) being an arbitrary gauge function, then Maxwell’s equations remain unaffected.
This is easily seen by introducing the above substitutions into the definitions of A and φ

4 This integration leads necessarily to an infinite result, which caused difficulties in the development of the
quantum theory of light.

5 In quantum mechanics, the canonical momentum p is converted into an operator according to p → −i�∇
(Jordan’s rule), which also turns Hint into an operator. p and A commute only if the Coulomb gauge (∇ ·A = 0)
is adopted.
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(Eqs. (8.24) and (8.25)). To remove the ambiguity caused by the freedom of gauge we
need to express Hint in terms of the original fields E and B. To do this, we first expand the
electric and magnetic fields in a Taylor series with origin r = 0 (cf. Eq. (8.8)),

E(r) = E(0) + [r · ∇]E(0) + 1

2!
[r · ∇]2E(0) + · · · , (8.41)

B(r) = B(0) + [r · ∇]B(0) + 1

2!
[r · ∇]2B(0) + · · · , (8.42)

and introduce these expansions into the definitions for A and φ (Eqs. (8.24) and (8.25)).
The task is now to find an expansion of A and φ in terms of E and B such that the left-
and right-hand sides of Eqs. (8.24) and (8.25) are identical. These expansions have been
determined by Barron and Gray [5] as

φ(r) = φ(0)−
∞∑

i=0

r[r · ∇]i

(i+1)!
· E(0), A(r) =

∞∑
i=0

[r · ∇]i

(i+2)i!
B(0) × r. (8.43)

Their insertion into the expression for Hint in Eq. (8.39) leads to the so-called multipolar
interaction Hamiltonian

Hint = qtotφ(0, t) − p ·E(0, t) − m ·B(0, t) − [
↔
Q ∇] · E(0, t) − · · · , (8.44)

in which we used the following definitions:

qtot =
∑

n

qn, p=
∑

n

qnrn, m=
∑

n

qn

2mn
rn×p̃n,

↔
Q =

∑
n

qn

2
rnrn,

(8.45)

where qtot is the total charge of the system, p the total electric dipole moment, m the total

magnetic dipole moment, and
↔
Q the total electric quadrupole moment. If the system of

charges is charge neutral, the first term in Hint vanishes and we are left with an expansion
that looks very much like the former expansion of the potential energy VE +VM. However,
the two expansions are not identical! First, the new magnetic dipole moment is defined
in terms of the canonical momenta p̃n rather than by the mechanical momenta mnṙn.6

Second, the expansion of Hint contains a term nonlinear in B(0, t), which is non-existent in
the expansion of VE+VM. The nonlinear term arises from the term A·A of the Hamiltonian
and is referred to as the diamagnetic term. It reads

∑
n

q2
n

8mn
[rn × B(0, t)]2 . (8.46)

Our previous expressions for VE and VM have been derived by neglecting retardation and
assuming weak fields. In this limit, the nonlinear term in Eq. (8.46) can be neglected and
the canonical momentum can be approximated by the mechanical momentum.

The multipolar interaction Hamiltonian can easily be converted to an operator by simply
applying Jordan’s rule p → −i�∇ and replacing the fields E and B by the corresponding

6 A gauge transformation also transforms the canonical momenta. Therefore, the canonical momenta p̃n are
different from the original canonical momenta pn.
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electric and magnetic field operators. However, this is beyond the present scope. Notice
that the Hamiltonian Hint in Eq. (8.44) is gauge-independent. The gauge affects Hint only
when the latter is expressed in terms of A and φ, not when it is represented by the original
fields E and B. The first term in the multipolar Hamiltonian of a charge-neutral system is
the dipole interaction, which is identical to the corresponding term in VE. In most circum-
stances, it is sufficiently accurate to reject the higher terms in the multipolar expansion.
This is especially true for far-field interactions, for which the magnetic dipole and elec-
tric quadrupole interactions are roughly two orders of magnitude weaker than the electric
dipole interaction. Therefore, standard selection rules for optical transitions are based on
the electric dipole interaction. However, in strongly confined optical fields, as are encoun-
tered in near-field optics, higher-order terms in the expansion of Hint can become important
and the standard selection rules can be violated. Finally, it should be noted that the multi-
polar form of Hint can also be derived from Eq. (8.39) by a unitary transformation [6]. This
transformation, commonly referred to as the Power–Zienau–Woolley transformation, plays
an important role in quantum optics [3].

We have established that to first order any neutral system of charges (particle) that is
smaller than the wavelength of the interacting radiation can be viewed as a dipole. In the
next section we will consider its radiating properties.

8.3 The radiating electric dipole

The current density due to a distribution of charges qn with coordinates rn and velocities
ṙn has been given in Eq. (8.2). We can develop this current density in a Taylor series with
origin r0, which is typically at the center of the charge distribution. If we keep only the
lowest-order term we find

j(r, t) = d

dt
p(t)δ[r − r0], (8.47)

with the dipole moment

p(t) =
∑

n

qn[rn(t) − r0]. (8.48)

The dipole moment is identical with the definition in Eq. (8.11) for which we had r0 = 0.
We assume a harmonic time dependence, which allows us to write the current den-
sity as j(r, t) = Re{j(r) exp(−iωt)} and the dipole moment as p(t) = Re{p exp(−iωt)}.
Equation (8.47) can then be written as

j(r) = −iωpδ[r − r0]. (8.49)

Thus, to lowest order, any current density can be thought of as an oscillating dipole with
its origin at the center of the charge distribution.
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8.3.1 Electric dipole fields in a homogeneous space

In this section we will derive the fields of a dipole representing the current density of a
small charge distribution located in a homogeneous, linear, and isotropic space. The fields
of the dipole can be derived by considering two oscillating charges q of opposite sign,
separated by an infinitesimal vector ds. In this physical picture the dipole moment is given
by p = q ds. However, it is more elegant to derive the dipole fields using the Green-
function formalism developed in Section 2.12. There, we derived the so-called volume-
integral equations (Eqs. (2.89) and (2.90))

E(r) = E0 + iωμμ0

∫
V

↔
G(r, r′)j(r′)dV ′, (8.50)

H(r) = H0 +
∫

V

[
∇ × ↔

G(r, r′)
]

j(r′)dV ′. (8.51)

↔
G denotes the dyadic Green’s function and E0 and H0 are the fields in the absence of the

current j. The integration runs over the source volume specified by the coordinate r′. If we
introduce the current from Eq. (8.49) into the last two equations and assume that all fields
are produced by the dipole we find

E(r) = ω2μμ0
↔
G(r, r0)p, (8.52)

H(r) = −iω
[
∇ × ↔

G(r, r0)
]

p. (8.53)

Hence, the fields of an arbitrarily oriented electric dipole located at r = r0 are determined

by the Green function
↔
G(r, r0). As mentioned earlier, each column vector of

↔
G specifies

the electric field of a dipole whose axis is aligned with one of the coordinate axes. For a

homogeneous space,
↔
G has been derived as

↔
G(r, r0) =

[
↔
I + 1

k2
∇∇
]

G(r, r0), G(r, r0) = exp(ik|r − r0|)
4π |r − r0| , (8.54)

where
↔
I is the unit dyad and G(r, r0) is the scalar Green function. It is straightforward to

calculate
↔
G in the major three coordinate systems. In a Cartesian system

↔
G can be written as

↔
G(r, r0) = exp(ikR)

4πR

[(
1 + ikR − 1

k2R2

)
↔
I + 3 − 3ikR − k2R2

k2R2

RR
R2

]
, (8.55)

where R is the absolute value of the vector R = r − r0 and RR denotes the outer product
of R with itself. Equation (8.55) defines a symmetric 3×3 matrix

↔
G =

⎡
⎣ Gxx Gxy Gxz

Gxy Gyy Gyz

Gxz Gyz Gzz

⎤
⎦ , (8.56)

which, together with Eqs. (8.52) and (8.53), determines the electromagnetic field of an

arbitrary electric dipole p with Cartesian components px, py, pz. The tensor [∇ × ↔
G] can be

expressed as
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�Fig. 8.2 The fields of a dipole are most conveniently represented in a spherical coordinate system (r,ϑ ,ϕ) in which the dipole
points along the z-axis (ϑ = 0).

∇×↔
G (r, r0) = exp(ikR)

4πR

k
(
R× ↔

I
)

R

(
i − 1

kR

)
, (8.57)

where R×↔
I denotes the matrix generated by the cross-product of R with each column

vector of
↔
I .

The Green function
↔
G has terms in (kR)−1, (kR)−2, and (kR)−3. In the far-field, for which

R� λ, only the terms with (kR)−1 survive. On the other hand, the dominant terms in the
near-field, for which R � λ, are the terms with (kR)−3. The terms with (kR)−2 dominate
the intermediate-field at R≈λ. To distinguish these three ranges it is convenient to write

↔
G = ↔

GNF + ↔
GIF + ↔

GFF, (8.58)

where the near-field (GNF), intermediate-field (GIF), and far-field (GFF) Green functions
are given by

↔
GNF = exp(ikR)

4πR

1

k2R2

[
− ↔

I +3RR/R2
]

, (8.59)

↔
GIF = exp(ikR)

4πR

i

kR

[↔
I −3RR/R2

]
, (8.60)

↔
GFF = exp(ikR)

4πR

[↔
I −RR/R2

]
. (8.61)

Notice that the intermediate-field is 90◦ out of phase with respect to the near- and far-field.
Because the dipole is located in a homogeneous environment, all three dipole orienta-

tions lead to fields that are identical upon suitable frame rotations. We therefore choose
a coordinate system with origin at r = r0 and a dipole orientation along the dipole axis,
i.e. p = |p|nz (see Fig. 8.2). It is most convenient to represent the dipole fields in spher-
ical coordinates r = (r,ϑ ,ϕ) and in spherical vector components E = (Er, Eϑ , Eϕ). In
this system the field components Eϕ and Hr and Hϑ are identical to zero and the only
non-vanishing field components are



236 Optical interactions

Er = |p|cosϑ

4πε0ε

exp(ikr)

r
k2
[

2

k2r2
− 2i

kr

]
, (8.62)

Eϑ = |p|sinϑ

4πε0ε

exp(ikr)

r
k2
[

1

k2r2
− i

kr
− 1

]
, (8.63)

Hϕ = |p|sinϑ

4πε0ε

exp(ikr)

r
k2
[
− i

kr
− 1

] √
ε0ε

μ0μ
. (8.64)

The fact that Er has no far-field term ensures that the far-field is purely transverse. Further-
more, since the magnetic field has no terms in (kr)−3 the near-field is dominated by the
electric field. This justifies a quasi-electrostatic consideration. See Fig. 8.3.

It is instructive to also have a look at the phase of the dipole field since close to the origin
it deviates considerably from the familiar phase of a spherical wave exp[ikr]. The phase of
the field is defined relative to the oscillation of the dipole pz. In Fig. 8.4 we plot the phase
of the field Ez along the x-axis and along the z-axis (c.f. Fig. 8.2). Interestingly, at the origin
the phase of the transverse field is 180◦ out of phase with the dipole oscillation (Fig. 8.4(a)).
The phase of the transverse field then drops to a minimum value at a distance of x ∼ λ/5,
after which it increases and then asymptotically approaches the phase of a spherical wave
with origin at the dipole (dashed line). On the other hand, the phase of the longitudinal
field, shown in Fig. 8.4(b), starts out the same as for the oscillating dipole, but it runs 90◦
out of phase for distances z � λ. The reason for this behavior is the missing far-field term
in the longitudinal field (c.f. Eq. (8.62)). The 90◦ phase shift is due to the intermediate
field represented by the Green function in Eq. (8.60). The same intermediate field is also
responsible for the dip near x ∼ λ/5 in Fig. 8.4(a). This phase dip is of relevance for the
design of multi-element antennas, such as the Yagi–Uda antennas that will be discussed
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�Fig. 8.3 Radial decay of the dipole’s transverse and longitudinal fields. The curves correspond to the absolute value of the
expressions in brackets of Eqs. (8.62) and (8.63), respectively. While both the transverse and the longitudinal field
contribute to the near-field, only the transverse field survives in the far-field. Notice that the intermediate-field with
(kr)−2 does not really show up for the transverse field. Instead the near-field dominates for (kr)<1 and the far-field
for (kr)>1.
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�Fig. 8.4 Phase of the electric field near the origin. (a) Phase of the transverse field Ez evaluated along the x-axis. At the origin,
the electric field is 180◦ out of phase with the dipole. The phase drops to a minimum at a distance of x ∼ λ/5. For
larger distances, the phase approaches that of a spherical wave exp[ikr] (dashed line). (b) Phase of the longitudinal
field Ez evaluated along the z-axis. At the origin, the electric field is in phase with the dipole. At larger distances, the
phase is 90◦ out of phase with a spherical wave exp[ikr] (dashed line).

in Chapter 13 (see Problem 13.4). It is important to remember that close to the source the
phase of the field does not evolve linearly with distance and that the phase can be advanced
or delayed by small distance variations.

So far we have considered a dipole that oscillates harmonically in time, i.e. p(t) =
Re{p exp(−iωt)}. Therefore, the electromagnetic field is monochromatic and oscillates at
the same frequency. Although it is possible to generate any time dependence by a super-
position of monochromatic fields (Fourier transformation), it is advantageous for ultrafast
applications to have the full time dependence available. The fields of a dipole p(t) with
arbitrary time dependence can be derived by using the time-dependent Green function. In
a non-dispersive medium it is easier to introduce the explicit time dependence by using the
substitutions

exp(ikr)kmp = exp(ikr)

[
in

c

]m

(−iω)mp →
[

in

c

]m dm

dtm
p(t− nr/c) , (8.65)

where n denotes the (dispersion-free) index of refraction7 and (t − nr/c) is the retarded
time. With this substitution, the dipole fields read as

Er(t) = cosϑ

4πε0ε

[
2

r3
+ n

c

2

r2

d

dt

]
|p(t− nr/c)| , (8.66)

Eϑ (t) = − sinϑ

4πε0ε

[
1

r3
+ n

c

1

r2

d

dt
+ n2

c2

1

r

d2

dt2

]
|p(t− nr/c)| , (8.67)

Hϕ(t) = − sinϑ

4πε0ε

√
ε0ε

μ0μ

[
n

c

1

r2

d

dt
+ n2

c2

1

r

d2

dt2

]
|p(t− nr/c)| . (8.68)

7 A dispersion-free index of refraction different from unity is an approximation since it violates causality.
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We see that the far-field is generated by the acceleration of the charges that constitute the
dipole moment. Similarly, the intermediate-field and the near-field are generated by the
speed and the position of the charges, respectively.

8.3.2 Dipole radiation

It can be shown (see Problem 8.3) that in the steady state only the far-field of the dipole
contributes to the net energy transport (Fig. 8.5). The Poynting vector S(t) associated with
the far-field can be calculated by retaining only the r−1 terms in the dipole fields. We obtain

S(t) = E(t) × H(t) = 1

16π2ε0ε

sin2ϑ

r2

n3

c3

[
d2

dt2
|p(t− nr/c)|

]2

nr. (8.69)

The radiated power P can be determined by integrating S(t) over a closed spherical
surface as

P(t) =
∫
∂V

S · n da = 1

4πε0ε

2 n3

3 c3

[
d2|p(t)|

dt2

]2

, (8.70)

where we have shrunk the radius of the sphere to zero to get rid of the retarded time. The
average radiated power for a harmonically oscillating dipole turns out to be

P̄ = |p|2
4πε0ε

n3ω4

3c3
, (8.71)

which could also have been calculated by integrating the time-averaged Poynting vector
〈S〉 = (1/2)Re {E × H∗}, E and H being the dipole’s complex field amplitudes given by
Eqs. (8.62)–(8.64). We find that the radiated power scales with the fourth power of the
frequency. To determine the normalized radiation pattern we calculate the power P̄(ϑ ,ϕ)
radiated into an infinitesimal unit solid angle d� = sinϑ dϑ dϕ and divide by the total
radiated power P̄,

P̄(ϑ ,ϕ)

P̄
= 3

8π
sin2ϑ . (8.72)

x 10’000

zz

�Fig. 8.5 The electric energy density outside a fictitious sphere enclosing a dipole p = pz . Left: close to the dipole’s origin the
field distribution is elongated along the dipole axis (near-field). Right: at larger distances the field spreads transverse
to the dipole axis (far-field).
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Most of the energy is radiated perpendicular to the dipole moment and there is no radiation
at all in the direction of the dipole.

Although we have considered an arbitrary time dependence for the dipole we will restrict
ourselves in the following to the time-harmonic case. It is straightforward to account for
dispersion when working with time-harmonic fields, and arbitrary time dependences can
be introduced by using Fourier transforms.

8.3.3 Rate of energy dissipation in inhomogeneous environments

According to Poynting’s theorem (cf. Eq. (2.58)) the radiated power of any current distri-
bution with a harmonic time dependence in a linear medium has to be identical to the rate
of energy dissipation dW/dt given by

dW

dt
= −1

2

∫
V

Re{j∗ · E}dV , (8.73)

with V being the source volume and j representing both sources and energy sinks. If we
introduce the dipole’s current density from Eq. (8.49) we obtain the important result

dW

dt
= ω

2
Im
{
p∗ · E(r0)

}
(8.74)

where the field E is evaluated at the dipole’s origin r0. This equation can be rewritten in
terms of the Green function by using Eq. (8.52) as

dW

dt
= ω3|p|2

2c2ε0ε

[
np · Im

{↔
G(r0, r0;ω)

}
· np

]
, (8.75)

with np being the unit vector in the direction of the dipole moment. At first sight it does
not seem possible to evaluate Eq. (8.74) since exp(ikR)/R appears to be infinite at r = r0.
As we shall see, this is not the case. We first note that due to the dot product between p and
E we need only evaluate the component of E in the direction of p. Choosing p = |p| nz,
we calculate Ez as

Ez = |p|
4π ε0 ε

eikR

R

[
k2 sin2ϑ + 1

R2
(3 cos2ϑ − 1) − ik

R
(3 cos2ϑ − 1)

]
. (8.76)

Since the interesting part is the field at the origin of the dipole, the exponential term is
expanded into a series [exp(ikR) = 1 + ikR + (1/2)(ikR)2 + (1/6)(ikR)3 + · · · ] and the
limiting case R → 0 is considered. Thus,

dW

dt
= lim

R→0

ω

2
|p| Im{Ez}= ω |p|2

8π ε0ε
lim
R→0

{
2

3
k3 + R2 (· · · ) + · · ·

}

= |p|2
12π

ω

ε0ε
k3, (8.77)

which is identical with Eq. (8.71). Thus, Eq. (8.74) leads to the correct result despite the
apparent singularity at R = 0.
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The importance of Eq. (8.74) becomes obvious if we consider an emitting dipole in an
inhomogeneous environment, such as an atom in a cavity or a molecule in a superlattice.
The rate at which energy is released can still be calculated by integrating the Poynting
vector over a surface enclosing the dipole emitter. However, to do this, we need to know the
electromagnetic field everywhere on the enclosing surface. Because of the inhomogeneous
environment, this field is not equal to the dipole field alone! Instead, it is the self-consistent
field, i.e. the field E generated by the superposition of the dipole field E0 and the scattered
field Es from the environment. Thus, to determine the energy dissipated by the dipole
we first need to determine the electromagnetic field everywhere on the enclosing surface.
However, by using Eq. (8.74) we can do the same job by evaluating only the total field
at the dipole’s origin r0. It is convenient to decompose the electric field at the dipole’s
position as

E(r0) = E0(r0) + Es (r0), (8.78)

where E0 and Es are the primary dipole field and the scattered field, respectively. Introduc-
ing Eq. (8.78) into Eq. (8.74) allows us to split the rate of energy dissipation P = dW/dt
into two parts. The contribution of E0 has been determined in Eq. (8.71) and Eq. (8.77) as

P0 = |p|2
12π

ω

ε0ε
k3, (8.79)

which allows us to write for the normalized rate of energy dissipation

P

P0
= 1 + 6πε0ε

|p|2
1

k3
Im{p∗ · Es (r0)}. (8.80)

Thus, the change of energy dissipation depends on the secondary field of the dipole. This
field corresponds to the dipole’s own field emitted at an earlier time. It arrives at the position
of the dipole after it has been scattered in the environment.

8.3.4 Radiation reaction

An oscillating charge produces electromagnetic radiation. This radiation not only dis-
sipates the energy of the oscillator but also influences the motion of the charge. This
back-action is called radiation damping or radiation reaction. With the inclusion of the
reaction force Fr the equation of motion for an undriven harmonic oscillator becomes

mr̈ + ω2
0mr = Fr, (8.81)

where ω2
0m is the linear spring constant. According to Eq. (8.70) the average rate of energy

dissipation is

P(t) = 1

4πε0

2

3c3

[
d2|p(t)|

dt2

]2

= q2(r̈ · r̈)

6πε0c3
. (8.82)
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Integrated over a certain time period T = [t1 . . . t2], this term must be equal to the work
exerted on the oscillating charge by the radiation reaction force. Thus,

t2∫
t1

[
Fr · ṙ + q2(r̈ · r̈)

6πε0c3

]
dt = 0. (8.83)

After integrating the second term by parts we obtain

t2∫
t1

[
Fr · ṙ − q2 (ṙ · ...r)

6πε0c3

]
dt + q2(r̈ · ṙ)

6πε0c3

∣∣∣∣
t2

t1

= 0. (8.84)

Assuming that r is time-harmonic, then the integrated term is zero if (t2 − t1) is chosen
to be a multiple of the oscillation period. Consequently the remaining integrand has to
vanish, i.e.

Fr = q2...r
6πε0c3

, (8.85)

which is the Abraham–Lorentz formula for the radiation reaction force. The equation of
motion (8.81) now becomes

r̈ − q2

6πε0c3m

...
r +ω2

0r = 0. (8.86)

Assuming that the damping introduced by the radiation reaction force is negligible, the
solution becomes r(t) = r0 exp(−iω0 t) and hence

...
r = −ω2

0 ṙ. Thus, for small damping,
we obtain

r̈ + γ0ṙ + ω2
0r = 0 , γ0 = 1

4πε0

2q2 ω2
0

3c3 m
. (8.87)

This equation corresponds to an undriven Lorentzian atom model with transition frequency
ω0 and linewidth γ0. A more rigorous derivation shows that radiation reaction affects not
only the damping of the oscillator due to radiation but also the oscillator’s effective mass.
This additional mass contribution is called the electromagnetic mass and it is the source of
many controversies [7].

Owing to radiation damping the undriven oscillator will ultimately come to rest.
However, the oscillator interacts with the vacuum field that keeps the oscillator alive.
Consequently, a driving term accounting for the fluctuating vacuum field E0 has to be
added to the right-hand side of Eq. (8.87). The fluctuating vacuum field compensates for
the dissipation of the oscillator. Such fluctuation–dissipation relations will be discussed in
Chapter 15. In short, to preserve an equilibrium between the oscillator and the vacuum, the
vacuum must give rise to fluctuations if it takes energy from the oscillator (radiation damp-
ing). It can be shown that spontaneous emission is the result of both radiation reaction and
vacuum fluctuations [7].

Finally, let us remark that radiation reaction is an important ingredient in obtaining
the correct result for the optical theorem in the dipole limit [8], i.e. for a particle that
is described by a polarizability α. In this limit, an incident field polarizes the particle
and induces a dipole moment p, which in turn radiates a scattered field. According to
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the optical theorem, the extinct power (the sum of scattered and absorbed power) can be
expressed by the field scattered in the forward direction. However, it turns out that in the
dipole limit the extinct power is identical with the absorbed power and hence light scat-
tering is not taken into account! The solution to this dilemma is provided by the radiation
reaction term in Eq. (8.85) and is analyzed in more detail in Problem 8.5. In short, the par-
ticle interacts not only with the external driving field but also with its own field, causing a
phase-lag between the induced dipole oscillation and the driving electric field oscillation.
This phase-lag recovers the optical theorem and is responsible for light scattering in the
dipole limit.

8.4 Spontaneous decay

Before Purcell’s analysis in 1946, spontaneous emission was considered a radiative intrin-
sic property of atoms or molecules [9]. Purcell’s work predicted that the spontaneous
transition rate of a nuclear magnetic moment coupled to a resonant electronic device can
be enhanced compared with the free-space transition rate. Thus, it can be inferred that the
environment in which an atom is embedded modifies the radiative properties of the atom.
In order to experimentally observe this effect a physical device with dimensions on the
order of the emission wavelength λ is needed. Since most of the atomic transitions occur in
or near the visible spectral range, the modification of spontaneous decay was not an obvi-
ous fact. In 1966, Drexhage investigated the effect of planar interfaces on the spontaneous
decay rate of molecules [10], and the enhancement of the atomic decay rate in a cavity was
later verified by Goy et al. [11]. However, it was also observed that the decay of excited
atoms can be inhibited by a cavity [12]. Since then, the modification of the spontaneous
decay rate of an atom or molecule has been investigated in various environments, includ-
ing photonic crystals and optical antennas [13–16]. Recently, it was also demonstrated
that non-radiative energy transfer between adjacent molecules (Förster transfer) can be
modified by an inhomogeneous environment [17].

In the theory of atom–field interactions there are two physically distinct regimes, namely
the strong and weak coupling regimes. The two regimes are distinguished on the basis of
the atom–field coupling constant, which is estimated as

κ = pij

�

√
�ω0

2ε0V
, (8.88)

whereω0 is the atomic transition frequency, pij the dipole matrix element, and V the volume
of the cavity. Strong coupling satisfies the condition κ � γ , γ being the spontaneous
decay rate inside the cavity. In the strong-coupling regime, the emission spectrum of an
atom inside a cavity with a high quality factor (Q → ∞) exhibits two distinct peaks,
which are the result of mode splitting [18, 19]. In the weak-coupling regime (κ � γ ) it has
been shown that QED and classical theory give the same results for the modification of the
spontaneous-emission decay rate. Classically, the modification of the spontaneous decay
rate is generated by back-action, namely the interaction of the atom with its own “retarded”
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field. The latter is the field that arrives back at the atom after having been scattered in the
environment. On the other hand, in the QED picture the decay rate is stimulated by vacuum
field fluctuations, the latter being a function of the environment.

8.4.1 QED of spontaneous decay

In this section we derive the spontaneous emission rate γ for a two-level quantum sys-
tem (“atom” for short) located at r = r0. Spontaneous decay is a purely quantum effect
and requires a QED treatment. This section is intended to put classical treatments into
the proper context. We consider the combined “atom plus field” states and calculate the
transitions from an initial state |i〉 with energy Ei to a set of final states | f 〉 with identical
energies Ef (see Fig. 8.6). The final states differ only by the mode k of the radiation field.8

The derivation presented here is based on the Heisenberg picture. An equivalent derivation
is presented in Appendix B.

According to Fermi’s golden rule γ is given by [2]

γ = 2π

�2

∑
f

∣∣∣〈 f | ĤI |i〉
∣∣∣2 δ(ωi − ωf ), (8.89)

where ĤI = −p̂·Ê is the interaction Hamiltonian in the dipole approximation, with Ê being
the vacuum electric field operator. It has to be emphasized that �ωi and �ωf are the energies
of the combined “atom plus field” system. The initial energy is solely determined by the
atom, that is �ωi = Ee, where Ee denotes the atom’s excited-state energy. On the other
hand, the final energy is determined by the atom and the field as �ωf = Eg + �ω0, with
Ef being the atom’s ground-state energy and �ω0 being the quantum of electromagnetic

|e,{0}

|g,{1ωk1
}〉 |g,{1ωk2

}〉 |g,{1ωk3
} |g,{1ωk}

... ...

�Fig. 8.6 Transition from an initial state |i〉 = |e, {0}〉 to a set of final states | f 〉 = ∣∣g, {1ωk }〉. The states are products of
atomic states (|e〉 or |g〉) and single-photon states (|{0}〉 or ∣∣{1ωk }〉). The energy difference between the atom’s
excited and ground states is Ee − Eg = �ω0, with�ω0 being the photon energy. The number of distinct final
single-photon states is defined by the partial local density of statesρp(r0,ω0), with r0 being the origin of the
two-level system.

8 k is not to be confused with the wavevector. It is a label denoting a specific mode, which in turn is characterized
by the polarization vector and the wavevector.
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energy (photon). Thus the delta function in Eq. (8.89) is a statement of energy conservation;
that is, Ee − Eg = �ω0. Using the expression for ĤI we can substitute as follows:9∣∣∣〈 f |ĤI|i〉

∣∣∣2 = 〈 f |p̂ · Ê|i〉∗ 〈 f |p̂ · Ê|i〉 = 〈i|p̂ · Ê| f 〉〈 f |p̂ · Ê|i〉. (8.90)

Let us represent the electric field operator Ê at r = r0 as [2]

Ê =
∑

k

[
E+

k âk(t) + E−
k â†

k(t)
]
, (8.91)

where

â†
k(t) = â†

k(0)exp(iωkt), âk(t) = âk(0)exp(−iωkt). (8.92)

Here, âk(0) and â†
k(0) are the annihilation and creation operators, respectively. The sum

over k refers to summation over all modes. ωk denotes the frequency of mode k. The
spatially dependent complex fields E+

k = (E−
k )∗ are the positive and negative frequency

parts of the complex field Ek. For a two-level atomic system with the ground state |g〉 and
the excited state |e〉, the dipole moment operator p̂ can be written as

p̂ = p
[
r̂+ + r̂

]
, with r̂+ = |e〉〈g| and r̂ = |g〉〈e|. (8.93)

In this notation, p is simply the transition dipole moment, which is assumed to be real,
i.e. 〈g|p̂|e〉 = 〈e|p̂|g〉. Using the expressions for Ê and p̂, the interaction Hamiltonian takes
on the form

− p̂ · Ê = −
∑

k

p ·
[
E+

k r̂+âk(t) + E−
k r̂ â†

k(t) + E+
k r̂ âk(t) + E−

k r̂+â†
k(t)
]
. (8.94)

We now define the initial and final state of the combined system “field plus atom” as (see
Fig. 8.6)

|i〉 = |e, {0}〉 = |e〉 |{0}〉 (8.95)

| f 〉 = ∣∣g, {1ωk′ }
〉 = |g〉 ∣∣{1ωk′ }

〉
, (8.96)

respectively. Here, |{0}〉 denotes the zero-photon state, and
∣∣{1ωk′ }

〉
designates the one-

photon state associated with mode k′ and frequency ω0 = (Ee − Eg)/�. Thus, the final
states in Eq. (8.89) are associated with the different modes k′. Operating with p̂ · Ê on state
|i〉 leads to

p̂ · Ê |i〉 = p ·
∑

k

E−
k eiωkt

∣∣g, {1ωk}
〉
, (8.97)

where we used â†
k(0) |{0}〉 = ∣∣{1ωk}

〉
. Operating with 〈 f | gives

〈 f | p̂ · Ê |i〉 = p ·
∑

k

E−
k eiωkt〈g, {1ωk′ }

∣∣g, {1ωk}
〉
, (8.98)

where we used âk(0)
∣∣{1ωk}

〉 = {0}. A similar procedure leads to

〈i| p̂ · Ê | f 〉 = p ·
∑

k

E+
k e−iωkt〈g, {1ωk} |g, {1ωk′ }〉. (8.99)

9 Remember that p̂ is the dipole operator, not the momentum operator.
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The matrix elements can now be introduced into Eqs. (8.90) and (8.89). On expressing
the sum over the final states as a sum over the modes k′, the transition rate becomes

γ = 2π

�2

∑
k

∑
k′′

[
p · E+

k′′E
−
k · p

]
ei(ωk−ωk′′ )t (8.100)

×
∑

k′

〈
g, {1ωk′′ }

∣∣g, {1ωk′ }
〉 〈

g, {1ωk′ }
∣∣g, {1ωk}

〉
δ(ωk′ − ω0).

Because of orthogonality, the only non-vanishing terms are those for which k′ = k′′ = k,
which leads to the simple expression

γ = 2π

�2

∑
k

[
p · (E+

k E−
k ) · p

]
δ(ωk − ω0). (8.101)

Here, E+
k E−

k denotes the outer product, i.e. the result is a 3×3 matrix. For later purposes it
is convenient to rewrite this expression in terms of normal modes uk defined as

E+
k =

√
�ωk

2ε0
uk, E−

k =
√

�ωk

2ε0
u∗k. (8.102)

Because the delta function imposes ωk = ω0 the decay rate can be written as

γ = πω

3�ε0
|p|2 ρp(r0,ω0), ρp(r0,ω0) = 3

∑
k

[
np · (uku∗k) · np

]
δ(ωk − ω0),

(8.103)

where we introduced the partial local density of states ρp(r0,ω0), which will be discussed
in the next section. The dipole moment has been decomposed as p = |p|np, with np being
the unit vector in the direction of p. The above equation for γ is our main result. The
delta function in the expression suggests that we need to integrate over a finite distribution
of final frequencies. However, even for a single final frequency, the apparent singularity
introduced through δ(ωk−ω0) is compensated for by the normal modes, whose magnitude
tends to zero for a sufficiently large mode volume. In any case, it is convenient to get rid
of these singularities by representing ρp(r0,ω0) in terms of the Green function instead of
normal modes.

8.4.2 Spontaneous decay and Green’s dyadics

We aim to derive an important relationship between the normal modes uk and the dyadic

Green function
↔
G. Subsequently, this relationship is used to express the spontaneous decay

rate γ and to establish an elegant expression for the local density of states. While we
suppressed the explicit position dependence of uk in the previous section for notational
convenience, it is essential in the current context to carry all the arguments. The normal
modes defined in the previous section satisfy the wave equation

∇ × ∇ × uk(r,ωk) − ω2
k

c2
uk(r,ωk) = 0 (8.104)
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and they fulfill the orthogonality relation∫
uk(r,ωk) · u∗k′ (r,ωk′ )d

3r = δkk′ , (8.105)

where the integration runs over the entire mode volume. δkk′ is the Kronecker delta and
↔
I

the unit dyad. We now expand the Green function
↔
G in terms of the normal modes as

↔
G(r, r′;ω) =

∑
k

Ak(r′,ω)uk(r,ωk), (8.106)

where the vectorial expansion coefficients Ak have yet to be determined.
We recall the definition of the Green function (cf. Eq. (2.87))

∇ × ∇ × ↔
G(r, r′;ω) − ω2

c2

↔
G(r, r′;ω) = ↔

I δ(r−r′) . (8.107)

To determine the coefficients Ak we substitute the expansion for
↔
G and obtain

∑
k

Ak(r′,ω)

[
∇ × ∇ × uk(r,ωk) − ω2

c2
uk(r,ωk)

]
= ↔

Iδ(r − r′). (8.108)

Using Eq. (8.104) we can rewrite the latter as

∑
k

Ak(r′,ω)

[
ω2

k

c2
− ω2

c2

]
uk(r,ωk) =↔

I δ(r − r′). (8.109)

Multiplying on both sides by u∗k′ , integrating over the mode volume, and making use of the
orthogonality relation leads to

Ak′ (r
′,ω)

[
ω2

k′
c2

− ω2

c2

]
= u∗k′ (r

′,ωk). (8.110)

Substituting this expression back into Eq. (8.106) leads to the desired expansion for
↔
G in

terms of the normal modes:

↔
G(r, r′;ω) =

∑
k

c2 u∗k(r′,ωk)uk(r,ωk)

ω2
k − ω2

. (8.111)

To proceed we make use of the following mathematical identity which can be easily
proved by complex contour integration:

lim
η→0

Im

{
1

ω2
k − (ω + iη)2

}
= π

2ωk
[δ(ω − ωk) − δ(ω + ωk)] . (8.112)

Multiplying on both sides by u∗k(r,ωk)uk(r,ωk) and summing over all k yields

Im

{
lim
η→0

∑
k

u∗k(r,ωk)uk(r,ωk)

ω2
k − (ω + iη)2

}
= π

2

∑
k

1

ωk
u∗k(r,ωk)uk(r,ωk)δ(ω − ωk), (8.113)
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where we dropped the term δ(ω + ωk) because we are concerned only with positive fre-
quencies. By comparison with Eq. (8.111), the expression in brackets on the left-hand side
can be identified with the Green function evaluated at its origin r = r′. Furthermore, the
delta function on the right-hand side restricts all values of ωk to ω, which allows us to
move the first factor out of the sum. We therefore obtain the important relationship

Im
{↔

G(r, r;ω)
}
= πc2

2ω

∑
k

u∗k(r,ωk)uk(r,ωk)δ(ω − ωk). (8.114)

We now set r = r0 and ω = ω0 and rewrite the decay rate γ and the partial local density
of states ρp in Eq. (8.103) as

γ = πω0

3�ε0
|p|2 ρp(r0,ω0), ρp(r0,ω0) = 6ω0

πc2

[
np · Im

{↔
G(r0, r0;ω0)

}
· np

]
.

(8.115)

This formula is the main result of this section. It allows us to calculate the spontaneous
decay rate of a two-level quantum system in an arbitrary reference system. All that is
needed is knowledge of the Green dyadic for the reference system. The Green dyadic
is evaluated at its origin, which corresponds to the location of the atomic system. From a
classical viewpoint this is equivalent to the electric field previously emitted by the quantum
system and now arriving back at its origin. The mathematical analogy of the quantum and
the classical treatments now becomes obvious on comparing Eq. (8.115) and Eq. (8.75).
The latter is the classical equation for energy dissipation based on Poynting’s theorem.

Notice, however, that the dipoles in Eqs. (8.115) and (8.75) are not the same! In
Eq. (8.75), p denotes a classical dipole, whereas in Eq. (8.115) it represents the matrix
element 〈e|p̂|g〉. A comparison of Eq. (8.75) with Eq. (8.115) yields

γ

γ0
= P

P0
, (8.116)

where γ0 and P0 refer to the free-space values, or to any other known reference values.
The normalization by γ0 and P0 eliminates the dependence on p and establishes a safe
link between quantum and classical formalisms. While the left-hand side of Eq. (8.116)
represents the quantum-mechanical picture of spontaneous emission, the right-hand side
corresponds to the classical formalism of dipole radiation. Because of the relationship of
Eq. (8.116) we are able to classically calculate the relative change of the spontaneous decay
rate of a quantum emitter. This relationship is valid as long as 〈e|p̂|g〉 is not affected by the
environment, i.e. the quantum orbitals remain unaffected.

In Eq. (8.115) we have expressed γ in terms of the partial local density of states ρp,
which corresponds to the number of modes per unit volume and frequency, at the origin r of
the (point-like) quantum system, into which a photon with energy �ω0 can be released dur-
ing the spontaneous decay process. In the next section we discuss some important aspects
of ρp.



248 Optical interactions

8.4.3 Local density of states

In situations where the transitions of the quantum system have no fixed dipole axis np

and the medium is isotropic and homogeneous, the decay rate is averaged over the various
orientations, leading to (see Problem 8.6)

〈
np · Im

{↔
G(r0, r0;ω0)

}
· np

〉
= 1

3
Im
{

Tr[
↔
G(r0, r0;ω0)]

}
. (8.117)

Substituting into Eq. (8.115), we find that in this case the partial local density of states ρp

becomes identical with the total local density of states ρ defined as

ρ(r0,ω0) = 2ω0

πc2
Im
{

Tr[
↔
G(r0, r0;ω0)]

}
=
∑

k

|uk|2 δ(ωk − ω0), (8.118)

where Tr[. . .] denotes the trace of the tensor in brackets. ρ corresponds to the total num-
ber of electromagnetic modes per unit volume and unit frequency at a given location r0. In
practice, ρ has little significance because any detector or measurement relies on the transla-
tion of charge carriers from one point to another. On defining the axis between these points
as np, it is obvious that ρp is of much greater practical significance since it also enters the
well-known formula for spontaneous decay.

As shown earlier in Section 8.3.3, the imaginary part of
↔
G evaluated at its origin is not

singular. For example, in free space (
↔
G=↔

G0) we have (see Problem 8.7)

[
np · Im

{↔
G0(r0, r0;ω0)

}
· np

]
= 1

3
Im
{

Tr[
↔
G0(r0, r0;ω0)]

}
= ω0

6πc
, (8.119)

where no orientational averaging has been performed. It is the symmetric form of
↔
G0 that

leads to this simple expression. Thus, ρ and ρp take on the well-known value of

ρ0 = ω2
0

π2c3
, (8.120)

which is the density of electromagnetic modes as encountered in blackbody radiation. The
free-space spontaneous decay rate turns out to be

γ0 = ω3
0|p|2

3πε0�c3
, (8.121)

where p = 〈g|p̂|e〉 denotes the transition dipole matrix element.
To summarize, the spontaneous decay rate is proportional to the partial local density of

states, which depends on the transition dipole defined by the two atomic states involved in
the transition. Only in homogeneous environments or after orientational averaging can ρp

be replaced by the total local density of states.
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8.5 Classical lifetimes and decay rates

We now derive the classical picture of spontaneous decay by considering an undriven
harmonically oscillating dipole. As the dipole oscillates it radiates energy according to
Eq. (8.70). As a consequence, the dipole dissipates its energy into radiation and its dipole
moment decreases. We are interested in calculating the time τ after which the dipole’s
energy has decreased to 1/e of its initial value (Fig. 8.7).

8.5.1 Radiation in homogeneous environments

The equation of motion for an undriven harmonically oscillating dipole is (cf. Eq. (8.87))

d2

dt2
p(t) + γ0

d

dt
p(t) + ω2

0 p(t) = 0. (8.122)

The natural frequency of the oscillator is ω0 and its damping constant is γ0. The solution
for p is

p(t) = Re

{
p0e−iω0

√
1−γ 2

0 /(4ω
2
0 ) teγ0t/2

}
. (8.123)

Because of losses introduced through γ0 the dipole forms a non-conservative system. The
damping rate not only attenuates the dipole strength but also produces a shift in resonance
frequency. In order to be able to define an average dipole energy W̄ at any instant of time,
we have to make sure that the oscillation amplitude stays constant over one period of
oscillation. In other words, we require

γ0 � ω0. (8.124)

20 40 60 80 1000
t0 (ns)

1/γ

t

excitationemission

t0

�Fig. 8.7 Radiative decay rate γ of the 2P1/2 state of Li. The time interval t0 between an excitation pulse and the subsequent
photon count is measured and plotted in a histogram. The 1/e width of the exponential distribution corresponds to
the lifetime τ = 1/γ = 27.1 ns. For t0 → 0 the distribution falls to zero because of the finite response time of
the photon detector.
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The average energy of a harmonic oscillator is the sum of the average kinetic and potential
energy. At time t this average energy reads as10

W̄(t) = m

2q2

[
ω2

0p2(t) + ṗ2(t)
]
= mω2

0

2q2
|p0|2e−γ0t, (8.125)

where m is the mass of the particle with charge q. The lifetime τ0 of the oscillator is defined
as the time after which the energy has decayed to 1/e of its initial value at t = 0. We simply
find

τ0 = 1/γ0. (8.126)

We now turn to the rate of energy loss due to radiation. The average radiated power P0

in free space at time t is (c.f. Eq. (8.71))

P0(t) = |p(t)|2
4πε0

ω4
0

3c3
. (8.127)

Energy conservation requires that the decrease in oscillator energy must equal the energy
losses, i.e.

W̄(t = 0) − W̄(t) = qi

∫ t

0
P0(t′)dt′, (8.128)

where we introduced the so-called intrinsic quantum yield qi. This parameter has a value
between zero and one and indicates the fraction of the energy loss associated with radiation.
For qi = 1, all of the oscillator’s dissipated energy is transformed to radiation. It is now
straightforward to solve for the decay rate. We introduce Eqs. (8.125) and (8.127) into the
last equation and obtain

γ0 = qi
1

4πε0

2q2ω2
0

3mc3
, (8.129)

which (besides qi) is identical with Eq. (8.87). γ0 is the classical expression for the
atomic decay rate and, through Eq. (8.126), also for the atomic lifetime. It depends on the
oscillation frequency and the particle’s mass and charge. The higher the index of refrac-
tion of the surrounding medium is, the shorter the lifetime of the oscillator will be. γ0

can easily be generalized to multiple-particle systems by summing over the individual
charges qn and masses mn. At optical wavelengths we obtain a value for the decay rate of
γ0 ≈ 2 × 10−8ω0, which is in the MHz regime. The quantum-mechanical analog of the
decay rate (cf. Eq. (8.121)) can be arrived at by replacing the oscillator’s initial average
energy mω2

0|p0|2/(2q2) by the energy quantum �ω0. At the same time, the classical dipole
moment has to be associated with half of the transition dipole matrix element.11

In the treatments so far, we have assumed that the atom is locally surrounded by vacuum
(n = 1). For an atom placed in a dielectric medium there are two corrections that need to be
performed: (1) the bulk dielectric behavior has to be accounted for by a dielectric constant

10 This is easily derived by setting p = qx, ω2
0 = c/m and using the expressions mẋ2/2 and cx2/2 for the kinetic

and potential energy, respectively.
11 The factor 1/2 in the substitution p0 → (1/2)〈g|p̂|e〉 is due to the fact that the Fourier transform of the

classical dipole moment spans over positive and negative frequencies.
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and (2) the local field at the dipole’s position has to be corrected. The latter arises from
the depolarization of the dipole’s microscopic environment, which influences the dipole’s
emission properties. The resulting correction is similar to the Clausius–Mossotti relation,
but more sophisticated models have been put forward recently.

The Lorentzian lineshape function

Spontaneous emission is well represented by an undriven harmonic oscillator. Although
the oscillator acquires its energy through an exciting local field, the phases of excitation
and emission are uncorrelated. Therefore, we can envision spontaneous emission as the
radiation emitted by an undriven harmonic oscillator whose dipole moment is restored by
the local field whenever the oscillator has lost its energy to the radiation field. The spectrum
of spontaneous emission by a single atomic system is well described by the spectrum of
the emitted radiation of an undriven harmonic oscillator. In free space, the electric far-field
of a radiating dipole is calculated as (cf. Eq. (8.67))

Eϑ (t) = sinϑ

4πε0

1

c2

1

r

d2

dt2
|p(t− r/c)| , (8.130)

where r is the distance between the observation point and the dipole origin. The spectrum
Êϑ (ω) can be calculated as (cf. Eq. (2.17))

Êϑ (ω) = 1

2π

∫ ∞

r/c
Eϑ (t)eiωt dt. (8.131)

Here we set the lower integration limit to t = r/c because the dipole starts emitting at
t = 0 and it takes the time t = r/c for the radiation to propagate to the observation
point. Therefore Eϑ (t < r/c) = 0. On inserting the solution for the dipole moment from
Eq. (8.123) and making use of γ0 � ω0 we obtain after integration

Êϑ (ω) = 1

2π

|p|sin ϑ ω2
0

8πε0c2r

[
exp(iωr/c)

i(ω + ω0) − γ0/2
+ exp(iωr/c)

i(ω − ω0) − γ0/2

]
. (8.132)

The energy radiated into the unit solid angle d� = sin ϑ dϑ dϕ is calculated as

dW

d�
=
∫ ∞

−∞
I(r, t)r2 dt = r2

√
ε0

μ0

∫ ∞

−∞
|Eϑ (t)|2 dt

= 4π r2
√
ε0

μ0

∫ ∞

0
|Êϑ (ω)|2 dω, (8.133)

where we applied Parseval’s theorem and used the definition of the intensity I =√
ε0/μ0 |Eϑ |2 of the emitted radiation. The total energy per unit solid angle d� and per

unit frequency interval dω can now be expressed as

dW

d� dω
= 1

4πε0

|p|2 sin2ϑ ω2
0

4π2c3γ 2
0

[
γ 2

0 /4

(ω − ω0)2 + γ 2
0 /4

]
. (8.134)

The spectral shape of this function is determined by the expression in the brackets known
as the Lorentzian lineshape function. The function is shown in Fig. 8.8. The width of the
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�Fig. 8.8 The Lorentzian lineshape function as defined by the expression in brackets in Eq. (8.134).

curve measured at half its maximum height is �ω = γ0, which is called the “radiative
linewidth.” Thus, the decay rate of an atomic system is identical with the linewidth of
its emitted radiation. This correspondence between decay rate and linewidth also follows
from Heisenberg’s uncertainty principle �E�t ≈ �. The energy uncertainty is defined
by the linewidth as �E = ��ω and the average time available to measure the excited
state is �t ≈ 1/γ0 (cf. Eq. (8.125)). Thus, we obtain �ω ≈ γ0, in agreement with the
Lorentzian lineshape function. For atomic transitions at optical frequencies and with typ-
ical lifetimes of τ = 10 ns the radiative linewidth corresponds to a wavelength range of
�λ ≈ 2 × 10−3 nm.

Integrating the lineshape function over the entire spectral range yields a value of πγ0/2.
Integrating Eq. (8.134) over all frequencies and all directions leads to the totally radiated
energy

W = |p|2
4πε0

ω4
0

3c3γ0
. (8.135)

This value is equal to the average power P̄ radiated by a driven harmonic oscillator divided
by the linewidth γ0 (cf. Eq. (8.71)).

The Fano lineshape function

In many experiments the Lorentzian response is superimposed on a broadband back-
ground field. The interference of the two contributions leads to a Fano lineshape function.
For example, in light-scattering experiments the scattered field from a resonant particle
or molecule often interferes with the broadband excitation field of the source. Another
example is the coupling of a spectrally broad dipole resonance (bright mode) of a metal
nanostructure and a spectrally narrow quadrupole resonance (dark mode) of the same
nanostructure [20]. The situation is analogous to a discrete quantum-mechanical system
that interacts with a continuum of states, which was analyzed in 1935 by Ugo Fano [21].
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To derive the Fano lineshape function we rewrite the spectrum of the Lorentzian field in
Eq. (8.132) as

Ê1
γ0/2

−i(ω − ω0) + γ0/2
, (8.136)

where we have dropped the first term containing (ω + ω0) in the denominator because
it is much smaller in the region of interest ω ∼ ω0. This is equivalent to the so-called
rotating-wave approximation. The amplitude Ê1 accounts for all the remaining factors in
Eq. (8.132).

The Lorentzian field is now superimposed on a background field whose spectrum does
not vary over the bandwidth γ0 of the Lorentzian spectrum. The spectral lineshape function
of the two interfering fields becomes

∣∣∣Ê(ω)
∣∣∣2 =

∣∣∣∣∣ Ê1γ0/2

−i(ω − ω0) + γ0/2
+ Ê2

∣∣∣∣∣
2

, (8.137)

with Ê2 representing the broadband background field. The above simplifies to

∣∣∣Ê(ω)
∣∣∣2 = ∣∣∣Ê1

∣∣∣2
∣∣∣γ0/2 − (Ê2/Ê1)

[
i(ω − ω0) − γ0/2

]∣∣∣2
(ω − ω0)2 + γ 2

0 /4
, (8.138)

and is illustrated in Fig. 8.9. The first term in the brackets of the numerator in Eq. (8.138)
originates from the Lorentz field, whereas the latter term is due to the background field.
It is the interference between these two fields that leads to the characteristic Fano line-
shape. Fano lineshapes are often encountered in coherent-scattering experiments, such as
Rayleigh scattering [22] and surface-enhanced infrared absorption (SEIRA) [23]. In gen-
eral, Fano interference is the result of energy transfer from an initial to a final state via two
indistinguishable paths.
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�Fig. 8.9 The Fano lineshape function for different phase differences between the Lorentz field and the background field.
Ê2/Ê1 = exp(iφ), where the value ofφ is indicated in the individual figures.
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8.5.2 Radiation in inhomogeneous environments

In an inhomogeneous environment, a harmonically oscillating dipole left to itself will expe-
rience its own field as a driving force. This driving field is the field that arrives back at the
oscillator after it has been scattered in the environment. The equation of motion is

d2

dt2
p(t) + γ0

d

dt
p(t) + ω2

0 p(t) = q2

m
Es(t), (8.139)

with Es being the secondary local field. We expect that the interaction with Es will cause
a shift of the resonance frequency and a modification of the decay rate. Therefore, we use
the following trial solutions for the dipole moment and the driving field

p(t) = Re
{

p0 e−iωte−γ t/2
}

, Es(t) = Re
{

E0 e−iωte−γ t/2
}

. (8.140)

γ and ω are the new decay rate and resonance frequency, respectively. The two trial solu-
tions can be inserted into Eq. (8.139). As before, we assume that γ is much smaller than
ω (cf. Eq. (8.124)), which allows us to reject terms in γ 2. Furthermore, we assume that
the interaction with the field Es is weak. In this limit the last term on the left-hand side
of Eq. (8.139) is always larger than the driving term on the right-hand side. Using the
expression for γ0 from Eq. (8.129) we obtain

γ

γ0
= 1 + qi

6πε0

|p0|2
1

k3
Im{p∗0 · Es (r0)}. (8.141)

Since Es is proportional to p0, the dependence on the magnitude of the dipole moment
cancels out. Besides the introduction of qi, Eq. (8.141) is identical with Eq. (8.80) for the
rate of energy dissipation in inhomogeneous environments. Thus, for qi = 1 we find

γ

γ0
= P

P0
, (8.142)

in analogy to Eq. (8.116) derived earlier. In Section 8.6.2 we will use this equation to derive
energy transfer between two molecules.

Equation (8.141) can be adapted to describe the (normalized) spontaneous emission rate
of a quantum system. In this case the classical dipole represents (one half of) the quantum-
mechanical transition dipole matrix element from the excited to the ground state. The decay
rate of the excited state is equal to the spontaneous emission rate P/(�ω), where �ω is the
photon energy. Equation (8.141) provides a simple means to calculate lifetime variations
of atomic systems in arbitrary environments. In fact, this formula has been used by differ-
ent authors to describe fluorescence quenching near planar interfaces and the agreement
achieved with experiment is excellent (see Fig. 8.10).

8.5.3 Frequency shifts

The inhomogeneous environment not only influences the lifetime of the oscillating dipole
but also causes a frequency shift�ω = ω−ω0 of the emitted light. An expression for �ω
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�Fig. 8.10 Comparison of classical theory (curve) and experimental data (points) of molecular lifetimes in inhomogeneous
environments. In the experiment, a layer of Eu3+ ions is held by fatty-acid spacers of variable thickness close to a
silver surface (data after Drexhage [24]). The calculated curve is due to Chance et al. [25].

can be derived by inserting Eq. (8.140) into Eq. (8.139). The resulting expression for �ω
reads as

�ω = ω

⎡
⎣1 −

√
1 − 1

ω2

[
q2

m |p0|2 Re{p∗0 · Es} + γ γ0

2
− γ γ

4

]⎤⎦ . (8.143)

After expanding the square root to first order and neglecting the quadratic terms in γ , the
expression for the normalized frequency shift reduces to

�ω

γ0
= qi

3πε0

|p0|2
1

k3
Re{p∗0 · Es}. (8.144)

The frequency shift is very small, in the range of the radiative linewidth.
For molecules close to planar interfaces, the frequency shift varies as h−3, h being the

height of the molecule, and reaches its maximum near the surface plasmon frequency. The
dependence on h−3 suggests that observation of the frequency shift should be possible
for small h. Yet this is not the case because for small h the linewidth also increases. A
shift in the range of �λ≈20 nm was experimentally observed for small dipolar scatterers
(silver islands) close to a silver layer [26]. In this configuration the dipolar scatterers were
excited close to their resonance frequency, leading to a highly enhanced polarizability.
At cryogenic temperatures, the vibrational broadening of the emission spectrum of single
molecules is frozen out and the linewidths become very narrow, allowing frequency shifts
to be observed.

Notice again that, since Es is proportional to p0, the dependence on the magnitude of
the dipole moment in Eq. (8.144) cancels out.
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8.6 Dipole–dipole interactions and energy transfer

So far we have discussed the interaction of a nanoscale system with its local environment.
In this section we shall focus on the interaction between two systems (atoms, molecules,
quantum dots, . . . ) that we refer to as “particles.” These considerations are important for
the understanding of delocalized excitations (excitons), energy transfer between particles,
and collective phenomena. We shall assume that the internal structure of a particle is not
affected by the interactions. Therefore, processes such as electron transfer and molecu-
lar binding are not considered, and the interested reader is referred to texts on physical
chemistry [27].

8.6.1 Multipole expansion of the Coulombic interaction

Let us consider two separate particles A and B represented by the charge densities ρA and
ρB, respectively. For simplicity, we consider only non-retarded interactions. In this case,
the Coulomb interaction energy between the systems A and B reads as

VAB = 1

4πε0

∫ ∫
ρA(r′)ρB(r′′)
|r′ − r′′| dV ′ dV ′′. (8.145)

If we assume that the extent of the charge distributions ρA and ρB is much smaller than
their separation R, we may expand VAB in a multipole series with respect to the center-of-
mass coordinates rA and rB (cf. Fig. 8.11). The first few multipole moments of the charge

A

B
R

rA
rB

r′
r″

�Fig. 8.11 Interaction between two particles A and B, which are represented by their charge distributions.
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distribution ρA are determined as

qA =
∫
ρA(r′)dV ′, (8.146)

pA =
∫
ρA(r′)(r′ − rA)dV ′, (8.147)

↔
QA =

∫
ρA(r′)1

2

⎡
⎣(r′ − rA)(r′ − rA) −

↔
I
3

∣∣r′ − rA
∣∣2
⎤
⎦ dV ′, (8.148)

and similar expressions hold for the charge distribution ρB. With these multipole moments
we can express the interaction potential as

VAB(R) = 1

4πε0

[
qAqB

R
+ qA pB · R

R3
− qB pA · R

R3

+R2 pA · pB − 3 (pA · R)(pB · R)
R5

+ · · ·
]

, (8.149)

where R = rB − rA. The first term in the expansion is the charge–charge interaction.
It is non-zero only if both particles A and B carry a net charge. Charge–charge interac-
tions span long distances, since the distance dependence is only R−1. The next two terms
are charge–dipole interactions. They require that at least one particle carries a net charge.
These interactions decay as R−2 and are therefore of shorter range than the charge–charge
interaction. Finally, the fourth term is the dipole–dipole interaction. It is the most impor-
tant interaction among neutral particles. This term gives rise to van der Waals forces and to
Förster energy transfer. The dipole–dipole interaction decays as R−3 and depends strongly
on the dipole orientations. The next higher expansion terms are the quadrupole–charge,
quadrupole–dipole, and quadrupole–quadrupole interactions. These are usually of much
shorter range and therefore we do not list them explicitly. It has to be emphasized that the
potential VAB accounts only for interactions mediated by the near-field of the two dipoles.
Inclusion of the intermediate field and the far-field gives rise to additional terms. We will
include these terms in the derivation of energy transfer between particles.

8.6.2 Energy transfer between two particles

Energy transfer between particles is a photophysical process encountered in various sys-
tems. Probably the most important example is radiationless energy transfer between
light-harvesting proteins in photosynthetic membranes [28]. In these systems, the optical
energy absorbed by chlorophyll molecules has to be channeled over longer distances to a
protein called the reaction center. This protein uses the energy in order to perform a charge
separation across the membrane surface. Energy transfer is also observed between closely
arranged semiconductor nanoparticles [29] and it is the basis for Förster energy-transfer
(FRET) studies of biological processes [30].

Energy transfer between individual particles can be understood within the same quasi-
classical framework as developed in Section 8.5. The system to be analyzed is shown in
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�Fig. 8.12 Energy transfer between two particles D (donor) and A (acceptor). Initially, the donor is in its excited state, whereas
the acceptor is in its ground state. The transition rate γD→A depends on the relative orientation of the transition
dipole moments and the distance R between donor and acceptor.

Fig. 8.12. Two neutral particles D (donor) and A (acceptor) are characterized by a set
of discrete energy levels. We assume that initially the donor resides in an excited state
with energy ED = �ω0. We are interested in calculating the rate γD→A of energy transfer
from donor to acceptor. The transition dipole moments of donor and acceptor are denoted
pD and pA, respectively, and R is the vector from donor to acceptor. The corresponding
unit vectors are nD, nA, and nR, respectively. Our starting point is Eq. (8.116), which
connects the quantum-mechanical picture with the classical picture. In the current context
this equation reads as

γD→A

γ0
= PD→A

P0
. (8.150)

Here, γD→A is the rate of energy transfer from donor to acceptor and γ0 is the donor’s
decay rate in the absence of the acceptor (cf. Eq. (8.129)). Similarly, PD→A is the donor’s
energy per unit time absorbed by the acceptor, and P0 is the energy per unit time released
from the donor in the absence of the acceptor. P0 can be written as (cf. Eq. (8.71))

P0 = |pD|2n(ω0)

12πε0c3
ω4

0. (8.151)

Classically, we envision the donor to be a dipole radiating at the frequency ω0 and the
acceptor to be an absorber at ω0. Both systems are embedded in a medium with index of
refraction n(ω0). Since the expressions for γ0 and P0 are known, we need only determine
PD→A.

According to Poynting’s theorem the power transferred from donor to acceptor is
(cf. Eq. (8.73))

PD→A = −1

2

∫
VA

Re{j∗A · ED}dV . (8.152)
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Here, jA is the current density associated with the charges of the acceptor and ED is the
electric field generated by the donor. In the dipole approximation, the current density reads
as jA = −iω0pAδ(r − rA) and Eq. (8.152) reduces to

PD→A = ω0

2
Im{p∗A · ED(rA)}. (8.153)

It is important to realize that the acceptor’s dipole moment pA is not a permanent dipole
moment. Instead, it is a dipole moment induced by the donor’s field (c.f. Appendix A). In
the linear regime we may write

pA = ↔
αAED(rA), (8.154)

where
↔
αA is the acceptor’s polarizability tensor. The dipole moment can now be substituted

into Eq. (8.153) and, if we assume that the acceptor can be polarized only in the direction

of a fixed axis given by the unit vector nA in the direction of pA, i.e.
↔
αA = αAnAnA, the

power transferred from donor to acceptor can be written as

PD→A = ω0

2
Im{αA}

∣∣∣nA · ED(rA)
∣∣∣2. (8.155)

This result demonstrates that energy absorption is associated with the imaginary part of
the polarizability. Furthermore, because pA is an induced dipole, the absorption rate scales
with the square of the electric field projected onto the dipole axis. It is convenient to express
the polarizability in terms of the absorption cross-section σ defined as

σ (ω0) = 〈P(ω0)〉
I(ω0)

, (8.156)

where 〈P〉 is the power absorbed by the acceptor averaged over all absorption dipole ori-
entations, and I0 is the incident intensity. In terms of the electric field ED, the absorption
cross-section can be expressed as12

σ (ω0) = (ω0/2)Im{α(ω0)}〈∣∣np · ED
∣∣2〉

(1/2)(ε0/μ0)1/2n(ω0) |ED|2
= ω0

3

√
μ0

ε0

Im{α(ω0)}
n(ω0)

. (8.157)

Here, we used the orientational average of 〈∣∣np · ED
∣∣2〉, which is calculated as

〈∣∣np · ED
∣∣2〉 = |ED|2

4π

∫ 2π

0

∫ π

0

[
cos2θ

]
sin θ dθ dφ = 1

3
|ED|2 , (8.158)

where θ is the angle enclosed by the dipole axis and the electric field vector. Thus, in
terms of the absorption cross-section, the power transferred from donor to acceptor can be
written as

PD→A = 3

2

√
ε0

μ0
n(ω0)σA(ω0)

∣∣∣nA · ED(rA)
∣∣∣2. (8.159)

12 Notice that the replacement of the polarizability α by the absorption cross-section σ is not strictly valid
in the present context because σ is defined for homogeneous plane-wave excitation. Here, we perform this
substitution in order to be consistent with the literature.
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The donor’s field ED evaluated at the origin of the acceptor rA can be expressed in terms

of the free-space Green function
↔
G as (cf. Eq. (8.52))

ED(rA) = ω2
0 μ0

↔
G(rD, rA)pD. (8.160)

The donor’s dipole moment can be represented as pD = |pD| nD and the frequency depen-
dence can be substituted as k = (ω0/c)n(ω0). Furthermore, for later convenience we define
the function

T(ω0) = 16π2k4R6
∣∣∣nA · ↔

G(rD, rA)nD

∣∣∣2, (8.161)

where R = |rD − rA| is the distance between donor and acceptor. On using Eqs. (8.159)–
(8.161) together with Eq. (8.151) in the original equation (8.150), we obtain for the
normalized transfer rate from donor to acceptor

γD→A

γ0
= 9c4

8πR6

σA(ω0)

n4(ω0) ω4
0

T(ω0). (8.162)

In terms of the Dirac delta function this equation can be rewritten as

γD→A

γ0
= 9c4

8πR6

∫ ∞

0

δ(ω − ω0)σA(ω)

n4(ω)ω4
T(ω)dω. (8.163)

We notice that the normalized frequency distribution of the donor emission is given by∫ ∞

0
δ(ω − ω0)dω = 1. (8.164)

Since the donor emits over a range of frequencies we need to generalize the distribution as∫ ∞

0
fD(ω)dω = 1, (8.165)

with fD(ω) being the donor’s normalized emission spectrum in a medium with index n(ω).
Thus, we finally obtain the important result

γD→A

γ0
= 9c4

8πR6

∞∫
0

fD(ω)σA(ω)

n4(ω)ω4
T(ω)dω. (8.166)

The transfer rate from donor to acceptor depends on the spectral overlap of the donor’s
emission spectrum fD and the acceptor’s absorption cross-section. Notice that fD has units
of ω−1, whereas the units of σA are m2. In order to understand the orientation dependence
and the distance dependence of the transfer rate we need to evaluate the function T(ω).
Using the definition in Eq. (8.161) and inserting the free-space dyadic Green function from
Eq. (8.55), we obtain

T(ω) = (1 − k2R2 + k4R4)(nA · nD)2

+ (9 + 3k2R2 + k4R4)(nR · nD)2(nR · nA)2

+ (−6 + 2k2R2 − 2k4R4)(nA · nD)(nR · nD)(nR · nA), (8.167)
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where nR is the unit vector pointing from donor to acceptor. T(ω) and Eq. (8.166) deter-
mine the rate of energy transfer from donor to acceptor for arbitrary dipole orientation and
arbitrary separations. Figure 8.13 shows the normalized distance dependence of T(ω) for
three different relative orientations of nD and nA. At short distances R, T(ω) is constant
and the transfer rate in Eq. (8.166) decays as R−6. For large distances R, T(ω) scales in
most cases as R−4 and the transfer rate decays as R−2.

In many situations the dipole orientations are not known and the transfer rate γD→A has
to be determined by taking a statistical average over many donor–acceptor pairs. The same
applies to a single donor–acceptor pair subject to random rotational diffusion. We therefore
replace T(ω) by its orientational average 〈T(ω)〉. The calculation is similar to the procedure
encountered before (cf. Eq. (8.158)) and gives

〈T(ω)〉 = 2

3
+ 2

9
k2R2 + 2

9
k4R4. (8.168)

The transfer rate decays very rapidly with distance between donor and acceptor. There-
fore, only distances R � 1/k, where k = 2πn(ω)/λ, are experimentally significant and the
terms scaling with R2 and R4 in T(ω) can be neglected. In this limit, T(ω) is commonly
denoted as κ2 and the transfer rate can be expressed as

γD→A

γ0
=
[

R0

R

]6

, R6
0 =

9c4κ2

8π

∞∫
0

fD(ω)σ A(ω)

n4(ω) ω4
dω (8.169)

where κ2 is given by

κ2 = [nA · nD − 3(nR · nD)(nR · nA)]2 . (8.170)
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�Fig. 8.13 Dependence of the function T(ω) on the distance R between donor and acceptor for different dipole orientations. In
all cases, the short-distance behavior (kR � 1) is constant. Therefore the short-distance transfer rateγD→A scales as
R−6. The long-distance behavior (kR � 1) depends on the relative orientation of donor and acceptor. If the dipoles
are aligned, T(ω) scales as (kR)2 and γD→A decays as R−4. In all other cases, the long-distance behavior of T(ω)
shows a (kR)4 dependence and γD→A decays as (kR)−2.
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The process described by Eq. (8.169) is known as Förster energy transfer. It is named after
Th. Förster, who first derived this formula in 1946 in a slightly different form [31]. The
quantity R0 is called the Förster radius and it indicates the efficiency of energy transfer
between donor and acceptor. For R = R0 the transfer rate γD→A is equal to the decay rate
γ0 of the donor in the absence of the acceptor. R0 is typically within the range 2–9 nm [32].
Notice that the refractive index n(ω) of the environment (solvent) is included in the def-
inition of R0. The Förster radius therefore has different values for different solvents. The
literature is not consistent about the usage of n(ω) in R0. A discussion can be found in
Ref. [33]. The factor κ2 has a value in the range κ2 = [0 . . . 4]. The relative orientation of
donor and acceptor is often not known and the orientational average

〈κ2〉 = 2

3
(8.171)

is adopted for κ2.
In the limit of Förster energy transfer only the non-radiative near-field term in

Eq. (8.168) is retained. For distances kR � 1 the transfer becomes radiative and scales
with R−2. In this limit we retain only the last term in Eq. (8.168). The result is identical
with the quantum-electrodynamical calculation by Andrews and Juzeliunas [34]. In the
radiative limit the donor emits a photon and the acceptor absorbs the same photon. How-
ever, the probability of such an event is extremely small. Besides the R−6 and the R−2

terms we also find an intermediate term that scales as R−4. The inclusion of this term is
important for distances kR ≈ 1.

Recently, it has been demonstrated that the energy-transfer rate is modified in an inho-
mogeneous environment such as in a microcavity [35, 36]. This modification follows
directly from the formalism outlined in this section: the inhomogeneous environment has

to be accounted for by a modified Green function
↔
G that alters not only the donor’s decay

rate γ0 but also the transfer rate γD→A through Eq. (8.161). Using the formalism developed
here, it is possible to calculate the energy transfer in an arbitrary environment.

Example: energy transfer (FRET) between twomolecules

In order to illustrate the derived formulas for energy transfer we shall calculate the flu-
orescence from a donor molecule and an acceptor molecule with fixed separation, e.g.
two molecules attached to specific sites of a protein. Such a configuration is encountered
in studies of protein folding and molecular dynamics [37]. For the current example we
choose fluorescein as the donor molecule and Alexa Fluor 532 as the acceptor molecule.
At room temperatures the emission and absorption spectra of donor and acceptor can be
well fitted by a superposition of Gaussian distribution functions of the form

N∑
n=1

Ane−(λ−λn)2/�λ2
n . (8.172)
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For the two dye molecules we obtain good fits with only two Gaussians (N = 2). The
parameters for the donor emission spectrum fD are A1 = 2.52 fs, λ1 = 512.3 nm, �λ1 =
16.5 nm; A2 = 1.15 fs, λ2 = 541.7 nm, �λ2 = 35.6 nm, and those for the acceptor
absorption spectrum σA are A1 = 0.021 nm2, λ1 = 535.8 nm, �λ1 = 15.4 nm; A2 =
0.013 nm2, λ2 = 514.9 nm, �λ2 = 36.9 nm. The fitted absorption and emission spectra
are shown in Fig. 8.14. The third panel in Fig. 8.14 shows the overlap of the donor emission
spectrum and the acceptor absorption spectrum. In order to calculate the transfer rate we
adopt the orientational average of κ2 from Eq. (8.168). For the index of refraction we
choose n = 1.33 (water) and we ignore any dispersion effects. Thus, the Förster radius is
calculated as

R0 =
⎡
⎣ 3c

32π4n4

∞∫
0

fD(λ)σA(λ) λ2 dλ

⎤
⎦

1/6

= 6.3 nm, (8.173)

where we substituted ω by 2πc/λ.13 In air (n = 1) the Förster radius would be R0 =
7.6 nm, which indicates that the local medium has a strong influence on the transfer rate.

In order to experimentally measure energy transfer the donor molecule has to be pro-
moted into its excited state. We choose an excitation wavelength of λexc = 488 nm, which
is close to the peak of fluorescein’s absorption of λ = 490 nm. At λexc the acceptor absorp-
tion is a factor of 4 lower than the donor absorption. The non-zero absorption cross-section
of the acceptor will lead to a background acceptor fluorescence signal. With the help of
spectral filtering it is possible to experimentally separate the fluorescence emission from
donor and acceptor. Energy transfer from donor to acceptor is then observed as a decrease
of the donor’s fluorescence intensity and as an increase of the acceptor’s fluorescence inten-
sity. The energy-transfer efficiency E is usually defined as the relative change of the donor’s
fluorescence emission:

E = PD→A

P0 + PD→A
= 1

1 + γ0/γD→A
= 1

1 + (R/R0)6
. (8.174)
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�Fig. 8.14 Absorption and emission spectra of donor (fluorescein) and acceptor (Alexa Fluor 532) fitted with a superposition of
two Gaussian distribution functions. The panel on the right shows the overlap between fD andσA, which determines
the value of the Förster radius.

13 Notice that in the λ-representation the emission spectrum needs to be normalized as 2πc
∫∞

0 fD(λ)/λ2 dλ = 1.
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�Fig. 8.15 Fluorescence intensity of donor and acceptor as a function of their separation R. The donor emission halves at the
distance R = R0. The acceptor fluorescence increases as R−6 and saturates at a value determined by the acceptor’s
excited-state lifetime.

Figure 8.15 illustrates the change of donor and acceptor fluorescence as a function of their
separation R. It is assumed that the absorption cross-section of the acceptor is sufficiently
small at the excitation wavelength λexc. At the distance R = R0 the emission of the donor
halves. The fluorescence intensity of the acceptor increases as R−6 and saturates at a level
determined by the lifetime of the acceptor’s excited state. See also Fig. 8.16.

In single-molecule experiments it is important to know the orientation of donor and
acceptor. Depending on the relative orientation, the value of κ2 can vary in the range κ2 =
[0 . . . 4]. It is common practice to adopt the averaged value of κ2 = 2/3. However, in some
situations this might affect the conclusions drawn on the basis of experimental data.

8.7 Strong coupling (delocalized excitations)

The theory of Förster energy transfer assumes that the transfer rate from donor to acceptor
is smaller than the vibrational relaxation rate. This ensures that once the energy has been
transferred to the acceptor, there is little chance of a backtransfer to the donor. However,
if the dipole–dipole interaction energy is larger than the energy associated with vibrational
broadening of the electronic excited states, a delocalized excitation of donor and acceptor
is more probable. In this so-called strong-coupling regime it is not possible to distinguish
between donor and acceptor and one must view the pair as one system, i.e. the excitation
becomes delocalized over the pair of particles. In this section we discuss strong coupling
between a pair of particles A and B, but the analysis can be extended to larger systems
such as J-aggregates, which are chains of strongly coupled molecules. A characteristic
feature of the strong-coupling regime is energy-level splitting, a property that can be well
understood from a classical perspective. Therefore, we first discuss the coupling of two
harmonic oscillators as illustrated in Fig. 8.17 before diving into a more rigorous analysis.
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�Fig. 8.16 Time trajectory of donor and acceptor fluorescence and corresponding FRET efficiency for a donor–acceptor pair
attached to a four-way DNA (Holliday) junction. The data indicate that the DNA structure is switching back and forth
between two conformations. Reprinted with permission fromMacmillan Publishers Ltd. [38].

8.7.1 Coupled oscillators

In the absence of coupling (κ = 0) the two oscillators shown in Fig. 8.17 have eigenfre-
quencies ω0

A = √
kA/mA and ω0

B = √
kB/mB, respectively. In the presence of coupling

(κ �= 0) the equations of motion become

mA ẍA + kAxA + κ (xA − xB) = 0,

mB ẍB + kBxB − κ (xA − xB) = 0. (8.175)

We seek homogeneous solutions of the form xi(t) = x0
i exp(−iω±t), where ω± are the

new eigenfrequencies. We insert this ansatz into Eq. (8.175) and obtain two coupled linear

equations for x0
A and x0

B, which can be written in matrix form as
↔
M [x0

A, x0
B]T = 0. Non-

trivial solutions for this homogeneous system of equations exist only if det[
↔
M] = 0. The

resulting characteristic equation yields

ω2± = 1

2

[
ω2

A + ω2
B ±

√
(ω2

A − ω2
B)2 + 4�2ωAωB

]
, (8.176)

where ωA = √
(kA + κ)/mA, ωB = √

(kB + κ)/mB, and

� =
√
κ/mA

√
κ/mB√

ωA ωB
. (8.177)

In analogy to the dressed-atom picture [39], the eigenfrequencies ω± can be associated
with dressed states, that is, the oscillator frequencies of systems A and B in the presence
of mutual coupling. To illustrate the solutions defined by Eq. (8.176) we set kA = k0,
kB = k0 + �k, and mA = mB = m0. Figure 8.18(a) shows the frequencies of the two
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�Fig. 8.17 The strong-coupling regime illustrated by mechanical oscillators. The coupling κ of the two oscillators (massmi ,
spring constant ki) leads to a shift of the eigenfrequencies and a characteristic frequency splitting.

oscillators in the absence of coupling (κ = 0). As �k is increased from −k0 to k0 the
frequency of oscillator B increases from zero to

√
2ω0, whereas the frequency of oscillator

B stays constant. The two curves intersect at�k = 0. Once a coupling has been introduced
the two curves no longer intersect. Instead, as shown in Fig. 8.18(b), there is a characteristic
anti-crossing with a frequency splitting of

ω+ − ω− = �. (8.178)

Anti-crossing is a characteristic fingerprint of strong coupling. Since � ∝ κ , the splitting
increases with increasing coupling strength.

Note that we have ignored damping in the analysis of the coupled oscillators. Damping
can be readily introduced by adding frictional terms γAẋA and γBẋB to the equations of
motion of the coupled oscillators, Eq. (8.175). The introduction of damping gives rise to
complex frequency eigenvalues, the imaginary parts of which represent the linewidths. The
latter give rise to a “smearing out” of the curves shown in Fig. 8.18, and for very strong
damping it is no longer possible to discern the frequency splitting ω+ − ω−. Therefore, in
order to observe strong coupling the frequency splitting needs to be larger than the sum of
the linewidths,

�

γA/mA + γB/mB
> 1. (8.179)

In other words, the dissipation in each system needs to be smaller than the coupling
strength.

Coupled mechanical oscillators are a generic model system for many physical systems,
including atoms in external fields [40], coupled quantum dots [41], and cavity optome-
chanics [42]. Although our analysis is purely classical, a quantum-mechanical analysis
yields the same result for the frequency splitting in Eq. (8.176) [43]. The coupling between
energy states gives rise to avoided level crossings. As an illustration, Fig. 8.19 shows the
Stark structure of the |m| = 1 energy states of sodium atoms. The coupling between energy
states gives rise to avoided level crossings. The coupled-oscillator picture can be read-
ily extended by adding external forces FA(t) and FB(t) acting on the masses mA and mB

to account for externally driven systems, as in the case of electromagnetically induced
transparency (EIT) [44].



267 8.7 Strong coupling (delocalized excitations)

1

1.2

−1 0.50−0.5
0

0.2

0.4

0.6

0.8

1.4

1 −1 0.50−0.5 1
Δk/k0 Δk/k0

ω/
ω 0

ω+/ω0

ω− /ω0

Γ/ω0

(b)
1.6

(a)

ω0
A
/ω0 

ω0
B
/ω0 
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8.7.2 Adiabatic and diabatic transitions

We now investigate what happens if one of the oscillator parameters changes as a function
of time. For example, to record the curves shown in Fig. 8.18 we need to tune �k from
an initial value of −k0 to a final value k0. Thus, �k becomes a function of time, a fact
that we have ignored in the analysis above. We have assumed that �k is tuned so slowly
that for every measurement window�t the system parameters can be regarded as constant.
Thus, if we initially have �k = −k0 the coupled system oscillates at frequency ω− (the
bottom curve in Fig. 8.18(b)), and the system will follow the same curve as we slowly
increase�k. We can fine-tune the oscillation frequency by adjusting�k. The same applies
if we initially start with frequency ω+ (the top curve in Fig. 8.18(b)). In both cases the
anti-crossing region is passed by staying on the same branch. This scenario is referred to
as an adiabatic transition and is illustrated in Fig. 8.20(a).

In the adiabatic limit it is possible to transfer the energy from one oscillator to the other
by slowly tuning the coupled system through resonance. To see this effect, we introduce
normal coordinates (x+, x−) defined by

xA(t) = x+(t)sinβ + x−(t)cosβ(m2/m1),

xB(t) = x+(t)cosβ − x−(t)sinβ, (8.180)

where β is given by tanβ = (ω2
B − ω2+)/(κ/mB) = −(ω2

A − ω2−)/(κ/mB). We substitute
these expressions for xA and xB into Eqs. (8.175) and obtain

ẍ+(t) + ω2+x+(t) = 0,

ẍ−(t) + ω2−x−(t) = 0, (8.181)
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�Fig. 8.19 Anti-crossing of |m| = 1 energy levels of Na atoms. The energy levels are tuned by an external electric field (the
Stark effect). The coupling between the atomic states gives rise to avoided crossings. From [40].

which represent two independent harmonic oscillators oscillating at the eigenfrequencies
ω± defined by Eq. (8.176). In other words, there are two sets of coordinates, x+ and x−,
which oscillate independently of each other.

Now imagine that�k is slowly tuned in time from the initial value of�k = −k0 through
resonance to a value of �k = k0. According to Fig. 8.18, at the initial time we have
ωA − ω− � � and therefore β ∼ −π/2. If we use this value in Eq. (8.180) and assume
that initially only oscillator A is active, we find that all the energy is associated with normal
mode x+, that is, x− = 0. Once �k has been tuned past resonance to k0 we have ωA −
ω− � � and β ≈ 0. According to Eqs. (8.180) the energy of mode x+ now coincides
with oscillator B, and hence the energy is transferred from oscillator A to oscillator B as
the system is slowly tuned through resonance. If �k changes with time, then also kB, ωB,
and the eigenfrequencies ω± become time-dependent. Assuming a slowly varying ω±(t) in
Eq. (8.181) we find

x±(t) = x±(ti)Re

{
exp

[
i
∫ t

ti
ω±(t′)dt′

]}
, (8.182)

where we used the ansatz x±(t) = x±(ti)exp[if (t)] and d2f /dt2 � (df /dt)2. Equation
(8.182) describes the adiabatic evolution of the normal modes.

We now analyze what happens if we change �k more rapidly. We use the ansatz

xA(t) = x0cA(t)exp(iωAt), xB(t) = x0cB(t)exp(iωAt), (8.183)

and assume that initially only oscillator A is active; that is, cB(−∞) = 0. The amplitude x0

is a normalization constant that ensures |cA|2 + |cB|2 = 1. We substitute these expressions
for xA and xB into Eqs. (8.175) and obtain the following coupled differential equations for
cA and cB:
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c̈A + 2iωAċA = (κ/mA)cB, (8.184)

c̈B + 2iωAċB +
[
ω2

B(t) − ω2
A

]
cB = (κ/mB)cA,

where we emphasized the time dependence of ωB. For weak coupling between the two
oscillators, the amplitudes cA(t) and cB(t) in Eq. (8.183) vary much more slowly with time
than does the oscillatory term exp(iωAt). Therefore, c̈A � iωAċA and c̈B � iωAċB, which
allows us to drop the second-order derivatives in Eq. (8.184) to obtain

2iωAċA = (κ/mA)cB, (8.185)

2iωAċB +
[
ω2

B(t) − ω2
A

]
cB = (κ/mB)cA. (8.186)

From Eq. (8.185) we find cB and ċB (by taking a derivative), and substitute the results into
Eq. (8.186) to find, after some algebra,

c̈A − iċA

[
ω2

B(t) − ω2
A

2ωA

]
+ cA

κ2/(mAmB)

4ω2
A

= 0. (8.187)

The time dependence of ωB makes Eq. (8.187) nonlinear. During the time interval of inter-
est, close to the anti-crossing region, ωB(t) ≈ ωA, and hence [ω2

B(t) − ω2
A]/(2ωA) ≈

ωB(t)−ωA. For the same reason we can set �2 ≈ κ2/(mAmBω
2
A) (c.f. Eq. (8.177)). Finally,

we assume that near the anti-crossing region the frequency difference of oscillators A and
B changes linearly in time, that is,

ωB(t) − ωA = αt. (8.188)

According to Eq. (8.188), the anti-crossing region is passed at time t ≈ 0, and the fre-
quency difference is negative for t < 0 and positive for t > 0 (see Fig. 8.18). With these
approximations, Eq. (8.187) becomes

c̈A − iċAαt + cA�
2/4 = 0. (8.189)
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Despite the approximations we have made there is no analytical solution of Eq. (8.189)
for cA(t). However, we are not interested in the temporal behavior of cA but rather in the
value which cA assumes after the anti-crossing regime has long passed. By using contour
integration we find that the solution for cA(t →∞) is [45]

cA(∞) = exp
[
−π

4
�2/α

]
. (8.190)

Because the energy of oscillator A is EA ∝ |cA|2, the probability of level crossing is

Pdiab = exp
[
−π

2
�2/α

]
, (8.191)

which is also referred to as a diabatic transition, a transition involving loss or gain.
Equation (8.191) is the classical analog of the Landau–Zener formula in quantum

mechanics [46, 47]. As illustrated in Fig. 8.20(b), Eq. (8.191) defines the probability that
the energy of oscillator A remains the same after transitioning through the anti-crossing
region. Pdiab is the probability for passing through the anti-crossing region by switch-
ing branches, that is, for jumping from one eigenmode to the other (see Fig. 8.20(b)).
Consequently, the probability of an adiabatic transition is Padiab = 1 − Pdiab.

The probability of a diabatic transition depends on the frequency splitting,
� = ω+ − ω−, and on the time τ ∼ �/α that it takes to transition through the anti-crossing
region. A diabatic transition is likely for �τ � 1, which corresponds to a rapid tran-
sition through the anti-crossing region. In contrast, for a slow transition (�τ � 1) an
adiabatic transition is more probable. Note that the product �τ has analogies with the
time–energy uncertainty principle. For times τ � 1/� the energy uncertainty becomes
larger than the level splitting, thereby “closing up” the anti-crossing region and making
diabatic transitions possible.

In our example, we can control which branch (eigenmode) we end up with by setting the
speed at which �k(t) changes. Figure 8.21(b) shows computed results for |cA(t)|2 for two
time dependences of �k. In both cases �k changes from −k0 to k0, but the speed of this
change differs. Figure 8.21(a) shows the corresponding time dependence of the frequency
shifts. For the computations of cA we assumed that only oscillator A is active initially;
that is, cA(−∞) = 1 and cB(−∞) = 0. As time evolves we observe small oscillations
in cA and then an abrupt change in the transition region. This change is followed by a
slowly damped oscillation. The two limiting values for the diabatic probability Pdiab are
indicated in Fig. 8.21(b). Although one of the curves represents a nearly adiabatic transition
(Pdiab ∼ 0), the other represents a nearly diabatic transition (Pdiab ∼ 1). Situations in
between can be selected by adjusting the speed at which �k(t) changes.

Let us now verify the transition probabilities using the Landau–Zener formula. A
linear approximation to the curves in Fig. 8.21(a) yields the slopes: α1 = 0.003ω2

A
and α2 = 0.075ω2

A. The level splitting of the two oscillators is � = (κ/m0)/ωA, with
ω2

A = (k0 + κ)/m0. If we use κ = 0.08k0 and substitute the expressions for � and α
into Eq. (8.191), we find Pdiab(α1) = 0.06 and Pdiab(α2) = 0.89, in agreement with the
computed results in Fig. 8.21(b).
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The Landau–Zener formula is an important result because it finds application in a wide
range of problems. It allows us to readily calculate transitions between eigenmodes of
two coupled systems. For example, consider light propagation along a dielectric fiber with
a thin metal coating. There are two sets of modes, namely those propagating inside the
dielectric (waveguide modes) and those propagating on the outside of the metal coating
(surface modes). Let’s assume that only the fundamental, radially polarized waveguide
mode is excited and that the radius R of the dielectric fiber is steadily reduced. It can be
shown that for a certain fiber radius R the propagation constants of the waveguide mode and
the surface mode become equal, that is they cross. But because of the finite metal coating
the two sets of modes interact and give rise to an anti-crossing region. If R is slowly reduced
(small taper angle) we end up with an adiabatic transition and the energy of the waveguide
mode is transferred to the surface mode. On the other hand, a diabatic transition is obtained
if R is rapidly reduced (large taper angle) and the energy remains with the waveguide mode.
This scenario has been discussed in the context of plasmon focusing [48].

Notice that the result in Eq. (8.191) can be extended to a quantum-mechanical sys-
tem with eigenstates |1〉 and |2〉 by using the substitutions ��/2 → |〈1|Ĥint|2〉| and
�α → d[E1(t)− E2(t)]/dt, where Ĥint is the interaction Hamiltonian and Ei are the energy
eigenvalues. These substitutions yield the original quantum Landau–Zener formula.
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8.7.3 Coupled two-level systems

We next discuss the coupling of two particles from a quantum-mechanical perspective.
We consider two particles A and B, which are represented by two-level systems. In the
absence of any interactions between the two particles, the ground state and energy eigen-
value of A are denoted as |A〉 and EA, respectively, and for the excited state we use |A�〉
and E�A (see Fig. 8.22). Similar notation is used for the eigenstates and eigenvalues of B.
To solve the coupled system we define four states |AB〉, |A�B〉, |AB�〉, |A�B�〉 that satisfy
the Schrödinger equation of the uncoupled system,

[ĤA + ĤB] |φn〉 = en |φn〉 . (8.192)

Here, |φn〉 is any of the defined four states and En denotes the eigenvalue associated with
this state, i.e. en ∈ [(EA + EB), (E�A + EB), (EA + E�B), (E�A + E�B)]. After introducing
interaction terms between the four states, the Schrödinger equation of the coupled system
becomes

[ĤA + ĤB + V̂int] |�n〉 = En |�n〉 , (8.193)

where V̂int is the interaction Hamiltonian, |�n〉 are the new eigenstates and En the new
eigenvalues. To determine the eigenstates En = 〈�n| ĤA + ĤB + Vint |�n〉 we can now
expand the new eigenstates in terms of the old eigenstates as

|�n〉 = an |AB〉 + bn
∣∣A�B〉+ cn

∣∣AB�
〉+ dn

∣∣A�B�〉 , (8.194)

and diagonalize the Hamiltonian [ĤA + ĤB + V̂int] using standard procedures.
The problem with this rigorous approach is the lack of information on the coupling

terms that lead to Vint. These terms are defined by the combined system of particles A and
B. They only approximately correspond to the interparticle interaction potentials VAB in
Eq. (8.149). Vint could be determined by first rigorously solving the Schrödinger equation
of the combined system of particles and then trying to decouple the unperturbed Hamilto-
nians from the system. But this is a difficult task. To better understand this subtle point let
us consider a system made of two electrons, two neutrons, and two protons. The resulting
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�Fig. 8.22 Coherent interaction between two particles A and B. In the resonant limit, the excitation becomes delocalized over the
two particles.
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element is known as helium (4He). If the particles are equally divided into two separate
systems, we obtain two deuterium atoms (D). It is quite evident that it is challenging to
view 4He as two interacting deuterium atoms.

Since the exact parameters of a coupled system are not known a priori it is favorable
to describe the interaction between two particles in terms of their unperturbed parameters.
In this picture, the interaction between two particles can be viewed as a perturbation of
the two isolated particles. In particular, if we assume that the dipole moments of particle
A and particle B are known, the interaction between the two particles can be described in
terms of the interparticle interaction potentials VAB in Eq. (8.149). Assuming that the two
particles are charge-neutral, the leading term in the interaction becomes the dipole–dipole
interaction.

Using first-order non-degenerate perturbation theory [49], we write for the states of the
ground state |0〉 and the doubly excited state |A�B�〉 of the coupled system

|0〉 = |AB〉 (8.195)

|2〉 = ∣∣A�B�〉 (8.196)

and obtain the following first-order-corrected energy eigenstates

E0 = EA + EB + 〈0|VAB |0〉, (8.197)

E2 = EA� + EB� + 〈2|VAB|2〉. (8.198)

Thus, the coupling between A and B gives rise to a displacement of the ground-state energy
and the energy of the doubly excited state. For the singly excited states

∣∣1+〉 and
∣∣1−〉 we

cannot proceed in the same way. If the particles A and B were identical, the unperturbed
singly excited states |A�B〉 and |AB�〉 would be degenerate. Even if the two particles are
not identical, non-degenerate perturbation theory can be applied only if the energy separa-
tion of the unperturbed states, �E = ∣∣(E�A + EB) − (EA + E�B)

∣∣, is much bigger than the
strength of the perturbations 〈A�B|VAB |AB�〉 and 〈AB�|VAB |A�B〉. If this is not the case,
degenerate perturbation theory has to be applied even to a non-degenerate system. There-
fore, we define the states

∣∣1+〉 and
∣∣1−〉 of the coupled system as a linear combination of

the unperturbed states ∣∣1+〉 = cosα
∣∣A�B〉+ sinα

∣∣AB�
〉
, (8.199)∣∣1−〉 = sinα

∣∣A�B〉− cosα
∣∣AB�

〉
, (8.200)

where α is an arbitrary coefficient to be determined later. The states
∣∣1+〉 and

∣∣1−〉 have to
satisfy the Schrödinger equations

[ĤA + ĤB + VAB]
∣∣1+〉 = E+

1

∣∣1+〉, (8.201)

[ĤA + ĤB + VAB]
∣∣1−〉 = E−

1

∣∣1−〉. (8.202)

To facilitate notation we introduce the following abbreviations

WA�B = 〈A�B∣∣VAB
∣∣A�B〉 , WAB� =

〈
AB�

∣∣VAB
∣∣AB�

〉
. (8.203)
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On inserting
∣∣1+〉 from Eq. (8.199) into Eq. (8.201) and operating from the left with

〈
1+
∣∣

we obtain

E+
1 =sin2α [EA + EB� + WAB�] + cos2α [EA� + EB + WA�B]

+ 2 sinα cosα Re
{〈

A�B
∣∣VAB

∣∣AB�
〉}

. (8.204)

We made use of the fact that ĤA operates only on the states of particle A and ĤB operates
only on the states of particle B. We also applied the orthogonality relations

〈
A
∣∣A〉 = 1,〈

A�
∣∣A〉 = 0,

〈
B
∣∣B〉 = 1, and

〈
B�
∣∣B〉 = 0. Furthermore, since VAB is a Hermitian operator we

have
[〈AB�|VAB |A�B〉

]� = 〈A�B|VAB |AB�〉, with [. . .]� denoting the complex conjugate.
The energy E− is derived in a similar way as

E−
1 = cos2 α[EA + EB� − WAB�] + sin2α[EA� + EB + WA�B]

− 2 sinα cosα Re
{〈

A�B
∣∣VAB

∣∣AB�
〉}

. (8.205)

The energy levels E+ and E− depend on the coefficient α, which can be determined
by requiring orthogonality between the states

∣∣1+〉 and
∣∣1−〉. Operating with

〈
1−
∣∣ on

Eq. (8.201) and making use of
〈
1−
∣∣1+〉 = 0 leads to the condition〈

1−
∣∣ĤA + ĤB + VAB

∣∣1+〉 = 0, (8.206)

from which we derive

tan(2α) = 2 Re{〈A�B|VAB|AB�〉}
[EA� + EB + WA�B] − [EA + EB� + WAB�]

. (8.207)

The coefficient α can have any value in the range [0 . . . π/2] depending on the strength of
interaction between particles A and B. A better insight is gained by considering the two
limiting cases of α= 0 (α = π/2) and α = π/4.

For α = 0, the singly excited states reduce to
∣∣1+〉 = |A�B〉 and

∣∣1−〉 = −|AB�〉. Thus,
in state

∣∣1+〉 the excitation is entirely localized on particle A, whereas in state
∣∣1−〉 the

excitation is localized on particle B. The energy eigenvalues become

E+
1 = [EA� + EB + WA�B] (α = 0), (8.208)

E−
1 = [EA + EB� + WA�B] (α = 0). (8.209)

There is no energy-level splitting if A and B are identical particles. The interaction gives
rise only to a level shift by an amount WA�B.

The situation is similar for the case α = π/2, for which the roles of A and B are simply
reversed. The singly excited states become

∣∣1+〉 = |AB�〉 and
∣∣1−〉 = |A�B〉 and the energy

eigenvalues are

E+
1 = [EA + EB� + WAB�] (α = π/2), (8.210)

E−
1 = [EA� + EB + WAB�] (α = π/2). (8.211)

If the nominator of Eq. (8.207) goes to infinity or if the denominator goes to zero we obtain
the limiting case of α = π/4. For this so-called resonant case the excitation is distributed
equally over both particles and the energy eigenvalues read as
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E+
1 = 1

2
[EA + EA� + EB + EB� + WAB� + WA�B]

+Re
{〈

A�B|VAB|AB�
〉}

(α = π/4), (8.212)

E−
1 = 1

2
[EA + EA� + EB + EB� + WAB� + WA�B]

−Re
{〈

A�B
∣∣VAB

∣∣AB�
〉}

(α = π/4). (8.213)

This delocalized excitation is also known as an exciton and the regime for which α≈π/4
is called the strong-coupling regime. Strong coupling is always achieved if particles A and
B are identical, if they interact, and if there are no losses in the system. In general, we have
to require that

Re
{〈

A�B
∣∣VAB

∣∣AB�
〉}� 1

2
([EA� + EB + WA�B] − [EA + EB� + WAB�]) . (8.214)

Our analysis shows that the interaction between two identical particles leads to a level
splitting of the singly excited states. In the case of many interacting particles, the multiple
splitting of the singly excited states will lead to an energy band (exciton band). Delocalized
excitation is based on a coherent superposition of states. The time required to establish
this coherence is on the order of τc = h/VAB. Vibronic relaxation can easily destroy
the coherence within a few picoseconds. As a result, the excitation becomes localized,
and incoherent energy transfer between particles (Förster energy transfer) becomes more
probable. In general, strong coupling in a system can be established only if vibrational
relaxation times τvib are longer than τc.

As an illustration of strong coupling, Fig. 8.23 shows the level splitting of two InAs
quantum dots separated by a GaAs barrier of variable thickness. The peaks correspond to
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the emission of the ground state exciton (s-shell) and first excited state exciton (p-shell). At
large separations, only one ground state emission line is seen, but as the barrier thickness
is decreased the emission line splits. The same is true for the first excited state exciton
although only the lower energy level is shown. In these experiments, low excitation powers
were used to prevent the excitation of multiexcitons.

8.7.4 Entanglement

The concept of entanglement is of key importance in the context of quantum information
theory. The term is adapted from the German “verschränkter Zustand” and was first intro-
duced by Schrödinger [50]. It refers to a combined state of two systems (e.g. the singly
excited states encountered in the previous section) that cannot be written as a product of
the individual states. More qualitatively, entanglement refers to the degree of “quantum
memory” in a system. There exist different definitions for the degree of entanglement,
but we restrict the discussion to the so-called Schmidt decomposition applicable to pure
states [51].

Entanglement refers to a joint property of two systems A and B, a so-called bipar-
tite system. Each system is characterized by its eigenstates, i.e. |An〉 and |Bm〉, with
n = 1, 2, . . . , N and m = 1, 2, . . .M. A and B are called qubits if N = M = 2. The com-
bined system of A+B has its own eigenstates |�i〉, which can be arbitrarily superimposed
and which define the density matrix

ρ̂ = |�〉〈�|. (8.215)

Because |�〉 can be expressed in terms of |An〉 and |Bm〉 we define the reduced density
matrices ρ̂A and ρ̂B as

ρ̂A = TrB
[
ρ̂
] =∑

m

〈
Bm
∣∣ρ̂∣∣Bm

〉
, (8.216)

ρ̂B = TrA
[
ρ̂
] =∑

n

〈
An
∣∣ρ̂∣∣An

〉
,

where Tr stands for trace. A given (normalized) state |�〉 is called separable if all but one
of the eigenvalues λi of the reduced density matrix ρ̂A are zero. It can be shown that ρ̂B has
the same eigenvalues and so it suffices to consider only one of the reduced matrices. Notice
that the sum of all λi is equal to unity. If |�〉 is not separable, the state is called entangled
and the degree of entanglement is defined by the Grobe–Rzazewski–Eberly number [52]

K =
[∑

i

λ2
i

]−1

, (8.217)

which is always larger than or equal to unity and smaller than or equal to the total number
of non-zero eigenvalues.

As an example, let us discuss the state∣∣1+〉 = cosα
∣∣A�B〉+ sinα

∣∣AB�
〉

(8.218)
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encountered in the previous section. This is a state of the combined system of A (|A〉, |A�〉)
and B (|B〉, |B�〉). Thus, N = M = 2. The density matrix ρ̂ is calculated as

ρ̂ = [cosα
∣∣A�B〉+ sinα|AB�〉] [(cosα)∗

〈
A�B

∣∣+ (sinα)∗
〈
AB�

∣∣]
= cos2α

∣∣A�B〉 〈A�B∣∣ + sin2α
∣∣AB�

〉 〈
AB�

∣∣
+ sinα cosα

∣∣A�B〉 〈AB�
∣∣ + sinα cosα

∣∣AB�
〉 〈

A�B
∣∣ , (8.219)

and the reduced density matrix ρ̂A becomes

ρ̂A = cos2α
∣∣A�〉 〈A�∣∣+ sin2α|A〉〈A| =

[
cos2α 0

0 sin2α

]
, (8.220)

where we have made use of the orthonormality of |B〉 and |B�〉. Because the off-
diagonal elements are zero, the eigenvalues are λ1 = sin2α and λ2 = cos2α, and the
Grobe–Rzazewski–Eberly number becomes

K = 1

sin4α + cos4α
. (8.221)

Thus, the state
∣∣1+〉 is separable if α = 0 or α = π/2. For angles in between the state

is entangled. For α = π/4 the state is maximally entangled (K = 2) and is called a Bell
state. This is consistent with our discussion in the previous section, where we determined
that for α = π/4 the excitation is equally distributed over the two particles (the resonant
case) and that the strongest coupling is achieved for this case. Finally, it should be noted
that the Schmidt decomposition works only for pure states and that other procedures have
to be applied to mixed states.

Problems

8.1 Derive the potential energy V for a system of two charges q, −q in an external field
E, H. The charges are separated by a vector s with s = |s| � λ. Calculate first the
force F = (m1 + m2)r̈ acting on the two charges and expand F in a Taylor series
with origin r at the center of the two charges. Retain only the lowest order in the
expansion. Then derive V for the two cases of
(1) a permanent dipole moment p and
(2) an induced dipole moment p = αE.

8.2 Derive the far-field Green function
↔
GFF in spherical coordinates and Cartesian

vector components. Calculate the radiation pattern P(ϑ ,ϕ)/P for a dipole p that
encloses an angle α with the z-axis.

8.3 Prove that the near-field and intermediate-field terms of a dipole in free space do not
contribute to radiation.

8.4 Calculate the interaction energy between two dipoles given by V = −p1 · E2(r1) −
p2 · E1(r2). E1(r2) is the field of dipole p1 evaluated at the position r2 of dipole p2.
Similarily, E2(r1) is the field of dipole p2 evaluated at the position r1 of dipole p1.
Separate the near-field, intermediate-field, and far-field interactions.
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8.5 In Section 8.3.4 it was pointed out that radiation reaction is necessary in order to
account for light scattering from particles that are treated in the dipole limit. In
this exercise we derive a correction for the particle polarizability α in order to be
consistent with the optical theorem.
(1) The radiation reaction force Fr defines a self-field Eself according to Fr =

qEself. Express Eq. (8.85) in terms of the dipole moment p = qr and represent
the associated self-field in the frequency domain, i.e. find Eself(ω).

(2) The dipole p is induced by the local field consisting of the external field E0 and
the self-field Eself according to p = α(ω)(E0 + Eself). Substitute Eself from (1)
and arrange terms to get p = αeff(ω)E0. Show that the effective polarizability
is given by

αeff(ω) = α(ω)

1 − i[k3/(6πε0)]α(ω)
. (8.222)

When applied to the optical theorem, the first term in the series expansion of αeff

leads to absorption, whereas the second term defines scattering. The inconsistency
of the optical theorem in the dipole limit is also discussed in Problem 16.4.

8.6 The partial local density of states ρp depends on the orientation of the unit vector
np. Show that, on averaging np over all orientations, ρp becomes identical with the
total density of states ρ. It suffices to show that

〈
np · Im

{↔
G
}

· np

〉
= 1

3
Im
{

Tr[
↔
G]
}

.

8.7 In free space, the partial local density of states ρp is identical to the total density of
states ρ. To show this, prove that

[
np · Im

{↔
G0

}
· np

]
= 1

3
Im
{

Tr[
↔
G0]
}

,

where
↔
G0 is the free-space dyadic.

8.8 A molecule with emission dipole moment in the direction of the x-axis is scanned
in the (x, y) plane. A spherical gold particle (ε = −7.6 + 1.7i) with radius r0 =
10 nm is placed above the (x, y) plane. The emission wavelength is λ = 575 nm
(DiI molecule). The center of the particle is located at the fixed position (x, y, z) =
(0, 0, 20) nm.
(1) Calculate the normalized decay rate γ /γ0 as a function of x, y. Neglect retar-

dation effects and draw a contour plot. What is the minimum value of γ /γ0?
How does the quenching rate scale with the sphere radius r0?

(2) Repeat the calculation for a dipole oriented in the direction of the z-axis.
8.9 Two molecules, fluorescein (donor) and Alexa Green 532 (acceptor), are located in

a plane centered between two perfectly conducting surfaces separated by the dis-
tance d. The emission spectrum of the donor (fD) and the absorption spectrum of
the acceptor (σA) are approximated by a superposition of two Gaussian distribution
functions. Use the fit parameters from Section 8.6.2.
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(1) Determine the Green function for this configuration.
(2) Calculate the decay rate γ0 of the donor in the absence of the acceptor.
(3) Determine the transfer rate γD→A as a function of the separation R between

donor and acceptor. Assume random dipole orientations.
(4) Plot the Förster radius R0 as a function of the separation d.

8.10 Prove Eq. (8.207) by following the steps in Section 8.7.
8.11 Consider the state

|�〉 = β1
∣∣1+〉+ β2

∣∣1−〉 ,
where

∣∣1+〉 and
∣∣1−〉 are defined by Eqs. (8.199) and (8.200), respectively. Assume

that
∣∣1+〉 and

∣∣1−〉 are maximally entangled states (α = π/4) and investigate the
separability of |�〉 as a function of β1 and β2. Can superpositions of entangled
states be unentangled? Determine the Grobe–Rzazewski–Eberly number.

8.12 Systems A and B are three-level systems with the states |−1〉, |0〉, and |1〉.
Determine the combined, maximally entangled state(s).

References

[1] D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics.
Mineola, NY: Dover Publications (1998).

[2] R. Loudon, The Quantum Theory of Light, 2nd edn. Oxford: Oxford University Press
(1983).

[3] C. Cohen-Tannoudji, J. Dupond-Roc, and G. Grynberg, Photons and Atoms. New
York: John Wiley & Sons (1997).

[4] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill (1941).
[5] L. D. Barron and C. G. Gray, “The multipole interaction Hamiltonian for time

dependent fields,” J. Phys. A 6, 50–61 (1973).
[6] R. G. Woolley, “A comment on ‘The multipole interaction Hamiltonian for time

dependent fields’,” J. Phys. B 6, L97–L99 (1973).
[7] P. W. Milonni, The Quantum Vacuum. San Diego, CA: Academic Press (1994).
[8] H. C. van de Hulst, Light Scattering by Small Particles. Mineola, NY: Dover

Publications (1981).
[9] E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.

69, 681 (1946).
[10] K. H. Drexhage, M. Fleck, F. P. Schäfer, and W. Sperling, “Beeinflussung der

Fluoreszenz eines Europium-chelates durch einen Spiegel,” Ber. Bunsenges. Phys.
Chem. 20, 1176 (1966).

[11] P. Goy, J. M. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced
single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).

[12] D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).



280 Optical interactions

[13] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electron-
ics,” Phys. Rev. Lett. 58, 2059–2062 (1987).

[14] S. John, “Strong localization of photons in certain disordered dielectric superlat-
tices,” Phys. Rev. Lett. 58, 2486–2489 (1987).

[15] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new
twist on light,” Nature 386, 143–149 (1997).

[16] S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-
molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys.
Rev. Lett. 97, 017402 (2006).

[17] P. Andrew and W. L. Barnes, “Forster energy transfer in an optical microcavity,”
Science 290, 785–788 (2000).

[18] J. J. Sánchez-Mondragón, N. B. Narozhny, and J. H. Eberly, “Theory of spontaneous-
emission line shape in an ideal cavity,” Phys. Rev. Lett. 51, 550–553 (1983).

[19] G. S. Agarwal, “Spectroscopy of strongly coupled atom–cavity systems: a topical
review,” J. Mod. Opt. 45, 449–470 (1998).

[20] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, et al., “The Fano resonance in
plasmonic nanostructures and metamaterials,” Nature Mater. 9, 707–715 (2010).

[21] U. Fano, “Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro
d’arco,” Nuovo Cimento 12, 154–161 (1935). English translation: “On the absorption
spectrum of noble gases at the arc spectrum limit,” arXiv:cond-mat/0502210 v1 by
G. Pupillo, A. Zannoni, and C. W. Clark (2005).

[22] B. Lounis and C. Cohen-Tannoudji, “Coherent population trapping and Fano pro-
files,” J. Physique II 2, 579–592 (1992).

[23] O. Krauth, G. Fahsold, N. Magg, and A. Pucci, “Anomalous infrared transmission
of adsorbates on ultrathin metal films: Fano effect near the percolation threshold,”
J. Chem. Phys. 113, 6330–6333 (2000).

[24] K. H. Drexhage, “Influence of a dielectric interface on fluorescent decay time,”
J. Lumin. 1–2, 693–701 (1970).

[25] R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy trans-
fer near interfaces,” in Advances in Chemical Physics, vol. 37, ed. I. Prigogine and
S. A. Rice. New York: Wiley, pp. 1–65 (1978).

[26] W. R. Holland and D. G. Hall, “Frequency shifts of an electric-dipole resonance near
a conducting surface,” Phys. Rev. Lett. 52, 1041–1044 (1984).

[27] See, for example, H. Haken, W. D. Brewer, and H. C. Wolf, Molecular Physics and
Elements of Quantum Chemistry. Berlin: Springer-Verlag (1995).

[28] See, for example, H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosyn-
thetic Excitons. Singapore: World Scientific (2000).

[29] C. R. Kagan, C. B. Murray, M. Nirmal, and M. G. Bawendi, “Electronic energy
transfer in CdSe quantum dot solids,” Phys. Rev. Lett. 76, 1517–1520 (1996).

[30] S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–
1683 (1999).

[31] Th. Förster, “Energiewanderung und Fluoreszenz,” Naturwissenschaften 33, 166–
175 (1946); Th. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,”
Ann. Phys. (Leipzig) 2, 55–75 (1948). An English translation of Förster’s original
work is provided by R. S. Knox, “Intermolecular energy migration and fluorescence,”



281 References

in Biological Physics, ed. E. Mielczarek, R. S. Knox, and E. Greenbaum. New York:
American Institute of Physics, pp. 148–160 (1993).

[32] P. Wu and L. Brand, “Resonance energy transfer,” Anal. Biochem. 218, 1–13 (1994).
[33] R. S. Knox and H. van Amerongen, “Refractive index dependence of the Förster

resonance excitation transfer rate,” J. Phys. Chem. B 106, 5289–5293 (2002).
[34] D. L. Andrews and G. Juzeliunas, “Intermolecular energy transfer: radiation effects,”

J. Chem. Phys. 96, 6606–6612 (1992).
[35] P. Andrew and W. L. Barnes, “Förster energy transfer in an optical microcavity,”

Science 290, 785–788 (2000).
[36] C. E. Finlayson, D. S. Ginger, and N. C. Greenham, “Enhanced Förster energy trans-

fer in organic/inorganic bilayer optical microcavities,” Chem. Phys. Lett. 338, 83–87
(2001).

[37] P. R. Selvin, “The renaissance of fluorescence resonance energy transfer,” Nature
Struct. Biol. 7, 730–734 (2000).

[38] S. A. McKinney, A. C. Declais, D. M. J. Lilley, and T. Ha, “Structural dynamics of
individual Holliday junctions,” Nature Struct. Biol. 10, 93–97 (2003).

[39] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions.
Weinheim: Wiley-VCH Verlag, Chapter VI (2004).

[40] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, “Stark structure
of the Rydberg states of alkali-metal atoms,” Phys. Rev. A 20, 2251–2275 (1979).

[41] M. Bayer, P. Hawrylak, K. Hinzer, et al., “Coupling and entangling of quantum dot
states in quantum dot molecules,” Science 291, 451–453 (2001).

[42] T.J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the
mesoscale,” Science 321, 1172–1176 (2008).

[43] A. R. Bosco de Magalhaes, C. H. d’Avila Fonseca, and M. C. Nemes, “Classical
and quantum coupled oscillators: symplectic structure,” Phys. Scripta 74, 472–480
(2006).

[44] C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of
electromagnetically induced transparency,” Am J. Phys. 70, 37–41 (2002).

[45] C. Wittig, “The Landau–Zener formula,” J. Phys. Chem. B 109, 8428–8430 (2005).
[46] L. Landau, “Zur Theorie der Energieübertragung. II,” Phys. Z. Sowjetunion 2, 46–51

(1932).
[47] C. Zener, “Non-adiabatic crossing of energy levels,” Proc. Roy. Soc. A 137, 692–702

(1932).
[48] A. Bouhelier, J. Renger, M. Beversluis, and L. Novotny, “Plasmon coupled tip-

enhanced near-field microscopy,” J. Microsc. 210, 220–224 (2003).
[49] See, for example, D. J. Griffiths, Introduction to Quantum Mechanics. Upper Saddle

River, NJ: Prentice Hall (1994).
[50] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwis-

senschaften 23, 807–812 (1935).
[51] A. Ekert and P. L. Knight, “Entangled quantum systems and the Schmidt decompo-

sition,” Am. J. Phys. 63, 415–423 (1995).
[52] R. Grobe, K. Rzazewski, and J. H. Eberly, “Measure of electron–electron correlation

in atomic physics,” J. Phys. B 27, L503–L508 (1994).



9 Quantum emitters

The interaction of light with nanoscale structures is at the core of nano-optics. As the
structures become smaller and smaller the laws of quantum mechanics will become appar-
ent. In this limit, the discrete nature of atomic states gives rise to resonant light–matter
interactions. In atoms, molecules, and nanoparticles, such as semiconductor nanocrystals
and other “quantum confined” systems, these resonances occur when the photon energy
matches the energy difference of discrete internal (electronic) energy levels. Owing to
the resonant character, light–matter interaction can often be approximated by treating
these quantum emitters as effective two-level systems, i.e. by considering only those two
(electronic) levels whose difference in energy is close to the interacting photon energy �ω0.

In this chapter we discuss quantum emitters that are used in optical experiments. We
will discuss their use as single-photon sources and analyze their photon statistics. While
the radiative properties of quantum emitters have been discussed in Chapter 8, this chapter
focuses on the properties of the quantum emitters themselves. We adopt a rather practical
perspective since more detailed accounts can be found elsewhere (see e.g. [1–4]).

9.1 Types of quantum emitters

The possibility of detecting single quantum emitters optically relies mostly on the fact that
redshifted emission can be very efficiently discriminated against excitation light [5, 6].
This opens the road for experiments in which the properties of these emitters are studied
or in which they are used as discrete light sources. We will now introduce three impor-
tant classes of single emitters: organic dye molecules, semiconductor quantum dots, and
impurity centers in wide-bandgap semiconductors, in particular diamond.

9.1.1 Fluorescent molecules

For an organic molecule, the lowest-energy electronic transition appears between the high-
est occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO). Higher unoccupied molecular orbitals can be taken into account if necessary.
In addition to the electronic energy levels, multi-atomic particles, such as molecules, have
vibrational degrees of freedom. For molecules, all of the electronic states involved in the
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interaction of a molecule with light have a manifold of (harmonic-oscillator-like) vibra-
tional states superimposed. Since the nuclei are much more massive than the electrons,
the latter are considered to follow the (vibrational) motion of the nuclei instantaneously.
Within this so-called adiabatic or Born–Oppenheimer approximation, the electronic and
the vibrational wavefunctions can be separated and the total wavefunction may be writ-
ten as a product of a purely electronic and a purely vibrational wavefunction. At ambient
temperature the thermal energy is small compared with the separation between vibrational
states. Thus excitation of a molecule usually starts from the electronic ground state with
no vibrational quanta excited (see Fig. 9.1).

Excitation of fluorescent molecules

Excitation of the molecule can be resonant, into the vibrational ground state of the LUMO,
or it can be non-resonant, involving higher vibrational modes of the LUMO. Vibrational
relaxation then causes a fast decay cascade, which, for good chromophores,1 ends in the
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�Fig. 9.1 Energy-level diagram of an organic molecule. The electronic singlet states S0, S1, and S2 are complemented by a
manifold of vibrational states. Excitation of the molecule is followed by fast vibrational relaxation to the vibronic
ground state of the first excited state (the Kasha rule). From here the molecule can decay either radiatively
(fluorescence, straight lines) or non-radiatively (dissipation to heat, wavy lines). Since the radiative decay often ends
up in a vibrational state, the fluorescence is redshifted with respect to the excitation (Stokes shift). Spin–orbit
coupling leads to rare events of intersystem crossing (dashed arrow) into a triplet state with a long lifetime, which
relaxes through phosphorescence or non-radiatively.

1 For inefficient chromophores, non-fluorescent molecules, or molecules strongly coupling to the environment
(e.g. phonons), the collisional deactivation continues to the ground state.



284 Quantum emitters

vibrational ground state of the LUMO.2 For a fluorescent molecule the lifetime of this
excited state is on the order of 1–10 ns. For resonant pumping, coherence between the pump
and the emitted light can be conserved only if the molecule is sufficiently isolated from its
environment that environmental dephasing due to collisions or phonon scattering becomes
small. Isolated atoms or molecules in particle beams or traps and molecules embedded
in crystalline matrices at cryogenic temperatures can show coherence between resonant
excitation light and the zero-phonon emission line [5], leading to extreme peak absorption
cross-sections and to Rabi oscillations (see Appendix A). Note that even if a molecule
is excited resonantly, besides the resonant zero-phonon radiative decay to the LUMO,
non-resonant radiative relaxation also occurs (redshifted fluorescence), which leaves the
molecule initially in one of the higher vibrational states of the HOMO. This state also
relaxes fast by the same process as discussed before, called internal conversion, to the
vibrational ground state of the HOMO.

The strength of the HOMO–LUMO transition is determined by a transition matrix
element. In the dipole approximation this is the matrix element of the dipole opera-
tor between the HOMO and the LUMO wavefunctions supplemented by corresponding
vibronic states. This matrix element is called the absorption dipole moment of the molecule
(see Appendix A). The dipole approximation assumes that the exciting electric field is
constant over the dimensions of the molecule. In nano-optics this is not always the case,
and corrections to the dipole approximation, especially for larger quantum systems, might
become necessary. Those corrections can result in modified selection rules for optical
transitions [7].

The molecular wavefunctions emerge as the result of interacting atomic wavefunctions.
Since the atoms have a fixed position within the molecular structure, the direction of the
dipole moment vector is fixed with respect to the molecular structure. Degeneracies are
observed only for highly symmetric molecules. For the molecules consisting of intercon-
nected aromatic rings and the linear polyenes of Fig. 9.2 the absorption dipole moment
approximately points along the long axis of the structure, although this is not a general
rule. The emission dipole moment typically points in the same direction as the absorption
dipole. Exceptions to this rule may occur if the geometry of the molecule changes signif-
icantly between the electronic ground state and the excited state. With increasing length
of the aromatic or conjugated system, the absorption of a molecule shifts to the red. This
behavior resembles that of a quantum-mechanical particle in a box system in which the
level splitting decreases for increasing box length (see Fig. 9.2).

Relaxation of flurescent molecules

Radiative relaxation from the LUMO is called fluorescence. But relaxation can also occur
non-radiatively via vibrations or collisions that ultimately lead to the generation of heat.
The ratio of the radiative decay rate γr and the total decay rate (γr + γnr) is denoted the
internal quantum efficiency

qi = γr

γr + γnr
, (9.1)

2 This is the so-called Kasha rule.
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�Fig. 9.2 Characteristic absorption spectra of fluorescent molecules. Left: Linear polyenes featuring a conjugated carbon chain
on which delocalized electrons exist. Right: aromatic molecules. Electrons are delocalized over the aromatic system.
Increasing the length of the conjugated chain or the aromatic system shifts the absorption to the red spectral region.
From [8].

where γnr is the non-radiative decay rate. If the radiative decay of the LUMO prevails,
the corresponding lifetime is typically on the order of some nanoseconds. The emission
spectrum consists of a sum of Lorentzians (see Section 8.6.2), the so-called vibrational
progression, corresponding to the different decay pathways into ground-state vibronic lev-
els (see Fig. 9.1). At ambient temperatures dephasing is strong and leads to additional line
broadening such that the vibrational progression becomes washed out. However, vibra-
tional bands become discernable at low temperatures. For a molecule, the probability of
decaying into a vibrational state of the HOMO is determined by the overlap integrals
of the respective LUMO vibrational state wavefunction and the HOMO vibrational state
wavefunctions. These overlap integrals are known as Frank–Condon factors. Their relative
magnitude determines the shape of the fluorescence spectrum [5, 6].

Not all molecules fluoresce efficiently. Radiative decay occurs only for a special class
of molecules that exhibit a low density of (vibronic) states (of the HOMO) at the LUMO
energy. Under such circumstances a non-radiative decay via the HOMO vibrational mani-
fold is not likely to occur. Particularly efficient fluorescence is observed for small and rigid
aromatic or conjugated molecules, called dye molecules or fluorophores. The same prin-
ciples hold for other quantum objects in the sense that the more degrees of freedom they
have, the lower the probability of radiative decay will be.

Owing to the non-negligible spin–orbit coupling in molecules (which is particularly
important for heavy elements) there is a finite torque acting on the spin of the electron
in the excited state. This results in a small but significant probability that the spin of the
excited electron is flipped upon excitation or radiative decay. This process is known as
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intersystem crossing and, for a good chromophore, it typically occurs at a rate γISC much
smaller than the excited state’s decay rate. If a spin flip happens, the total electronic spin
of the molecule changes from 0 to 1. Spin 1 has three possible orientations in an external
magnetic field, leading to a triplet of eigenstates. This is the reason for calling a state with
spin = 1 a triplet state as opposed to a singlet state for spin = 0. The energy of the electron
in the triplet state is usually below the singlet excited-state energy because the exchange
interaction between the parallel spins increases the average distance between the electrons
in accordance with Hund’s rule. The increased average distance leads to a smaller Coulomb
repulsion. Once a molecule has undergone intersystem crossing into the triplet state it can
only decay into a singlet ground state. However, this is a spin-forbidden transition. Triplet
states therefore have a very long lifetime on the order of milliseconds.

Because of triplet-state excursions, the time-trace of fluorescence emission of a molecule
shows a characteristic effect: the relatively high count rates associated with singlet–singlet
transitions are interrupted by dark periods of duration a few milliseconds corresponding to
the triplet-state lifetime. This fluorescence-blinking behavior can easily be observed when
studying single molecules, and we will analyze it quantitatively later on in this chapter.

Frequently, blinking on longer timescales is also observed. Dark periods that are much
longer than the typical triplet-state lifetime are mostly attributed to fluctuating local envi-
ronments and transient interactions with other chemical species such as oxygen. Finally,
a molecule eventually ceases to fluoresce completely. This so-called photobleaching event
is often due to chemical reactions with singlet oxygen: a molecule residing in its triplet
state can efficiently generate singlet oxygen in its immediate environment by triplet–triplet
annihilation.3 This reactive singlet oxygen then attacks and interrupts the conjugated or
aromatic system of the molecule [9].

9.1.2 Semiconductor quantum dots

The use of colloidally dispersed pigment particles for producing colorful effects has been
known since ancient times. In the early 1980s experiments with colloidal solutions of
semiconductor nanocrystals were performed with applications in solar energy conversion
and photocatalysis in mind. It was found that colloidal solutions of the same semicon-
ductor showed striking changes in colors when the size of the nanocrystals was varied.
This observation can be attributed to the so-called quantum confinement effect. The exci-
tons in semiconductors,4 i.e. bound electron–hole pairs, are described by a hydrogen-like
Hamiltonian

Ĥ = − �
2

2mh
∇2

h −
�

2

2me
∇2

e −
e2

ε |re − rh| , (9.2)

where me and mh are the effective masses of the electron and the hole, respectively, and ε is
the dielectric constant of the semiconductor [10]. The subscripts e and h denote the electron
and the hole, respectively. Once the size of a nanocrystal has approached the limit of the

3 The ground state of molecular oxygen is a triplet state.
4 In solid-state physics, the term “exciton” denotes a bound electron–hole pair. In physical chemistry, however,

the term “exciton” is used also for a strongly coupled system (Section 8.7.3).
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Bohr radius of an exciton (see Problem 9.1), the states of the exciton shift to higher energy
as the confinement energy increases. In semiconductors, due to the small effective masses
of the electrons and holes, the Bohr radius can be on the order of 10 nm, which means
that quantum confinement in semiconductor nanocrystals becomes prominent at length
scales 10–100 times larger than the characteristic size of atoms or fluorescent molecules.
The confinement energy arises from the fact that according to the Heisenberg uncertainty
principle the momentum of a particle increases if its position becomes better defined. In the
limit of small particles, the strongly screened Coulomb interaction between the electron
and the hole, the last term in Eq. (9.2), can be completely neglected. Both the electron
and the hole can consequently be described by a particle-in-a-box model, which leads to
discrete energy levels that shift to higher energies as the box is made smaller. Therefore,
for a semiconductor like CdSe with a bandgap in the infrared, this yields luminescence in
the visible if sufficiently small particles (≈3 nm) are prepared. The quantum efficiencies
for radiative decay of the confined excitons are rather high because both the electron and
the hole are confined to a nanometer-sized volume inside the dot. This property renders
quantum dots extremely interesting for optoelectronic applications.

In order to fully understand the structure of the electronic states in a semiconductor
nanocrystal several refinements to the particle-in-a-box model have to be considered. Most
importantly, for larger particles the Coulomb interaction becomes significant and reduces
the energy of the exciton. Other effects, like crystal-field splitting and the asymmetry of
the particles as well as an exchange interaction between electrons and holes also have to
be taken into account [11].

For metal nanoclusters, e.g. made from gold, confinement of the free electrons to dimen-
sions of a few nanometers does not lead to notable quantum confinement effects. This is
because the Fermi energy for conductors lies at the center of the conduction band and, upon
shrinking the clusters, quantization effects start to become prominent at the band edges
first. However, if the confinement reaches the level of the Fermi wavelength of the free elec-
trons (≈0.7 nm), discrete, quantum-confined electronic transitions appear as demonstrated
in Ref. [12]. Here, chemically prepared gold nanoclusters are shown to luminesce with
comparatively high quantum yield with a spectrum that varies with the gold cluster size.

Surface passivation

Since in nanoparticles the number of surface atoms is comparable to the number of bulk
atoms, the properties of the surface strongly influence the electronic structure of a nanopar-
ticle. For semiconductor nanocrystals, it is found that for “naked” particles surface defects
created by chemical reactions or surface reconstruction drastically reduce the lumines-
cence quantum yield, since any surface defect will lead to allowed electronic states in the
bandgap. Consequently, non-radiative relaxation pathways involving trap states become
predominant. This leads to a strong reduction of the quantum yield for visible light emis-
sion. In order to avoid surface defects, nanocrystals are usually capped with a protective
layer of a second, larger-bandgap semiconductor with very similar lattice constants. Such
a material grows epitaxially over the core such that the chemical composition changes
abruptly within one atomic layer. The resulting structures are designated as Type I. If the
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capping layer has a lower bandgap, then the electrons are preferentially located in the
outer shell with less confinement. These structures are then designated as Type II, typically
showing optical response in the infrared spectral region. For CdSe nanocrystals usually a
high-bandgap ZnS capping layer is applied. With this protective shell, it is possible to func-
tionalize the particles by applying suitable surface chemistry without interfering with the
optical properties. The overall structure of a typical semiconductor nanocrystal is shown in
Fig. 9.3. The implementation of such a complex architecture at the nanometer scale paved
the way for widespread application of semiconductor nanocrystals as fluorescent markers
in the life sciences and in optoelectronic applications.

Another way to produce semiconductor quantum dots, which is different from the wet-
chemistry approach, is to exploit self-assembly during epitaxial growth of semiconductor
heterostructures. Here, the most common way to produce quantum dots is the so-called
Stranski–Krastanow (SK) method. In 1937, Stranski and Krastanow proposed that island
formation could take place on an epitaxially grown surface [13]. For example, on deposit-
ing a material with a slightly larger lattice constant, e.g. InAs, onto a GaAs surface,
the lattice mismatch (≈7% in this case) introduces strain. The first few layers of InAs
form a pseudomorphic two-dimensional layer, the so-called wetting layer. If more mate-
rial is deposited, the two-dimensional growth is no longer energetically favorable and the
material deposited in excess after the wetting layer has formed organizes itself into three-
dimensional islands as sketched in Fig. 9.4. These islands are usually called self-assembled
quantum dots. The size and the density of these quantum dots can be controlled by the
growth parameters. To complete the structure, the quantum dots have to be embedded in
a suitable capping layer, similarly to the case of colloidal nanocrystals. The capping-layer
material and growth parameters also have to be carefully chosen in order to end up with
defect-free quantum dots with high luminescence quantum yield.

Excitation of quantum dots

The absorption spectrum of semiconductor nanocrystals is characterized by increas-
ing absorption strength towards shorter wavelengths. This behavior originates from the
electronic density of states, which increases towards the center of the semiconductor
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�Fig. 9.3 Structure of a typical colloidal semiconductor nanocrystal. Courtesy of Hans Eisler.
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�Fig. 9.4 Sketch of an InAs pyramidal quantum dot. InAs pyramidal quantum dots are formed by self-assembly during epitaxial
growth. The capping layer is not shown.

conduction band. The very broad absorption spectrum allows different-sized nanocrys-
tals to be excited by a single blue-light source as illustrated in Fig 9.5(b). Similarly to
fluorescent molecules, semiconductor nanocrystals excited with excess energy first relax
by fast internal conversion to the lowest-energy excitonic state, from which recombination
occurs by photon emission. Differently from the case of molecules, multiple excitons can
be excited in the same quantum dot at higher excitation powers. The energy necessary to
excite a second exciton is lowered by the presence of the first exciton due to Coulomb
interactions between the charges involved. Figure 9.5 shows the excitation and emission
spectra of a range of CdSe nanocrystals of varying size. Apart from some fine structure
near the band edge due to the low density of states, the increasing absorption for blue exci-
tation can be clearly observed independently of the particle size. For the emitted light, a
shift of the emission (dashed curve) towards the blue spectral region can be observed as
the particle size is reduced.

Because of the symmetry of a nanocrystal, its dipole moment is degenerate. CdSe
nanocrystals are slightly elongated in the direction of the crystal axis (the “dark axis”).
Figure 9.6(a) sketches the orientation of the so-called “bright plane” and the “dark axis”
within the nanocrystal.

It is observed that, no matter what the polarization direction of the excitation light rela-
tive to the crystal axis is, photon emission from a CdSe nanocrystal always originates from
a transition dipole oriented in the bright plane. There are no transitions along the crystal
axis and hence this axis is referred to as the dark axis. However, the nanocrystal can be
excited along the dark axis. In this case, there is a 90◦ difference between the absorption
dipole and the emission dipole orientation. Because of the degenerate dipole moment in
the bright plane, the emission direction in this plane is arbitrary, unless an external per-
turbation is applied. For a sample with randomly oriented nanocrystals, the emission of
the tilted bright plane in Fig. 9.6(b) gives rise to an anisotropy in the polarization of the
emitted light as depicted in Fig. 9.6(c). This anisotropy can be exploited to determine the
three-dimensional orientation of the dark axis of the nanocrystal (see Fig. 9.6(d)) [14],
which can be of interest in various particle-tracking applications in which semiconductor
nanocrystals are used as markers.

Coherent control of excitons

It has been demonstrated that an exciton in a semiconductor quantum dot can act as a
qubit, the unit of quantum information [16]. In such experiments, short laser pulses are
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spectra. (b) Emission from a series of nanocrystal solutions with increasing particle size excited simultaneously by a UV
lamp. Courtesy of Hans Eisler.

used to coherently manipulate the exciton state. A pump pulse prepares an exciton in a
well-defined superposition of the ground state, |00〉, and the excited state, |10〉. A weak
probe pulse reads out the population of the excited state. Changing the pulse area and
keeping the delay fixed gives rise to an oscillatory behavior of the excited-state population
as a function of the pulse area (excitation power). These oscillations are known as Rabi
oscillations (see Appendix A). To realize a quantum logic gate with a single quantum dot,
it is necessary to excite two or more interacting excitons within the same dot. In the case of
two excitons it is observed that the Coulomb interaction between the two excitons lowers
the total energy of the biexciton state with respect to the case of two independent excitons.
The resulting energy diagram is shown in Fig. 9.7(a), where the binding energy is denoted
as�. Note that the two excitons that can be excited in the quantum dot can be distinguished
by their polarizations. Inspection of the resulting four-level scheme suggests that it is pos-
sible to realize a universal controlled-rotation quantum logic gate for which the target bit
(the second exciton) is rotated through a π phase shift, e.g. from state |01〉 to state |11〉 or
vice versa, if and only if the control bit (the first exciton) is in the excited state |01〉. The
definition of the states is shown in Fig. 9.7(b). Such an experiment requires a two-color
excitation scheme since the transition energies of the single exciton and the biexciton dif-
fer by the binding energy �. A first pulse (tuned to the single exciton transition) is used
to excite a single exciton. Now one can apply a so-called operational pulse, which is tuned
to one of the biexciton transitions. The truth table of the quantum logic gate (controlled
rotation, CROT) can now be mapped out using a π -pulse tuned to e.g. the |10〉–|11〉 tran-
sition. If the input is |00〉, the operational pulse is off-resonant and the output will again
be |00〉. If the input is |10〉 then the π -pulse creates −|11〉. If the input is already |11〉 it is
transferred to |10〉 by stimulated emission. The basic operation of the CROT gate is shown
in Fig. 9.7(c) by demonstrating Rabi flopping of the second exciton. This shows that the
state of the biexciton can be prepared in any superposition of |10〉 and |11〉 by varying the
pulse duration. Note that while it is possible to perform quantum logic computations with
qubits encoded in the excitonic degrees of freedom of a quantum dot the computational
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�Fig. 9.6 The degenerate emission dipole moment of a semiconductor nanocrystal. (a) Orientation of the bright plane and the
dark axis within a CdSe nanocrystal. (b) If the crystal axis is tilted with respect to the normal of a supporting surface,
the projection of the bright plane into this surface changes. (c) Light emitted by such a tilted nanocrystal is therefore
only partially polarized. (d) From the absolute orientation and the ellipticity of the polarization ellipse, the
three-dimensional orientation of the dark axis can be determined. From [15].

time window is limited by the short decoherence time of ≈100 ps. Considerably longer
times can be achieved with charged quantum dots.

9.1.3 Color centers in diamond

A third class of quantum emitters consists of fluorescent defect centers in wide-bandgap
semiconductors. Diamond offers the largest bandgap (5.5 eV) of all known materials and
is therefore transparent from deep-ultraviolet up to infrared wavelengths. Diamond hosts
more than a hundred known luminescent defect centers, many of which have been char-
acterized by optical spectroscopy [17, 18]. They are the reason for the different shades of
color found in natural diamonds. A prominent impurity-related defect center in diamond
is the nitrogen-vacancy (NV) center. It consist of a single substitutional nitrogen atom
(N) and an empty site, i.e. a vacancy, at a nearest-neighbor lattice position as sketched in
Fig. 9.8(a). Such NV centers can be created artificially in nitrogen-rich type Ib diamond
samples by inducing electron-irradiation damage [21].

The NV center contains two unbound electrons originating from the substitutional nitro-
gen. The two unbound electrons form a lone pair. Furthermore, there are three more
unbound carbon electrons. Two of those form a quasi-bond while one remains unbound.
The NV center therefore can efficiently trap an additional electron (originating from nearby
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�Fig. 9.7 Coherent control of the state of a biexciton. (a) The energy-level scheme. (b) Corresponding exciton transitions
encoding two qubits. (c) Biexciton Rabi oscillation, demonstrating the possibility of being able to realize a
controlled-rotation quantum logic gate using the biexciton transitions shown in (a). Adapted from [16].

electron donors, e.g. nitrogen impurities), which turns it into the abundant NV− center as
opposed to the neutral NV0 [22]. Under both conditions NV centers show a bright red
fluorescence at room temperature with a zero-phonon line and a vibronic progression. The
NV− and NV0 centers exhibit zero-phonon lines at 637 nm and 575 nm, respectively, which
allows them to be easily distinguished. Figure 9.8(b) shows a typical NV− luminescence
spectrum. Other defect centers in diamond also exist and have promising properties, e.g.
a nickel–nitrogen complex (NE8), which at room temperature exhibits very pronounced
and narrow zero-phonon-line emission at around 800 nm and only very weak phonon
progression.

Because of the additional trapped electron and the observed bright luminescence, the
zero-phonon line of the NV− center is thought to be due to an allowed transition between a
triplet ground state (3A) and a triplet excited state (3E). The excited-state lifetime is about
11 ns in bulk diamond and the quantum yield of the transition is about 0.7. These properties
make it possible to easily detect single NV− centers in fluorescence experiments with a
saturation count rate of 107 photons per second [21] (see also Section 9.3). Furthermore, it
is found that NV centers in bulk diamond do not show blinking or photo-bleaching. There
are, however, indications that NV centers in very small diamond nanoparticles can show
blinking related to interaction of the NV center with the nearby surface [23].

Optically detected magnetic resonance (ODMR) in diamond NV centers

In the absence of an external magnetic field the ground state is split into a nearly degen-
erate doublet X, Y (mS = ±1) and the spin sublevel Z (mS = 0) by 2.88 GHz [24]. For
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�Fig. 9.8 The NV center in diamond. (a) Structure of the NV center, showing the substitutional nitrogen atom (N) and an empty
site (dotted circle). (b) The luminescence spectrum of the NV− center. ZPL, zero-phonon line. Adapted from [19].

temperatures above 1 K the ground-state levels are nearly equally populated. By means of
optical excitation a non-Boltzmann spin polarization can be created in the 3A ground state.
While the x, y spin states (ms = ±1) become depopulated, eventually more that 80% of
the total population accumulates in the z state (ms = 0). The explanation for this effect is
based on the greatly different intersystem crossing rates exhibited by the spin levels of the
3E state. Experimental evidence indicates that x′, y′ spin states (ms = ±1) exhibit a signif-
icantly higher intersystem crossing rate than that of the z′ sublevel. After relaxation within
the singlet manifold the cross-over into the triplet ground state occurs predominantly to the
z state (ms = 0). Since the relaxation within the singlet manifold occurs non-radiatively
and ends up in a long-lived state, NV centers in z spin sublevels have a significantly higher
saturation emission rate R∞ (see Eq. (9.16)). This effect can be used to optically read
out the spin polarization of the NV center. If during optical excitation of the NV center
a resonant microwave field is applied, the spin sublevels become equally populated. As
a consequence the fluorescence rate of the NV center decreases drastically. The intensity
change for single NV centers can be as high as 30%, as depicted in Fig. 9.9(b). The spin
sublevels in NV− centers can be coherently manipulated using a sequence of microwave
pulses. The observed relaxation times are on the order of hundreds of microseconds. The
electronic spin states of NV− centers can also be coupled to nuclear spins via the hyperfine
interaction. Fluorescence provides a simple means by which to read out the spin quantum
states. Such NV centers are therefore promising candidates for solid-state quantum infor-
mation processing. Furthermore, the spin levels are sensitive to external magnetic fields
which can be exploited for high-resolution magnetometry [21].

Stimulated-emission-depletion microscopy of NV centers in diamond

The nearly perfect photostability of single NV centers in bulk diamond and their well-
known spectral properties, i.e. the strong phonon progression, make them ideal candidates
for high-resolution far-field imaging by means of STED (see Section 5.2.1). Indeed, the
fluorescence-depletion curve of NV centers in diamond exhibits an exceptionally sharp
decay due to a small stimulated-emission saturation intensity. It is therefore expected that
very high spatial resolution can be achieved using a donut-shaped STED beam with a deep



294 Quantum emitters

(b)(a)

3A

1A

3E

z

x, y

ecnecseroulf

noitaticxe

microwave
pump

y ′
x ′

z ′ x. y

z

2.87 GHzODMR effect
30%

120

110

100

90

80

70
2400 2600 2800 3000 3200 3400

1E

flu
or

es
ce

nc
e 

ra
te

 (
10

3  s
–1

)

microwave frequency (MHz)

�Fig. 9.9 Interaction of light and microwaves with NV centers. (a) The energy-level scheme of NV− centers in diamond.
Relaxation within the singlet manifold is mostly non-radiative (thin arrows) [25]. (b) An optically detected magnetic
resonance trace showing the fluorescence rate as a function of the applied microwave frequency. Once the magnetic
resonance frequency has been hit, the fluorescence drops because of enhanced intersystem crossing. From [21].

zero at its center. Figure 9.10(a) shows a combined confocal and STED image of a single
NV center in diamond. Close to the center of the diffraction-limited spot, the donut-shaped
STED beam is switched on. The STED beam extinguishes the fluorescence everywhere
but in the close vicinity of the donut zero. Figure 9.10(b) shows a vertical cut through the
center of Fig. 9.10(a), revealing both the diffraction-limited width of the confocal spot and
the 8 nm full width at half-maximum of the STED spot.

9.2 The absorption cross-section

Absorption of light by a quantum emitter can be characterized by a frequency-dependent
absorption cross-section. For weak excitation, the rate at which a two-level system is
excited is proportional to the absolute square of the projection of the exciting electric field
E on the absorption dipole moment p (see Appendix A). In this regime, the power absorbed
by the system is given by (cf. Chapter 8)

P = ω

2
Im{α}

∣∣∣np · E
∣∣∣2, (9.3)

where np is the unit vector in the direction of p and α is the polarizability. To define the
absorption cross-section σ and to show its relevance for macroscopic measurements on
ensembles of absorbers, we first average the dipole orientation over all directions and then
assume that the local field E originates from a single incident plane wave.5 In this case, the
field E can be expressed by the intensity I of the plane wave, which allows us to define the
absorption cross-section as

σ (ω) = 〈P(ω)〉
I(ω)

= ω

3

√
μ0

ε0

Im{α(ω)}
n(ω)

, (9.4)

5 The concept of “cross-section” is strictly valid only for single-mode (plane-wave) excitation.
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(a) (b)

�Fig. 9.10 STED microscopy of a single NV center in diamond. (a) A confocal/STED image of a single NV center in diamond. Close
to the center the donut-shaped STED beam is unblocked, switching off the fluorescence everywhere but at the
position of the donut’s zero-intensity point. (b) A vertical cross section through the center of (a), revealing the 8 nm
full width at half-maximum of the STED point-spread function as well as the diffraction-limited diameter of the
confocal spot. From [26].

with n being the index of refraction of the surrounding medium and 〈P〉 the power absorbed
by the molecule as an average over the random orientations of dipoles in the ensemble.
Consider now an excitation beam with intensity I propagating in the direction of z through
a dilute sample of randomly oriented molecules. After propagating an infinitesimal distance
dz the laser intensity will be attenuated by an amount

I(z) − I(z + dz) = −N

V
〈P(z)〉dz, (9.5)

where N/V is the volume concentration of the absorbers and 〈P〉 is related to σ and I(z) by
Eq. (9.3). In the limit dz → 0 we obtain

I(z) = I0e−(N/V)σ z, (9.6)

with I0 = I(z = 0) (the Lambert–Beer law). σ has the units of area per photon, which
justifies its designation as the absorption cross-section. According to Eq. (9.6), the absorp-
tion cross-section can be determined by an ensemble measurement, i.e. by measuring the
attenuation of a laser beam as it propagates through a sample with a dilute concentration
of absorbers.

Most commonly, the absorption is measured in terms of the molar extinction coefficient
ε(λ) according to

I(z, λ) = I010−ε(λ)[M]z, (9.7)

where [M] is the concentration of absorbers in moles per liter and z is the thickness of the
absorbing layer in centimeters.

It is easy to see that the cross-section can be calculated from the extinction coefficient
as σ = 1000 ln 10 ε/NA, with NA being Avogadro’s constant. Typical measured values
of ε, e.g. for good laser dyes at room temperature, are around 200 000 l mol−1 cm−1,
which corresponds to a cross-section of 8 × 10−16 cm2, i.e. a circle of radius 0.16 nm.
This is a dimension that roughly coincides with the geometrical area of the aromatic or
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conjugated system of a small dye molecule. For semiconductor quantum dots, the absorp-
tion cross-section is correspondingly higher because of their greater geometrical size. This
coincidence suggests that every photon passing the molecule within the area of σ gets
absorbed by the molecule. Of course, this is a naive picture, which from the point of view
of quantum mechanics cannot be true because of the uncertainty relation that does not
allow the photon to be localized. So what is the physical meaning of the absorption cross-
section? From a purely classical point of view, the field of the incoming plane wave is
modified by the field scattered off the molecule being represented by a point dipole. The
emitted dipole field and the exciting plane wave interfere and give rise to a resulting energy
flow which, within an area defined by σ , is directed towards the dipole. This leads to an
increase of its apparent area way beyond its geometrical size [27].

The spectral shape of the absorption cross-section σ (ω) is a Lorentzian with a width
determined by the degree of dephasing between excitation and emission (see [1], p. 780).
Almost full coherence between excitation and emission can be established at cryogenic
temperatures. Under these conditions, the peak absorption cross-section of an isolated
quantum emitter approaches the limit of (see Problem 9.5)

σmax = 3λ2

2π
. (9.8)

This is huge compared with the physical size of the quantum emitter! σ directly follows
from the free-space spontaneous decay rate γ0 (the natural linewidth) and can be further
increased by reducing the local density of states (LDOS) (see Section 8.4.3). At ambient
temperatures, or for systems that interact with a dissipative environment, due to dephas-
ing events, σ (ω) broadens and the peak absorption cross-section becomes weaker, until
it finally reaches the geometry-limited values for molecules in solutions or quantum dots
under ambient conditions. For ambient temperatures the absorption cross-section can be
represented as [4]

σ = 3λ2

2π

γ0

γ
, (9.9)

where γ0 is the homogeneous linewidth and γ the inhomogeneous linewidth. Typically,
γ0/γ ≈ 10−6 and hence σ ≈ 0.3 nm2 for optical frequencies.

9.3 Single-photon emission by three-level systems

We continue our analysis by studying the emission from single emitters. In order to do
so we simplify the Jablonski diagram of Fig. 9.1 to its bare bones by neglecting the very
fast relaxation within the vibrational manifold. We then end up with a system of three
levels: the singlet ground state, the singlet first excited state, and the triplet state, denoted
by 1, 2, and 3 as indicated in Fig. 9.11. These three levels are interconnected by excitation
and relaxation rates according to the processes that we have just described. Taking into
account these rates, we can formulate a system of differential equations for the change of
the population pi, i = {1, 2, 3}, of each level:
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�Fig. 9.11 A quantum emitter approximated by a system of three levels. A third level is taken into account in order to
accommodate transitions to triplet or dark states.

ṗ1 = −γ12p1 + (γr + γnr)p2 + γ31p3, (9.10)

ṗ2 = γ12p1 − (γr + γnr + γ23)p2, (9.11)

ṗ3 = γ23p2 − γ31p3, (9.12)

1 = p1 + p2 + p3. (9.13)

The last equation ensures that the emitter is in one of the three states at any time. The
de-excitation rate γ21 is divided into a radiative contribution γr and a non-radiative con-
tribution γnr such that γ21 = γr + γnr. We should note that introducing the population
of a state, more precisely the probability that a certain state is occupied, pi, makes sense
only if we assume that we are either describing an ensemble of identical quantum emitters
or observing the same quantum emitter many times under identical conditions. Also, by
using rate equations we assume that coherence is lost in the excitation–relaxation cycle,
e.g. due to dissipative coupling to vibrations. This is a very good approximation at room
temperature and for non-resonant or broadband excitation [4]. At cryogenic temperatures
with resonant excitation, or for isolated atoms or ions, the full quantum master equation
must be considered. This approach also includes coherent effects that show up e.g. as Rabi
oscillations (stimulated emission) between the populations of ground and excited states,
but are not included in the present discussion (see Appendix A).

9.3.1 Steady-state analysis

Let us first consider the steady-state solution of Eqs. (9.10)–(9.13). We assume that in the
steady state the populations are constant in time and consequently their time derivatives
can be set to zero. This leads to a set of four equations for the equilibrium populations pi,
i = {1, 2, 3}.6 We are interested in the rate R at which the system emits photons. This rate
is given by

R = p2γr, (9.14)

which means that we have to determine the population of the excited state and multiply it
by the radiative decay rate γr. If we solve for the population p2 (see Problem 9.3) we end
up with the following relation:

6 Inspection of the four equations shows that two of them are linearly dependent.
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�Fig. 9.12 Saturation of the emission rate of a single molecule as a function of the excitation intensity (solid line). The straight
lines indicate the slope at zero intensity (solid line), which is equal to R∞/IS, as well as the values IS = 1 and
R∞ = 1/2 (dashed lines).

R(I) = R∞
I/IS

1 + I/IS
, (9.15)

where I is the intensity of the exciting light entering via the relation γ12 = P/(�ω) and the
expression for P in Eqs. (9.3) and (9.4). The constants R∞ and IS are defined as

R∞ = γr

(
1 + γ23

γ31

)−1

,

IS = γr + γnr + γ23

σ (1 + γ23/γ31)
�ω.

(9.16)

Equation (9.15) describes the saturation behavior of the emission rate that is visualized in
Fig. 9.12. This kind of saturation behavior is expected since the excited state has a finite
lifetime, which limits the average time between two photons to a finite value. The saturation
behavior is characterized by the two parameters R∞ and IS. The first describes the emission
rate at infinitely strong excitation intensities and the second is the intensity at which the
emission rate equals R∞/2 (see also Fig. 9.12). Typical values for R∞ and IS for a single
dye molecule at room temperature are R∞ = 6 × 106 s−1 and IS = 7.5 × 1021 photons
s−1 ≈ 3 kW cm−2 at wavelength 500 nm. Taking into account a collection and detection
efficiency of about 15%, we can expect a photon count-rate of roughly 106 photons s−1 to
be detected from a single dye molecule under saturation. Typically, a moderate excitation
power of 1 μW focused onto a spot of diameter 250 nm, e.g. in a confocal microscope or
a near-field microscope (see Chapter 5), is sufficient to saturate a molecule.

9.3.2 Time-dependent analysis

Now that we understand the steady-state emission of a single emitter characterized by
a three-level system we can analyze the time dependence of the populations. This will
give us some insight into the statistical properties of the light emitted by a single emitter.
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Specifically, we will show that the light exhibits a striking non-classical behavior, which
means that the radiation emitted by a single emitter cannot be characterized by a continuous
electromagnetic field. Instead, quantized fields are necessary for a correct description. This
does not affect the results obtained in Chapter 8, where a single emitter is modeled as a
classical dipole and the statistics of the emitted radiation was not considered. Averaged
over many photons, we naturally retain the classical description.

The light emitted by a light source can be characterized by the way it fluctuates. The
deeper reason for this fact is provided by the fluctuation–dissipation theorem which,
as discussed in Chapter 15, connects the fluctuations of a source characterized by an
autocorrelation function to the emission spectrum of the source.

The normalized second-order autocorrelation function of an optical field, also called the
intensity autocorrelation function, is defined as

g(2)(τ ) = 〈I(t)I(t + τ )〉
〈I(t)〉2 , (9.17)

where 〈 〉 denotes the time average. g(2)(τ ) describes how the probability of measuring an
intensity I at time t + τ depends on the value of the intensity at time t. In the language of
single-photon detection events, g(2)(τ ) is the probability of detecting a photon at time t+τ ,
provided that there was a photon at time t, normalized by the average photon detection rate.
It can be shown generally [4] that g(2)(τ ) must fulfill certain relations if the intensity I is a
classical variable. These are

g(2)(0) ≥ 1,

g(2)(τ ) ≤ g(2)(0).
(9.18)

The resulting typical shape of g(2)(τ ) in the classical limit is shown in Fig. 9.13(a).
It is characteristic for the so-called bunching behavior of the light intensity. While the
continuous field amplitude fluctuates around zero, the respective intensity fluctuations
are characterized by “bunches” separated by intensity zeros. This effect is illustrated in
Fig. 9.13(b).

While bunching behavior is characteristic for a classical light source, a single quan-
tum emitter is characterized by antibunching, meaning that photons are emitted one after
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�Fig. 9.13 The characteristic shape of the second-order autocorrelation function valid for classical light, showing a bunching
behavior for short times (a). The bunching behavior is caused by statistical fluctuations of the classical field amplitude
(b), which translate into intensity fluctuations separated by intensity zeros (c).
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another, separated by some finite characteristic time. This is not difficult to understand
since once a photon has been emitted the molecule has to be excited again, which takes a
characteristic time γ−1

12 . Then it must decay to the ground state, which takes a time γ−1
r .

As a consequence, two consecutive photons will on average be separated by a finite time
given by (γ12 + γr)−1. The corresponding intensity autocorrelation function features a dip
at τ = 0, which means that the probability of emission of two photons at the same time
vanishes. Since this dip violates the conditions of Eq. (9.18), the light emitted by a single
quantum emitter is designated “non-classical” light. The generation of non-classical light
is of importance for the field of quantum information [28].

We can calculate g(2)(τ ) for the three-level system using the relation Eq. (9.17) for t = 0,
which is no limitation for a stationary process. For t = 0 we prepare the emitter in the
ground state.7 According to [29], Eq. (9.17) can be rewritten as

g(2)(τ ) = 〈I(t)〉J(τ )

〈I(t)〉2 = J(τ )

〈I(t)〉 . (9.19)

Here, J(τ ) is the probability of recording another photon after a time τ , provided that a
photon was recorded at t = 0. J(τ ) should not be confused with the probability K(τ ) of
recording the next photon after a time τ , provided that a photon was recorded at t = 0.
Experimentally, K(τ ) is determined from the distribution of interphoton times which is
measured in start–stop experiments. For sufficiently small τ , J and K are indistinguishable.
For longer times J and K are related via their Laplace transforms J̃ and K̃ as [29]

J̃ = K̃

1 − K̃
. (9.20)

J(τ ) can be expressed as J(τ ) = ηγrp2(τ ), where η is the collection efficiency of the
detection system and p2(τ ) is the time-dependent solution for the population of level 2 with
the initial condition p2(0) = 0. The steady-state count-rate reads as 〈I(t)〉 = ηγrp2(∞). We
therefore write

g(2)(τ ) = ηγrp2(τ )

ηγrp2(∞)
= p2(τ )

p2(∞)
. (9.21)

p2(τ ) can be obtained by solving the system of rate equations (9.10)–(9.13). In the first
step, we combine Eq. (9.13) with Eqs. (9.10) and (9.12) and obtain

ṗ1 = −(γ12 + γ31)p1 + (γr + γnr − γ31)p2 + γ31,

ṗ2 = γ12p1 − (γr + γnr + γ23)p2.
(9.22)

This system of coupled differential equations can be solved using Laplace transformation.
To this end, we write Eq. (9.22) in matrix form as

ṗ(τ ) =
[

a b
c d

]
p(τ ) +

[
f
0

]
. (9.23)

7 Assume that a photon emitted by the quantum emitter had just been detected.
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Here p(τ ) is a vector with components p1 and p2 and the abbreviations a, b, c, d, f are
obtained by comparison with Eq. (9.22). In Laplace space, Eq. (9.23) reads as

sp(s) − p(0) =
[

a b
c d

]
p(s) + 1

s

[
f
0

]
, (9.24)

where the rules for Laplace transformation have to be observed (see e.g. the table of
transformations in [30], page 915). Equation (9.24) can be easily solved for p(s).

p(s) =
[

s

(
1 0
0 1

)
−
(

a b
c d

)]−1 (
f /s + 1
0 + 0

)
, (9.25)

where the inital condition p1(0) = 1 has been used. The back transformation using the
Heaviside expansion theorem yields p(τ ). The population of interest is p2, which has the
form

p2(τ ) = A1es1τ + A2es2τ + A3, (9.26)

with

s1 = 1

2

(
a + d −

√
(a − d)2 + 4bc

)
,

s2 = 1

2

(
a + d +

√
(a − d)2 + 4bc

)
,

A1 = +c
1 + f /s1

s1 − s2
, A2 = −c

1 + f /s2

s1 − s2
, A3 = cf

s1s2
.

Using the fact that p2(∞) = A3 and making use of −A1/A3 = (1 + A2/A3) leads to the
important result

g2(τ ) = −
(

1 + A2

A3

)
es1τ + A2

A3
es2τ + 1. (9.27)

This expression can be simplified considerably by exploiting the fact that for a typical
molecule

γ21 ≥ γ12 � γ23 ≥ γ31, (9.28)

i.e. the triplet population and relaxation rates are both very small compared with the respec-
tive singlet rates. With these relations we can derive the following approximate expressions
for the parameters s1, s2, and A2/A3:

s1 � −(γ12 + γ21),

s2 � −
(
γ31 + γ12γ23

γ12 + γ21

)
,

A2

A3
� γ12γ23

γ31(γ12 + γ21)
. (9.29)

Figure 9.14 shows plots of g2(τ ) according to Eqs. (9.27) and (9.29) for three different
excitation powers, i.e. different rates γ12, on a logarithmic timescale. The latter allows us
to visualize a broad timescale, ranging from sub-nanosecond to hundreds of microseconds.
What is common to all curves is that the intensity correlation function tends to zero for
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�Fig. 9.14 Intensity autocorrelation curves of a three-level system plotted for different excitation rates γ12 = 5× 106 s−1

(solid line), 10× 106 s−1(dashed line), and 20× 106 s−1(dash–dotted line) using Eqs. (9.27) and (9.29). Other
parameters are γ21 = 2× 108 s−1, γ23 = 5× 106 s−1, and γ31 = 3× 104 s−1. Antibunching is observed for
short times, whereas bunching occurs for intermediate times. The inset shows a representation of photon arrivals with
bunches of photons separated by dark periods leading to the bunching signature and photons within bunches being
spaced out in time leading to the antibunching signature.

short times τ . This antibunching originates from the first term in Eq. (9.27). For small
excitation intensities the decay constant s1 is dominated by the decay rate of the excited
state. For longer times, the behavior of g2(τ ) is characterized by blinking which originates
from transitions to the triplet state. Blinking gives rise to photon bunching at intermediate
times as illustrated in the inset of Fig. 9.14.

Photon statistics can be experimentally investigated by analyzing time-traces of the emit-
ted intensity. However, to define an intensity it is necessary to bin the detected photons
into predefined time intervals. Alternatively, one can use a start–stop configuration that
includes two detectors to determine the time differences between consecutively arriving
photons (interphoton times) [31]. In the first method, g2(τ ) is easily calculated from the
time-trace. However, only timescales that are larger than the chosen bin-width (typically
some microseconds) can be accessed. On the other hand, the start–stop configuration has a
time resolution that is limited only by the detector response [29]. A detailed discussion can
be found in Ref. [32] and references therein. Figure 9.15 shows an intensity autocorrela-
tion function of a single terylene molecule (see the inset) embedded in a crystalline matrix
of p-terphenyl measured using a start–stop configuration. Both antibunching at short times
and bunching at longer times can be clearly observed.

The property of a single quantum emitter being able to emit only one photon at a time
is of great interest in the field of quantum cryptography, where the polarization state of a
single photon defines a qubit. The prominent no-cloning theorem in conjunction with the
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�Fig. 9.15 The experimentally obtained second-order autocorrelation function g2(τ ) of a single molecule (terylene in
p-terphenyl). Both antibunching and bunching behavior can be observed. The former occurs at short times, whereas
the latter is observed for intermediate times at which triplet-state excursions are significant. Adapted from [32].

measurement theorem of quantum mechanics makes it impossible for an eavesdropper to
couple a photon out of a stream of single photons without the missing photon being noticed.
Single-photon sources can be realized by exciting a two-level system with pulsed laser
radiation [33]. It can be shown that the probability of emitting two photons per excitation
pulse becomes exceedingly small for pulses that are short compared with the excited-state
lifetime of the system (see Problem 9.4).

9.4 Single molecules as probes for localized fields

Besides having interesting statistical properties, a single fluorescent molecule can also
serve as a local probe for electric field distributions since they act as point dipoles. For weak
excitation intensities (I � IS), the fluorescence emission rate (γem) is nearly independent
of the excited-state lifetime and becomes (cf. Eq. (9.3))

γem = 1

2�
Im{α}

∣∣∣np · E
∣∣∣2. (9.30)

We assume that the localized excitation field does not bring the dipole approximation into
question, i.e. that the field E is nearly constant over the size of the quantum system, i.e. on
length scales of about 1 nm. For fields that vary more rapidly, higher multipolar transitions
must be taken into account.

The absorption dipole of molecules with low symmetry is usually fixed with respect
to the molecular framework. Furthermore, if the local environment of the molecule is not
changing then the excitation rate is a direct measure of the fluorescence emission rate.
Thus, by monitoring γem as an electric field distribution E is raster scanned relative to the
rigid molecule, it is possible to map out the projected field strength

∣∣np · E
∣∣2. Fluorescent

molecules can be fixed in space by embedding them e.g. in a thin transparent polymer film
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�Fig. 9.16 Schematic set-up for metrology of confined fields using single fluorescent molecules with different possible
illumination geometries (1), (2), and (3).

on a glass slide. Such films are produced by spin coating of a solution of toluene containing
the polymer, e.g. PMMA, and the dye, e.g. DiI, in low concentrations at thicknesses of
around 20 nm [34]. The areal density of the dye in the film should be below 1 μm−2 in
order to avoid clustering of molecules. The molecules will be distributed randomly in the
film with respect to depth inside the polymer and orientation of the dipole moment.

Figure 9.16 shows a typical experimental set-up for measuring single-molecule fluores-
cence with different types of excitation fields, i.e. focused laser radiation and near-field
excitation using a local probe. The latter can be self-luminous, as in the case of an aper-
ture probe, or can be externally excited with an irradiating laser beam. The detection path
employs a high-NA objective that collects the fluorescence emitted by an excited molecule.
Dichroic mirrors and cut-off filters are used to reject the laser excitation line. In essence, the
molecule emits as a dipole, and the mapping of fields from object space to image space has
been discussed in Chapter 4. However, one needs to take into account that the molecule
is emitting not in a homogeneous environment but near an interface. As a consequence
(cf. Chapter 10), a randomly oriented molecule emits more than 70% of the emitted pho-
tons towards the objective, which increases the collection efficiency. To generate a map
of the spatial distribution of

∣∣np · E
∣∣2, the single-molecule sample is raster scanned with

respect to the fixed excitation field. The emitted fluorescence is continuously recorded with
a single-photon detector. The color of each image pixel encodes the respective count-rate.
Each molecule in the recorded image is represented by a characteristic pattern that reflects
the local field distribution projected along the molecule’s dipole axis. Examples of such
patterns are shown in Figs. 9.17 and 9.18.

It should be noted that other small particles, such as fluorescent semiconductor quantum
dots or small metal particles could also be used to investigate confined fields. However, the
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�Fig. 9.17 Panel A: calculated fluorescence-rate patterns for a focused, radially polarized excitation beam. The out-of-plane
orientation of the probing molecular dipole moment is indicated by the angle� (� = 0 corresponds to an in-plane
molecule, i.e. one oriented perpendicular to the optical axis). Panel B: corresponding experimental patterns obtained
with molecules that are randomly oriented in a thin polymer film. Panel C: reconstructed dipole orientations.
From [35].

virtue of a well-defined linearly oriented absorption dipole moment is unique to fluorescent
molecules. For semiconductor nanocrystals the degenerate dipole moment has to be taken
into account.

9.4.1 Field distribution in a laser focus

As an illustration for field mapping we consider the electric field distribution in the
focal plane of a strongly focused beam. It represents a confined field that contains field
components in all three Cartesian coordinates, i.e. the field in the focus is inhomoge-
neous as discussed in Chapter 3. For a focused radially polarized beam [35] and an annular
(ring-shaped) beam [34] the three field components are of comparable magnitude.

Panel A in Fig. 9.17 shows the calculated fluorescence-rate patterns obtained when a
molecule 2 nm below a polymer–air interface is raster scanned through a stationary radially
polarized focused beam [35]. The in-plane orientation of the molecular dipole is deter-
mined from the orientation of the lobes in the upper-left pattern. The pattern changes as
the out-of-plane angle (�) of the dipole increases. The lower-right pattern is a map of the
longitudinal field component in the focus, which is completely circularly symmetric in the
case of a radially polarized beam. In the experiments, the randomly oriented molecules in
the polymer film each map a well-defined polarization component in the focus. This results
in patterns as displayed in panel B in Fig. 9.17. Knowing the focal field distribution of a
radially polarized beam allows us to reconstruct from the experimental patterns in panel B
the molecule’s dipole orientations (panel C).

A longitudinal field (one with the field vector pointing along the optical axis) can also
be generated by a standard fundamental laser beam of which the center of the beam has
been blanked out [34]. This type of annular illumination does not alter the general patterns
obtained for a strongly focused Gaussian beam (see Chapter 3), but does change the rel-
ative intensity of the patterns. Figure 9.18 (left panel) shows calculated fluorescence-rate
distributions for molecules close to the surface of the polymer film and as a function of the
dipole orientation. Note that the pattern for a molecule oriented in the plane of the film,
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�Fig. 9.18 Left panel: calculated fluorescence-rate patterns for a focused annular beam probed by molecules with varying
orientations of the dipole moment. Right panel: experimental patterns. Each of these patterns can be assigned to a
specific orientation of the molecular absorption dipole. The arrow indicates the polarization direction. Adapted
from [34].

perpendicular to the excitation polarization, displays comparable intensity to the pattern of
a molecule in the plane of the film with dipole parallel to the excitation polarization. Fig-
ure 9.18 (right panel) shows the experimental result. All experimental patterns observed
can be assigned to a specific orientation of the molecular absorption dipole.

9.4.2 Probing strongly localized fields

In the previous example, a molecule was used as a probe for the confined field distri-
bution in a laser focus. The same principle can be applied for the characterization of
more strongly localized fields. Because of their evanescent nature these fields are bound
to material surfaces, which requires that a molecule be brought very close. However, this
proximity to the material surface can alter the intrinsic properties of the molecule. For
example, the molecule’s excited-state lifetime can be altered by the local density of elec-
tromagnetic modes, its coupling with other structures can introduce additional relaxation
channels (quenching), and strong local fields can even give rise to level shifts similar to
the Stark effect. These effects will influence the molecule’s fluorescence emission rate. A
more detailed discussion of these effects is provided in Chapters 8 and 13. If we assume
that the probing molecule is not in direct contact with lossy material surfaces we can,
to a first approximation, ignore these perturbing effects. Under this assumption, position-
dependent single-molecule fluorescence-rate measurements will qualitatively reflect the
vectorial nature of the local field distribution.



307 9.4 Single molecules as probes for localized fields

Field distribution near subwavelength apertures

The first demonstration of using single molecules to probe localized fields was performed
by Betzig and Chichester in 1993 [36]. In their experiments they probed the field distri-
bution near the subwavelength aperture of a near-field probe. Similar experiments were
performed by the group of van Hulst [37]. Figure 9.19 shows an electron micrograph of
an aperture near-field probe used in such experiments. The end of a tapered metal-coated
glass fiber (see also Chapter 6) has been cut with a focused ion beam in order to obtain a
flat end-face free of grains and contaminants. As discussed in Chapter 6, the fields near the
aperture are excited by coupling laser light into the far end of the fiber. Figure 9.20 shows
fluorescence-rate patterns of single DiIC18 molecules that were raster scanned underneath
the near-field probe shown in Fig. 9.19. The three images were recorded with different
polarizations but represent the same sample area. As predicted by Eq. (9.30), the polariza-
tion of the excitation field affects the pattern recorded by a single molecule. The pattern
marked by a dashed circle originates from a molecule with dipole pointing along the axis
of the near-field probe. It maps the square modulus of the field component along the
molecule’s dipole axis. The recorded patterns are in qualitative agreement with the predic-
tions of the Bethe–Bouwkamp theory discussed in Chapter 6. According to this theory, the
longitudinal field is strongest at the rim of the aperture along the direction of incident polar-
ization. This behavior is nicely supported by the experimental images shown in Fig. 9.20.

Field distribution near tips and particles

Very strong field localization and enhancement can be achieved near sharply pointed metal
boundaries. However, because metals are lossy materials at optical frequencies, one can no
longer ignore the perturbing influence of the metal on the properties of the molecule. The

�Fig. 9.19 Image of a near-field aperture probe of which the end-face was cut by focused-ion-beammilling. The aperture that
shows up in the circular facet has a diameter of 70(±5) nm. The probes have flat end-faces and the apertures have
well-defined edges and are circularly symmetric. From [37].
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�Fig. 9.20 A series of three successive fluorescence maps of the same area (1.2μm× 1.2μm) of a sample of single DiIC18
molecules embedded in a 10 nm-thin film of PMMA, measured with the 70 nm-aperture probe of Fig. 9.19. The
excitation polarization (as measured in the far-field) was changed between linear in the vertical image direction (a),
linear in the horizontal image direction (b), and circular (c). The changing polarization affects the molecule’s
fluorescence-rate pattern. For example, for the molecule in the dashed circle it is oriented perpendicular to the sample
plane, i.e. pointing in the direction of the near-field probe. Bar = 300 nm. From [37].

predominant perturbation is fluorescence quenching: an excited molecule can relax to its
ground state through non-radiative decay. In this case, the molecule’s excitation energy is
transferred to the metal, where it is ultimately dissipated to heat. As a consequence, the
apparent quantum yield of the molecule is reduced (see also Section 13.3.2).

The example of this section nicely illustrates the competition between enhancement
and quenching. We consider a tip-on-aperture near-field probe as discussed in Chapter 6
(cf. Fig. 6.24). In short, a metal tip is grown on the end-face of an aperture-type near-field
probe. The light emitted by the aperture illuminates the metal tip and gives rise to a local
field enhancement at the tip end. The field distribution that is expected at the tip is that
of a vertical dipole at the center of a sphere inscribed into the tip apex as discussed in
Chapter 6. The excitation rate of a molecule placed in the vicinity of the tip is, as in previ-
ous cases, determined by the projection of the local electric field vector on the absorption
dipole axis. Figure 9.21(a) shows the result of an experiment performed by Frey et al. [38].
As the illuminated tip is scanned over several molecules attached to the ends of DNA
strands deposited on a mica surface, distinct patterns appear, which in most cases consist
of two lobes facing each other. A cut through the rotationally symmetric field distribution
together with a molecule oriented slightly out of the sample plane is shown in Fig. 9.21(b).
The sketch shows that differently oriented molecules are excited in different ways. For
example, Fig. 9.21(b) indicates that a molecule with its dipole in the plane of the sample
surface will lead to a double-lobed pattern. The direction of the two lobes indicates the
orientation of the in-plane component of the absorption dipole moment. If the tip is sitting
right above a molecule with its dipole in the sample plane, the excitation is very inefficient
and the molecule appears dark. On the other hand, a bright spot is expected for a molecule
whose dipole is oriented perpendicular to the sample plane. Experimentally recorded fluo-
rescence patterns from single molecules with various out-of-plane angles are summarized
in the upper row of Fig. 9.21(c). Obviously, patterns with a single bright spot are not
observed. Instead, vertically oriented molecules appear as a symmetric ring. The reason
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200 nm

(a)

(b) (c)

�Fig. 9.21 Localized field near a sharp metal tip. (a) Fluorescence-rate patterns of single molecules scanned by a tip-on-aperture
probe. (b) Cut through the rotationally symmetric field distribution near a TOA probe sampled at different points by a
single fluorescent molecule with an out-of-plane orientation of the absorption dipole moment indicated by the
arrows. (c) Comparison of theory with selected experimental patterns (see text). From [38].

for this observation is non-radiative relaxation from the excited state to the ground state.
Whenever the molecule is right underneath the tip, fluorescence quenching predominates
over the field enhancement, leading to a suppression of the fluorescence. The quenching
effect can be included in the calculation of the field patterns by using Eq. (8.141) in Chap-
ter 8, where we analyzed dipole emitters in inhomogeneous environments. In the present
consideration, possible changes of the emitter’s excited-state lifetime and emission pattern
in the presence of the probe have not been treated. Such effects will be covered in the
discussion of optical antennas in Chapter 13.

9.5 Conclusion

This chapter discussed the properties of single-quantum emitters such as single molecules,
quantum dots, and defect centers in diamond. Because of their small size, these systems
are ideal probes for local field distributions and can act as experimental model systems for
point dipoles. When a quantum emitter interacts with light, the quantum nature of its inter-
nal states gets encoded into the emitted light. Therefore, the quantum emitters discussed
in this chapter are promising building blocks for single-photon sources. Depending on
the local environment, the intrinsic properties of quantum emitters can change, and hence
they can act as local sensors. Single molecules, quantum dots, and defect centers in nano
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diamond are being used for biophysical studies and also for implementations of quantum
logic. Finally, it should be noted that the methods that have been introduced in this chapter
can also be applied to other quantum emitters that have not been mentioned here.

Problems

9.1 In a semiconductor, Wannier excitons are the lowest-energy excited states. They
form by recombination of an electron–hole pair, e.g. after absorption of a photon
with an energy corresponding to the semiconductor’s bandgap. The Hamiltonian that
describes this excitonic bound state, Eq. (9.2), has the same form as the Hamiltonian
of the hydrogen atom. A typical semiconductor used to prepare nanocrystals that
emit light in the visible spectral region is CdSe. Its dielectric constant is 10.2, and
the effective masses of the electrons and holes are me = 0.12m0 and mh = 0.5m0,
respectively, where m0 is the electron rest mass. Calculate the Bohr radius of the
excitons. For nanocrystals smaller than the Bohr radius, quantum confinement effects
become important. How does the magnitude of the effective mass influence the Bohr
radius?

9.2 The rate of energy dissipation (absorption) by a molecule with dipole moment p can
be written as Pabs(ω) = (ω/2)Im

[
p · E(ω)

]
, with E being the local exciting field.

The dipole moment p can be considered to be induced by the same field according to

p =↔
α E, where

↔
α is the tensorial polarizability of the molecule defined by its dipole

orientation. Derive Eqs. (9.3) and (9.4).
9.3 Prove the relations of Eq. (9.16).
9.4 Determine the populations of a two-level system as a function of time for continuous-

wave excitation. To simulate the case of pulsed excitation, assume that the excitation
pulse has a rectangular shape. Estimate the probability of two photons being emitted
due to a single rectangular excitation pulse of a given width. What does the result tell
you about the usability of a two-level system as a triggered single-photon source?

9.5 Show that the maximum absorption cross-section of a two-level molecule is σmax =
3λ2/(2π ). Use the expressions for the atomic polarizability α in Appendix A and
express α in terms of the absorption cross-section σ . Be careful with orientational
factors.
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10 Dipole emission near planar interfaces

The problem of dipole radiation in or near planar layered media is of significance to many
fields of study. It is encountered in antenna theory, single-molecule spectroscopy, cavity
quantum electrodynamics, integrated optics, circuit design (microstrips), and surface-
contamination control. The relevant theory was also applied to explain the strongly
enhanced Raman effect of adsorbed molecules on noble metal surfaces, and in surface sci-
ence and electrochemistry for the study of optical properties of molecular systems adsorbed
on solid surfaces. Detailed literature on the latter topic is given in Ref. [1]. In the context
of nano-optics, dipoles close to a planar interface have been considered by various authors
to simulate tiny light sources and small scattering particles [2]. The acoustic analog is also
applied to a number of problems such as seismic investigations and ultrasonic detection of
defects in materials [3].

In his original paper [4], in 1909, Sommerfeld developed a theory for a radiating dipole
oriented vertically above a planar and lossy ground. He found two different asymptotic
solutions: space waves (spherical waves) and surface waves. The latter had already been
investigated by Zenneck [5]. Sommerfeld concluded that surface waves account for long-
distance radio-wave transmission because of their slower radial decay along the Earth’s
surface compared with that of space waves. Later, when space waves were found to reflect
at the ionosphere, the contrary was confirmed. Nevertheless, Sommerfeld’s theory formed
the basis for all subsequent investigations. In 1911 Hörschelmann [6, 7], a student of
Sommerfeld, analyzed the horizontal dipole in his doctoral dissertation and likewise used
expansions in cylindrical coordinates. Later, in 1919, Weyl [8] expanded the problem by
a superposition of plane and evanescent waves (the angular spectrum representation), and
similar approaches were developed by Strutt [9], and Van der Pol and Niessen [10]. Agar-
wal later used the Weyl representation to extend the theory to quantum electrodynamics
[11]. Owing to the overwhelming amount of literature, many aspects of the theory were
reinvented over the years, probably owing to the fact that the early literature was written
in German. An English version of the early developments is summarized in Sommerfeld’s
lectures on theoretical physics [12].

At first glance, the calculation of the field of a dipole near planar interfaces seems to be
an easy task. The primary dipole field (free-space Green function) possesses a simple math-
ematical description, and the planar interfaces have reduced dimensionality. Furthermore,
the planar interfaces are constant coordinate surfaces for different coordinate systems. It is
therefore very astonishing that there is no closed solution for this elementary problem, not
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even for the vertically oriented dipole which has perfect rotational symmetry. The desired
simplicity is obtained only for limiting cases, such as ideally conducting interfaces and the
quasi-static limit.

10.1 Allowed and forbidden light

Let us consider the situation shown in Fig. 10.1, where a dipole is located above a layered
substrate. We assume that the lower half-space (substrate) is optically denser than the upper
half-space (vacuum). If the distance of the dipole from the surface of the topmost layer is
less than about one wavelength, evanescent field components of the dipole interact with
the layered structure and thereby excite other forms of electromagnetic radiation. Their
energy can be (1) absorbed by the layer, (2) transformed into propagating waves in the
lower half-space, or (3) coupled to modes propagating along the layer. In the second case
the plane waves propagate in directions beyond the critical angle of total internal reflection
αc = arcsin(n1/n3), where n1 and n3 are the refraction coefficients of the upper and lower
half-spaces, respectively. The amplitude of the plane waves depends exponentially on the
height of the dipole above the layer. Thus, for dipoles more than a couple of wavelengths
from the surface there will be virtually no light coupled into directions beyond the critical
angle. This is why the light at supercritical angles is called forbidden light [13].

Figure 10.2 illustrates the difference between allowed and forbidden light (cf. Sec-
tion 2.11.2). Here, we assume that ε3>ε1>ε2. In configuration (a) a dielectric interface is
illuminated by a plane wave incident from the upper medium in such a way that a propa-
gating transmitted wave exists. If a second interface is brought close, the light transmitted
into the downmost medium does not depend, apart from interference undulations, on the

μn εn

μ1 ε1

rp
E

δ

�Fig. 10.1 Configuration of the dipole problem. The dipole is located at r0= (x0, y0, z0) and the planar interfaces are
characterized by z= constant. The surface of the topmost layer coincides with the coordinate origin. The properties of
the upper and lower half-spaces are designated by the indices 1 and n, respectively.
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�Fig. 10.2 Illustration of allowed and forbidden light. The three media fulfill ε3>ε1>ε2. The incident wave hits the upper
interface in such a way that (a) a transmitted wave exists and (b) the wave is totally reflected.

spacing between the two interfaces, and the transmitted light propagates in a direction that
is within the critical angle of total internal reflection. The situation in (b) is quite different
from the previous one. Here, the wave hits the upper interface in such a way that no trans-
mitted field exists. Instead, an evanescent wave is formed, decaying exponentially in the
normal direction and propagating along the interface. If the second interface is approached,
the evanescent wave will be transformed into a propagating wave in the lowest region
(optical tunneling). This wave propagates in directions beyond the critical angle of total
internal reflection and depends sensitively on the gap between the two interfaces (see also
Section 2.14.2).

10.2 Angular spectrum representation of the dyadic
Green function

The solution to the problem depicted in Fig. 10.1 has to be expanded by suitable functions
satisfying Maxwell’s equations. In order to fulfill the boundary conditions analytically,
the functions have to be orthogonal on the interfaces. This is true for expansions in both
Cartesian and cylindrical coordinates. Both treatments have their advantages and disadvan-
tages, and lead to integrals that cannot be solved analytically. Sommerfeld used expansions
in cylindrical waves. This approach is very efficient from a computational point of view
since the fields are represented by just a single integral. A detailed account of Sommer-
feld’s approach can be found in Ref. [2]. Here, we will adopt an expansion in plane and
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evanescent waves (the angular spectrum representation) because the results are physically
more intuitive. Furthermore, with suitable substitutions it is straightforward to transform
the results at a later stage from a Cartesian system to a cylindrical system. In order to
account for all possible orientations of the dipole we will use the dyadic Green-function
formalism outlined earlier in Chapter 2.

Let us first review the dipole fields in a homogeneous, linear, and isotropic medium. In
this case, the interfaces in Fig. 10.1 are removed and the entire space is characterized by

ε1 and μ1. The dyadic Green function
↔
G0(r, r0) defines the electric field E(r) of an electric

dipole p located at r0= (x0, y0, z0) according to

E(r) = ω2μ0μ1
↔
G0(r, r0)p. (10.1)

The material parameters and the oscillation frequency determine the wavenumber k1 and

its longitudinal component kz1 . To represent
↔
G0 by an angular spectrum we first consider

the vector potential A, which satisfies (cf. Eq. (2.79))[
∇2 + k2

1

]
A(r) = −μ0μ1 j(r). (10.2)

Here, j is the current density of the dipole, which reads as

j(r) = −iωδ(r − r0)p. (10.3)

Using the definition of the scalar Green function G0 (cf. Eq. (2.82)) we obtain

A(r) = p
k2

1

iωε0ε1

eik1|r−r0|

4π |r − r0| , (10.4)

where we used Eq. (2.84). Notice that the vector potential is polarized in the direction
of the dipole moment. We now introduce the Weyl identity defined in Section 2.15.1 and
rewrite the vector potential as1

A(r) = p
k2

1

8π2ωε0ε1

∞∫
−∞

∫
1

kz1

ei
[
kx(x− x0)+ ky(y− y0)+ kz1 |z− z0|

]
dkx dky. (10.5)

Using E = iω[1 + k−2
1 ∇ ∇ ·]A it is straightforward to derive the electric field. Similarly,

the magnetic field is calculated using H= (μ0μ1)−1 ∇×A. The resulting expression for E
can be compared with Eq. (10.1) which allows us to identify the dyadic Green function as

↔
G0(r, r0) = i

8π2

∞∫
−∞

∫ ↔
Mei

[
kx(x− x0)+ ky(y− y0)+ kz1 |z− z0|

]
dkx dky,

↔
M = 1

k2
1kz1

⎡
⎢⎣

k2
1−k2

x −kxky ∓kxkz1

−kxky k2
1−k2

y ∓kykz1

∓kxkz1 ∓kykz1 k2
1−k2

z1

⎤
⎥⎦ .

(10.6)

1 Remember that kzi =
√

k2
i − (k2

x + k2
y ) with Im{kzi } ≥ 0.
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Some terms in the matrix
↔
M have two different signs. This originates from the absolute

value |z−z0|. The upper sign applies for z>z0 and the lower sign for z<z0. Equation (10.6)
allows us to express the fields of an arbitrarily oriented dipole in terms of plane waves and
evanescent waves.

10.3 Decomposition of the dyadic Green function

In order to apply the Fresnel reflection and transmission coefficients to the dipole fields, it

is beneficial to split
↔
G into an s-polarized part and a p-polarized part. This decomposition

can be accomplished by dividing the matrix
↔
M into the two parts

↔
M (kx, ky) = ↔

M
s
(kx, ky) + ↔

M
p
(kx, ky), (10.7)

where we realize that a dipole oriented perpendicular to the planar interfaces in Fig. 10.1
renders a purely p-polarized field. This follows from the fact that the magnetic field of an
electric dipole has only an Hφ component (cf. Eq. (8.64)), which is parallel to the interfaces
for p=pnz. Similarly, a magnetic dipole oriented perpendicular to the interfaces leads to a
purely s-polarized field. We therefore define the potentials2

Ae(r) = Ae(r)nz, (10.8)

Ah(r) = Ah(r)nz, (10.9)

and relate them to the electric and magnetic fields as

E = iω

[
1 + 1

k2
1

∇ ∇ ·
]

Ae − 1

ε0ε1
∇×Ah, (10.10)

H = iω

[
1 + 1

k2
1

∇ ∇ ·
]

Ah + 1

μ0μ1
∇×Ae. (10.11)

Here, Ae and Ah render a purely p-polarized field and a purely s-polarized field, respec-
tively. To proceed, we introduce the angular spectrum representation of the potentials Ae

and Ah as

Ae,h(x, y, z) = 1

2π

∞∫
−∞

∫
Âe,h(kx, ky)ei

[
kx(x−x0)+ ky(y−y0)+ kz1 |z−z0|

]
dkx dky, (10.12)

and introduce it with Eqs. (10.8) and (10.9) into Eq. (10.10). The resulting expression for
the electric field can be compared with the field generated by the dyadic Green function
derived in the previous section. This comparison allows us to identify the Fourier spectra
Âe and Âh as

Âe(kx, ky) = ωμ0μ1

4π

∓μx kxkz1 ∓ μy kykz1 + μz (k2 − k2
z1

)

kz1 (k2
x + k2

y )
, (10.13)

2 Note that only Ae has the units of a vector potential. Ah is the magnetic analog of the vector potential.
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Âh(kx, ky) = k2
1

4π

−μx ky + μy kx

kz1 (k2
x + k2

y )
, (10.14)

where we used the Cartesian components p = (px, py, pz) for the dipole moment. Finally,
by introducing the expressions for Âe and Âh into Eq. (10.10) and using the definition
Eq. (10.1), the s-polarized and p-polarized parts of the dyadic Green function can be

determined. The decomposition of the matrix
↔
M turns out to be

↔
M

s
= 1

kz1 (k2
x + k2

y )

⎡
⎢⎣

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎤
⎥⎦ ,

↔
M

p
= 1

k2
1(k2

x+k2
y )

⎡
⎢⎣

k2
x kz1 kxkykz1 ∓kx(k2

x + k2
y )

kxkykz1 k2
y kz1 ∓ky(k2

x + k2
y )

∓kx(k2
x + k2

y ) ∓ky(k2
x + k2

y ) (k2
x + k2

y )2/kz1

⎤
⎥⎦ .

(10.15)

10.4 Dyadic Green functions for the reflected and
transmitted fields

Let us assume that the dipole whose primary field is represented by
↔
G0 is located above

a planar layered interface as shown in Fig. 10.1. We choose a coordinate system with
its origin on the topmost interface. Then, the z-coordinate of the dipole (z0) denotes the
height of the dipole above the layered medium. To calculate the dipole’s reflected field we

simply multiply the individual plane waves in
↔
G by the corresponding (generalized) Fresnel

reflection coefficients rs and rp. These coefficients are easily expressed as functions of
(kx, ky) (cf. Eqs. (2.51) and (2.52)). For the reflected field we obtain the new dyadic Green
function

↔
Gref(r, r0) = i

8π2

∞∫
−∞

∫ [↔
M

s

ref +
↔
M

p

ref

]
ei
[
kx(x−x0)+ky(y−y0)+kz1 (z+z0)

]
dkx dky,

↔
M

s

ref = rs(kx, ky)

kz1 (k2
x + k2

y )

⎡
⎢⎣

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎤
⎥⎦ ,

↔
M

p

ref = −rp(kx, ky)

k2
1(k2

x + k2
y )

⎡
⎢⎣

k2
x kz1 kxkykz1 kx(k2

x + k2
y )

kxkykz1 k2
y kz1 ky(k2

x + k2
y )

−kx(k2
x + k2

y ) −ky(k2
x + k2

y ) −(k2
x + k2

y )2/kz1

⎤
⎥⎦.

(10.16)
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The electric field in the upper half-space is now calculated by taking the sum of the primary
Green function and the reflected Green function as

E(r) = ω2μ0μ1

[↔
G0 (r, r0) + ↔

Gref (r, r0)
]

p. (10.17)

The sum of
↔
G and

↔
Gref can be regarded as the new Green function of the upper half-space.

The transmitted field can be expressed in terms of the Fresnel transmission coefficients
ts and tp (cf. Eqs. (2.51) and (2.52)). For the lower half-space we obtain

↔
Gtr(r, r0) = i

8π2

∞∫
−∞

∫ [↔
M

s

tr +
↔
M

p

tr

]
ei
[
kx(x− x0)+ky(y− y0)− kzn(z+ δ)+ kz1 z0

]
dkx dky,

↔
M

s

tr = ts(kx, ky)

kz1 (k2
x + k2

y )

⎡
⎢⎣

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎤
⎥⎦ ,

↔
M

p

tr = tp(kx, ky)

k1kn(k2
x + k2

y )

⎡
⎢⎣

k2
x kzn kxkykzn kx(k2

x + k2
y )kzn/kz1

kxkykzn k2
y kzn ky(k2

x + k2
y )kzn/kz1

kx(k2
x + k2

y ) ky(k2
x + k2

y ) (k2
x + k2

y )2/kz1

⎤
⎥⎦ .

(10.18)

The parameter δ denotes the total height of the layered interface. In the case of a single
interface, δ=0. The electric field in the lower half-space is calculated as

E(r) = ω2μ0μ1
↔
Gtr (r, r0)p. (10.19)

The function
↔
Gtr can be regarded as the new Green function of the lower half-space.

The calculation of the fields inside the layered structure requires the explicit solution
of the boundary conditions at the interfaces. This has been done in Ref. [2] for a two-
interface structure (a planar layer on top of a planar substrate) and explicit expressions for
the field components can be found in Appendix D. The discussion in this chapter does not
require knowledge of the fields inside the individual layers. However, to calculate the fields
in the upper and lower half-spaces we need to know the generalized Fresnel reflection
and transmission coefficients. For a single interface, these coefficients have been stated
in Eqs. (2.51) and (2.52) and the generalization to multiple interfaces can be found in
Ref. [14]. As an example, the reflection and transmission coefficients of a single layer of
thickness d read as

r(p,s) = r(p,s)
1,2 + r(p,s)

2,3 exp(2ikz2d)

1 + r(p,s)
1,2 r(p,s)

2,3 exp(2ikz2d)
, (10.20)

t(p,s) = t(p,s)
1,2 t(p,s)

2,3 exp(ikz2d)

1 + r(p,s)
1,2 r(p,s)

2,3 exp(2ikz2d)
, (10.21)
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where r(p,s)
i,j and t(p,s)

i,j are the reflection and transmission coefficients for the single
interface (i, j).

In order to calculate the fields in the upper and lower half-spaces it is beneficial to trans-
form the expressions for the fields into a cylindrical system. By using the mathematical
identities in Eq. (3.57) it is possible to express the fields in terms of a single integral in
kρ . The magnetic field can be derived by applying Maxwell’s equation iωμ0μiH=∇×E,
which directly leads to

H(r) =
⎧⎨
⎩

−iω
[
∇ × (

↔
G +↔

Gref)
]

p upper half-space,

−iω(μ1/μn)
[
∇×↔

Gtr

]
p lower half-space.

(10.22)

Here, the curl operator acts separately on each column vector of the dyadic Green func-
tions.

As an example, Fig. 10.3 shows the field distribution of a dipole in close proximity to a
slab waveguide. The dipole is oriented at θ=60◦ in the (x, z) plane, i.e. p=p (

√
3/2, 0, 1/2),

xy

–z

11
00

nm

�Fig. 10.3 The power density of a dipole above a slab waveguide depicted at a certain time. The dipole is located at h = 20 nm
and its axis is in the (x, z) plane. θ = 60◦,λ = 488 nm, d = 80 nm, ε1=1, ε2=5, ε3=2.25. There is a factor of
2 difference between successive contour lines.
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and radiates predominantly into the lower, optically denser medium. The dipole’s near-field
excites the two lowest modes, TE0 and TM0, in the waveguide.

10.5 Spontaneous decay rates near planar interfaces

The normalized rate of energy dissipation P/P0 of a radiating dipole is defined by
Eq. (8.80). Usually, not all of the dipole’s energy is transformed into radiation since it
can be coupled to other modes supported by the layered structure (phonons, heat, sur-
face modes, waveguide modes, etc.). For an incoherently decaying quantum system with
intrinsic quantum yield qi = 1, the normalized spontaneous decay rate γ /γ0 is identical
with P/P0 (cf. Eq. (8.141)) and requires the evaluation of the scattered field Es(r0) at the
dipole’s origin r0. In the present situation the scattered field corresponds to the reflected
field Eref, which, at its origin, reads as

Eref(r0) = ω2μ0μ1
↔
Gref(r0, r0)p. (10.23)

↔
Gref is defined by Eq. (10.16). It is convenient to perform the substitutions

kx = kρ cosφ, ky = kρ sinφ, dkx dky = kρ dkρ dφ, (10.24)

which allow us to solve the integral over φ analytically.3 Evaluated at its origin,
↔
Gref takes

on the diagonal form

↔
Gref(r0, r0) = i

8πk2
1

∞∫
0

kρ
kz1

⎡
⎣k2

1rs − k2
z1

rp 0 0
0 k2

1rs − k2
z1

rp 0
0 0 2k2

ρrp

⎤
⎦ e2ikz1 z0 dkρ . (10.25)

Using this together with Eq. (10.23) and Eq. (8.80), it is now straightfoward to determine
the normalized rate of energy dissipation. For convenience, we perform the substitutions
s=kρ/k1 and

√
1−s2 = kz1/k1. Then, using the abbreviation sz= (1−s2)1/2, we obtain

P

P0
= 1 + p2

x + p2
y

|p|2
3

4

∞∫
0

Re

{
s

sz

[
rs − s2

z rp
]

e2ik1z0sz

}
ds

+ p2
z

|p|2
3

2

∞∫
0

Re

{
s3

sz
rpe2ik1z0sz

}
ds.

(10.26)

Here, the reflection coefficients are functions of the variable s, i.e. rs(s) and rp(s), and the
dipole moment has been written in terms of its Cartesian components as p = (px, py, pz).
The integration range [0 . . . ∞] can be divided into the two intervals [0 . . . 1] and
[1 . . . ∞]. The first interval is associated with the plane waves of the angular spectrum,

3 Notice the difference from Eq. (3.46), which was arrived at by transforming a planar surface to a spherical
surface. Here, the integration is fixed to a planar surface.
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h

Al glass/

�Fig. 10.4 Single-molecule fluorescence near planar interfaces. The molecule is located on the surface of a dielectric substrate
and a metal (ε=−34.5+ i8.5) or a glass (ε=2.25) interface is advanced from above. The applied wavelength is
λ = 488 nm.

i.e. kρ= [0 . . . k1], whereas the second interval corresponds to the spectrum of evanescent
waves kρ = [k1 . . . ∞]. Thus, the dipole interacts with its own reflected plane waves and
reflected evanescent waves. The exponential term in the integrands is an exponentially
decaying function for evanescent waves, whereas it is oscillatory for plane waves.

According to Eq. (8.116) the normalized rate of energy dissipation is identical with the
normalized spontaneous decay rate of a quantum-mechanical two-level system such as a
molecule. The normalized lifetime τ/τ0 = (P/P0)−1 of the molecule as a function of the
separation h between a substrate and an approaching interface (see Fig. 10.4) is shown in
Fig. 10.5. The normalization (τ0) refers to the situation for which the molecule is located
on the glass surface, but the second interface is absent (h→∞).

The undulations originate from the interference between the propagating fields (plane
waves) of the molecule and the reflected fields from the approaching interface. As
expected, the undulations are more emphasized for the metal interface and for horizontal
dipole orientation. At small h, it can be observed that molecular lifetimes for all configura-
tions decrease. This reduction is caused by the increasing non-radiative decay rate mediated
by evanescent field components. Depending on whether the approaching interface is metal-
lic or dielectric, the evanescent field components of the molecule are thermally dissipated
or partly converted into fields propagating at supercritical angles in the upper half-space
[15]. For the metal interface the lifetime tends to zero [16] as h → 0. In this case, the
molecule transfers its excitation energy to the metal and there is no apparent radiation. As
a consequence, the fluorescence is quenched.

Figures 10.5(b) and (d) depict the lifetimes for h < 20 nm, the distances relevant
for near-field optical experiments. For vertically oriented dipoles the lifetimes are always
larger in the case of the dielectric interface. This is not so for the horizontal dipole orienta-
tion, for which case the two curves intersect. Above h ≈ 8.3 nm the lifetime of an excited
molecule faced by an aluminum interface is higher than in the case of a dielectric interface,
but it is lower for separations below h ≈ 8.3 nm. This lifetime reversal can be transferred to
the experimental situation in aperture scanning near-field optical microscopy: a molecule
at the center position of the optical probe is faced by the dielectric core, which can be
approximated by a planar dielectric interface. For positions below the metal cladding, the
situation corresponds to a molecule faced by a planar aluminum interface. Thus, for small
probe–sample separations, the lifetime of a molecule with horizontal dipole axis is higher
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�Fig. 10.5 Molecular lifetime as a function of the gap h. The dark curves were obtained for an approaching metal interface,
whereas the bright curves refer to an approaching dielectric interface. The arrows indicate the orientation of the
dipole axes. The lower figures are close-ups of the upper ones. The normalization with τ0 corresponds to h→∞.

at the center position than it is at displaced positions. The contrary is valid for gaps larger
than ≈8.3 nm. These findings verify experimental observations [17] and reproduce the
numerical results reported in Ref. [18].

The point h at which the curves intersect depends on the wavelength of the illuminating
light and on the orientation of the dipole axis. For longer wavelengths, aluminum behaves
in a more metallic manner, which shifts the intersection point to larger h. At λ = 800 nm,
the dielectric constant of aluminum is ε=−63.5+ i47.3 and the intersection point appears
at h ≈ 14.6 nm.

If a molecule is faced by a finite-sized object, the lateral symmetry is lost and additional
effects will occur at the rims of the objects [19, 20].

10.6 Far-fields

In many situations dipoles near a planar layered interface are observed in the far-field
zone. To understand how the fields are mapped from the near-field to the far-field we need
to derive explicit expressions for the asymptotic fields. The radiation condition usually
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requires that these fields decay as r−1. However, defining fields at an infinite distance from
an infinitely extended object turns out to be a philosophical problem. Furthermore, the
existence of closed asymptotic expressions is questionable for reasons of energy conserva-
tion: fields that propagate along the layered structure, i.e. guided or surface waves, have to
decay as r−1/2. There should be a smooth transition between the r−1 zone and the r−1/2

zone. Thus, it could be concluded that no closed far-field expressions exist for planar media
since the decay of the fields depends on the direction of propagation. Nevertheless, closed
expressions for the far-field can be derived if the lateral directions, i.e. the regions very
close to the layers, are excluded.

One of the advantages of using the angular spectrum representation is the simple and
straightforward derivation of the far-field. We learned in Section 3.4 that the far-field E∞
observed in the direction of the dimensionless unit vector

s = (sx, sy, sz) =
(x

r
,

y

r
,

z

r

)
(10.27)

is determined by the Fourier spectrum Ê at z=0 as

E∞(sx, sy) = −ikszÊ(ksx, ksy ; 0)
eikr

r
. (10.28)

This equation requires that we express the wavevector k in terms of the unit vector s.
Since we have different optical properties in the upper and lower half-spaces we use the
following definitions:

s =

⎧⎪⎪⎨
⎪⎪⎩

(
kx

k1
,

ky

k1
,

kz1

k1

)
z > 0,(

kx

kn
,

ky

kn
,

kzn

kn

)
z < 0.

(10.29)

The field E in the upper and lower half-spaces is determined by the Green functions
↔
G0,

↔
Gref, and

↔
Gtr, which are already in the form of an angular spectrum (Eqs. (10.6), (10.16)

and (10.18)). We can establish the asymptotic far-field forms of the different Green func-
tions by using the recipe of Eq. (10.28). All that needs to be done is to identify the
spatial Fourier spectrum of the Green functions and carry out the algebra. The resulting
expressions are given in Appendix D.

In order to have a simple representation of the far-field we choose the origin of the
coordinate system on the surface of the uppermost layer such that the dipole is located on
the z-axis, i.e.

(x0, y0) = (0, 0). (10.30)

Furthermore, we represent the field in terms of spherical vector coordinates E =
(Er, Eθ , Eφ) by using the spherical angles θ and φ (Fig. 10.6). It is important to use the
correct signs in the substitutions: in the upper half-space we have sz = kz1/k1 = cos θ ,
whereas in the lower half-space the relationship is sz = kzn/kn = − cos θ . For simpler
notation it is convenient to define

s̃z = kz1

kn
=
√

(n1/nn)2 − (s2
x + s2

y) =
√

(n1/nn)2 − sin2θ , (10.31)
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�Fig. 10.6 Definition of angles used for the asymptotic far-fields. The radiated power is split into the contributions P↑ (radiation
into the upper half-space), P↓a (radiation into the allowed zone), P↓f (radiation into the forbidden zone), and Pm
(radiation dissipated in the layered medium). The total rate of energy dissipation is P = P↑ + P↓a + P↓f + Pm +
Pi, with Pi being the intrinsically dissipated power.

where n1 and nn are the refractive indices of the upper and lower half-spaces, respectively.
Using the index j∈ [1, n] to distinguish between upper and lower half-spaces, the far-field
can be represented as

E =
[

Eθ
Eφ

]
= k2

1

4πε0ε1

exp(ikjr)

r

[
[μx cosφ + μy sinφ]cos θ �(2)

j −μz sin θ �(1)
j

−[μx sinφ − μy cosφ]�(3)
j

]
,

(10.32)

with

�
(1)
1 =

[
e−ik1z0 cos θ + rp(θ )eik1z0 cos θ

]
, (10.33)

�
(2)
1 =

[
e−ik1z0 cos θ − rp(θ )eik1z0 cos θ

]
, (10.34)

�
(3)
1 =

[
e−ik1z0 cos θ + rs(θ )eik1z0 cos θ

]
, (10.35)

�(1)
n = nn

n1

cos θ

s̃z(θ )
tp(θ )eikn[z0 s̃z(θ )+ δ cos θ ], (10.36)

�(2)
n = − nn

n1
tp(θ )eikn[z0 s̃z(θ )+ δ cos θ ], (10.37)

�(3)
n = cos θ

s̃z(θ )
ts(θ )eikn[z0 s̃z(θ )+ δ cos θ ]. (10.38)
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A vertically oriented dipole is described by the potential �(1)
j , whereas a horizontal dipole

is represented by �(2)
j and �(3)

j containing the amounts of p-polarized and s-polarized
light, respectively. Let us first discuss the far-fields in the upper half-space. To understand
the potentials�(1)

1 –�(3)
1 we analyze the far-field of a dipole in a homogeneous medium. We

displace the dipole from the coordinate origin by a distance z0 along the z-axis. According
to Eq. (8.63) the electric field in the far-zone is defined by the term exp(ik1R)/R. However,
the radial coordinate R is measured from the origin of the dipole, not from the coordinate
origin. If we designate the latter by r we can write

R = r

√
1 + z2

0 − 2z0r cos θ

r2
≈ r − z0 cos θ . (10.39)

Only the first two terms in the series expansion of the square root have been retained. It
is important to include the second term in the phase of the wave in order to account for
diffraction. On the other hand, the second term is meaningless for the amplitude since
r�z0. Thus, we can write

eik1R

R
= eik1r

r
e−ik1z0 cos θ , (10.40)

which is known as the Fraunhofer approximation. By comparison we find that the first term
in the potentials �(1)

1 –�(3)
1 corresponds to direct dipole radiation. The exponential factor

of the second term has a minus sign in the exponent. Therefore, the second term can be
identified as radiation from a dipole located a distance z0 beneath the top surface of the
layered medium. The magnitude of this image dipole is weighted by the Fresnel reflection
coefficients. This is a remarkable result: in the far-field, a dipole near a layered medium
radiates as the superposition of two dipole fields, namely its own field and the field of its
image dipole.

The expressions for the transmitted far-field are more complicated. This arises through
the term s̃z defined in Eq. (10.31). Depending on the optical properties of upper and lower
half-spaces, this term can be either real or imaginary. In fact, in many cases the lower
half-space (substrate) is optically denser than the upper one. In these situations s̃z becomes
imaginary for the angular range θ = [π/2 . . . arcsin(n1/nn)], which exactly corresponds
to the forbidden zone discussed before. In the forbidden zone, the exponential factor in the
potentials �(1)

n −�(3)
n becomes an exponentially decaying function. Therefore, for separa-

tions z0 � λ there is no light coupled into the forbidden zone. On the other hand, in the
angular range θ = [arcsin(n1/nn) . . . π ] (the allowed zone) the dipole radiation does not
depend on the height of the dipole, as we shall see in the next section.

10.7 Radiation patterns

In the far-field, the magnetic field vector is transverse to the electric field vector and the
time-averaged Poynting vector is calculated as
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〈S〉 = 1

2
Re
{
E × H∗} = 1

2

√
ε0εj

μ0μj
(E · E∗)nr, (10.41)

with nr being the unit vector in the radial direction. The radiated power per unit solid angle
d�=sin θ dθ dφ is

P = p(�)d� = r2〈S〉 · nr, (10.42)

where p(�) = p(θ ,φ) is defined as the radiation pattern. With the far-field in Eq. (10.32)
and the corresponding potentials it is straightforward to calculate the normalized radiation
patterns as

p(θ ,φ)

P0
= 3

8π

εj

ε1

n1

nj

1

|p|2
[

p2
z sin2θ

∣∣∣�(1)
j

∣∣∣2
+ [px cosφ + py sinφ]2 cos2θ

∣∣∣�(2)
j

∣∣∣2
+ [px sinφ − py cosφ]2

∣∣∣�(3)
j

∣∣∣2
− pz[px cosφ + py sinφ]cos θ sin θ

×
[
�
∗(1)
j �

(2)
j + �

(1)
j �

∗(2)
j

]]
. (10.43)

Here, P0 corresponds to the total rate of energy dissipation in a homogeneous (unbounded)
medium characterized by ε1 and μ1 (cf. Eq. (8.71)). The first term in the brackets of
Eq. (10.43) contains the p-polarized contribution of the vertical orientation, whereas the
second and third terms contain the p- and s-polarized contributions of the horizontal orien-
tation. Of particular interest is the fourth term, which originates from interferences between
the p-polarized terms of the two major orientations. Thus, the p-polarized light of a vertical
and a horizontal dipole, which are located at the same point, interfere if the two dipoles
radiate coherently. The radiation patterns for arbitrary dipole orientation usually cannot be
put together additively. Notice, however, that upon integration over ϕ the interference term
cancels out.

Equation (10.43) allows us to determine the radiation patterns of a dipole near an
arbitrarily layered system; in the special case of a single interface it reproduces the for-
mulas obtained by Lukosz and Kunz [15, 21]. As an illustration, Fig. 10.7 shows the
radiation patterns of a dipole near a slab waveguide. The radiation in the forbidden zone
depends exponentially on the height z0 of the dipole, whereas the radiation in the allowed
zone does not depend on z0. In the lower half-space the interference term in Eq. (10.43)
reads as [

�
∗(1)
j �

(2)
j + �

(1)
j �

∗(2)
j

]
∝
∣∣∣t(p)(θ )

∣∣∣2e−2z0 Im{s̃z(θ )} Re

{
cos θ

s̃z (θ )

}
. (10.44)

In the forbidden zone, s̃z is imaginary and the interference term vanishes. Thus, the waves
of a vertical and a horizontal dipole at the same position do not interfere in the forbidden
zone and the radiation patterns will always be symmetric with respect to φ. This rather sur-
prising result was found by Lukosz and Kunz in Ref. [21] for the case of a single interface.
Recently, the radiation patterns of Eq. (10.43) have been confirmed for a single molecule
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h = λ /100

h= 5λh= λ

h = λ /10

�Fig. 10.7 Radiation patterns of a dipole with orientation θ=60◦ approaching a planar waveguide;λ=488 nm, δ=80 nm,
ε1=1, ε2=5, ε3=2.25. The different heights z0=h of the dipole are indicated in the figure. The radiation
patterns are shown in the plane defined by the dipole axis and the z-axis. Note that the allowed light does not depend
on h and that the forbidden light is always symmetric with respect to the vertical axis.

near a dielectric interface [22]. It is remarkable that although a single photon is emitted
at a time all the interference terms in Eq. (10.43) are retained. Thus, as is well known,
the photon travels many paths simultaneously and all the different paths interfere, giving
rise to the predicted dipole radiation patterns. Figure 10.8 shows the radiation pattern of
a single molecule placed near a glass surface. The pattern has been recorded with a CCD
and is compared with the pattern calculated according to Eq. (10.43).

The radiation pattern defined by Eq. (10.43) describes the angular power distribution
at an infinite distance from the dipole. However, in practice all distances are finite, and
hence the question is when is the “infinite-distance” approximation good enough? The
answer depends on the angles (θ ,φ) of observation. For example, for θc, the critical angle
of total internal reflection, the fields converge rather slowly towards the analytical far-
fields. Light coupled into this angle is generated by dipole fields that propagate parallel
to the interface(s). These fields refract at the surface at an infinite lateral distance. Thus,
reducing the infinite extent of the layered system will influence the far-field mainly near
the critical angle.

The phases of the spherical waves of the upper and lower half-spaces are not identical
on the interface. Thus, close to the interface other waveforms must exist in order to com-
pensate for the phase mismatch. In the literature these waves are known as lateral waves.
Lateral waves decay by radiation into the critical angle θc. In the case of a plane interface
illuminated under TIR conditions, lateral waves explain the lateral displacement between
the incident and the reflected beam (the Goos–Hänchen shift).
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�Fig. 10.8 The radiation pattern of a single molecule located near a glass surface. The pattern reflects the photons emitted
into the dielectric and imaged onto a CCD with an NA=1.4 objective lens. (a) Data, (b) fitted pattern using
Eq. (10.43), (c) and (d) cross-sections along a horizontal and a vertical line through the center of the pattern,
respectively. From [22].

10.8 Where is the radiation going?

Not all of a dipole’s dissipated energy is converted into propagating radiation (photons).
We have defined the quantum yield Q as the ratio of radiative and total decay rates, i.e. the
power released as radiation versus the total dissipated power (cf. Eq. (13.53)). However,
in an experiment one cannot detect all of the radiation released and hence one defines
the apparent quantum yield Qa as the ratio of detected power to totally dissipated power.
In this section we analyze how much of a dipole’s energy is emitted into the upper half-
space, into the lower half-space, and into other modes of radiation (waveguides, surface
waves, etc.).

As illustrated in Fig. 10.6, the total rate of energy dissipation is

P = P↑ + P↓
a + P↓

f + Pm + Pi, (10.45)

where P↑, P↓
a , and P↓

f are the power radiated into the upper half-space, the allowed zone,
and the forbidden zone, respectively. Pm denotes the power coupled into the layered
medium (waveguide modes, surface modes, thermal losses, etc.) and Pi is the intrinsi-
cally dissipated power. The latter is associated with the intrinsic quantum yield qi defined
earlier. In order to derive P↑, P↓

a , and P↓
f , we need to integrate the radiation pattern in

Eq. (10.43) over the corresponding angular ranges. It is convenient to use the following
substitutions:

s =
{

sin θ z > 0,
(nn/n1)sin θ z < 0.

(10.46)
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With these substitutions the interval s= [0 . . . 1] defines the plane-wave components of the
dipole field, whereas the interval s= [1 . . . ∞] is associated with the dipole’s evanescent
waves. Furthermore, the different angular ranges are mapped as

θ = [0 . . . π/2] → s = [0 . . . 1],

θ = [π/2 . . . arcsin(n1/nn)] → s= [(nn/n1) . . . 1],

θ= [arcsin(n1/nn) . . . π ] → s= [1 . . . 0].

(10.47)

Hence, we see that the angular range θ= [π/2 . . . arcsin(n1/nn)], which corresponds to the
forbidden zone, is associated with the dipole’s evanescent fields. After integration of the
radiation pattern in the upper half-space and use of the abbreviation sz = (1 − s2)1/2 we
obtain
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⎦ . (10.48)

Both for the horizontal dipole and for the vertical dipole, there are three different terms. The
first one corresponds to direct dipole radiation: half of the dipole’s primary field is radiated
into the upper half-space. The second term corresponds to the power that is reflected from
the interface, and the last term accounts for interferences between the primary dipole field
and the reflected dipole field. It is important to notice that the integration runs only over the
interval s = [0 . . . 1]. Therefore, only plane-wave components contribute to the radiation
into the upper half-space.

To determine radiation into the lower half-space we use the substitution of Eq. (10.46)
and integrate over the angular range of the lower half-space. The total radiation in the lower
half-space P↓ is calculated as
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where s′′z = Im{(1−s2)1/2}. when nn > n1 it is possible to separate the angular ranges of
the allowed zone and the forbidden zone. The allowed light turns out to be

P↓
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Similarily, the forbidden light is determined as
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These expressions demonstrate that the allowed light does not depend on the height
of the dipole, whereas the forbidden light shows the expected exponential dependence
on the dipole’s vertical position. Notice that since s= kρ/k1 the term with the square root
in the integrands corresponds to kzn/kn. Assuming that there are no intrinsic losses (Pi=0),
the power dissipated by the layered medium (thermal losses, waveguide and surface modes)
is calculated as

Pm = P − (P↑ + P↓), (10.52)

where P is determined by Eq. (10.26). For a lossless layered medium that does not support
any waveguide modes it can be demonstrated that Pm=0 (see Problem 10.3).

As an illustration of the results developed here, Fig. 10.9 displays the different radiation
terms for a dipole located above the dielectric waveguide shown in Fig. 10.3. The dipole
is held at a fixed position z0 = 20 nm and the thickness d of the waveguide is varied.
While the allowed light is characterized by undulations of periodicity π/k2, the forbidden
light shows an irregular behavior with discontinuities for certain d. The locations of these
discontinuities correspond to the cut-off conditions of the waveguide modes. For low d all
waveguide modes are beyond cut-off, so that in the time average no energy is coupled into
the waveguide (Pm = 0). At d≈ 0.058λ the fundamental TE0 mode becomes propagating,
and a net energy is coupled to the guide. When d is further increased, other modes can be
excited as well. It is remarkable that, as the thickness is increased and one mode after the



332 Dipole emission near planar interfaces

d/λ
0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

�Fig. 10.9 Allowed light (P↓a , dashed curve), forbidden light (P↓f , solid curve), and radiation coupled into the waveguide
(Pm=P−P↑−P↓, dash–dotted curve) as functions of the thickness d of the slab waveguide characterized in
Fig. 10.3. The discontinuities correspond to the cut-offs of the TE0, TM0, TE1, and TM1 modes. All curves are
normalized with the power P0 emitted in free space.

other with k‖ = k0[n2 . . . n3] comes alive, the total power radiated by the dipole shows no
discontinuities. Instead, the power coupled into the waveguides is roughly compensated for
by the forbidden light. Hence, the birth of new modes is indicated in the forbidden light,
not by the total power. Finally it should be noted that for lossless media with real dielectric
constants, such as the dielectric waveguide considered here, the poles associated with the
lateral modes lie on the real s-axis. Numerical integration requires that a small detour
around the poles in the integration path be implemented in order to avoid the singularities.
Alternatively, a tiny imaginary part can be added to the real dielectric constants.

10.9 Magnetic dipoles

In the microwave regime paramagnetic materials exhibit magnetic transitions (electron spin
resonance). In the infrared, small metal particles show magnetic dipole absorption caused
by eddy currents of free carriers produced by the magnetic vector of the electromagnetic
field. The field of a magnetic dipole in a planar layered medium is therefore important
as well. From a theoretical point of view, these fields are dual to the fields of the electric
dipole. The field of a magnetic dipole with moment m can be derived from the field of an
electric dipole moment p by simply performing the substitution

[E, H, μ0μ, ε0ε, p] → [H, −E, ε0ε, μ0μ, μm]. (10.53)

With these substitutions, the reflection coefficients rs and rp are also interchanged. Thus,
the field of a vertically oriented magnetic dipole will be purely s-polarized. In this case,
no surface waves will be excited. Note that the electric dipole moment has the units [p]=



333 10.10 The image dipole approximation

A m s, whereas the units of the magnetic dipole are [m]=A m2. The power radiated by an
electric dipole with moment p=1 in a homogeneous medium is μ0με0ε times the power
radiated by a magnetic dipole with moment m=1.

10.10 The image dipole approximation

The computational effort can be considerably reduced if retardation is neglected. In this
case the fields will still satisfy Maxwell’s equations in both half-spaces, but the standard
static image theory is applied in order to approximately match the boundary conditions.
We will outline the principle of this approximation for a single interface. Since the electro-
magnetic field is considered in its static limit (k → 0) the electric and magnetic fields are
decoupled and can be treated separately. For simplicity, only the electric field is considered.

Figure 10.10 shows an arbitrarily oriented dipole above a planar interface and its induced
dipole in the medium below. The distance of the image dipole from the interface is the same
as for the primary dipole. However, the magnitude of the image dipole moment is different.
The static electric field of the primary dipole in the upper half-space reads as

Eprim = −∇φ , with φ(r) = 1

4π ε0 ε1

p · r
r3

. (10.54)

The vector r denotes the radial vector measured from the position of the primary dipole
and r is its magnitude. Similarly, the corresponding radial vector of the image dipole is
denoted r′. For simplicity, the dipole moment p is decomposed into its parallel and vertical
parts with respect to the planar interface. Without loss of generality, the parallel component
is assumed to point in the x-direction,

p = pxnx + pznz. (10.55)

nx and nz denote the unit vectors in the x- and z-directions, respectively. In the following,
the electric field will be considered for each of the two major orientations separately.

ε1

ε2

p

x

z

h

h

image

p

�Fig. 10.10 The principle of the image dipole approximation. p and pimage denote the primary dipole and the image dipole,
respectively. Static image theory is applied to determine the magnitude of pimage.
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10.10.1 Vertical dipole

For a dipole p=pznz, the evaluation of the primary electric field in Eq. (10.54) in Cartesian
coordinates leads to

Eprim = pz

4πε0ε1

[
3x(z − h)

r5
,

3y(z − h)

r5
,

3(z − h)2

r5
− 1

r3

]
, (10.56)

where h is the height of the dipole above the interface. Assuming an image dipole p=pznz,
a similar expression can be derived for the image field:

Eimage = pz

4πε0ε1

[
3x(z + h)

r′5
,

3y(z + h)

r′5
,

3(z + h)2

r′5
− 1

r′3

]
, (10.57)

where r′ denotes the radial distance measured from the location of the image dipole. A
reasonable ansatz for the total field E in either of the two half-spaces is

E =
{

Eprim + AvEimage z > 0

BvEprim z < 0,
(10.58)

with the two unknown parameters Av and Bv. By requiring the boundary conditions at the
interface z=0, Av and Bv can be determined as

Av = ε2 − ε1

ε2 + ε1
, (10.59)

Bv = ε1

ε2

2 ε2

ε2 + ε1
.

Av and Bv correspond to the Fresnel reflection and transmission coefficients in the quasi-
static limit (cf. Section 2.8.1).

10.10.2 Horizontal dipole

The procedure for a dipole p=pxnx is similar. The primary and image fields turn out to be

Eprim = px

4πε0ε1

[
3x2

r5
− 1

r3
,

3xy

r5
,

3x(z − h)

r5

]
, (10.60)

Eimage = px

4πε0ε1

[
3x2

r′5
− 1

r′3
,

3xy

r′5
,

3x(z + h)

r′5

]
. (10.61)

The corresponding ansatz for the total field E in either of the two half-spaces is

E =
{

Eprim + AhEimage z > 0,

BhEprim z < 0.
(10.62)

As before, the unknown parameters Ah and Bh can be determined by the boundary
conditions at z=0 as
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Ah = −ε2 − ε1

ε2 + ε1
, (10.63)

Bh = ε1

ε2

2 ε2

ε2 + ε1
.

Besides the sign of Ah, the two parameters are identical with the parameters Av and Bv

calculated for the vertical dipole.

10.10.3 Including retardation

Using the parameters Av, Bv, Ah, and Bh the magnitude of the image dipole is

|pimage| = ε2 − ε1

ε2 + ε1
|p|. (10.64)

As indicated in Fig. 10.10, the horizontal components of pimage and p point in different
directions if their vertical components have the same direction. To obtain the static field in
the upper half-space, the fields of the two dipoles p and pimage have to be superposed. The
field in the lower half-space simply corresponds to the attenuated primary dipole field. The
attenuation is given by the factor 2ε2/(ε2 + ε1). Note that the dipoles are considered to be
located in the same medium as the point of observation.

So far, the location, orientation, and magnitude of the dipole moments p and pimage

have been determined. In order to fulfill Maxwell’s equations in both half-spaces, the static
dipole fields are replaced by their non-retarded forms:

E ∼ [∇ ∇ ·] p
r

→ E ∼
[
k2 +∇ ∇ ·

] p
r

eikr. (10.65)

Although this substitution rescues Maxwell’s equations in both half-spaces, it introduces a
violation of the boundary conditions. The image dipole approximation therefore has obvi-
ous limitations. In order to keep the errors within bounds, the height h of the primary
dipole must be small and the fields may be evaluated only in a limited range from the
dipole location. In fact, the image dipole approximation leads to reasonable accuracy as
long as short-range interactions are considered.

Problems

10.1 Derive Eq. (10.26) and plot the radiative (plane waves), non-radiative (evanescent
waves), and total decay rates (qi=1) as functions of the normalized height z0/λ for
the following situations.
(1) Horizontal dipole in vacuum above a dielectric substrate (ε=2.25).
(2) Vertical dipole in vacuum above a dielectric substrate (ε=2.25).
(3) Horizontal dipole in vacuum above an aluminum substrate (ε=−34.5 + 8.5i,

λ=488 nm).
(4) Vertical dipole in vacuum above an aluminum substrate (ε = −34.5 + 8.5i,

λ=488 nm).
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10.2 Calculate the normalized energy flux (P↓
1/P0) through a horizontal plane right

beneath a dipole that is located above an arbitrary stratified medium. First derive
the magnetic field H that corresponds to the electric field in Eq. (10.16), and then
determine the z-component of the Poynting vector 〈Sz〉. Use the Bessel-function clo-
sure relations (cf. Eq. (3.112)) to integrate 〈Sz〉 over the horizontal plane. Show that
the result is identical with (P − P↑

1 − P↓
n )/P0 as defined in Section 10.8.

10.3 Demonstrate that for a dipole near a single dielectric interface the total dissipated
power P is identical to the total integrated radiation pattern P↑ + P↓

a + P↓
f . Hint:

express the transmission coefficients in terms of the reflection coefficients as

ts = [1 + rs] , (kzn/kz1 )ts = (μn/μ1)[1 − rs],

tp = (ε1/εn)(nn/n1)[1 + rp] , (kzn/kz1 )tp = (nn/n1)[1 − rp].

10.4 Consider a molecule with an emission dipole moment parallel to an aluminum sub-
strate. The emission wavelength is λ = 488 nm and the dielectric constant of the
substrate is ε=−34.5 + 8.5i. Determine the apparent quantum yield qa defined as
the ratio between the energy radiated into the upper half-space and the total dissi-
pated energy. Plot qa as a function of the molecule’s vertical position z0/λ. Use the
plot ranges z0/λ = [0 . . . 2] and qa= [0 . . . 1].

10.5 For a dipole sitting on an air/dielectric interface (n1 = 1, n2 = 1.5) calculate the
ratio between the energy radiated into the upper half-space and the energy radiated
into the lower half-space. Perform the calculations separately for a horizontal and a
vertical dipole.
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11
Photonic crystals, resonators, and cavity

optomechanics

Artificial optical materials and structures have enabled the observation of various new
optical effects. For example, photonic crystals are able to inhibit the propagation of cer-
tain light frequencies and provide the unique ability to guide light around very tight bends
and along narrow channels. With metamaterials, on the other hand, one can achieve nega-
tive refraction. The high field strengths in optical microresonators lead to nonlinear optical
effects that are important for future integrated optical networks, and the coupling between
optical and mechanical degrees of freedom opens up the possibility of cooling macroscopic
systems down to the quantum ground state. This chapter explains the basic underlying
principles of these novel optical structures.

11.1 Photonic crystals

Photonic crystals are materials with a spatial periodicity in their dielectric constant, a
system that was first analyzed by Lord Rayleigh in 1887 [1]. Under certain conditions,
photonic crystals can create a photonic bandgap, i.e. a frequency window within which
propagation of light through the crystal is inhibited. Light propagation in a photonic crystal
is similar to the propagation of electrons and holes in a semiconductor. An electron pass-
ing through a semiconductor experiences a periodic potential due to the ordered atomic
lattice. The interaction between the electron and the periodic potential results in the for-
mation of energy bandgaps. It is not possible for the electron to pass through the crystal
if its energy falls within the range of the bandgap. However, defects in the periodicity of
the lattice can locally destroy the bandgap and give rise to interesting electronic properties.
If the electron is replaced by a photon and the atomic lattice by a material with a peri-
odic dielectric constant we end up with basically the same effects. However, while atoms
arrange themselves naturally to form a periodic structure, photonic crystals need to be fab-
ricated artificially. One exception is gemstone opals, which are formed by spontaneous
organization of colloidal silica spheres into a crystalline lattice. In order for a particle to
interact with its periodic environment, its wavelength must be comparable to the periodic-
ity of the lattice. Therefore, in photonic crystals the lattice constant must be in the range
100 nm to 1 μm. This size range can be accessed with conventional nanofabrication and
self-assembly techniques (see Fig. 11.1).

To calculate the optical modes in a photonic crystal one needs to solve Maxwell’s equa-
tions in a periodic dielectric medium. Although this task appears quite simple, it is not
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possible to analytically solve Maxwell’s equations for two- or three-dimensional peri-
odic lattices. Instead, numerical techniques have to be invoked. However, many interesting
phenomena can be deduced by considering the simpler one-dimensional case, i.e. a peri-
odically layered medium. The understanding and intuition developed here will help us to
discuss the properties of the more complex two- and three-dimensional photonic crystals.
A more detailed account of photonic crystals can be found in Refs. [3, 4].

11.1.1 The photonic bandgap

Let us consider a material made of an infinite number of planar layers of thickness d ori-
ented perpendicular to the direction z as shown in Fig. 11.2. The dielectric constant of the
layers is assumed to alternate between the values ε1 and ε2. The optical mode propagating
inside the material is characterized by the wavevector k= (kx, ky, kz). It is further assumed
that both materials are non-magnetic, i.e. μ1 = μ2 = 1, and lossless. We can distinguish
two kinds of modes, TE modes, for which the electric field vector is always parallel to the
boundaries between adjacent layers, and TM modes, for which the magnetic field vector is
always parallel to the boundaries. Separation of variables leads to the following ansatz for
the complex field amplitudes:

TE: E(r) = E(z) ei(kxx+kyy)nx, (11.1)

TM: H(r) = H(z) eikxx+kyy)nx. (11.2)

In each layer n, the solution for E(z) and H(z) is a superposition of a forward and a
backward propagating wave, i.e.

TE: En,j(z) = an,je
ikzj (z−nd) + bn,je

−ikzj (z−nd), (11.3)

TM: Hn,j(z) = an,je
ikzj (z−nd) + bn,je

−ikzj (z−nd), (11.4)

A B

�Fig. 11.1 Fabrication of silicon photonic bandgap crystals. (a) A template produced by 855 nm silica spheres deposited on a Si
wafer. (b) A photonic crystal obtained after filling the interstitial spaces with high-index Si and removing the
template by wet etching. Reprinted with permission fromMacmillan Publishers Ltd. [2].
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where an,j and bn,j, are constants that depend on the layer number n and the medium εj.
The longitudinal wavenumber kzj is defined as

kzj =
√
ω2

c2
εj − k2‖ , k‖ =

√
k2

x + k2
y , (11.5)

with k‖ being the parallel wavenumber. To find the constants an,j and bn,j we apply the
boundary conditions at the interface z = zn = nd between the nth and the (n + 1)th
layer:

TE: En,1(zn) = En+1,2(zn), (11.6)
d

dz
En,1(zn) = d

dz
En+1,2(zn), (11.7)

TM: Hn,1(zn) = Hn+1,2(zn), (11.8)
1

ε1

d

dz
Hn,1(zn) = 1

ε2

d

dz
Hn+1,2(zn). (11.9)

Equation (11.7) is arrived at by expressing the transverse component of the magnetic field
in terms of the electric field by using ∇ × E = iωμ0H. Similarly, Eq. (11.9) follows from
∇ × H = −iωε0εE. Inserting Eqs. (11.3) and (11.4) leads to

an,1 + bn,1 = an+1,2e−ikz2 d + bn+1,2eikz2 d, (11.10)

an,1 − bn,1 = pm

[
an+1,2e−ikz2 d − bn+1,2eikz2 d

]
, (11.11)

where pm ∈ {pTE, pTM} is a factor that depends on the polarization as

pTE = kz2

kz1

(TE modes), pTM = kz2

kz1

ε1

ε2
(TM modes). (11.12)
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�Fig. 11.2 A one-dimensional photonic crystal made of an infinite number of planar layers of thickness d.
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For a given mode type we have two equations but four unknowns, i.e. an,1, bn,1, an+1,2, and
bn+1,2. Thus, we need more equations. Evaluating the boundary conditions at the interface
z=zn−1= (n − 1)d between the (n − 1)th and nth layers leads to

an−1,2 + bn−1,2 = an,1e−ikz1 d + bn,1eikz1 d, (11.13)

an−1,2 − bn−1,2 = 1

pm

[
an,1e−ikz1 d − bn,1eikz1 d

]
. (11.14)

Although we now have four equations for each mode type, we have also increased the
number of unknowns by two, i.e. by including an−1,2 and bn−1,2. However, an−1,2 and
bn−1,2 can be expressed in terms of an+1,2 and bn+1,2 with the help of the Floquet–Bloch
theorem [5, 6]. This theorem states that if E is a field in a periodic medium with periodicity
2d then it has to satisfy

E(z + 2d) = eikBl2dE(z), (11.15)

where kBl is an as-yet-undefined wavevector, called the Bloch wavevector. A similar equa-
tion holds for the magnetic field H(z). The Floquet–Bloch theorem has to be viewed as an
ansatz, a trial function for our system of coupled differential equations. Application of the
Floquet–Bloch theorem leads to[

an+1,2 + bn+1,2e−2ikz2 [z−(n−1)d]
]
= eikBl2d

[
an−1,2 + bn−1,2e−2ikz2 [z−(n−1)d]

]
.

(11.16)

Since this equation has to hold for any position z, we have to require that

an+1,2 = an−1,2eikBl2d, (11.17)

bn+1,2 = bn−1,2eikBl2d, (11.18)

which reduces the number of unknowns from six to four and allows us to solve the homo-
geneous system of equations defined by Eqs. (11.10)–(11.14). The system of equations can
be written in matrix form and the determinant must be zero in order to guarantee a solution.
The resulting characteristic equation turns out to be

cos(2kBld) = cos(kz1 d) cos (kz2 d) − 1

2

[
pm+ 1

pm

]
sin(kz1 d)sin(kz2 d). (11.19)

Since cos(2kBld) is always in the range [−1 ... 1], solutions cannot exist when the absolute
value of the right-hand side is larger than unity. This absence of solutions gives rise to
the formation of bandgaps. For example, a wave at normal incidence (kz1 = √

ε1ω/c,
kz2 =

√
ε2ω/c) to a photonic crystal with ε1 = 2.25 and ε2 = 9 can propagate for λ= 12d

but not for λ=9d.
For each Bloch wavevector kBl one finds a dispersion relation ω(k‖). If all possible dis-

persion relations are plotted on the same graph one obtains a so-called band diagram. An
example is shown in Fig. 11.3, where the shaded areas correspond to allowed bands for
which propagation through the crystal is possible. Notice that propagating modes exist
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even if one of the longitudinal wavenumbers (kzj) is imaginary. The Bloch wavevector
at the band edges is determined by kBld = nπ/2. For a given direction of propaga-
tion characterized by k‖ one finds frequency regions for which propagation through the
crystal is possible and frequency regions for which propagation is inhibited. However,
for a one-dimensional crystal there is no complete bandgap, i.e. there are no frequencies
for which propagation is inhibited in all directions. If a wave propagating in vacuum is
directed onto the photonic crystal, then only modes with k‖ smaller than k = ω/c can
be excited. The vacuum light-lines are indicated in Fig. 11.3 and one can find complete
frequency bandgaps inside the region k‖ < k. For these frequencies the photonic crystal
is a perfect mirror (omnidirectional reflector), which is technically exploited e.g. for laser
high-reflectors.

A complete bandgap is possible in three-dimensional photonic crystals. It is favorable if
the dielectric constants of the media differ by a large amount. The volume ratio between the
two media is also important. Unfortunately, the solutions for two-dimensional and three-
dimensional photonic crystals cannot be found by analytical means, but efficient numerical
techniques have been developed over the past few years.

In semiconductors, the valence band corresponds to the topmost filled energy band
for which electrons stay bound to the ion cores. If electrons are excited into the next
higher band, which is called the conduction band, they become delocalized and conduc-
tion through the crystal strongly increases. The situation is similar for photonic crystals: the
band below a bandgap is referred to as the dielectric band and the band above the bandgap
as the air band. In the dielectric band, the optical energy is confined inside the material

 3  2  1 0 1 2 3
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TE modesTM modes
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�Fig. 11.3 The band diagram for a one-dimensional photonic crystal. The shaded areas are the allowed bands. The diagram
represents both TE and TMmodes. For a one-dimensional photonic crystal, there are no complete bandgaps, i.e. there
are no frequencies for which propagation is inhibited in all directions. Values used: ε1=2.33 (SiO2) and ε2=17.88
(InSb).
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with the higher dielectric constant, whereas in the air band the energy is found to be in
the material with lower dielectric constant. Thus, excitation from one band to another pro-
motes the optical energy from the high-dielectric-constant to the low-dielectric-constant
material.

A photonic crystal can also strongly affect the spontaneous emission rate of an embed-
ded quantum system such as an atom or a molecule. For example, the excited state of an
atom cannot couple to any radiation modes if the transition frequency between the excited
state and the ground state lies in the bandgap region of the photonic crystal. In this case,
spontaneous emission is severely inhibited and the atom will reside in its excited state
(cf. Section 8.4). As discussed later, a localized defect near the atom can have the opposite
effect and enhance the emission rate of the atom significantly.

11.1.2 Defects in photonic crystals

Defects in photonic crystals are introduced in order to localize or guide light. While pho-
tons with energies within the photonic bandgap cannot propagate through the crystal, they
can be confined to defect regions. A line of defects opens up a waveguide: light with a
frequency within the bandgap can propagate only along the channel of defects since it is
repelled from the bulk crystal. Waveguides in photonic crystals can transport light around
tight corners with virtually no loss. Photonic crystal waveguides therefore are of great
practical importance for miniaturized optoelectronic circuits and devices. As an example,
Fig. 11.4 shows a waveguide T-junction in a photonic crystal. The line defects are created
by dislocating certain portions of the crystal and by removing a row of elements [7]. The
device functions as a diplexer, i.e. high frequencies are deflected to the left and low fre-
quencies are deflected to the right. To improve the performance, an additional perturbation
has been added to the intersection region. Furthermore, photonic crystal waveguides can
be composed of air channels, thereby significantly reducing group velocity dispersion. A
short pulse of light can travel large distances without being temporally broadened. Tech-
nical applications include photonic crystal optical fibers, which may be used for nonlinear

�Fig. 11.4 A two-dimensional photonic crystal diplexer. A waveguide T-junction is formed by dislocations and removal of
elements. High frequencies are deflected to the left and low frequencies are deflected to the right. The figure shows
the computed optical intensity for (a)ω=0.956π c/d and (b)ω=0.874π c/d, with d being the lattice constant.
From [7].
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�Fig. 11.5 Top view and cross-section of a two-dimensional photonic crystal with a single central defect. The crystal consists of a
microfabricated hexagonal array of air holes in InGaAsP and the defect is introduced by a filled central hole. From [8].

white-light continuum generation (using a dielectric band), or dispersion-free propagation
of femtosecond-laser pulses (in the air band).

While defect arrays in photonic crystals are introduced primarily for waveguide appli-
cations, localized defects are intended to trap light. Optical cavities formed by localized
defects can have very high quality factors, a prerequisite for various nonlinear optical
effects and laser applications. Figure 11.5 shows a two-dimensional photonic crystal with
a single central defect [8]. A laser is formed by embedding the photonic crystal in between
two Bragg mirrors acting as the end mirrors of a laser cavity. The lateral confinement is
provided by the photonic crystal.

Photonic crystal cavities can also be used to control the spontaneous emission rate of
quantum systems located in the defect region. Depending on the physical properties of the
cavity, the local density of states (DOS) at the emission wavelength λ0 of the quantum
system can be increased or decreased over the free-space DOS (see Section 8.4). The local
DOS at λ0 depends on the ability of the cavity to store energy at the emission wavelength
λ0. Thus, the higher the quality factor Q = ω0/�ω is, the higher the DOS will be. The
density of states in a large cavity can be approximated as

ρ = 1

ω0

D Q

V
, (11.20)

where V is the volume of the cavity and D is the mode degeneracy, i.e. the number of cavity
modes with the same frequency. The free-space DOS has been derived in Eq. (8.120) as

ρ0 = 1

ω0

8π

λ3
0

. (11.21)

Thus, the spontaneous decay rate is enhanced by a factor of

K = ρ

ρ0
= D

8π
Q
λ3

0

V
(11.22)

in a photonic crystal cavity. Strong enhancement depends on a small cavity volume and a
high Q-factor.
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11.2 Metamaterials

The interaction of electromagnetic fields with materials is described by Maxwell’s equa-
tions and the constitutive relations (2.11)–(2.13), which, in the linear regime, are routinely
expressed in terms of the permittivity ε and permeability μ. These parameters account
for a material’s electromagnetic response averaged over many atoms. This averaging is
typically justified as long as the atoms are much smaller than the spatial variations of elec-
tromagnetic fields. In free space, these spatial variations are defined by the wavelength of
radiation. For example, the refraction of a plane wave entering a dielectric medium with a
positive refractive index n can be explained by assuming a speed of light that is reduced
by a factor n compared with that in vacuum. The same effect can be explained from an
atomistic perspective, namely by vectorially summing the secondary fields propagating at
speed c and originating from individual electrons in the material [9]. If the properties of the
atoms could be tailored, i.e. if the real atoms could be replaced by artificial scatterers, the
optical response of the material could be changed at will within wide boundaries. A meta-
material in this line of thought is therefore considered to be a material that consists of a
sufficiently densely packed array of “artificial atoms,” i.e. nanoscale optical scatterers, that
are much smaller than the wavelength of operation. These artificial atoms scatter light in a
predesigned fashion, thus creating novel optical properties such as for example a negative
refractive index.

The difference between photonic crystals and metamaterials according to this definition
is that in a photonic crystal with a bandgap the scatterers need to be arranged periodically
and their lattice constant has to be comparable to the wavelength, because the effect of the
bandgap arises from diffraction and destructive interference. In the case of metamaterials
the artificial atoms and their distances have to be much smaller than the wavelength, since
diffraction should be avoided. The optical response of a metamaterial therefore is that of
a (piecewise) homogeneous medium. Note that there is a regime where the concepts of a
photonic crystal and a metamaterial do mix [10].

11.2.1 Negative-index materials

Figure 11.6 shows a classification of optical materials according to the signs of their ε
and μ. The propagation of light in a homogeneous medium can be characterized by the
dispersion relation

k · k = ε(ω)μ(ω)
ω2

c2
= n2(ω)

ω2

c2
. (11.23)

For most materials at optical frequencies the magnetic permeability is unity, i.e. μ = 1.
Therefore, μ is mostly neglected in the constitutive relations and optical properties and
phenomena are solely related to ε. For example, because of μ = 1 the Brewster effect
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appears only for p-polarization. However, in the case of magneto-dielectrics for which
μ �= 1, a Brewster effect is observed also for s-polarization [10].1

Metals typically exhibit a negative ε, while dielectrics, such as glass, exhibit a posi-
tive ε. For both materials we typically have μ = 1 at optical frequencies. In 1968 Veselago
published a theoretical study [11] in which he considered the properties of a hypothetical
material having both a negative ε and a negative μ. He showed that such a material leads
to a negative index of refraction n = √

εμ. He predicted that such negative-index materials
would possess a number of intriguing properties, such as anomalous refraction, reversal of
both the Doppler shift and Čerenkov radiation, and even reversal of radiation pressure to
radiation tension.

It is easy to see that according to (11.23) materials with a negative index of refraction
support undamped propagating waves, like a dielectric, since the resulting refractive index
is mostly real. Only if ε and μ are both positive or negative can the material support wave
propagation. In the other cases the resulting materials are opaque. Such materials fall into
the upper-left and lower-right quadrants of Fig. 11.6. An important question is that of why
the refractive index is chosen to be negative. Assuming that ε = −1 and μ = −1, one
might conclude that n = √

εμ = √
(−1) · (−1) = √

1 = 1 and thus positive. However,
considering that ε(ω) and μ(ω) are complex functions, the question can be reduced to
the decision regarding which branch of the complex square root should be chosen. This
ambiguity can be fixed by requiring that for a passive medium without gain Im[n(ω)] ≥ 0
[11, 12]. The resulting root then reads as

ε
μ = 1 (natural materials at optical frequencies)
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�Fig. 11.6 Classification of materials in the (ε,μ) plane (only real parts are considered). Metals and other media with free charge
carriers exhibit a negative real part of ε below their plasma frequencies, making them opaque over a broad spectral
range. Dielectrics exhibit a positive real part of ε, resulting in good transparency for frequencies below the bandgap.
The horizontal gray line indicates the value ofμ = 1, which is the value of the magnetic permeability for most
materials at optical frequencies. Metamaterials hold promise for creating artificial materials with optical properties
that fall into the two lower quadrants, in particular left-handed materials for which both ε andμ are negative.

1 In Chapter 2 we therefore included μ in all equations.
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n = √|ε||μ| exp

[
i

2

(
arccot

(
Re[ε]

Im[ε]

)
+ arccot

(
Re[μ]

Im[μ]

))]
, (11.24)

which for the case of ε,μ→−1 yields n = −1. To give an example, lets assume that both
ε(ω) and μ(ω) exhibit a resonance structure similar to the response of bound electrons in a
metal (12.20) according to

ε(ω) = 1 + ω2
p,1

(ω2
0,1 − ω2) − iγ1ω

,

μ(ω) = 1 + ω2
p,2

(ω2
0,2 − ω2) − iγ2ω

.

(11.25)

It is easy to show by using (11.25) in (11.24) that for sufficiently pronounced resonances a
negative real part of n(ω) can be obtained.2

In 2000, it was demonstrated for the first time by Smith et al. [13] that negative-index
materials operating in the microwave regime can be fabricated. Their metamaterial (see
Fig. 11.7(a)) is based on a combination of a network of straight wires that mimic a free-
electron response to the electric field (see Eq. (12.17)) and millimeter-sized split-ring
resonators that are responsible for a magnetic resonance as suggested by Pendry [14]. The
concept was soon picked up by other research groups and the wavelength of operation was
pushed towards the optical regime. Because of field penetration into the metals, operation
at optical frequencies necessitated various modifications of the split-ring resonator design,
such as antibonding modes of parallel wire pairs (see Section 13.3.3). A critical issue is the
kinetic inductance of metals (see Section 13.3.1), which strongly increases on entering the
visible regime. Figure 11.7(b) illustrates the timeline of metamaterial miniaturization [16].
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�Fig. 11.7 Realization of metamaterials. (a) An artificial material for microwaves based on a network of straight wires and
split-ring resonators. From [15]. (b) Timeline of metamaterial miniaturization. Adapted with permission from
Macmillan Publishers Ltd from [16].

2 Note that any negative-index material must be strongly dispersive, i.e. there must exist frequency ranges with
a positive refractive index, because otherwise the energy density integrated over all frequencies would be
negative.



348 Photonic crystals, resonators, and cavity optomechanics

Note the enormous technological challenge associated with the fabrication of metama-
terials at optical frequencies; according to the definition of metamaterials, the “atoms”
constituting metamaterials need to be composed of deeply subwavelength structures.

11.2.2 Anomalous refraction and left-handedness

An important demonstration of the surprising effects of negative-index materials is the
anomalous refraction of light. Consider the situation depicted in Fig. 11.8, where a plane
wave is incident from a medium with index n = 1 (left) on a medium with index n = −1
(right). According to Snell’s law, the angle of refraction turns out to be equal to the angle
of incidence but in the negative direction, that is, to the same side of the surface normal as
the incident wave. Note that there is no reflected beam in this example since the Fresnel
reflection coefficient is zero. Negative refraction can easily be verified by using the bound-
ary conditions for the fields (2.41)–(2.44). While the Poynting vector, S, points away from
the interface, indicating transport of energy away from the interface, the refracted k vector
points in the reverse direction! This is a signature of a so-called “backward” propagat-
ing wave in which the phase velocity is antiparallel to the group velocity. We further note
that in the medium with n = −1 the vectors E, H, and k form no longer a right-handed
but instead a left-handed tripot, which is the reason why negative-index materials are also
called left-handed materials. The observed refraction to the “wrong” side is in accordance
with Fermat’s principle, which states that the light propagates from point to point along the
shortest optical path length [9].

The first experimental demonstration of negative refraction was realized using
microwaves in 2001 [15]. In 2008, a similar experiment was performed using a three-
dimensionally stacked fishnet-type metamaterial using infrared light [17] (see Fig. 11.9).

11.2.3 Imaging with negative-index materials

Negative refraction allows us to devise unconventional optical elements. Veselago had
argued that a thin slab of thickness d consisting of a negative-index medium surrounded by
air could be used as a focusing lens [11]. A ray-optics beam path of a so-called Veselago

ε = μ = 1 ε = μ = –1

�Fig. 11.8 Refraction of a plane wave at the interface between media with positive and negative unity refractive index. Note the
opposite directions of k and S in the mediumwith the negative refractive index.
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lens is sketched in Fig. 11.10. We consider again a slab with n = −1 surrounded by a
medium with n = 1. We choose a point source that is placed to the left of the slab at a
distance g from the slab’s surface. An image of the point source can be readily constructed
using simple ray tracing according to Fig. 11.8. It can be seen that for distances g < d an
intermediate image is formed inside the slab at a distance g from the left interface. A sec-
ond image is formed outside the slab at a distance b from the right interface. By inspection
of Fig. 11.10 we find that

d = g + b, (11.26)

which is the “lens formula” of the system.3 Evidently, the magnification is 1. In order for
the metamaterial to behave as a continuous medium its feature size δ has to fulfill δ < λ.
On the other hand, operation in the ray-optical regime requires d > λ. Thus, using (11.26),
it follows that g, b > λ > δ [10].

Pendry reconsidered the Veselago lens and pointed out that a negative-index slab pro-
vides super-resolution imaging since the evanescent waves of an external source are
exponentially amplified inside the negative-index medium, thus making up exactly for the
exponential decay outside of the slab [14]. Because such a system would provide unlimited
resolution, the idea was termed a “perfect lens” or “super lens” and initiated an enormous
research effort. The validity of the “perfect-lens” concept has since been debated and a
good summary can be found in [18]. Computer simulations of negative-index materials
show that super-resolution can indeed be obtained, but only for thin slabs (d < λ) and for
very small damping [19]. It needs to be emphasized that, in order to amplify evanescent
waves, the negative-index material needs to be “loaded” first, which requires time. In the
limit in which a point is imaged on a point this time becomes infinitely long. In other words,
the perfect lens works “perfectly” for stationary fields only, not for transients. Of course,
for finite resolution this restriction is relaxed. Another interesting point is that the perfect
lens is based on the requirement that the index of refraction is exactly n = −1. What about

a c

�Fig. 11.9 Experimental demonstration of negative refraction of infrared light using a three-dimensionally stacked fishnet
metamaterial. (a) A scanning electron microscopy image of the fabricated structure consisting of a nanostructured
stack of Ag–MgF2 layers. (b) A sketch of the experiment, indicating the directions of the refracted wave for different
refractive indices. (c) Simulation of the in-plane electric field component for the prism structure at 1763 nm
(n = −1.4) showing the phase fronts. Reprinted with permission formMacmillan Publishers Ltd [17].

3 The formula for a standard thin lens is (1/f ) = (1/g) + (1/b), with f being the focal length.
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�Fig. 11.10 A Veselago lens. Ray-optics picture of point-to-point imaging with a slab of n = −1.

a small deviation, i.e. n = −1 +�n? It turns out that �n determines the resolution �x of
the system according to�x = −2πd/ ln(|�n|) [20]. Thus, the thicker the slab is, the more
susceptible is the lens to deviations from n = −1.

In the quasi-static approximation, i.e. the electrostatic limit, electric and magnetic fields
are decoupled. For thin slabs with d � λ, the quasi-static approximation holds [14] and
a sufficient condition for a perfect lens is that the permittivity ε is negative, irrespective
of the value of μ. Such materials no longer need to be metamaterials and can be made of
metals or polar dielectrics. Indeed, Rainer Hillenbrand and coworkers have used a SiC film
of thickness 440 nm to achieve a negative permittivity at a wavelength of 10 μm, which is
close to the surface polariton resonance of SiC. To fulfill the lens formula (11.26), the SiC
film was sandwiched between two dielectric layers of equal thickness (220 nm). Near-field
optical microscopy was then used to record a super-resolved image of a planar structure
that was placed on the other side of the SiC superlens [21].

Although experimental realizations and applications of metamaterials still lag behind the
theoretical efforts, there is a constant stream of new ideas regarding how to fabricate and
make use of metamaterials. These include anisotropic materials with a negative ε only in
certain directions. Such materials give rise to a hyperbolic dispersion relation ω(k), which
in principle allows the propagation of waves with arbitrarily large wavevectors and thus
should lead to super-resolution [22, 23]. Hyperbolic metamaterials are also of interest in
the field of quantum electrodynamics since they provide a singular density of states over
a wide wavelength range. Other ideas involve the use of “transformation optics” [24] to
design metamaterials with specific properties, such as invisibility cloaks.

11.3 Optical microcavities

Optical microcavities formed by dielectric spheres have attracted considerable interest in
various fields of research. The high quality factors associated with the resonant modes
have inspired experiments in cavity quantum electrodynamics and gave rise to sensitive
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biosensors, and the high energy density in the cavities allowed researchers to observe var-
ious nonlinear processes such as switching of coherent light, low-threshold lasing, and
stimulated Raman scattering [25].

To understand these processes it is necessary to solve Maxwell’s equations for the sim-
ple geometry of a sphere. The mathematical basis is identical with the famous Mie theory,
and the details can be found in various excellent books such as Ref. [26]. Although the
Mie theory is in excellent agreement with experimental measurements, the convergence
of the expansions is very slow for spheres with diameters D � λ [27]. For such spheres
it is observed that small variations in the initial conditions (size, dielectric constant) lead
to considerable variations of the scattering cross-section. These variations, called ripples,
can be associated with sphere resonances. For each ripple peak, light remains trapped for a
long time inside the sphere and orbits near the surface by multiple total internal reflections.
These resonant modes are called whispering-gallery modes or morphology-dependent res-
onances. The Q-factors of the resonant modes are always finite, but can theoretically be
as large as 1021. Consequently, the resonant modes are leaky modes and the sphere is a
non-conservative system because energy is permanently lost due to radiation. The largest
experimentally observed Q-factors are on the order of Q=1010.

Instead of reproducing the full Mie theory, we intend to provide an intuitive picture for
the resonances occurring in optical microspheres. This picture was developed by Nussen-
zveig and Johnson [27, 28], and is called the effective-potential approach. It has a direct
analogy to the quantum-mechanical theory of a finite spherical well. The finite Q-factors
of microspheres can be associated with the phenomenon of tunneling.

Let us consider a homogeneous sphere with dielectric constant ε1 and radius a sur-
rounded by a homogeneous medium with dielectric constant ε2. The complex field
amplitudes inside and outside of the sphere have to satisfy the vector Helmholtz
equation [

∇2 + ω2

c2
εi

]
E(r) = 0, (11.27)

where i ∈ [1, 2], depending on whether the field is evaluated inside or outside of the sphere.
A similar equation holds for the magnetic field H. Using the mathematical identity

∇2 [r · E(r)] = r ·
[
∇2E(r)

]
+ 2∇ · E(r), (11.28)

setting the last term equal to zero, and inserting the result into Eq. (11.27) leads to the
scalar Helmholtz equation

[
∇2 + ω2

c2
εi

]
f (r) = 0, f (r) = r · E(r). (11.29)

Separation of variables yields

f (r,ϑ ,ϕ) = Ym
l (ϑ ,ϕ)Rl(r), (11.30)
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with Ym
l being the spherical harmonics and Rl being a solution of the radial equation[

d

dr2
+
(
ω2

c2
εi − l(l + 1)

r2

)]
rRl(r) = 0. (11.31)

The solutions of this equation are the spherical Bessel functions (see Section 16.1).
A similar equation is encountered in quantum mechanics. For a spherically symmetric

potential V(r)=V(r) one obtains the radial Schrödinger equation[
− �

2

2m

d

dr2
+
(

V(r) + �
2

2m

l(l + 1)

r2

)]
rRl(r) = ErRl(r), (11.32)

where � is the reduced Planck constant and m the effective mass. Besides the centrifugal
term with 1/r2 dependence, the equation is identical in form with the one-dimensional
Schrödinger equation. The expression in the round brackets is called the effective potential,
Veff(r).

The similarity between the electromagnetic problem and the quantum-mechanical prob-
lem allows us to introduce an effective potential Veff and an energy E for the dielectric
sphere. From the identity of the two equations in free space (V=0, εi=1) we find

E = �
2

2m

ω2

c2
. (11.33)

With this definition, the effective potential of the dielectric sphere turns out to be

Veff(r) = �
2

2m

[
ω2

c2
(1 − εi) + l(l + 1)

r2

]
. (11.34)

Figure 11.11 shows the effective potential for a dielectric sphere in air. The abrupt change
of ε at the boundary of the sphere gives rise to a discontinuity in Veff and thus to a potential
well. The horizontal line in Fig. 11.11 indicates the energy E as defined in Eq. (11.33).
Notice that, unlike in quantum mechanics, the energy E depends on the shape of the
potential well. Thus, a change of Veff will also affect E.

As for quantum-mechanical tunneling, the finite height of the potential barrier gives rise
to energy leakage through the barrier. Thus, a resonant mode in the optical microcavity
will damp out with a characteristic time defined by the tunneling rate through the bar-
rier. In quantum mechanics, only discrete energy values are possible for the states within
the potential well. These values follow from an energy eigenvalue equation defined by the
boundary conditions. The situation is similar for the electromagnetic problem, where we
can distinguish between two kinds of modes, namely TE modes and TM modes. They are
defined as

TE modes: r · E(r) = 0, (11.35)

TM modes: r · H(r) = 0. (11.36)

For TE modes, the electric field is always transverse to the radial vector, and for TM modes
the same holds for the magnetic field.
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The boundary conditions at the surface of the sphere (r = a) connect the interior fields
with the exterior fields. The radial dependence of the interior field is expressed in terms of
spherical Bessel functions jl and the exterior field in terms of spherical Hankel functions
of the first kind h(1)

l . jl ensures that the field is regular within the sphere, whereas h(1)
l

is required to fulfill the radiation condition at infinity. The boundary conditions lead to a
homogeneous system of equations, from which the following characteristic equations are
derived:

TE modes:
ψ ′

l (ñx)

ψl(ñx)
− ñ

ζ ′l (x)

ζl(x)
= 0, (11.37)

TM modes:
ψ ′

l (ñx)

ψl(ñx)
− 1

ñ

ζ ′l (x)

ζl(x)
= 0. (11.38)

Here, the ratio of interior to exterior refractive indices is denoted by ñ = √
ε1/ε2 and x is

the size parameter defined as x = ka, with k being the vacuum wavenumber k = ω/c =
2π/λ. The primes denote differentiations with respect to the argument and ψl and ζl are
Ricatti–Bessel functions defined as

ψl(z) = z jl(z), ζl(z) = z h(1)
l (z). (11.39)

For a given angular momentum mode number l, there are many solutions of the charac-
teristic equations. These solutions are labeled with a new index ν, called the radial mode
order. As shown in Fig. 11.12, ν indicates the number of peaks in the radial intensity dis-
tribution inside the sphere. Among all the possible solutions, only those solutions whose
energies according to Eq. (11.33) lie within the range demarcated by the bottom and top of
the potential well are considered resonant modes. Notice that the characteristic equations
(11.37) and (11.38) cannot be fulfilled for real x, which means that the eigenfrequencies
ωνl are complex. Consequently, the modes of the microsphere are leaky modes and the

Veff

r/a
0 1 2

E

�Fig. 11.11 The effective potential Veff for a dielectric sphere according to Eq. (11.34). The radiative decay of a resonant mode can
be associated with energy tunneling through the potential barrier. The following parameters were used: ε1=2.31,
ε2=1,λ=800 nm, l=500, and a=50μm.
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stored energy is continuously dissipated through radiation. The real part of ωνl denotes the
center frequency ω0 of the mode, and the imaginary part indicates half the width �ω of
the resonance. Thus, the Q-factor can be expressed as

Q = ω0

�ω
= Re{ωνl}

2 |Im{ωνl}| . (11.40)

Because of the dissipative nature of the resonances, the modes are referred to as quasi-
normal modes.

To better visualize the classification of modes, we consider the example of a glass sphere
(a=10 μm, ε1=2.31) in air (ε2=1) and we assume an angular momentum mode number
of l = 120. The wavelength of the mode with the highest Q-factor can be estimated from
the geometrical requirement that the circumference of the sphere must be a multiple of the
internal wavelength

highest-Q mode: l ≈ nka, (11.41)

where n is the interior index of refraction. For the present example we find λ ≈ 796 nm
or x ≈ 79 and the spectral separation between adjacent l-modes is �λ ≈ λ2/(2πan) =
6.6 nm.

Solving Eq. (11.37) for l = 120 yields the values (real parts) λTE
1,120 = 743.25 nm,

λTE
2,120 = 703.60 nm, λTE

3,120 = 673.35 nm, ... Similarly, the solutions of Eq. (11.38) are

λTM
1,120 = 739.01 nm, λTM

2,120 = 699.89 nm, λTM
3,120 = 670.04 nm, ... The ν = 1 modes, with a

single energy maximum inside the sphere, have the highest Q-factors. Their wavelengths
are in rough agreement with the estimate of λ ≈ 796 nm according to Eq. (11.41). TM
modes exhibit shorter wavelengths than do TE modes. Generally, the Q-factor decreases
with increasing radial mode number. For the current example, the Q-factor decreases from
≈1017 for the ν= 1 modes to ≈106 for the ν= 6 modes. Figure 11.13 shows the spectral
positions of the l= 119, l= 120, and l= 121 modes. The spacing between same-l-modes
is ≈6 nm, in agreement with the previous estimate. Modes are represented as vertical
lines, the height of which indicates the Q-factor on a logarithmic scale. Solid lines are
TE modes and dashed lines are TM modes. A dense network of modes is formed when all

0.6 0.8 1
 . . r/a

0.6 0.8 1
 . .

0.2 0.4 0.6 0.8 10

ν = 1 ν = 2 ν = 3

�Fig. 11.12 Radial energy distribution of TMmodes with angular momentummode number l=120. The microsphere has a
dielectric constant of ε=2.31. The radial mode number ν indicates the number of energy maxima in the radial
direction.
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l-modes are plotted on the same axis. Furthermore, since the azimuthal modes (mode num-
ber m) are degenerate, each l-mode consists of a multitude of submodes. The degeneracy is
lifted by geometrical asymmetries or material imperfections resulting in even more mode
frequencies.

The calculated Q-factors account only for radiation losses. For microspheres with a >
500 μm these Q-factors can be larger than 1020. However, the highest measured Q-factors
are on the order of 1010, indicating that other contributions such as surface roughness,
shape deformations, absorption, or surface contamination are the limiting factors for a
high Q. These factors can be taken into account by defining the total quality factor of a
particular microcavity mode as

1

Qtot
= 1

Q
+ 1

Qother
, (11.42)

where Q is the radiation-limited, theoretical quality factor and Qother accounts for all other
contributions. Usually, Q can be neglected in comparison with Qother. Near a resonance
with angular frequency ω0, the electric field takes on the form

E(t) = E0 exp

[(
iω0 − ω0

2Qtot

)
t

]
, (11.43)

and the stored energy density assumes a Lorentzian distribution

Wω(ω) = ω2
0

4Q2
tot

Wω(ω0)

(ω − ω0)2 + [ω0/(2Qtot)]2
. (11.44)

While spherical microcavities can have nearly atomic-scale surface smoothness and there-
fore high Q-factors, they are not easily integrated into optoelectronic devices. Toroidal
microcavities, as shown in Fig. 11.14, overcome this limitation. They are amenable to
wafer-based processing and yield Q-factors in excess of 108.

85 90 95 100 1050
Re{ka}

l = 119

l = 120

l = 121

ν = 1 ν = 2 ν = 3

ν = 1 ν = 2 ν = 3

ν = 1 ν = 2 ν = 3

�Fig. 11.13 Normalized mode frequencies for a microsphere with ε=2.31 and angular momentummode numbers l=119,
l=120, and l=121. Solid lines are TE modes and dashed lines are TMmodes. The height of the lines indicates the
quality factor on a logarithmic scale. The ν=1 modes have a Q-factor of≈1017 and the ν=6 modes have a
Q-factor of≈106.
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The mode structure of a microsphere gives rise to a discrete photonic density of states
ρ, as qualitatively illustrated in Fig. 11.15. ρ depends on the position relative to the
microsphere and on the orientation of the transition dipole (see Section 8.4.3). Efficient
energy transfer between molecules and other quantum systems can be accomplished only
within the narrow frequency windows of individual resonant modes. Also, the excited-state
lifetime of a molecule is strongly reduced if its emission frequency coincides with the fre-
quency of a resonant mode. On the other hand, the lifetime can be drastically prolonged
if the emission frequency is between two mode frequencies. If the emission bandwidth of
a molecule spans several mode frequencies, the fluorescence spectrum will consist of dis-
crete lines. The same is true for the absorption spectrum. Thus, the free-space spectra of
emission and absorption are sampled with the discrete mode spectrum of a microcavity.
Since energy transfer between molecules depends on the overlap of emission and absorp-
tion spectra (see Section 8.6.2), it would be expected, at first glance, that the energy-transfer
efficiency is reduced in or near a microcavity because the overlap bandwidth associated
with the narrow mode frequencies is drastically reduced compared with the free-space
situation. However, for a high-Q cavity this is not the case because the density of states
at the frequency of a resonant mode is so high that the overlap integral becomes much
larger than that in free space, despite the narrower bandwidth. Arnold and coworkers have
shown that energy transfer in a microsphere can be several orders more efficient than it is
in free space [25], making microspheres promising candidates for long-range energy trans-
fer. Microspheres have been used in applications such as biosensors, optical switching,
and cavity QED. Various other experiments can be thought of, such as two-photon energy
transfer, and exciting results can be expected in the near future.

11.3.1 Cavity perturbation

A sharp resonance is a key requirement for ultrasensitive detection in various applica-
tions. For example, watches and clocks use high-Q quartz crystals to measure time, some

�Fig. 11.14 An ultrahigh-Q toroidal microresonator fabricated on-chip by a combination of lithography, dry etching, and a
selective reflow process. Adapted from [29].
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�Fig. 11.15 The photonic density of states of a microsphere (solid line) and in free space (dashed line). In a microsphere all energy
is concentrated in the narrow frequency windows of individual resonant modes.

biosensing schemes make use of oscillating cantilevers to detect adsorption of molecules,
and atomic clocks use atomic resonances as frequency standards. Because of their
extremely high Q-factor, optical microcavities, such as microspheres or toroidal resonators,
are attractive candidates for various biosensing schemes. A perturbation of the optical
microcavity, for example due to particle adsorption or a change of the index of refraction,
leads to a shift of the resonance frequency, which can be measured and used as a control
signal [30].

To establish an understanding of cavity perturbation we consider the system depicted
in Fig. 11.16. A leaky microcavity and its environment are characterized by a spatially
varying permittivity ε(r) and permeability μ(r). In the absence of any perturbation the
system assumes a resonance at frequency ω0 and the fields are described by

∇ × E0 = iω0μ0μ(r)H0 , ∇ × H0 = −iω0ε0ε(r)E0, (11.45)

with E0(r,ω0) and H0(r,ω0) denoting the unperturbed complex field amplitudes. A particle
with anisotropic material parameters �ε(r) and �μ(r) constitutes a perturbation and gives
rise to a new resonance frequency ω.4 Maxwell’s curl equations for the perturbed system
read as

∇ × E = iωμ0 [μ(r)H + �μ (r)H] , (11.46)

∇ × H = −iωε0 [ε(r)E +�ε(r)E] . (11.47)

Notice that both �ε and �μ are zero outside of the volume occupied by the perturbation.
Using ∇ · (A × B) = (∇ × A) · B − (∇ × B) · A we find

∇ · [E∗
0 × H − H∗

0 × E
] = i(ω − ω0)

[
ε0ε(r)E∗

0 · E + μ0μ(r)H∗
0 · H

]
+ iω

[
E∗

0ε0�ε(r)E + H∗
0μ0�μ(r)H

]
. (11.48)

We now consider a fictitious spherical surface ∂V at very large distance from the cavity and
integrate Eq. (11.48) over the enclosed volume V (c.f. Fig. 11.16). Using Gauss’s theorem,
the left-hand side of Eq. (11.48) becomes

4 �ε and �μ are tensors of rank 2.
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�Fig. 11.16 An optical resonator with resonance frequencyω0 interacts with an external perturbation, giving rise to a new
resonance frequencyω. The calculation makes use of a fictitious spherical surface at infinity.

∫
∂V

[
H · (n × E∗

0

) + H∗
0 · (n × E)

]
da = 0, (11.49)

where n is a unit vector normal to the surface ∂V . The above expression vanishes because
of the transversality of the field, i.e. (n×E∗

0) = (n×E) = 0 on the surface of the spherical
surface. We thus arrive at the equation

ω − ω0

ω
= −

∫
V [E∗

0 ε0�ε(r)E + H∗
0μ0�μ(r)H]dV∫

V

[
ε0ε(r)E∗

0 · E + μ0μ(r)H∗
0 · H

]
dV

, (11.50)

which is known as the Bethe–Schwinger cavity perturbation formula [31, 32]. Equa-
tion (11.50) is an exact formula, but because E and H are not known the equation cannot
be used in this form. Notice that because �ε and �μ are zero outside of the volume occu-
pied by the perturbation the integral in the nominator runs only over the volume of the
perturbation �V . For situations in which there are no radiation losses and all the energy
is contained inside the boundaries of a resonator the surface ∂V can be chosen to coincide
with the boundaries.

We assume that the perturbation has a small effect on the cavity. Therefore we write as
a first-order approximation E = E0 and H = H0. After performing these substitutions in
Eq. (11.50) we find

ω − ω0

ω
≈ −

∫
�V [E∗

0 ε0�ε(r)E0 + H∗
0μ0�μ(r)H0]dV∫

V

[
ε0ε(r)E∗

0 · E0 + μ0μ(r)H∗
0 · H0

]
dV

. (11.51)

For a high-Q resonator the radiation losses are small and the integration volume V can be
taken over the boundaries of the resonator. To evaluate Eq. (11.51) we first must solve for
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the fields E0(r) and H0(r) of the unperturbed cavity. Interestingly, for a weakly dispersive
medium the denominator of Eq. (11.51) denotes the total energy of the unperturbed cav-
ity (W0), whereas the nominator accounts for the energy introduced by the perturbation
(�W). Hence, (ω − ω0)/ω = −�W/W0. An increase of the energy by �W causes the
resonance frequency to redshift to ω = ω0

[
W0/(W0 +�W)

]
. A blueshift can be achieved

by perturbing the cavity volume, i.e. by removing �W from the cavity.
As an example let us consider a planar cavity with perfectly reflecting end-faces of area

A and separated by a distance L. The fundamental mode λ = 2L has a resonance frequency
ω0 = πc/L, and the electric and magnetic fields inside the cavity are calculated to be
E0 sin(πz/L) and −i

√
ε0/μ0E0 cos(πz/L), respectively. The coordinate z is perpendicular

to the surfaces of the end-faces. The denominator of Eq. (11.51) is easily determined to be
Vε0E2

0, where V = LA. We place a spherical nanoparticle with dielectric constant �ε and
volume�V in the center of the cavity and assume that the field is homogeneous across the
dimensions of the particle. The nominator of Eq. (11.51) is calculated to be �V �ε ε0E2

0
and the frequency shift is determined to be (ω − ω0)/ω = −�ε�V/V . A better approx-
imation retains the perturbed fields E and H in the nominator of Eq. (11.50). Making
use of the quasi-static solution for a small spherical particle (c.f. Section 12.3.1), we write
E = 3E0/(2+�ε) and obtain a frequency shift of (ω−ω0)/ω = −[3�ε/(2+�ε)]�V/V .
In both cases the resonance shift scales with the ratio of resonator and perturbation
volumes.

11.4 Cavity optomechanics

A mechanical force acting on an optical system can influence the state of the optical field.
For example, a force applied to an optical microcavity can be used to control the cavity
resonance and the coupling to an external laser field. Vice versa, optical radiation acting on
a mechanical system can influence the dynamics of the system, for example, through laser
heating or radiation pressure. The mutual coupling of mechanical and optical degrees of
freedom is being explored in the emerging field of cavity optomechanics [33].

The interaction between light and matter sets ultimate limits on the accuracy of
optical measurements. Braginsky predicted that the finite response time of light in
an optical interferometer can lead to mechanical instabilities [34] and impose limits
on the precision of laser-based gravitational interferometers. Later, it was demon-
strated that this “dynamic backaction mechanism” can also be used to slow down the
motion of a mechanical system and to effectively cool it below the temperature of the
environment [35–39].

To conceptually understand optomechanical coupling, let us consider the laser-irradiated
mechanical oscillator shown in Fig. 11.17(a). The oscillator consists of a mirror of mass
m attached by a spring of stiffness K0 to a rigid wall. The mirror oscillates with amplitude
x0 at the mechanical resonance frequency �0 = √

K0/m and periodically modulates the
phase of the reflected wave Er. For mirror velocities much smaller than the speed of light
(x0�0 � c) the reflected field can be represented as [40]



360 Photonic crystals, resonators, and cavity optomechanics

Er = −E0 Re

{
e−ikx

∞∑
n=−∞

e−i(ω+n�0)tJ−n(2kx0)

}
, (11.52)

where J−n are Bessel functions of order −n, and ω and k = ω/c are the angular frequency
and the wavenumber of the incident field, respectively. For oscillation amplitudes much
smaller than the wavelength of light (x0 � λ) we can neglect terms with |n| > 1 and end
up with three terms of different frequency, namely ω and the two sidebands ω ±�0.

Let us now assume that the reflected wave Er is not emitted into free space but coupled to
an optical cavity with a narrow energy spectrum of width γ0 � �0. If we choose the cavity
spectrum to overlap with one of the reflected sidebands, say ω + �0, then we effectively
suppress the contribution of ω −�0 (see Fig. 11.17(b)). As a result, the reflected field has
more quanta of energy �(ω +�0) than quanta of energy �(ω −�0), implying that energy
is being gained upon reflection. In other words, the laser field extracts energy from the
mechanical oscillator, thereby lowering its center-of-mass temperature. This type of laser
cooling is referred to as resolved-sideband cooling.

To establish a more quantitative understanding of optomechanical coupling we ana-
lyze the situation depicted in Fig. 11.18, where the mechanical oscillator forms one of
the end mirrors of an optical cavity. The system is characterized by the coupling of the
cavity field E(t) and the mechanical displacement x(t) of the mirror. A displacement of
the mirror causes a change in the resonance frequency of the cavity and, vice versa, a
shift in resonance frequency changes the light intensity and hence the force acting on the
oscillator. Thus, a displacement of the mirror acts back on itself, a phenomenon referred to
as dynamical back-action.

We first analyze the field inside the cavity. The field E(r, t) satisfies the Helmholtz
equation

∇2E(r, t) − 1

c2

d2

dt2
E(r, t) = 0. (11.53)

We express the solution of E in terms of normalized eigenmodes un using the following
ansatz:

E(r, t) = e−iωt
∑

n

En(t) un(r). (11.54)

ω
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x0 cos(Ω0t)
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ω − Ω0

K0

�Fig. 11.17 Reflection of light from an oscillating mirror. (a) The oscillating mirror modulates the phase of the incident wave and
gives rise to new frequency components (ω ± n�0) upon reflection. (b) Resolved sideband cooling. By coupling the
optical field to a cavity it is possible to spectrally select one of the frequency components and to suppress the others.
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�Fig. 11.18 Coupling of an optical cavity and a mechanical oscillator of frequency�0. A displacement of the mirror shifts the
resonance frequency of the cavity, which changes the stored energy and hence the force acting on the mirror.

Here, the eigenmodes satisfy the eigenvalue equation [∇2 + ω2
n/c

2]un = 0, with ωn being
the eigenfrequencies. We assume that the frequency ω is very close to the eigenfrequency
ω0 and retain only the n = 0 term in the sum over eigenmodes. Inserting ansatz (11.54)
into Eq. (11.53), making use of the eigenvalue equation, multiplying by u∗0, integrating
over the cavity volume, and making use of orthogonality leads to a differential equation
for E0(t). Because Ë0 � −iωĖ0 for a good cavity, we may ignore second-order derivatives
and obtain Ė0 = i(ω − ω0)E0, where we used ω2

0 − ω2 ≈ 2ω(ω0 − ω). To account for
cavity losses and for the incoupling and outcoupling of radiation we add two terms and
finally obtain

d

dt
E0(t) = [i(ω − ω0) − γ0

]
E0(t) + κEin(t). (11.55)

Cavity losses and the outcoupling of radiation are accounted for by the decay rate γ0,
whereas the rate of energy incoupling is described by the coupling constant κ . While ω is
the center frequency of the incident radiation and the field in the cavity, ω0 is the resonance
frequency of the cavity. The latter shifts if the cavity length L is changed. Equation (11.55)
is the basic equation that governs the dynamics of the field in the cavity. For ω = ω0 and
Ein = 0 we obtain the solution (11.43) with Qtot = ω0/(2γ0). Notice that the cavity decay
rate has two contributions, that is γ0 = γex + γin, where γex is associated with outcoupling
of radiation and γin is due to internal losses. The lifetime of a photon in the cavity is
τ = 1/(2γ0).

We now turn to the equation of motion of the mechanical oscillator, which can be
written as

d2

dt2
x(t) + �0

d

dt
x(t) +�2

0 x(t) = 1

m

[
Ffluct(t) + Fopt(t)

]
. (11.56)

We have split the driving force into two terms, a random Langevin force, satisfying
〈Ffluct(t)Ffluct(t′)〉 = 2m�0kBTδ(t − t′), and a term due to the interaction with light.

Having established the equations for the cavity field and the mechanical oscillator, we
now focus on their mutual coupling. First, we note that a small change of x in cavity length
L will shift the resonance frequency by �ω0 = −ω0 x/L. Equation (11.55) must therefore
be replaced by
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d

dt
E0(t) =

[
i
(
ω − ω0{1 − x(t)/L})− γ0

]
E0(t) + κEin(t). (11.57)

Second, the optical force Fopt depends on the cavity field E0(t). In the first demonstration
of dynamical back-action [36], the optical force was a bolometric force. In later follow-up
experiments, the optical force was dominated by radiation pressure [37–39]. In princi-
ple, one can consider any relationship between Fopt and E0, such as photophoretic or
gradient forces. To keep the discussion within bounds, let us concentrate on the radia-
tion pressure (see Section 14.2), which in terms of the cavity field reads as Fopt(t) =
(ε0/2)|E0|2(t)nA(1 + R), where R is the reflectivity of the mirror, n is the index of refrac-
tion of the cavity medium, and A is the irradiated mirror area. Thus, the equation of
motion (11.56) becomes

d2

dt2
x(t) + �0

d

dt
x(t) +�2

0 x(t) = 1

m

[
Ffluct(t) + ε0

2
n (1 + R)A|E0|2(t)

]
. (11.58)

The dynamics of the system illustrated in Fig. 11.18 is now entirely described by the
coupled equations (11.57) and (11.58). The solution for E0(t) and x(t) depends on a number
of parameters, such as the cavity resonance ω0, the excitation frequency ω, the excitation
intensity |Ein|2, and the quality factors of the cavity (Qc = ω0/(2γ0)) and oscillator (Qm =
�0/(2�0)).

Instead of solving the two coupled equations, we take a closer look at the equation
of motion (11.58). The solution for x depends on |E0|2, which in turn is a function of x
through Eq. (11.57). Thus, a change in x feeds back on itself (dynamical back-action).
Now imagine that the energy density in the cavity depends on the rate at which the mirror
position changes, that is |E0|2 = C dx/dt, with C being a constant. In this case, the last term
in Equation (11.58) can be combined with the frictional term �0 dx/dt on the left-hand side,
thereby increasing or decreasing the damping rate of the oscillator, depending on the sign
of C. This is the essence of parametric amplification and cooling in cavity optomechanics
and can be exploited for applications, such as switching, storage, and quantum information
processing. Figure 11.19 shows an experimental verification of laser-induced cooling of a
microlever [36].

Because the optical force acting on the harmonic oscillator leads to a change in the
damping constant and oscillator frequency, Eq. (11.58) can be represented in the form

d2

dt2
x(t) + (�0 + δ�)

d

dt
x(t) + (�0 + δ�)2x(t) = 1

m
Ffluct(t), (11.59)

where δ� and δ� are now functions of the optical force. A formal solution of Eqs. (11.57)
and (11.58) yields [39]

δ� = π2R

(1 − R)2

8n2ω0

mc2�0

γexγ0Pin

(ω − ω0)2 + γ 2
0

[
γ 2

0

(ω − ω0 +�0)2 + γ 2
0

− γ 2
0

(ω − ω0 −�0)2 + γ 2
0

]
,

(11.60)
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δ� = π2R

(1 − R)2

4n2ω0

mc2�0

γexγ0Pin

(ω − ω0)2 + γ 2
0

[
(ω − ω0 +�0)γ0

(ω − ω0 +�0)2 + γ 2
0

+ (ω − ω0 −�0)γ0

(ω − ω0 −�0)2 + γ 2
0

]
,

(11.61)

where Pin = (1/2)ε0cA|Ein|2 is the input power. The first term in brackets in Eqs. (11.60)
and (11.61) is associated with anti-Stokes scattering, whereas the second term refers to
Stokes scattering (see Fig. 11.18(b)). In the resolved-sideband regime (γ0 � �0) the
damping rate � can be made negative for red detuned excitation (ω < ω0) and positive for
blue detuned excitation (ω > ω0). Thus, the excitation frequency is a knob for selecting
between amplification (red detuning) or cooling (blue detuning).

For γ0 � �0 we enter the so-called weak-retardation regime. In this regime, the term in
brackets in Eq. (11.60) can be approximated as −4(ω−ω0)�0γ

2
0 /[(ω−ω0)2+γ 2

0 ]2. Cooling
and amplification can still be accomplished, depending on whether the excitation frequency
is red or blue detuned from cavity resonance. However, the cooling or amplification rate is
much weaker than that in the resolved-sideband regime.

Let us now look at the equation of motion (11.59) in frequency space �. Using the
correlation 〈Ffluct(t)Ffluct(t′)〉 = 2m�0kBTδ(t − t′) introduced above, together with the
Wiener–Khintchine theorem (15.16), we obtain the power spectral density (spectrum)

∫ ∞

−∞
〈
x̂(�)x̂∗(�′)

〉
d�′ = kBT

πm

�0

([�0 + δ�]2 −�2)2 +�2[�0 + δ�]2
, (11.62)

where x̂ is the Fourier transform of x. Integrating both sides over � yields the mean-square
displacement
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�Fig. 11.19 Laser cooling of a microlever. (a) The lineshape of the mechanical resonance for different power levels. The widths of
the curves define the effective temperature. (b) The full width at half-maximum (FWHM) of the resonance curves as a
function of the laser power. Inset: the frequency shift of the mechanical resonance. Reprinted with permission from
Macmillan Publishers Ltd [36].
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〈
x2
〉
= 〈x(0) x(0)

〉 = kBT

m(�0 + δ�)2

�0

�0 + δ�
. (11.63)

We now define an effective temperature Teff according to the equipartition theorem, that
is kB Teff = m(�0 + δ�)2

〈
x2
〉
. Since δ�� �0 we obtain

Teff = T
�0

�0 + δ�
, (11.64)

where T is the equilibrium temperature in the absence of the optical force (δ� = 0). Thus,
the temperature of the oscillator can be raised or lowered, depending on the sign of δ� in
Eq. (11.60). However, shot noise associated with the discrete nature of photons imposes a
limit to Eq. (11.64). Furthermore, Eq. (11.64) is valid only for δ� � γ0 and Teff > T/Qm.

In the quantum limit, the mechanical oscillator exhibits discrete states separated in
energy by �(�0 + δ�) ≈ ��0. The mean thermal occupancy 〈n〉 of an oscillation mode
becomes

〈n〉 = kBTeff

��0
. (11.65)

In order to resolve the quantum ground state of the oscillator we require 〈n〉 < 1. For a
1-MHz oscillator, this condition implies Teff ∼ 50 μK.

The Hamiltonian for the combined system “oscillator + cavity” can be derived by con-
sidering the energy of the “dressed” cavity field, that is, the cavity that has been acted on
by the mechanical oscillator. As discussed before, a displacement of the cavity length L by
an amount x leads to a cavity frequency shift of

ω − ω0 = −ω0
x

L
. (11.66)

This frequency shift modifies the energy in the cavity. In terms of the single-mode creation
and annihilation operators a† and a we can write the Hamiltonian of the “dressed” cavity as

�ω[a†a + 1/2] = �ω0[a†a + 1/2] − �ω0
q

L
[a†a + 1/2]

= Hcavity + Hint, (11.67)

where we made use of Eq. (11.66), replaced x by the generalized coordinate q, and noted
that the first term on the right-hand side corresponds to the unperturbed cavity and the
second term accounts for the interaction. After adding the Hamiltonian of the mechanical
oscillator, we obtain

Htot = Hcavity + Hmech + Hint

= �ω0[a†a + 1/2] + (1/2)[p2/m + m�2
0 q2] + �g0q[a†a + 1/2], (11.68)

where we introduced the optomechanical coupling rate g0 = dω0/dq = ω0/L. The splitting
of the total Hamiltonian into three terms is similar to the discussion in Section 8.2 (c.f.
Eq. (8.35)). The interaction Hamiltonian (the last term in Eq. (11.68)) accounts for the
displacement q of the mechanical system by the radiation pressure, which is proportional
to the number of photons n = a†a in the cavity. The force per photon is given by Fph = �g0.
Note that the cavity acts also on the oscillator, thereby shifting its oscillation frequency to
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� = �0 + δ�, but this shift is usually negligibly small (δ�� �0). Since the mechanical
motion is harmonic we can represent the operators q and p by corresponding creation and
annihilation operators (b†, b) and rewrite the Hamiltonian as

Htot = �ω0[a†a + 1/2] + ��0[b†b + 1/2] + �g0x0 [b†+ b][a†a + 1/2]. (11.69)

Here, x0 = √
�/(2m�0) is the zero-point oscillation amplitude of the mechanical oscillator.

Note that in most calculations the constant (zero-point) terms “1/2” are dropped since they
merely account for an offset of the energy eigenstates. The term g0 x0 is what is referred
to as the single-photon coupling strength. In order to observe strong coupling between
the mechanical oscillator and the optical cavity we require g � γ0,�0. Strong coupling
between interacting oscillators is discussed in more detail in Section 8.7. To account for
losses, fluctuations, and the coupling of radiation in to and out of the cavity, the Hamilto-
nian formalism based on Eq. (11.69) needs to be generalized by using so-called quantum
Langevin equations.

Finally, we note that optical cooling and heating of a mechanical oscillator implies that
the optical force acting on the oscillator is non-conservative, that is

W =
∮

Fopt(x)dx �= 0, (11.70)

with x being the oscillator position. Condition (11.70) requires that there is a time lag
between the action of the oscillator and the response of the cavity. This time-lag is defined
by the photon lifetime τ = 1/(2γ0) and hence by the cavity Q-factor.

Problems

11.1 Consider a one-dimensional photonic crystal made of two alternating dielectric lay-
ers with the dielectric constants ε1 and ε2 and different thicknesses d1 and d2. Derive
the characteristic equation for TE and TM modes. Plot the dispersion curves kx(ω)
for ε1=17.88, ε2=2.31, and d2/d1=2/3.

11.2 Estimate the electromagnetic resonance frequency ω = √
1/(LC) of a metallic ring

with a single cut by using the capacitance C of a plate capacitor and the induc-
tance L of a solenoid with a single loop. What are the geometrical dimensions
required in order to enter the optical regime? How is the resonance shifted by
adding a second cut to the ring? Determine why the single-split ring, the double-
split ring, and the wire pair (obtained from the double-split ring by bending the
wires) act as a magnetic dipoles. Discuss the impact of the kinetic inductance (see
Section 13.3.1).

11.3 Apply the boundary conditions for E and H at the boundary between media with
refractive indices n = 1 and n = −1 and the continuity of the wavevector compo-
nent parallel to the interface to verify the situation sketched in Fig. 11.8. Also show
that there is no reflected wave in the sketched situation.

11.4 Estimate the wavelength of the highest-Q mode of a microsphere with radius
a = 50 μm and dielectric constant ε = 2.31. Determine the spacing �λ between
modes.
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11.5 For a microsphere with ε = 2.31, plot numerically the right-hand sides of
Eqs. (11.37) and (11.38) in the complex-ka plane. Assume an angular momentum
mode number l=10 and estimate the value ka for modes with radial mode numbers
ν=1, 2, 3.

11.6 The resonance shift (ω−ω0) of a microcavity due to the presence of a small particle
with polarizability α has been calculated using the formula [41]

�(ω − ω0) = −(α/2)〈E(r0, t)2〉, (11.71)

where r0 is the location of the particle and α is the excess polarizability, i.e. that
measured against background. Here 〈 .. 〉 denotes the time average. This formula
is essentially an energy balance for a single photon. Divide on both sides by the
“unperturbed” photon energy �ωo = (1/2)

∫
V ε0 ε(r)E∗

0 · E0 dV and compare the
resulting equation with the Bethe-Schwinger cavity perturbation. Discuss the major
differences.

11.7 Consider an optical cavity characterized by resonance frequency ω0 and decay rate
γ0 coupled by radiation pressure to a mechanical oscillator with resonance fre-
quency �0 and damping �0. Determine the laser frequency ω that provides the
highest cooling rate.

11.8 An alternative configuration to Fig. 11.18 is a trapped dielectric particle with polar-
izability α and volume Vp held by a laser tweezer (frequency ωT) inside an optical
cavity (resonance ω0) and driven by a field of frequency ω. Determine the mechani-
cal oscillation frequency �0 as a function of the optical-tweezer parameters (power,
NA, λT, ... ) and calculate the back-action on the cavity mode using the cavity-
perturbation formula. Assume that the particle can be treated in the dipole limit and
that its oscillation is centered in a field minimum of the cavity mode. Determine the
cavity-induced damping rate δ�.

References

[1] Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and
on the propagation of waves through a medium endowed with a periodic structure”
Phil. Mag. (Series 5) 24, 145–159 (1887).

[2] Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of
silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).

[3] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Princeton, MA:
Princeton University Press (1995).

[4] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new
twist on light,” Nature 386, 143–149 (1997).

[5] G. Floquet, “Sur les équations differentielles linéares à coefficients périodiques,”
Ann. Ecole Norm. Supér. 12, 47–88 (1883).



367 References

[6] F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Z. Phys. 52,
555–600 (1929).

[7] E. Moreno, D. Erni, and Ch. Hafner, “Modeling of discontinuities in photonic
crystal waveguides with the multiple multipole method,” Phys. Rev. E 66, 036618
(2002).

[8] O. J. Painter, A. Husain, A. Scherer, et al., “Two-dimensional photonic crystal defect
laser,” J. Lightwave Technol. 17, 2082–2089 (1999).

[9] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,
vol. 1. Reading, MA: Addison-Wesley (1977).

[10] V. Veselago, L. Braginsky, V. Shklover, and Ch. Hafner, “Negative refractive index
materials,” J. Comput. Theor. Nanosci. 3, 1–30 (2006).

[11] V. G. Veselago, “The electrodynamics of substances with simultaneously negative
values of ε and μ,”Sov. Phys. Usp. 10, 509–514 (1968).

[12] J. Kästel and M. Fleischhauer, “Quantum electrodynamics in media with negative
refraction,” Laser Phys. 15, 135–145 (2005).

[13] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Compos-
ite medium with simultaneously negative permeability and permittivity,” Phys. Rev.
Lett. 84, 4184–4187 (2000).

[14] J. P. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–
3969 (2000).

[15] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative
index of refraction,” Science 292, 77–79 (2001). Reprinted with permission from
AAAS.

[16] C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in
the development of three-dimensional photonic metamaterials,” Nature Photonics 5,
523–530 (2011).

[17] J. Valentine, S. Zhang, T. Zentgraf, et al., “Three-dimensional optical metamaterial
with a negative refractive index,” Nature 455, 376–379 (2008).

[18] R. E. Collin, “Frequency dispersion limits resolution in Veselago lens,” Prog.
Electromagn. Res. B 19, 233–261 (2010).

[19] C. Hafner, C. Xudong, and R. Vahldieck, “Resolution of negative index slabs,” J. Opt.
Soc. Am. A 23, 1768–1778 (2006).

[20] R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett.
84, 1290–1292 (2004).

[21] T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field
microscopy through a SiC superlens,” Science 313, 1595 (2006).

[22] Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging
beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).

[23] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical
hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686
(2007).

[24] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,”
Science 312, 1780–1782 (2006).



368 Photonic crystals, resonators, and cavity optomechanics

[25] S. Arnold, S. Holler, and S. D. Druger, “The role of MDRs in chemical physics:
intermolecular energy transfer in microdroplets,” in Optical Processes in Microcav-
ities, ed. R. K. Chang and A. J. Campillo. Singapore: World Scientific pp. 285–312
(1996).

[26] C. G. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles. New York: John Wiley (1983).

[27] H. M. Nussenzveig, Diffraction Effects in Semiclassical Scattering. Cambridge:
Cambridge University Press (1992).

[28] B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and
width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).

[29] S. M. Spillane, T. J. Kippenberg, K. J. Vahala, et al., “Ultrahigh-Q toroidal
microresonators for cavity quantum electrodynamics,” Phys. Rev. A 71, 013817
(2005).

[30] F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection
down to single molecules,” Nature Methods 5, 591–596 (2008).

[31] J. Schwinger, The Theory of Obstacles in Resonant Cavities and Waveguides, MIT
Radiation Laboratory Report no. 43-34 (1943).

[32] W. Hauser, Introduction to the Principles of Electromagnetism. Reading, MA:
Addison-Wesley (1971).

[33] T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–
17205 (2007).

[34] V. B. Braginsky, Measurement of Weak Forces in Physics Experiments. Chicago, IL:
University of Chicago Press (1977).

[35] P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation
pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999).

[36] C. Höhberger Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432,
1002–1005 (2004).

[37] O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-
pressure cooling and optomechanical instability of a micromirror,” Nature 444,
71–74 (2006).

[38] S. Gigan, H. R. Bohm, M. Paternostro, et al., “Self-cooling of a micromirror by
radiation pressure,” Nature 444, 67–70 (2006).

[39] A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation
pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys.
Rev. Lett. 97, 243905 (2006).

[40] J. Van Bladel and D. De Zutter, “Reflections from linearly vibrating objects: plane
mirror at normal incidence,” IEEE Trans. Antennas Propag. 29, 629–636 (1981).

[41] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler and F. Vollmer, “Shift of whispering
gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003).



12 Surface plasmons

The interaction of metals with electromagnetic radiation is largely dictated by their free
conduction electrons. According to the Drude model, the free electrons oscillate 180◦ out
of phase relative to the driving electric field. As a consequence, most metals possess a
negative dielectric constant at optical frequencies, which causes, for example, a very high
reflectivity. Furthermore, at optical frequencies the metal’s free-electron gas can sustain
surface and volume charge-density oscillations, called plasmons, with distinct resonance
frequencies. The existence of plasmons is characteristic of the interaction of metal nanos-
tructures with light at optical frequencies. Similar behavior cannot be simply reproduced in
other spectral ranges using the scale invariance of Maxwell’s equations since the material
parameters change considerably with frequency. Specifically, this means that model exper-
iments with, for instance, microwaves and correspondingly larger metal structures cannot
replace experiments with metal nanostructures at optical frequencies.

The surface charge-density oscillations associated with surface plasmons at the interface
between a metal and a dielectric can give rise to strongly enhanced optical near-fields,
which are spatially confined near the metal surface. Similarly, if the electron gas is confined
in three dimensions, as in the case of a small particle, the overall displacement of the
electrons with respect to the positively charged lattice leads to a restoring force, which in
turn gives rise to specific particle–plasmon resonances depending on the geometry of the
particle. In particles of suitable (usually pointed) shape, localized charge accumulations
that are accompanied by strongly enhanced optical fields can occur.

The study of optical phenomena related to the electromagnetic response of metals
has been termed plasmonics or nanoplasmonics. This field of nanoscience is concerned
with the control of light localization and propagation on subwavelength scales. At opti-
cal frequencies, a noble metal is characterized by a dielectric function ε = −ε′ + iε′′
whose real part |ε′| is typically larger than its imaginary part |ε′′|. The opposite is true for
metals in the microwave or infrared frequency regime. Hence, we can define plasmonics
as the interaction of light with metals under the condition |ε′| > |ε′′|. Many innovative
concepts and applications of metal optics have been developed over the past few years,
and in this chapter we discuss a few examples. We start out by discussing metals from the
perspective of plasma physics, which provides insights into the physics of plasmons. The
discussion includes screening and ponderomotive forces, which give rise to a wide range
of optical nonlinearities. Since the interaction of light with metal structures is described
by the frequency dependence of the metal’s complex dielectric function, we continue with
a discussion of the fundamental optical properties of metals. We then turn to important
solutions of Maxwell’s equations for noble-metal structures, i.e. the plane metal–dielectric
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interface and small metal wires and particles. Where appropriate, applications of surface
plasmons in nano-optics are discussed. Finally, it should be noted that optical interactions
similar to those discussed here are also encountered for infrared radiation interacting with
polar materials. The corresponding excitations are called surface phonon polaritons.

12.1 Noble metals as plasmas

The free conduction electrons in a metal constitute a plasma, a gas of charged particles
that responds collectively to electromagnetic fields. Plasmas are the most common form of
matter and are found in stellar nebulae, lightning, stars, flames, and the outer atmosphere.
At optical frequencies, metals behave as plasmas, with characteristic shape-dependent res-
onances. To establish an understanding of the collective response of electrons to optical
fields we begin this chapter by reviewing the basic properties of a standard plasma.

12.1.1 Plasma oscillations

Consider a charge-neutral material characterized by a rigid ionic lattice and a gas of free
electrons. The material is confined by two parallel surfaces with surface normal nz. A
uniform displacement of the gas by a small distance �z gives rise to a positive surface
charge on one side of the material of σ = ne�z, where n is the electron density and e
the elementary charge. The surface charge on the opposite side is −σ . The situation is
sketched in Fig. 12.1(a). The surface charges give rise to a uniform homogeneous electric
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�Fig. 12.1 Mass-and-spring model for plasma oscillations. (a) A sketch of a metal slab with a uniform displacement of the
electron gas by a small distance�z causing a homogeneous electric field. (b) A sketch of a metal particle whose
electrons have been displaced by an amount�x. (c) The frequency of the resulting oscillation can be represented by a
harmonic oscillator with spring constant D and electron massm.
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field E = σ/ε0 pointing from one surface to the other. This field causes a restoring force,
which acts on the electrons and gives rise to the following equation of motion:

m �̈z = −eE = −�z ne2/ε0, (12.1)

with m being the electron mass. The solution of this equation is �z(t) = �z0 cos(ωpt),
where �z0 is the displacement at t = 0 and ωp is the plasma frequency defined as

ωp =
√

ne2

mε0
(12.2)

Because e and m are constants the only parameter that influences the plasma frequency
is the electron density n. Notice that the plasma oscillation is in the direction of the elec-
tric field and hence it defines a longitudinal mode. In reality, the plasma oscillation is
damped due to electron–lattice collisions and also due to radiation losses. In our simple
model, we have ignored any spatial variation of the electric field and a more detailed
analysis yields ωp(k) ≈ ωp

[
1 + (3/10)(vF/ωp)2k2 + · · · ], where vF is the Fermi veloc-

ity, k is the wavevector of the oscillation, and ωp on the right-hand side is defined by
expression (12.2) [1]. It is convenient to express ωp in terms of an energy �ωp, which, for
most metals, is in the range 2–20 eV. The spectra recorded by electron-energy-loss spec-
troscopy at metal surfaces exhibit typical peaks at energies that correspond to multiples of
�ωp, referred to as volume plasmons.

Let us now consider plasma oscillations specific to a finite particle, such as a cylindrical
rod. When the electron gas in the particle is displaced by �x, opposite nearly point-like
charges ±q build up at both ends. The magnitude of q depends on n and the cross-sectional
area of the cylinder A as q = neA�x. The Coulomb potential energy of the two charges is
then

W(�x) = 1

4πε0

q2

d
= 1

4πε0

(neA)2

d
�x2. (12.3)

The restoring force can now be determined as

F(�x) = −∂W(�x)

∂�x
= − 1

2πε0
(ne)2 A2

d
�x = −D�x, (12.4)

from which we deduce a spring constant D. Using a similar equation of motion to that
used before we find harmonic plasma oscillations of the system, which can be described
by a simple mass-and-spring model. The relevant mass is the mass of all electrons that are
involved in the oscillation, that is, mtot = nmAd. The approximate resonance frequency
ωres of the cylindrical particle turns out to be

ωres =
√

D

mtot
= ωp

2
√

2

1

R
, (12.5)

where we have used Eq. (12.2), A = πr2, and R = d/(2r), the aspect ratio of the particle.
Since we assumed that the charge distributions are localized at the particle ends, we cannot
expect the result to quantitatively reproduce the exact resonance frequencies for shorter and
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thicker particles. However, the experimentally observed trend that the resonance frequency
is inversely proportional to the aspect ratio R of a particle and that it occurs close to the
visible regime is reproduced. The physical reason for the scaling behavior of the aspect
ratio lies in the fact that the electric field of the charge distribution has a dipolar character.

12.1.2 The ponderomotive force

Electrons in a plasma experience a net force if they interact with a non-uniform electric
field E(r, t). This force can be derived from a potential and is referred to as the pon-
deromotive force. The easiest derivation starts with the potential energy Vp of an electron
oscillating at the frequency ω. For a harmonic oscillator, the average potential energy and
the average kinetic energy are the same and hence Vp = 1

2 m
〈
v2
〉
. The velocity follows from

the equation of motion as mv̇ = −eE, where E = E0 cos(ωt). Solving for the velocity
yields v = −eE0 sin(ωt)/(mω) and, after inserting this into the potential Vp, we arrive at

Vp(r) = e2

2mω2

〈
|E(r, t)|2

〉
, (12.6)

which is the ponderomotive potential or the quiver energy of the electron. The force is
derived as F = −∇Vp. Similarly to the gradient force (c.f. Section 14.4), the pondero-
motive force depends on the gradient of the electric field intensity. Comparison with
Eq. (14.47) yields that the polarizability of an electron is α′ = −e2/(mω2). The pon-
deromotive force expels electrons from regions of high field strength, thereby affecting the
local electron density. This interaction is a major source of optical nonlinearities in metals.

12.1.3 Screening

Plasmas are charge-neutral but exhibit local fluctuations in their charge densities. Let us
denote the local density of positive charges by n+ and the local density of negative charges
by n−. The electrostatic potential between charges is�. Averaged over large distances, the
number of positive and negative charges must be the same, but locally the charge density
can fluctuate. In thermal equilibrium, the local charge densities obey

n−
n+

= exp[e�/(kBT)], (12.7)

where T is the temperature. We now introduce an external charge at r = 0. The corre-
sponding charge density is ρext = eδ(r). This external charge modifies the local charge
distribution and gives rise to an induced charge density ρind = −e(n− − n+). According
to Gauss’s law, the two charge densities give rise to a local field ∇ · E = (ρext + ρind)/ε0,
which can be expressed in terms of the potential � as

∇2�(r) = − e

ε0

[
δ(r) − (n− − n+)

]
. (12.8)
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We used E=−∇� and introduced the expressions for ρext and ρind. On substituting
Eq. (12.7) into this we obtain the so-called Poisson–Boltzmann equation. Typically,
kBT � e�(r) and hence we expand the exponential term in Eq. (12.7) as exp[e�/(kBT)] =
1 + [e�/(kBT)] + · · · and drop all higher-order terms in �. We then obtain ∇2� =
−(e/ε0)

[
δ(r) − n+e�/(kBT)

]
, which can be rearranged as

[
∇2 − e2n+

ε0kT

]
�(r) = − e

ε0
δ(r). (12.9)

The solution of this inhomogeneous differential equation is

�(r) = − e

4πε0

exp(−r/λD)

r
, λD =

√
ε0kBT

e2n
, (12.10)

where λD is the Debye screening length. Because the plasma is neutral over distances larger
than λD we have set n+ = n− = n.

The analysis above is correct for plasmas in which the kinetic energy of electrons is
defined by the temperature T . However, this is not the case for metals at room temperature.
According to quantum mechanics, the kinetic energy of a free electron obeys the dispersion
relation E(k) = �

2k2/(2m). The highest energy is the Fermi energy EF = E(kF), where
k3

F = 3π2n. Using the electron density for gold we find EF ∼ 213kBT at room temperature,
which makes the classical Debye theory clearly invalid for any practical temperatures. We
therefore perform the replacement (3/2)kBT → EF in Eq. (12.10) and obtain the screening
potential

�(r) = − e

4πε0

exp(−r/λTF)

r
, (12.11)

where

λTF =
√
π2�2ε0

me2kF
. (12.12)

λTF is referred to as the Thomas–Fermi screening length. The screening potential states
that the Coulomb potential of a point charge in a plasma is shielded on length scales larger
than λTF. This shielding is established by the exponential decay of the screening potential
for distances r > λTF. In other words, in a metal charges do feel each other only if their
separation is shorter than λTF. For gold, λTF ∼ 59 pm, which is smaller than the mean dis-
tance r̄ ∼ 160 pm between electrons defined by the electron density as r̄ = (n · 4π/3)−1/3.
Therefore, for most practical purposes, electron–electron interactions can be ignored in
real metals. The velocity vF of a Fermi electron follows from mv2

F/2 = EF and can be
used to calculate the distance traveled in one plasma oscillation period. For gold we find
d = vF/ωp ∼ 1 nm and hence the electron sea travels further during an oscillation period
than the mean distance between electrons.

Notice that the screening potential originates from a collective electron response. It is
therefore an effective potential, not the potential, that defines the energy of an individual
electron, i.e. V̄ = e2/(4πε0r̄).
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12.2 Optical properties of noble metals

The optical properties of metals and noble metals in particular can be described by a
complex dielectric function that depends on the frequency of light (see Chapter 2). The
properties are determined mainly by the facts that (i) the conduction electrons can move
freely within the bulk of material and (ii) interband excitations can take place if the energy
of the photons exceeds a threshold energy for the respective metal. In the picture we adopt
here, the presence of an electric field leads to a displacement r of an electron, which is asso-
ciated with a dipole moment p according to p = er. The cumulative effect of all individual
dipole moments of all free electrons results in a macroscopic polarization per unit volume
of P = np. As discussed in Chapter 2, the macroscopic polarization P can be expressed as

P(ω) = ε0χe(ω)E(ω). (12.13)

From (2.6) and (2.15) we have

D(ω) = ε0ε(ω)E (ω) = ε0E(ω) + P(ω). (12.14)

From this we calculate

ε(ω) = 1 + χe(ω), (12.15)

the frequency-dependent dielectric function of the metal. The displacement r and therefore
the macroscopic polarization P and χe can be obtained by solving the equation of motion
of the electrons under the influence of an external field.

12.2.1 Drude–Sommerfeld theory

As a starting point, we consider only the effects of the free electrons and apply the Drude–
Sommerfeld model for the free-electron gas (see e.g. [2]).

me
∂2r
∂t2

+ me�
∂r
∂t

= eE0e−iωt, (12.16)

where e and me are the charge and effective mass of the free electrons, and E0 and ω
are the amplitude and frequency of the applied electric field. Note that the equation of
motion contains no restoring force, since free electrons are considered. The damping term
is proportional to � = vF/l, where vF is the Fermi velocity and l is the electron mean free
path between scattering events. Solving (12.16) using the ansatz r(t) = r0e−iωt and using
the result in (12.15) yields

εDrude(ω) = 1 − ω2
p

ω2 + i�ω
. (12.17)

Here ωp =
√

ne2/(meε0) is the volume plasma frequency derived in Eq. (12.2). Expression
(12.17) can be divided into real and imaginary parts

εDrude(ω) = 1 − ω2
p

ω2 + �2
+ i

�ω2
p

ω(ω2 + �2)
. (12.18)
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Using �ωp = 8.95 eV and �� = 65.8 meV, which are the values for gold, the real and
imaginary parts of the dielectric function (12.18) are plotted in Fig. 12.2 as a functions of
the wavelength over the extended visible range. We note that the real part of the dielectric
constant is negative. One obvious consequence of this behavior is the fact that a plane light
wave can penetrate a metal only to a very small extent, since the negative dielectric constant
leads to a strong imaginary part of the refractive index n = √

ε. Other consequences will
be discussed later. The imaginary part of ε describes the dissipation of energy associated
with the motion of electrons in the metal (see Problem 12.1).

12.2.2 Interband transitions

Although the Drude–Sommerfeld model gives quite accurate results for the optical prop-
erties of metals at low frequencies, for higher frequencies it needs to be supplemented
by the response of bound electrons. For example, for gold, at a wavelength shorter than
∼550 nm, the measured imaginary part of the dielectric function increases beyond the
value predicted by the Drude–Sommerfeld theory. This is because higher-energy photons
can promote electrons of lower-lying d bands into the sp conduction band. In a classical
picture such transitions may be described as exciting the oscillation of bound electrons.
Bound electrons in metals exist e.g. in lower-lying shells of the metal atoms. We apply the
same method as used above for the free electrons to describe the response of the bound
electrons. The equation of motion for a bound electron reads

m
∂2r
∂t2

+ mγ
∂r
∂t

+ αr = eE0e−iωt. (12.19)

Here, m is the effective mass of the bound electrons, which is in general different from
the effective mass of a free electron in a periodic potential, γ is the damping constant
describing mainly radiative damping in the case of bound electrons, and α is the spring
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�Fig. 12.2 Real and imaginary part of the dielectric constant for gold according to the Drude–Sommerfeld free-electron model
(�ωp = 8.95 eV, �� = 65.8 meV). The solid line is the real part; the dashed line is the imaginary part. Note the
different scales for real and imaginary parts.
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constant of the potential that keeps the electron in place. Using the same ansatz as before,
we find the contribution of bound electrons to the dielectric function

εInterband(ω) = 1 + ω̃2
p

(ω2
0 − ω2) − iγω

. (12.20)

Here ω̃p =
√

ñe2/(mε0), with ñ being the density of the bound electrons. ω̃p is introduced
in analogy to the plasma frequency in the Drude–Sommerfeld model, albeit, obviously,
here with a different physical meaning, and ω0 = √

α/m. Again we can rewrite (12.20) to
separate the real and imaginary parts:

εInterband(ω) = 1 + ω̃2
p(ω2

0 − ω2)

(ω2
0 − ω2)2 + γ 2ω2

+ i
γ ω̃2

pω

(ω2
0 − ω2)2 + γ 2ω2

. (12.21)

Figure 12.3 shows the contribution to the dielectric constant of a metal which derives
from bound electrons.1 Clear resonant behavior is observed for the imaginary part and
dispersion-like behavior is observed for the real part. Figure 12.4 is a plot of the dielec-
tric constant (real and imaginary parts) taken from the paper of Johnson and Christy [4]
for gold (filled circles). For wavelengths above 650 nm the behavior clearly follows the
Drude–Sommerfeld theory. For wavelengths below 650 nm obviously interband transitions
become significant. It is possible to model the shape of the curves by appropriately adding
up the free-electron (Eq. (12.18)) and interband absorption contributions (Eq. (12.21)) to
the complex dielectric function (solid line). Indeed, this much better reproduces the exper-
imental data. One has to introduce a constant offset to (12.21), though, namely ε∞ = 5,
which accounts for the integrated effect of all higher-energy interband transitions not con-
sidered in the present model (see e.g. [5]). Also, since only one interband transition is taken
into account, the model still fails to reproduce the data below ∼500 nm.
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�Fig. 12.3 Contribution of bound electrons to the dielectric function of gold. The parameters used are�ω̃p = 2.96 eV,
�γ = 0.59 eV, andω0 = 2π c/λ, withλ = 450 nm. The solid line is the real part and the dashed curve is the
imaginary part of the dielectric function associated with bound electrons.

1 This theory naturally also applies to the behavior of dielectrics, and the dielectric response over a broad
frequency range consists of several absorption bands related to different electromagnetically excited reso-
nances [3].
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12.3 Surface plasmon polaritons at plane interfaces

By definition surface plasmon polaritons are the quanta of surface-charge-density oscil-
lations. In a classical picture, surface plasmon polaritons are particular solutions of
Maxwell’s equations (surface modes) that appear for certain boundary conditions. In this
section, we consider a plane interface between two media. One medium is characterized
by a complex frequency-dependent dielectric function ε1(ω), whereas the dielectric func-
tion of the other medium ε2(ω) is assumed to be real. We choose the interface to coincide
with the plane z = 0 of a Cartesian coordinate system (see Fig. 12.5). We are looking for
homogeneous solutions of Maxwell’s equations that are localized at the interface. A homo-
geneous solution is an eigenmode of the system, i.e. a solution that exists without external
excitation. Mathematically, it is the solution of the wave equation

∇ × ∇ × E(r,ω) − ω2

c2
ε(r,ω)E(r,ω) = 0, (12.22)

Drude regime

interband
regime

mI
)

(ε

data
model

400 600 800 1000 1200
wavelength (nm)

0

1

2

3

5

6

0

−10

−20

−30

−40

−50

−60

−70

e
R

)
(ε

4
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experimental values taken from [4]. Solid line: model of the dielectric function taking into account the free-electron
contribution (Fig. 12.2) and the contribution of a single interband transition (Fig. 12.3). Note the different scales for
the abscissae.
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with ε(r,ω) = ε1(ω) for z < 0 and ε(r,ω) = ε2(ω) for z > 0. A mode that is local-
ized to the interface is characterized by electromagnetic fields that decay exponentially
with increasing distance from the interface into both half-spaces but propagates along the
interface. It is sufficient to consider only p-polarized waves in both half-spaces because no
surface-bound modes exist for the case of s-polarization (see Problem 12.2).

The ansatz for p-polarized plane waves in the half-spaces j = 1 and j = 2 reads as

Ej =
⎛
⎝ Ej,x

0
Ej,z

⎞
⎠ eikxx−iωteikj,zz, j = 1, 2. (12.23)

The situation is depicted in Fig. 12.5. Since the wavevector parallel to the interface is
conserved (see Chapter 2), the following relations hold for the wavevector components:

k2
x + k2

j,z = εjk
2, j = 1, 2. (12.24)

Here k = 2π/λ, where λ is the vacuum wavelength. Exploiting the fact that the
displacement fields in both half-spaces have to be source-free, i.e. ∇ · D = 0, leads to

kxEj,x + kj,zEj,z = 0, j = 1, 2, (12.25)

which allows us to rewrite (12.23) as

Ej = Ej,x

⎛
⎝ 1

0
−kx/kj,z

⎞
⎠ eikj,zz, j = 1, 2. (12.26)

The factor eikxx−iωt is omitted to simplify the notation. Equation (12.26) is particularly use-
ful when a system of stratified layers is considered (see e.g. [6], p. 40 and Problem 12.4).
While (12.24) and (12.25) impose conditions that define the fields in the respective half-
spaces, we still have to match the fields at the interface using boundary conditions.
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�Fig. 12.5 The interface between two media 1 and 2 with dielectric functions ε1 and ε2. The interface is defined by z = 0 in a
Cartesian coordinate system. In each half-space we consider only a single p-polarized wave because we are looking for
homogeneous solutions that decay exponentially with distance from the interface.
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Requiring continuity of the parallel component of E and the perpendicular component
of D leads to another set of equations, which read as

E1,x − E2,x = 0,

ε1E1,z − ε2E2,z = 0.
(12.27)

Equations (12.25) and (12.27) form a system of four homogeneous equations for the four
unknown field components. The existence of a solution requires that the respective deter-
minant vanishes. This happens either for kx = 0, which does not describe excitations that
travel along the interface, or for

ε1k2,z − ε2k1,z = 0. (12.28)

In combination with (12.24), Eq. (12.28) leads to a dispersion relation, i.e. a relation
between the wavevector along the propagation direction and the angular frequency ω,

k2
x =

ε1ε2

ε1 + ε2
k2 = ε1ε2

ε1 + ε2

ω2

c2
. (12.29)

We also obtain an expression for the normal component of the wavevector,

k2
j,z =

ε2
j

ε1 + ε2
k2, j = 1, 2. (12.30)

Having derived (12.29) and (12.30), we are in a position to discuss the conditions for an
interface mode to exist. For simplicity, we assume that the imaginary part of the complex
dielectric function ε1(ω) is small compared with its real part so that it can be neglected for
now. A more detailed discussion that justifies this assumption will follow (see also [6]).
We are looking for interface waves that propagate along the interface. This requires a real
kx.2 Looking at (12.29), this can be fulfilled if the sum and the product of the dielectric
functions are either both positive or both negative. In order to obtain a “bound” solution,
we require that the normal components of the wavevector are purely imaginary in both
media, giving rise to exponentially decaying solutions. This can be achieved only if the
sum in the denominator of (12.30) is negative. From this we conclude that the conditions
for an interface mode to exist are the following:

ε1(ω) · ε2(ω) < 0, (12.31)

ε1(ω) + ε2(ω) < 0, (12.32)

which means that the real part of one of the dielectric functions must be negative with
an absolute value exceeding that of the other. As we have seen in the previous section,
metals, especially noble metals such as gold and silver, have a large negative real part of
the dielectric constant together with a small imaginary part. Therefore, localized modes
can exist at a metal–dielectric interface. Problem 12.3 discusses a possible solution for
positive dielectric constants.

2 Later we will see that, on taking into account the imaginary part of ε1(ω), kx becomes complex, which leads to
a damped propagation in the x-direction.
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12.3.1 Properties of surface plasmon polaritons

Using the results of the previous section, we will now discuss the properties of surface plas-
mon polaritons (SPPs). To accommodate losses associated with electron scattering (ohmic
losses) we have to consider the imaginary part of the metal’s dielectric function [7],

ε1 = ε′1 + iε′′1 , (12.33)

with ε′1 and ε′′1 being real. The adjacent medium is assumed to exhibit negligible losses,
i.e. ε2 is a real number. We then naturally obtain a complex parallel wavenumber kx =
k′x + ik′′x , which defines wave propagation along the metal–dielectric interface.

Plasmon wavelength

The real part k′x determines the SPP wavelength, while the imaginary part k′′x accounts for
the damping of the SPP as it propagates along the interface. This is easy to see by using the
complex kx in (12.23). The real and imaginary parts of kx can be determined using (12.29)
under the assumption that

∣∣ε′′1 ∣∣� ∣∣ε′1∣∣:
k′x ≈

√
ε′1ε2

ε′1 + ε2

ω

c
, (12.34)

k′′x ≈
√

ε′1ε2

ε′1 + ε2

ε′′1ε2

2ε′1(ε′1 + ε2)

ω

c
, (12.35)

in formal agreement with Eq. (12.29). For the SPP wavelength we thus obtain

λSPP = 2π

k′x
≈
√
ε′1 + ε2

ε′1ε2
λ, (12.36)

where λ is the wavelength in vacuum. Assuming that ε2 = −δε′1, where δ < 1, then
λSPP = √

1 − δ · λ/√ε2, which shows that the plasmon wavelength is always shorter than
the wavelength in the transparent medium.

Plasmon propagation length

The propagation length of the SPP along the interface is determined by k′′x , which, accord-
ing to (12.23), is responsible for an exponential damping of the electric field amplitude.
The 1/e decay length of the electric field is 1/k′′x (1/(2k′′x ) for the intensity). This damping is
caused by ohmic losses and results in a heating of the metal. Using ε2 = 1 and the dielec-
tric functions of silver (ε1 = −18.2+0.5i) and gold (ε1 = −11.6+1.2i) at a wavelength of
633 nm, we obtain 1/e intensity propagation lengths of ∼60 μm and ∼10 μm, respectively.

We note that we extracted all losses responsible for plasmon damping from the metal’s
bulk dielectric function. This is a good approximation as long as the characteristic dimen-
sions of the metal structures are larger than the electron mean free path. For smaller
dimensions, there is an increasing chance that electrons scatter from interfaces. In other
words, close to interfaces additional loss mechanisms that locally increase the imaginary
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part of the metal’s dielectric function have to be taken into account. It is difficult to correctly
account for these non-local losses since the exact parameters are not known. Nevertheless,
since the fields associated with surface plasmons penetrate into the metal by more than
10 nm, non-local effects associated with the first few atomic layers can usually be safely
ignored.

Plasmon evanescent-field decay length

The electric field of an SPP decays exponentially with distance from the interface. The
decay lengths into the dielectric and the metal can be obtained from (12.30) to first order
in
∣∣ε′′1 ∣∣ / ∣∣ε′1∣∣ using (12.33) as

k1,z = ω

c

√
ε′21

ε′1 + ε2

[
1 + i

ε′′1
2ε′1

]
, (12.37)

k2,z = ω

c

√
ε2

2

ε′1 + ε2

[
1 − i

ε′′1
2(ε′1 + ε2)

]
. (12.38)

Using the same parameters for silver and gold as before and safely neglecting the very
small imaginary parts, we obtain for the 1/e decay lengths (1/k1,z = 23 nm, 1/k2,z =
421 nm) and (1/k1,z = 28 nm, 1/k2,z = 328 nm), respectively. This shows that the decay
into the metal is much shorter than that into the dielectric. It also shows that a sizable
amount of the SPP electric field can reach through a thin enough metal film. The decay
of the SPP into the air half-space was observed directly in [8] using a scanning tunneling
optical microscope.

Intensity enhancement

An important parameter is the intensity enhancement near the interface due to the excitation
of surface plasmons. This parameter can be obtained by evaluating the ratio of the incoming
intensity and the intensity right above the metal interface. We skip this discussion for the
moment and come back to it after the next section (see Problem 12.4).

12.3.2 Thin-film surface plasmon polaritons

So far we have considered surface plasmons propagating along the interface between two
infinitely extended half-spaces. In experimental realizations, however, we often encounter
the situation that a thin metallic film is deposited on top of a dielectric substrate. In the case
of a multilayer system, in principle each metal/dielectric interface can support SPPs. If the
films are thin enough, i.e. of thickness comparable to the electric-field decay lengths, see
(12.37) and (12.38), surface plasmons of different interfaces can couple with each other,
leading to mode hybridization (see Section 8.7.1). Even a single metal film sandwiched
between two dielectrics exhibits such surface plasmon interactions. For example, if the two
dielectrics are the same one obtains “even” and “odd” modes [9]. For odd modes the propa-
gation length is significantly increased because the field is pushed out of the metal. Similar
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properties are observed for metal–insulator–metal systems, which are important e.g. for the
realization of plasmonic circuitry. For asymmetric systems with different dielectrics, e.g. a
metal film sandwiched between glass and air, one can exploit the fact that the speed of light
in the higher-index material is less than that in the lower-index material and therefore the
light-line has a smaller slope.

Since surface plasmons are solutions of the homogeneous wave equation (absence of
driving terms), we find conditions for the existence of plasmons from the characteristic
equation which results from a set of boundary conditions. The characteristic equation is
derived by setting the determinant of the matrix that describes the boundary conditions to
zero. For a single interface the characteristic equation corresponds to Eq. (12.28). It is the
condition that makes the Fresnel reflection coefficient rp go to infinity or, in other words,
it is the condition for a pole of rp (c.f. Eq. (2.51)). For a metal film of finite thickness we
proceed in exactly the same way; that is, we derive the modes of the system from the poles
of the reflection coefficient. The latter must now account for two interfaces, namely the
top surface and the bottom surface of the metal film. The poles are found from the zeros
of the denominator of the reflection coefficient, which yields the following characteristic
equation (c.f. Eq. (10.20)):

1 + rp
1,2(kx)rp

2,3(kx)exp[2ik2zd] = 0. (12.39)

Here, rp
1,2 and rp

2,3 are the reflection coefficients of the top surface and the bottom metal
according to Eq. (2.51), k2z is the normal component of the k vector in the metal film,
and d is the thickness of the film. The solutions of Eq. (12.39) have to be sought in the
complex-kx plane. The real part yields the SPP propagation constant and the imaginary
part the propagation length. For a metal film bounded by two different dielectrics one finds
four distinct modes [10], of which two are so-called leaky waves that are mainly important
for transient processes. The other two modes are largely non-radiative and correspond to
the odd and even modes discussed above.

It is interesting to follow the plasmon mode that is localized on the metal surface
bounded by the medium with lower dielectric constant as a function of the metal thick-
ness d. For large d the two metal surfaces do not interact and we recover the single interface
solution derived before. In this regime, the in-plane wavevector kx has a positive imaginary
part, giving rise to surface plasmon attenuation. As we reduce the thickness, the attenua-
tion decreases and reaches zero at a critical thickness dcrit, which is typically in the range
50–100 nm for noble-metal films in the visible. For this thickness, kx is purely real despite
the fact that the metal film is lossy. Because Im{kx} = 0 the field in the medium with
lower dielectric constant is a pure evanescent wave and the field in the medium with higher
dielectric constant is a plane wave. The energy supplied by this plane wave exactly com-
pensates for the attenuation by the metal film. Using the Kretschmann configuration (see
the next section) it is possible for the system to be in perfect resonance with this situation.
Interestingly, as we reduce the thickness d further, the imaginary part of kx becomes nega-
tive, giving rise to plasmon amplification. However, this situation requires excitation by a
wave that exponentially increases with distance from the metal surface and therefore has
limited validity [10].
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Notice that a complex kx (finite propagation length) implies a complex kz, which means
that the field on the metal surface is neither a propagating wave nor an evanescent wave.
To understand this point, we insert E exp(ik · r) into the Helmholtz equation and obtain
k · k = εω/c. For a medium with real ε (the dielectrics bounding the metal film) the right-
hand side is real and hence Re{k}·Im{k} = 0. Thus, as shown in Fig. 12.6, the real part of k
and its imaginary part are perpendicular, which means that there is a direction along which
the field is purely propagating and a direction along which the field is purely evanescent.
In general, the propagation direction (Re{k}) is not parallel to the metal surface. Only for
metals that match the critical thickness dcrit do we find a propagation direction parallel to
the surface of the metal.

Finally, it has to be emphasized that our discussion is concerned with modes, namely
solutions of the wave equation in the absence of excitation. In an experimental situa-
tion we always have a driving term, e.g. an incident laser beam. The best coupling to
the system under study is obtained when the excitation is resonant with a mode of the
system. As discussed in the next section, resonant excitation of SPPs can be established
with the Otto or Kretschmann configurations, which are widely used in applications of
plasmonics.

12.3.3 Excitation of surface plasmon polaritons

The plasmon dispersion relation

In order to excite SPPs we have to fulfill both energy and momentum conservation. To
see how this can be done, we have to analyze the dispersion relation of the surface waves,
i.e. the relation between the energy in terms of the angular frequency ω and the momen-
tum in terms of the wavevector in the propagation direction kx given by Eqs. (12.29) and
(12.34). In order to plot this dispersion relation we assume that ε2 = 1 irrespective of ω,

evanescent

kxmetal film

evanescent

propagating

propagating

�Fig. 12.6 Illustration of the mode structure of a thin metal film. In the dielectrics above and below the metal film the fields have
a propagation direction along which Im{k} = 0 and an evanescent direction along which Re{k} = 0. The two
directions are perpendicular.
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e.g. air or vacuum. For ε1(ω) we use the measured dielectric functions [3] for gold and
silver. Figure 12.7 shows the respective plots. The dashed line represents the dispersion
relation of light in the medium with ε2 = 1, the so-called light-line ω = ck in air. The
surface plasmon dispersion relations show two branches, a high-energy and a low-energy
branch, which are clearly disconnected only in the case of silver. For gold, the two branches
are connected. The high-energy branch, called the Brewster mode, does not describe true
surface waves, since according to (12.30) the z-component of the wavevector in the metal
is no longer purely imaginary. It corresponds to wave propagation into the metal, that is
kx = (ω/c)

√
ε1(ω). This branch will not be considered further. The low-energy branch

corresponds to a true surface wave, the surface plasmon polariton (SPP). “Polariton” refers
to an excitation that corresponds to a coupled electromagnetic and matter wave. In the case
of surface plasmons, the matter wave is a surface charge oscillation. The surface plasmon
wavevector kx is always larger than the corresponding wavevector of a freely propagat-
ing photon. Therefore surface plasmons cannot decay into propagating photons. As the
wavelength decreases, the difference in wavevector increases. As the energy approaches
a limiting frequency3, the wavevector assumes a maximum value and the damping of the
surface plasmon, i.e. Im(kx), strongly increases. For even higher frequencies, the surface
plasmon dispersion continuously converts into the higher-energy Brewster mode described
above. The effect is also referred to as back-bending of the surface plasmon dispersion
relation. The back-bending effect has been experimentally verified (see Ref. [11]) and
imposes a limit on the maximum surface plasmon wavenumber kx that can be achieved
in an experiment. Usually, this maximum kx is smaller than ∼3ωp/c.
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�Fig. 12.7 The dispersion relation of surface plasmon polaritons at a gold/air interface (dark line) and at a silver/air interface
(gray line) obtained by using the measured ε1(ω) [3] in Eq. (12.29). The dashed straight line is the light-line
ω = ckx in air.

3 In the case of a Drude-type free-electron gas this limiting frequency is ωp/
√

1 + ε2.
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Excitation configurations

An important feature of surface plasmons is that for a given energy �ω the wavevector kx

is always larger than the wavevector of light in free space; that is, the plasmon dispersion
curve is to the right of the light-line. This is obvious on inspecting (12.29) and also from
Figs. 12.7 and 12.8(a), where the light-line ω/c is plotted as a dashed line. The surface
plasmon dispersion asymptotically approaches the light-line for small energies. The phys-
ical reason for the large surface plasmon momentum is the strong coupling between light
and surface charges. The light field has to “drag” the electrons along the metal surface.
Consequently, surface plasmons on plane interfaces cannot be excited by light of any fre-
quency incident from free space. Excitation of surface plasmons by light is possible only
if a wavevector component of the exciting light can be increased over its free-space value.
There are several ways to achieve this increase of the wavevector component. The con-
ceptually simplest solution is to excite surface plasmons by means of evanescent waves
created at the interface between a medium with refractive index n > 1. The light-line in
this case is tilted by a factor of n since ω = ck/n. This situation is shown in Fig. 12.8(a),
which sketches the SPP dispersion relation with the light-line in air and the tilted light-line
in glass.
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�Fig. 12.8 Excitation of surface plasmons. (a) A close-up sketch of the surface plasmon dispersion relation with the light-lines in
air and in glass. Experimental arrangements to realize the energy and momentum conservation sketched in (a): (b)
Otto configuration and (c) Kretschmann configuration. L, laser; D, detector; M, metal layer.
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�Fig. 12.9 Excitation of surface plasmons in the Otto configuration. The reflectivity of the exciting beam is plotted as a function
of the incident angle and for different air gaps (in nanometers). The curves are evaluated for a gold surface. For
comparison, a single trace is also plotted for silver, for which the resonance is much sharper because of lower
damping.λ = 632.8 nm.

Figures 12.8(b) and (c) sketch possible experimental arrangements that realize this idea.
In the Otto configuration [12] the tail of an evanescent wave at a glass/air interface interacts
with a metal/air interface that supports surface plasmons. For a sufficiently large separa-
tion between the two interfaces the evanescent wave is only weakly influenced by the
presence of the metal. By tuning the angle of incidence of the totally reflected beam inside
the prism, the resonance condition for excitation of surface plasmons, i.e. the matching
of the parallel wavevector components, can be fulfilled. The excitation of surface plas-
mons will show up as a minimum in the reflected light. The reflectivity of the system as
a function of the angle of incidence and of the separation between interfaces is shown in
Fig. 12.9. For the angle of incidence a clear resonance is observed at 43.5◦. For small sep-
arations the resonance is broadened and shifted due to radiation damping of the surface
plasmons, whose evanescent tails can then couple back into the glass, allowing the surface
plasmons to rapidly decay radiatively by transforming evanescent fields into propagating
waves in the glass. For separations that are too large, surface plasmons can no longer be
efficiently excited since the evanescent-field decay length is too short and the resonance
vanishes.

The Otto configuration proved to be experimentally inconvenient because of the chal-
lenging control of the tiny air gap between the glass and the metal surface. In 1971
Kretschmann came up with an alternative method to excite surface plasmons [13]. In this
method, a thin metal film is deposited on top of a glass prism. The geometry is sketched in
Fig. 12.8(c). To excite surface plasmons at the metal/air interface an exponentially damped
wave created at the glass/metal interface penetrates through the metal layer. Here, argu-
ments similar to those for the Otto configuration apply. If the metal is too thin, the SPP
will be strongly damped because of radiation damping into the glass. If the metal film



387 12.3 Surface plasmon polaritons at plane interfaces

is too thick the SPP can no longer be efficiently excited due to absorption in the metal.
Figure 12.10 shows the reflectivity of the excitation beam as a function of the metal film
thickness and the angle of incidence. As before, the resonant excitation of surface plas-
mons is characterized by a dip in the reflectivity curves. For the occurrence of a minimum
in the reflectivity curves both in the Otto and in the Kretschmann configuration, the fol-
lowing physical interpretation can be given. The minimum can be thought of as being due
to destructive interference between the totally reflected light and the light emitted by the
SPP wave due to radiation damping.

Another alternative way to excite surface plasmons is the use of grating couplers [7].
Here, the increase of the wavevector necessary to match the surface plasmon momentum is
achieved by adding a reciprocal-lattice vector of the grating to the free-space wavevector.
This requires in principle that the metal surface is structured with the right periodicity a
over an extended spatial region. The new parallel wavevector then reads as k′x = kx +
2πn/a, with 2πn/a being a reciprocal-lattice vector of the grating. This principle was
used to enhance the interaction of subwavelength holes with surface plasmons in silver
films [14].

12.3.4 Surface plasmon sensors

The distinct resonance condition associated with the excitation of surface plasmons has
found application in various sensors. For example, the position of the dip in the reflectiv-
ity curves can be used as an indicator for environmental changes. With this method, the
adsorption onto or removal of target materials from the metal surface can be detected with
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�Fig. 12.10 Excitation of surface plasmons in the Kretschmann configuration. The reflectivity of the exciting beam is plotted as a
function of the angle of incidence and for different thicknesses of a gold film on glass (in nanometers). For comparison
a single trace for a silver film is plotted. Note the much sharper resonance due to the smaller damping of silver. The
critical angle of total internal reflection shows up as a discontinuity marked by an arrow.λ = 632.8 nm.
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submonolayer accuracy. Figure 12.11 illustrates this capability by a simulation. It shows
the effect of a 3-nm layer of water on top of a 53-nm-thick silver film on glass. A strongly
shifted plasmon resonance curve can be observed. Assuming that the angle of incidence
of the excitation beam has been adjusted to the dip in the reflectivity curve, the deposition
of a minute amount of material increases the signal (reflectivity) drastically. This means
that the full dynamic range of a low-noise intensity measurement can be used to measure
a coverage ranging between 0 and 3 nm. Consequently, SPP sensors are very attractive for
applications ranging from biological binding assays to environmental sensing. For a review
see e.g. [15].

The reason for the high sensitivity lies in the fact that the excitation of SPPs is associ-
ated with enhanced fields near the metal surface. In the Kretschmann configuration, this
enhancement factor can be determined by evaluating the ratio of the intensity above the
metal and the incoming intensity. In Fig. 12.11(b) this enhancement factor is calculated
and plotted as a function of the angle of incidence both for gold and for silver for a 50-nm
thin film.

12.4 Surface plasmons in nano-optics

Near-field optical probes as well as single-quantum emitters lead to additional possibili-
ties for exciting surface plasmons [16–18]. The parallel components of the wavevector (kx)
necessary for SPP excitation are also present in confined optical near-fields in the vicin-
ity of subwavelength apertures, metallic particles, or even fluorescent molecules. If such
confined fields are brought close enough to a metal surface, coupling to surface plasmons
can be accomplished locally. Figure 12.12 shows the principal arrangements. A metal film
resides on a (hemispherical) glass prism to allow leakage radiation to escape and to be
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�Fig. 12.11 Surface plasmons used in sensor applications. (a) Calculated shift of the SPP resonance curve induced by a 3-nm layer
of water (n = 1.33) adsorbed on a 53-nm-thick silver film. (b) Intensity enhancement near the metal surface as a
function of the angle of incidence in the Kretschmann configuration. For silver (ε1 = −18.2+ 0.5i, dash–dotted
line) and gold (ε1 = −11.6+ 1.2i, solid line) at a wavelength of 633 nmwe observe maximum intensity
enhancements of∼32 and∼10, respectively.
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recorded. In order to efficiently launch surface plasmons, the exciting light field needs to
be confined such that its angular spectrum contains a sizeable amplitude of evanescent-field
components that match the parallel wavevector kx of the surface plasmon.

As an illustration, Fig. 12.13(a) shows the excitation of surface plasmons with an oscilla-
ting dipole placed near the surface of a thin silver film deposited on a glass surface. The
figure depicts contour lines of constant power density evaluated at a certain instant of time
and displayed on a logarithmic scale. The surface plasmons propagating on the top surface
decay radiatively, as manifested by the wavefronts in the lower medium. The situation is
reciprocal to the situation of the Kretschmann configuration discussed earlier. Also shown
in Fig. 12.13(a) is the excitation of surface plasmons at the metal/glass interface. How-
ever, at the wavelength of 370 nm, these plasmons are strongly damped and therefore do
not propagate over long distances. Figure 12.13(b) shows the radiation pattern evaluated
in the lower medium (glass). It corresponds to the radiation collected with a high-NA lens,
collimated and projected onto a photographic plate. The circle in the center indicates the
critical angle of total internal reflection of an air/glass interface θc = arcsin(1/n), with n
being the index of refraction of glass. Obviously, the plasmon radiates into an angle beyond
θc. In fact, the emission angle corresponds to the Kretschmann angle discussed previously
(cf. Fig. 12.10). Surface plasmons can be excited only with p-polarized field components
since there needs to be a driving force on the free charges towards the interface. This is the
reason why the radiation pattern exhibits two lobes. The coupling of fluorophores to surface
plasmons (see Fig. 12.12(c)) can drastically improve the sensitivity of fluorescence-based
assays in medical diagnostics, biotechnology, and gene expression. For finite distances
between metal and fluorophores (<200 nm) the coupling to surface plasmons leads to
fluorescence-signal enhancement and high directionality of the emission. For example, an
immunoassay for the detection of the cardiac marker myoglobin has been developed in
Ref. [20].

The dipole is an ideal excitation source in the sense that its angular spectrum is very
broad. More realistic sources have finite dimensions. The size of the source and its dis-
tance to the metal surface determine the spatial spectrum that is available for the excitation

SPP
air

z

x

θ

M

SPP 200 nm

(c)

θ θ

field
amplitude SPPSPP

)b()a(

�Fig. 12.12 Local excitation of surface plasmons on a metal film using different sources of confined light fields: (a) a
subwavelength light source such as an aperture probe [16], (b) an irradiated nanoparticle [19], and (c) fluorescent
molecules [17]. In all cases, surface plasmons are excited by evanescent components of the angular spectrum that
match the parallel wavevector kx of the surface plasmon. The arrows at the metal film indicate the emission of
leakage radiation.
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(a) (b)

�Fig. 12.13 Excitation of surface plasmons with a dipole source placed 5 nm above a 50 nm-thick silver layer supported by a glass
substrate. The excitation wavelength is 370 nm and the dipole moment is parallel to the interface. (a) Lines of
constant power density (with a factor of 2 between successive contour lines) depicted at a certain instant of time. The
figure shows the surface plasmon propagation along the top surface of the silver film and also the radiative decay into
the lower half-space. (b) The radiation pattern in the lower medium. The circle indicates the critical angle of total
internal reflection at an air/glass interface. The two lobes result from the radiative decay of surface plasmons excited
by the dipole source.

of surface plasmons. If the source is too far from the metal surface only plane-wave com-
ponents of the angular spectrum reach the metal surface and hence coupling to surface
plasmons is inhibited. Figure 12.14(a) shows a sketch of the spatial spectrum (spatial
Fourier transform) of a confined light source evaluated in planes at different distances
from the source (see the inset). The angular spectrum is broad close to the source but
narrows with increasing distance from the source. The same figure also shows the spa-
tial spectrum of a surface plasmon supported by a silver film. The excitation of the surface
plasmon is possible because of the overlap of the spatial spectrum of the source and the sur-
face plasmon. Owing to the decrease in field confinement for increasing distance from the
source, a characteristic distance dependence for the surface plasmon excitation efficiency
is expected. As discussed before, in a thin-film configuration, surface plasmon excitation
can be monitored by observing the plasmon’s leakage radiation into the glass half-space.

Figure 12.14(b) shows, for thin gold and silver films deposited on a glass hemisphere,
the integrated intensity of surface plasmon leakage radiation as a function of the distance
between the source (aperture) and the metal surface. The curve labeled MMP indicates a
numerical simulation. All curves clearly show a dip for very small distances. This dip is
due to the perturbation of the surface plasmon resonance condition by the proximity of
the probe, i.e. the coupling between probe and sample (see also Fig. 12.9 as an illustration
of this effect). Leakage radiation can also be used to visualize the propagation length of
surface plasmons. This is done by imaging the metal/glass interface onto a camera using
a high-NA microscope objective that can capture the leakage radiation above the criti-
cal angle (see Fig. 12.14(c)). The extent of the SPP propagation is in good agreement
with Eq. (12.29), although the presence of leakage radiation indicates a reduced propa-
gation length because of this additional loss channel. By varying the separation between
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the excitation source and the metal surface and by varying the excitation polarization it is
possible to control the intensity and the direction in which surface plasmons are launched.

While the excitation of surface plasmons in Fig. 12.14 was accomplished with a near-
field aperture probe, the example in Fig. 12.15 shows the same experiment but with a
laser-irradiated nanoparticle acting as the excitation source. In this experiment, the sur-
face plasmon propagation is visualized by observing the fluorescence intensity of a thin
layer of fluorophores deposited onto the metal surface using a spacer layer. A double-lobed
emission pattern is observed due to the fact that surface plasmons can be excited only by
p-polarized field components of the near-field. Control over the direction of emission is
possible via the choice of the polarization of the excitation beam [18].

An interplay between surface plasmons launched by an aperture probe and surface plas-
mons excited by particle scattering has been studied in Ref. [16]. Figure 12.16 shows
experimentally recorded surface plasmon interference patterns on a smooth silver film with
some irregularities. The periodicity of the fringes of 240± 5 nm is exactly half the surface
plasmon wavelength. The contrast in this image is obtained by recording the intensity of
the leakage radiation as the aperture probe is raster scanned over the sample surface. Thus,
the fringes are due to surface plasmon standing waves that build up between the probe
and the irregularities that act as scattering centers. Strongest leakage radiation is obtained
for probe–scatterer distances that are integer multiples of half the surface plasmon wave-
length. The observation that surface plasmons originating from different scattering centers
on a surface can interfere suggests the possibility of building optical elements for surface
plasmon nano-optics by employing suitable arrangements of scatterers [21–23].

12.4.1 Plasmons supported by wires and particles

The electromagnetic field associated with SPPs on plane interfaces is localized in the direc-
tion normal to the interface. To establish field confinement in two or three dimensions we

�Fig. 12.14 Local excitation of surface plasmons with a near-field aperture probe. (a) A sketch of the overlap of the spatial spectra
of the source (evaluated in planes at different distances from the source) and the surface plasmon on a silver film.
(b) Distance dependence of the coupling. The dip at short distances is a result of probe–sample coupling, i.e. the
presence of the probe locally modifies the plasmon resonance condition. (c) An image of plasmon propagation
recorded by focusing the leakage radiation onto an image plane.
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(a) (b)

�Fig. 12.15 Excitation of surface plasmons by a subwavelength-scale protrusion located on the top surface of a metal film. (a) The
set-up. (b) A close-up of the particle–beam interaction area. In this experiment, the surface plasmons are detected by
observing the fluorescence intensity of a thin layer of fluorescent molecules deposited on a dielectric spacer layer.
From [18].

need to consider metal particles of finite size, such as metal wires or nanoparticles. As we
will see, metal wires can support SPP modes that propagate along the wire, much as for
the case of a plane interface. Owing to the negative real part of the dielectric constant of
metals these modes are usually localized to the wire surface. As for the plane-interface
plasmons, these wire modes do not couple to free-space radiation and need appropriate
coupling mechanisms in order to be excited or to decay into photons, such as e.g. a grat-
ing coupler or a wire discontinuity. In addition to propagating SPPs, a wire also supports
transverse plasmons, that is, charge oscillations transverse to the wire axis. Similar modes
also appear in small metal particles. These transverse modes are of radiative nature and can
couple to propagating radiation. Figure 12.17 illustrates the surface plasmon modes sup-
ported by plane interfaces, thin wires, and particles. While Figs. 12.17(a) and (b) display
propagating modes, Fig. 12.17(c) corresponds to a transverse dipolar mode.

To determine the surface plasmon eigenmodes of thin wires we need to solve the homo-
geneous wave equation (12.22) taking into account the respective boundary conditions. For
thin wires and small particles we can invoke the quasi-static approximation. This approxi-
mation neglects retardation and all points of the particle or the wire circumference oscillate
in phase. This is possible only if the relevant characteristic size of the object (wire or par-
ticle radius) is much smaller than the metal’s skin depth d (d = λ/(4π

√
ε)). For a small

particle this leads to a picture in which the whole free-electron gas is periodically displaced
relative to the stationary lattice of the particle.

In the quasi-static approximation the Helmholtz equation reduces to the Laplace equa-
tion, which is much easier to solve. A detailed discussion can be found e.g. in [24]. The
solutions that are obtained here are quasi-static near-fields. For example, the electric field
of an oscillating dipole

E(rn, t) = 1

4πε0

[
k2(n×p)×n

eikr

r
+ [3n(n · p) − p

] ( 1

r3
− ik

r2

)
eikr
]

e−iωt, (12.40)
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�Fig. 12.16 Interference of locally excited surface plasmons. Left panel: integrated leakage radiation from a silver film with some
protrusions recorded as an aperture probe is raster scanned over the sample surface. The fringes correspond to surface
plasmon standing-wave patterns that build up between the protrusions and the aperture probe. Right panel:
shear-force topography of the area shown in the optical image and line cuts along the white line through both the
topography and the optical image.

can be approximated in the near-field zone kr � 1 as

E(rn, t) = 1

4πε0

[
3n(n · p) − p

]e−iωt

r3
, (12.41)

which results from setting k = 0. The resulting field corresponds to that of a static dipole
with added harmonic time dependence exp(−iωt), which is the reason why it is termed
quasi-static. In the quasi-static limit the electric field can be represented by a potential as
E = −∇�. The potential has to satisfy the Laplace equation

∇2� = 0 (12.42)

and the boundary conditions between adjacent materials (see Chapter 2). In the following
we will analyze the solutions of (12.42) for a thin metal wire and a spherical nanoparticle.

Transverse plasmon resonances of a thin wire

Let us consider a thin cylindrical metal wire with radius a centered at the origin and extend-
ing along the z-axis to infinity. The wire is illuminated by an x-polarized plane wave with its
wavevector along the y-direction. The geometry is sketched in Fig. 12.18. This illumination
geometry excites the transverse plasmon resonance of a long wire, which does not transport
energy along the wire. To tackle this problem we introduce cylindrical coordinates

x = ρ cosϕ,

y = ρ sinϕ,

z = z, (12.43)
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(b)
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�Fig. 12.17 Charge distribution and field lines for SPP modes in different geometries. (a) A propagating plane-interface plasmon.
(b) A propagating wire plasmon (TM0 mode). (c) A transverse wire plasmon and a particle plasmon with a dipolar
field pattern.

and express the Laplace equation as

1

ρ

∂

∂ρ

(
ρ
∂�

∂ρ

)
+ 1

ρ2

(
∂2�

∂ϕ2

)
= 0. (12.44)

Here, we have accounted for the fact that there is no z-dependence. The Laplace equation
(12.44) can be separated using the ansatz �(ρ,ϕ) = R(ρ)�(ϕ), yielding

1

R

(
ρ
∂

∂ρ

(
ρ
∂R

∂ρ

))
= − 1

�

(
∂2�

∂ϕ2

)
≡ m2. (12.45)

The angular part has solutions of the form

�(ϕ) = c1 cos(mϕ) + c2 sin(mϕ), (12.46)

which implies that m must be an integer in order to ensure the 2π periodicity of the solution.
The radial part has solutions of the form

R(ρ) =
{

c3ρ
m + c4ρ

−m, m > 0,

c5 ln ρ + c6, m = 0,
(12.47)

with the same m as introduced in (12.45). Because of the symmetry imposed by the polar-
ization of the exciting electric field (along the x-axis) only cos(mϕ) terms need to be
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�Fig. 12.18 A cut through a thin wire that is illuminated by an x-polarized plane wave.

considered. Furthermore, for m = 0 the logarithm in (12.47) diverges at the origin and
hence must be rejected. We therefore use the expansion

�(ρ < a) = �1 =
∞∑

n=1

αnρ
n cos(nϕ),

�(ρ > a) = �2 = �scatter +�0 =
∞∑

n=1

βnρ
−n cos(nϕ) − E0ρ cos(ϕ), (12.48)

where αn and βn are constants to be determined from the boundary conditions on the wire
surface ρ = a and φ0 is the potential associated with the exciting field. In terms of the
potential � the boundary conditions read as[

∂�1

∂ϕ

]
ρ=a

=
[
∂�2

∂ϕ

]
ρ=a

,

ε1

[
∂�1

∂ρ

]
ρ=a

= ε2

[
∂�2

∂ρ

]
ρ=a

,

(12.49)

following from the continuity requirement for the tangential component of the electric field
and the normal component of the electric displacement. Here, ε1 and ε2 are the complex
dielectric constants of the wire and the surroundings, respectively. In order to evaluate
(12.49) we use the fact that the functions cos(nϕ) are orthogonal. On introducing (12.48)
into (12.49) we immediately see that αn and βn vanish for n > 1. For n = 1 we obtain

α1 = −E0
2ε2

ε1 + ε2
, β1 = a2E0

ε1 − ε2

ε1 + ε2
. (12.50)

With these coefficients the solutions for the electric field E = −∇φ turn out to be

E1 = E0
2ε2

ε1 + ε2
nx, (12.51)

E2 = E0nx + E0
ε1 − ε2

ε1 + ε2

a2

ρ2

(
1 − 2 sin2ϕ

)
nx + 2E0

ε1 − ε2

ε1 + ε2

a2

ρ2
sinϕ cosϕ ny,

(12.52)
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where we re-introduced Cartesian coordinates with the unit vectors nx, ny, nz. Figure 12.19
shows the electric field and the intensity around the wire as described by Eqs. (12.51) and
(12.52). Notice the field maxima along the direction of polarization (see also Chapter 6).

In most applications the dispersion (frequency dependence) of the dielectric medium
surrounding the metal can be ignored and one can assume a constant ε2. However, the
metal’s dielectric function is strongly wavelength-dependent. The solution for the fields
is characterized by the denominator ε1 + ε2. Consequently, the electric field amplitude
assumes a maximum when Re(ε1(λ)) = −ε2. This is the resonance condition for a wire
excited by a plane wave polarized perpendicular to the wire axis. The shape of the reso-
nance is determined by the dielectric function ε1(λ). As in the case of the plane interface
discussed earlier, changes in the dielectric constant of the surrounding medium (ε2) lead
to shifts of the resonance (see below). Notice that no resonances exist if the electric field
is polarized along the wire axis. As in the plane-interface case, the excitation of surface
plasmons relies on an accumulation of surface charge at the surface of the wire. In order to
drive the charges to the interface, the electric field needs to have a polarization component
normal to the metal surface.

Propagating surface plasmon polaritons on thin wires

To obtain surface plasmon propagation along a cylindrical wire one needs to solve the full
vector wave equation. Such an analysis has been done in Refs. [25, 26]. Propagating solu-
tions are found by solving a set of four homogeneous equations that result from boundary
conditions. The characteristic equation of this system of equations yields

ε1(λ)

κ1a

J1(κ1a)

J0(κ1a)
− ε2

κ2a

H(1)
1 (κ2a)

H(1)
0 (κ2a)

= 0, (12.53)

�Fig. 12.19 Near-field distribution around a gold wire in the quasi-static limit ε1 = −18, ε2 = 2.25. Grayscale, |E|2; arrows,
direction and magnitude of the electric field.
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�Fig. 12.20 (a) The propagation constant kz = β + iα of the two lowest surface modes supported by an aluminumwire at a
wavelength ofλ = 488 nm. a denotes the wire diameter and k0 = ω/c. (b) Frequency dispersion of the HE1
surface mode of an a = 50 nm aluminumwire.ωp denotes the plasma frequency of aluminum. The dotted line
indicates the corresponding dispersion on a plane interface. Notice the backbending effect discussed earlier.

where Jn and H(1)
n are cylindrical Bessel and Hankel functions of the first kind, respectively,

and a is the wire radius. The transverse components of the wavevectors in medium i∈ {1, 2}
are defined as κi = k0

[
εi − (kz/k0)2

]1/2
, with k0 = 2π/λ. The propagation along the wire

axis z is determined by the factor

exp[i(kzz − ωt)], (12.54)

where kz = β + iα is the complex propagation constant. β and α are denoted the phase
constant and the attenuation constant, respectively. For the two best propagating surface
modes, Fig. 12.20(a) shows the propagation constant of an aluminum cylinder as a function
of the cylinder radius a. The TM0 mode exhibits a radial polarization, i.e. the electric field
is axially symmetric. On the other hand, the HE1 mode has a cosϕ angular dependence
and, as the radius a tends to zero, it converts to an unattenuated plane wave (kz ≈ ω/c)
that is infinitely extended. The situation is different for the TM0 mode. As the radius a
is decreased, its phase constant β becomes larger and the transverse field distribution
becomes better localized. However, the attenuation constant α also increases and hence
for wires that are too thin the surface plasmon propagation length becomes very small.
Figure 12.21 shows an example of SPP propagation on a 120 nm-diameter silver wire. The
plasmon is excited by focusing light that is polarized along the wire direction onto the input
end (I) of the wire. Emission of far-field photons due to radiative decay of wire plasmons
is observed at the distal end (D).

It has been pointed out that both the phase velocity and the group velocity of the TM0

mode tend to zero as the diameter a is decreased [28]. Therefore, a pulse propagating along
a wire whose diameter is adiabatically thinned down never reaches the end of the wire,
i.e. its tip. On the other hand, as the wire becomes thinner the lateral field confinement
increases, causing a “build-up” of fields towards the wire end (adiabatic focusing). Notice
that the modes propagating on the surface of metal wires had already been analyzed in
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�Fig. 12.21 Excitation, propagation, and detection of a wire plasmon on a 120 nm-thick silver nanowire. (a) The excitation
geometry. Light with a polarization parallel to the wire is focused to the input end (I) of the wire. The plasmon
propagates and is re-radiated at the distal end (D). (b) A wide-field microscopy image of the 18.6μm-long silver
wire. The arrow indicates the weak emission spot at the distal end. Note that a considerable part of the SPP intensity
that arrives at D is reflected (∼25%). Reprinted with permission from [27].

1909 [29]. It was realized that single wires can transport energy almost free of losses but
at the expense of having poor localization, i.e. the fields extend in the surrounding medium
over very large distances. Therefore, transmission lines at radio frequencies consist of two
or more wires.

Plasmon resonances of a small spherical particle

The fundamental plasmon resonance of a small spherical particle of radius a in the quasi-
static limit can be found in much the same way as the transverse plasmon resonance of a
thin wire. Here, we have to express the Laplace equation (12.42) in spherical coordinates
(r, θ ,ϕ) as

1

r2 sin θ

[
sin θ

∂

∂r

(
r2 ∂

∂r

)
+ ∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin θ

∂2

∂ϕ2

]
�(r, θ ,ϕ) = 0. (12.55)

The solutions are of the form

�(r, θ ,ϕ) =
∑
l,m

bl,m ·�l,m(r, θ ,ϕ). (12.56)

The bl,m are constant coefficients to be determined from the boundary conditions and the
�l,m are of the form

�l,m =
{

rl

r−l−1

}{
Pm

l (cos θ )
Qm

l (cos θ )

}{
eimϕ

e−imϕ

}
, (12.57)

where Pm
l (cos θ ) are the associated Legendre functions and Qm

l (cos θ ) are Legendre func-
tions of the second kind [30]. Linear combinations of the functions in the upper and the
lower row of (12.57) may have to be chosen according to the particular problem, to avoid
having infinities at the origin or at infinite distance. Again, the continuity of the tangential
electric fields and the normal components of the electric displacements at the surface of
the sphere imply that
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[
∂�1

∂θ

]
r=a

=
[
∂�2

∂θ

]
r=a

,

ε1

[
∂�1

∂r

]
r=a

= ε2

[
∂�2

∂r

]
r=a

. (12.58)

Here, �1 is the potential inside the sphere and �2 = �scatter +�0 is the potential outside
the sphere consisting of the potentials of the scattered and the incoming fields. For the
incoming electric field we assume, as for the case of the wire, that it is homogeneous and
directed along the x-direction. Consequently, �0 = −E0x = −E0rP0

1(cos θ ). Evaluation
of the boundary conditions leads to

�1 = −E0
3ε2

ε1 + 2ε2
r cos θ ,

�2 = −E0r cos θ + E0
ε1 − ε2

ε1 + 2ε2
a3 cos θ

r2

(12.59)

(see Problem 12.7). The most important differences from the solution for the wire are the
distance dependence 1/r2 rather than 1/r and the modified resonance condition with ε2

multiplied by a factor of 2 in the denominator. It is also important to note that the field
is independent of the azimuth angle ϕ, which is a result of the symmetry implied by the
direction of the applied electric field. Finally, the electric field can be calculated from
(12.59) using E = −∇� and turns out to be

E1 = E0
3ε2

ε1 + 2ε2
(cos θ nr − sin θ nθ ) = E0

3ε2

ε1 + 2ε2
nx, (12.60)

E2 = E0(cos θ nr − sin θ nθ ) + ε1 − ε2

ε1 + 2ε2

a3

r3
E0(2 cos θ nr + sin θ nθ ). (12.61)

The field distribution near a resonant gold or silver nanoparticle looks qualitatively sim-
ilar to the plot shown in Fig. 12.19 for the thin wire. However, the field is more strongly
localized near the surface of the particle. An interesting feature is that the electric field
inside the particle is homogeneous, as expected for the case of a particle of diameter smaller
than the skin depth. Another important finding is that the scattered field (the second term
in (12.61)) is identical with the electrostatic field of a dipole p located at the center of the
sphere. The dipole is induced by the external field E0 and has the value p = ε2α(ω)E0,
with α denoting the polarizability4

α(ω) = 4πε0a3 ε1(ω) − ε2

ε1(ω) + 2ε2
. (12.62)

This relationship can be easily verified by comparison with Eq. (12.41). The scattering
cross-section of the sphere is then obtained by dividing the total radiated power of the
sphere’s dipole (see e.g. Chapter 8) by the intensity of the exciting plane wave. This
results in

σscatt = k4

6πε2
0

|α(ω)|2, (12.63)

4 Notice that we use dimensionless (relative) dielectric constants, i.e. the vacuum permeability ε0 is not contained
in ε2.
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with k being the wavevector in the surrounding medium. Notice that the polarizability
(12.62) violates the optical theorem in the dipole limit, i.e. scattering is not accounted for.
This inconsistency can be corrected by allowing the particle to interact with itself (radiation
reaction). As discussed in Problem 8.5, the inclusion of radiation reaction introduces an
additional term into (12.62). See also Problem 16.4.

Figure 12.22 shows plots of the normalized scattering cross-sections of gold and sil-
ver particles in different media. Note that the resonance for the silver particles is in the
ultraviolet spectral range, while for gold the maximum scattering occurs around 530 nm.
A redshift of the resonance is observed if the dielectric constant of the environment is
increased.

The power removed from the incident beam due to the presence of a particle is not only
due to scattering but also due to absorption. The sum of absorption and scattering is called
extinction. Therefore, we also need to calculate the power that is dissipated inside the
particle. Using Poynting’s theorem, we know that the power dissipated by a point dipole
is determined as Pabs = (ω/2)Im

[
p · E∗

0

]
. Using p = ε2αE0, with ε2 being real, and the

expression for the intensity of the exciting plane wave in the surrounding medium, we find
for the absorption cross-section

σabs = k

ε0
Im[α(ω)] . (12.64)

Again, k is the wavevector in the surrounding medium. It turns out that σabs scales with a3,
whereas σscatt scales with a6. Consequently, for large particles extinction is dominated by
scattering, whereas for small particles it is dominated by absorption. This effect can be used
to detect extremely small metal particles down to diameter 2.5 nm, which are used as labels
in biological samples [31]. The transition between the two size regimes is characterized by
a distinct color change. For example, small gold particles absorb green and blue light and

400 500 600 700

0.05

0.1

0.15

0.2

x100

Wavelength (nm)

σ s
ca

tt
/a

6  (
nm

–4
)

silver

gold

�Fig. 12.22 Plots of the scattering cross-section of spherical gold and silver particles in different environments normalized by a6,
with a denoting the particle radius. Solid line, vacuum (n = 1). Dashed line, water (n = 1.33). Dash–dotted line,
glass (n = 1.5).
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�Fig. 12.23 The ancient Roman Lycurgus cup illuminated by a light source from behind. Light absorption by the embedded
gold/silver alloy particles (right) leads to a red color of the transmitted light, whereas scattering at the particles yields
a greenish color as indicated to the right. From D. J. Borber and I. C. Freestone,Archeometry 32, 1 (1990).

thus render a red color. On the other hand, larger gold particles scatter predominantly in the
green and hence render a greenish color. A very nice illustration of these findings is colored
glasses. The famous Lycurgus cup shown in Fig. 12.23 was made by ancient Roman artists
and is today exhibited at the British Museum, London. When illuminated by a white light
source from behind, the cup shows an amazingly rich shading of colors ranging from deep
green to bright red. For a long time it was not clear what causes these colors. Today it is
known that they are due to nanometer-sized gold/silver particles embedded in the glass.
The colors are determined by an interplay of absorption and scattering.

Plasmon resonances of non-spherical particles

For non-spherical particles, due to the broken symmetry, the degeneracy between collective
electron oscillations along different directions is lifted. One way to obtain the plasmon
resonances of non-spherical particles is to model them as prolate spheroids and to apply
the quasi-static approximation [4]. The result is a polarizability that reads as

α(ω) = Vε0
ε1(ω) − ε2

Liε1(ω) + (1 − Li)ε2
. (12.65)

Here V is the volume of the spheroid and the Li are geometrical factors that depend on
the aspect ratio and describe the longitudinal and transverse plasmon resonances of the
spheroid. For aspect ratios ranging from 1 to 3 the resonances cover the visible up to the
infrared spectral range, while the resonance frequency decreases linearly with the aspect
ratio as discussed at the beginning of this chapter (see Eq. (12.5).

For strongly elongated particles the quasi-static approximation eventually breaks down.
In order to provide a qualitative understanding of the longitudinal plasmon resonances of
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rod-like nanoparticles with a constant cross-section one can take the following point of
view. The particle is treated as a finite piece of wire, which supports a propagating plas-
mon in the TM0 mode, for which the complex propagation constant kz(ω) = β(ω)+ iα(ω)
is known; see e.g. Fig. 12.20(b). The ends of the wire act as discontinuities at which
the mode is partly reflected. The respective reflection coefficient is a complex num-
ber R(ω) = |R(ω)| exp[i�R(ω)] and depends on the exact geometry of the termination.
As a consequence, the condition for longitudinal resonances can be expressed via the
accumulated phase per round trip as

β(ω)Lres +�R(ω) = nπ , (12.66)

where Lres is the rod length for which a resonance occurs at a fixed ω and n is the order
of the resonance. For a fixed rod length the respective resonance frequencies can be found.
The concept is illustrated in Fig. 12.24. It is important to note that the resonance condition
provides only the resonance frequencies, not the width of the resonance or its amplitude.
Since wires of finite length are building blocks of optical antennas, we will pick up this
topic again in Chapter 13.

Local interactions with particle plasmons: sensing applications

The resonance condition of a particle plasmon depends sensitively on the dielectric con-
stant of the environment. Thus, similarly to the case of a plane interface, a gold or silver
particle can be used as a sensing element since its resonance will shift upon local dielectric
changes, e.g. due to the specific binding of certain ligands after chemical functionaliza-
tion of the particle’s surface. The advantage of using particle resonances as opposed to
resonances of plane interfaces is associated with the much smaller dimensions of the
particle and hence the larger surface-to-volume ratio. One can envision anchoring dif-
ferently functionalized particles onto substrates at extremely high densities and using
such arrangements as sensor chips for multiparameter sensing of various chemical com-
pounds, as demonstrated by the detection of single-base-pair mismatches in DNA (see
e.g. [32]).

Resonance shifts of small noble-metal particles were also applied in the context of
near-field optical microscopy. The observation of the resonance shift of a metal parti-
cle as a function of a changing environment was demonstrated by Fischer and Pohl in
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�Fig. 12.24 The Fabry–Pérot model of the longitudinal resonances of a nano rod. The accumulated phase per round trip is the sum
of the propagation phase 2βL and the reflection phase 2�R, which must add up to 2π in order to obtain a standing
wave.
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1989 [33]. Similar experiments were performed later using gold particles attached to a tip
[34] (c.f. Chapter 6).

12.4.2 Plasmon resonances of more complex structures

Simple, highly symmetric structures, such as isolated spherical nanoparticles or nano rods,
exhibit plasmon resonances that can easily be assigned to characteristic surface charge dis-
tributions. More complex structures, however, often yield multi-featured resonance spectra
that are difficult to interpret at first sight [35]. It has been shown that plasmon resonances of
more complex structures can often be viewed as the result of a “hybridization” of elemen-
tary plasmons of simpler substructures [36]. To give an example, consider the resonances
of a hollow metallic shell as shown in Fig. 12.25(a). The elementary resonances of this
particle are found by decomposing it into a solid metal sphere and a spherical cavity in
bulk metal. Figure 12.25(b) shows how the elementary modes can be combined to form
hybridized modes. A low-energy (redshifted) hybrid mode is obtained for an in-phase
oscillation of the elementary plasmons, whereas the anti-phase combination represents a
higher-energy mode that is shifted to higher energies. The degree of interaction between
the elementary modes and therefore the mode splitting is determined by the interaction
strength of the elementary modes, which in the present example is determined by the shell
thickness [37]. Plasmon hybridization can be understood using the framework of strong
coupling discussed in Section 8.7 and will be discussed in the context of optical antennas
(Chapter 13).

12.4.3 Surface-enhanced Raman scattering

The energy spectrum of molecular vibrations can serve as an unambiguous character-
istic fingerprint for the chemical composition of a sample. Raman scattering is named
after Sir Chandrasekhara V. Raman, who first observed the effect in 1928 [38]. Raman
scattering can be viewed as a mixing process similar to the amplitude modulation used
in radio signal transmission: the time-harmonic optical field (the carrier) is mixed with
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�Fig. 12.25 Generation of multi-featured surface plasmon resonances by hybridization of elementary modes for the example of a
gold nano-shell [36]. (a) A nano-shell decomposed into elementary structures. (b) Energies of elementary and
hybridized modes.
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�Fig. 12.26 Raman scattering refers to the spectroscopic process in which a molecule absorbs a photon with frequencyω and
subsequently emits a photon at a different frequencyωR, which is offset with respect toω by a vibrational frequency
ωvib of the molecule, i.e.ωR = ω ± ωvib. Absorption and emission are mediated by a virtual state, i.e. a vacuum
state that does not match any molecular energy level. (a) Ifω > ωR, one speaks of Stokes Raman scattering.
(b) Ifω < ωR, the process is designated anti-Stokes Raman scattering. (c) The Raman-scattering spectrum
representing the vibrational frequencies of Rhodamine 6G. The spectrum is expressed in wavenumbers
νvib (cm−1) = [1/λ (cm)]− [1/λR (cm)], withλ andλR being the wavelengths of the incident and scattered
light, respectively.

the molecular vibrations (the signal). This mixing process gives rise to scattered radia-
tion that is frequency-shifted from the incident radiation by an amount that corresponds
to the vibrational frequencies of the molecules (ωvib). The vibrational frequencies origi-
nate from oscillations between the constituent atoms of the molecules and, according to
quantum mechanics, these oscillations persist even at ultralow temperatures. Because the
vibrations depend on the particular molecular structure, the vibrational spectrum consti-
tutes a characteristic fingerprint of a molecule. A formal description based on quantum
electrodynamics can be found in Ref. [39]. Figure 12.26 shows the energy-level diagrams
for Stokes and anti-Stokes Raman scattering together with an experimentally measured
spectrum for Rhodamine 6G.

It is not the purpose of this section to go into the details of Raman scattering, but it is
important to emphasize that Raman scattering is an extremely weak effect. The Raman
scattering cross-section is typically 14–15 orders of magnitude smaller than the fluores-
cence cross-section of efficient dye molecules. The field enhancement associated with
surface plasmons, as described above, has hence been extensively investigated as a means
for increasing the interaction strength between a molecule and optical radiation. The most
prominent example is surface-enhanced Raman scattering (SERS).

In 1974 it was reported that the Raman-scattering cross-section can be considerably
increased if the molecules are adsorbed onto roughened metal surfaces [40]. In the fol-
lowing decades SERS became an active research field [41]. Typical enhancement factors
for the Raman signal observed from rough metal substrates as compared with bare glass
substrates are on the order of 106–107, and, using resonance enhancement (excitation
frequency near an electronic transition frequency), enhancement factors as high as 1012

have been reported. The determination of these enhancement factors was based on ensem-
ble measurements. However, later the authors of two independent single-molecule studies
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�Fig. 12.27 The general configuration encountered in surface-enhanced spectroscopy. The interaction between a molecule with
polarizabilityα and the exciting field E0 gives rise to a scattered field ER. Placing metal nanostructures (coordinate r′)
near the molecule enhances both the exciting field and the radiated field.

reported giant enhancement factors of 1014 [42, 43]. These studies not only shed new light
on the nature of SERS but also made Raman scattering as efficient as fluorescence measure-
ments (cross-sections of ≈10−16 cm2). The interesting outcome of these single-molecule
studies is that the average enhancement factor coincides with previous ensemble measure-
ments, but, while most of the molecules remain unaffected by the metal surface, only a few
make up the detected signal. These are the molecules with the giant enhancement factors
of 1014. These molecules are assumed to be located in a favorable local environment (hot
spots) characterized by strongly enhanced electric fields.

It is accepted that the largest contribution to the giant signal enhancement stems from
the enhanced electric fields at rough metal surfaces. The highest field enhancements are
found at junctions between metal particles or in cracks on surfaces (see e.g. [36, 42]). It is
commonly assumed that the Raman-scattering enhancement scales with the fourth power
of the electric field enhancement factor. At first glance this seems odd as one would expect
that this implies that Raman scattering is a nonlinear effect, scaling with the square of the
excitation intensity. However, this is not so. In the following we will provide a qualitative
explanation that is based on a scalar phenomenological theory [44]. It is straightforward
to rigorously expand this theory, but the mathematical details would obscure the physical
picture. Notice that the theory outlined in the following is not specific to Raman scat-
tering but applies also to any other linear interaction, such as Rayleigh scattering and
fluorescence.5

Let us consider the situation depicted in Fig. 12.27. A molecule located at r0 is placed
in the vicinity of metal nanostructures (particles, tips, ...) that act as a local field-enhancing
device. The interaction of the incident field E0 with the molecule gives rise to a dipole
moment associated with Raman scattering according to

p(ωR) = α(ωR,ω)[E0(r0,ω) + Es(r0,ω)] , (12.67)

5 In the case of fluorescence, one needs to take into account that the excited-state lifetimes can be drastically
reduced near metal surfaces.
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where ω is the frequency of the exciting radiation and ωR is a particular vibrationally
shifted frequency (ωR = ω ± ωvib). The polarizability α is modulated at the vibra-
tional frequency ωvib of the molecule and gives rise to the frequency-mixing process. The
molecule is interacting with the local field E0 + Es, where E0 is the local field in the
absence of the metal nanostructures and Es is the enhanced field originating from the inter-
action with the nanostructures (the scattered field). Es depends linearly on the excitation
field E0 and hence it can be qualitatively represented as f1(ω)E0, with f1 designating the
field-enhancement factor.

The electric field radiated by the induced dipole p can be represented by the system’s
Green function G, which accounts for the presence of the metal nanostructures, as

E(r∞,ωR) = ω2
R

ε0c2
G(r∞, r0) p(ωR) = ω2

R

ε0c2
[G0(r∞, r0) + Gs(r∞, r0)] p(ωR). (12.68)

As in the case of the exciting local field, we split the Green function into a free-space part
G0 (corresponding to the absence of metal nanostructures) and a scattered part Gs origi-
nating from the interaction with the metal nanostructures. We represent Gs qualitatively as
f2(ωR)G0, with f2 being a second field-enhancement factor.

Finally, combining Eqs. (12.67) and (12.68), using the relations Es = f1(ω)E0 and Gs =
f2(ωR)G0, and calculating the intensity I ∝ |E|2 yields

I(r∞,ωR) = ω4
R

ε2
0c4

∣∣∣[1 + f2(ωR)]G0(r∞, r0)α(ωR,ω)[1 + f1(ω)]
∣∣∣2 I0(r0,ω). (12.69)

Thus, we find that the Raman-scattered intensity scales linearly with the excitation intensity
I0 and that it depends on the factor∣∣∣[1 + f2(ωR)][1 + f1(ω)]

∣∣∣2. (12.70)

In the absence of metal nanostructures, we obtain the scattered intensity by setting f1 =
f2 = 0. On the other hand, in the presence of the nanostructures we assume that f1, f2 � 1
and hence the overall Raman-scattering enhancement becomes

fRaman =
∣∣∣ f2(ωR)

∣∣∣2 ∣∣∣ f1(ω)
∣∣∣2. (12.71)

Provided that |ωR ±ω| is smaller than the spectral response of the metal nanostructure, the
Raman-scattering enhancement scales roughly with the fourth power of the electric field
enhancement. It should be kept in mind that our analysis is qualitative and ignores the vec-
torial nature of the fields and the tensorial properties of the polarizability. Nevertheless,
a rigorous self-consistent formulation along the lines outlined here is possible. Besides
the field-enhancement mechanism described, an additional enhancement associated with
SERS is a short-range “chemical” enhancement, which results from the direct contact
of the molecule with the metal surface. This direct contact results in a modified ground-
state electronic charge distribution, which gives rise to a modified polarizability α. Further
enhancement can be accomplished through resonant Raman scattering, for which the exci-
tation frequency is near an electronic transition frequency of the molecule, i.e. the virtual
levels shown in Fig. 12.26 come close to an electronic state of the molecule.
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12.5 Nonlinear plasmonics

In addition to their unique linear optical properties, metals also possess a strongly nonlinear
response, which can be exploited for local frequency mixing, switching, and modula-
tion. In nonlinear laser crystals, efficient optical frequency conversion is made possible
by phase matching, namely the coherent addition of the nonlinear response upon propaga-
tion through the crystal. However, in order for phase matching to occur, the crystal needs
to be many wavelengths in size. For material structures smaller than the wavelength, the
nonlinear response is defined by the intrinsic material nonlinearities and by the ability to
efficiently couple radiation into and out of the material structures. Therefore, traditional
nonlinear laser crystals, such as lithium niobate (LiNbO3), are no longer the material of
choice for frequency conversion on the nanometer scale. Much stronger nonlinear effects
can be achieved with metal nanostructures. For example, the third-order nonlinear suscep-
tibility of gold is χ (3) ∼ 1 nm2 V−2, which is more than two orders of magnitude larger
than that of LiNbO3. As an illustration, Fig. 12.28 shows bursts of photons of frequency
2ω1 − ω2 generated by modulating the distance between two gold nanoparticles that are
irradiated by laser pulses of frequencies ω1 and ω2.

The nonlinear properties of materials are typically expressed in terms of nth-order non-
linear susceptibilities χ (n), which relate the induced polarization P to the local excitation
fields Ei. For example, the efficiency of sum-frequency generation is defined by Re[χ (2)],
the efficiency of four-wave mixing by Re[χ (3)], and the efficiency of two-photon absorption
by Im[χ (3)]. For a more detailed discussion, the interested reader is referred to textbooks
on nonlinear optics [45].

Different physical mechanisms have been discussed as the possible origins of metal
nonlinearities [46]. They include higher-order multipole interactions, hot-electron contri-
butions, and interband transitions. Another contribution arises from the ponderomotive
potential Vp discussed in Section 12.1.2. Vp modifies the electron density and thereby
affects the Drude model that describes the dielectric function of the metal. More specifi-
cally, the potential Vp disturbs the Fermi–Dirac distribution and offsets the electron density
as [47]
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�Fig. 12.28 Four-wave mixing from a pair of gold nanoparticles. Narrow-band photon bursts at frequencyω4WM = 2ω1 − ω2

can be generated by modulating the distance between the gold nanoparticles.
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n(r) = 1

3π2

(
2m

�2

)3/2 [
EF − Vp(r)

]3/2 . (12.72)

Thermal effects can be ignored as long as the Fermi energy EF is far from the
conduction-band edge. EF can be expressed in terms of the equilibrium plasma frequency
ωp (c.f. Eq. (12.2)) and, because Vp � EF, we can approximate the term in brackets as(
EF−Vp

)3/2 ≈ [
1 − (3/2)(Vp/EF)

]
E3/2

F . If we treat the metal as a free-electron gas with
a modified electron density according to Eq. (12.72) we obtain for the dielectric function
ε(ω, r) = 1 − n(r)e2/(mε0ω

2), where we ignored any damping. Notice that ε turns into a
nonlocal function; that is, it depends through the ponderomotive potential on the location r.
Using the expression for Vp from Eq. (12.6), we arrive at

ε(r,ω) =
[

1 − ω2
p

ω2

]
+ 3

2

e4

ω4

[
ωp

3π2ε0 �3me

]2/3 〈
|E(r, t)|2

〉
. (12.73)

The first term in brackets is recognized as the linear dielectric function, while the sec-
ond term is identified as a nonlinear term that depends on the local intensity. Thus, the
ponderomotive force gives rise to a third-order nonlinear susceptibility with magnitude

χ (3) = 3

2

e4

ω4

[
ωp

3π2ε0 �3me

]2/3

. (12.74)

Using λ = 2πc/ω = 800 nm and λp = 2πc/ωp = 138 nm (gold), we obtain χ (3) =
0.15 nm2 V−2, which is in good agreement with experimental values [48]. Equation (12.74)
predicts that the nonlinearity of metals increases as we go to lower frequencies. However,
this trend has its limits because we ignored the conductive contribution to the dielectric
response (the imaginary part of ε) and hence the theory outlined here is valid only in the
visible-to-mid-infrared frequency range.

In most cases, metals possess inversion symmetry, for which second-order nonlinearities
(χ (2)) are greatly suppressed. However, this argument is based on the dipole approxima-
tion and does not consider higher-order multipolar terms in the light–matter interaction.
Furthermore, inversion symmetry can be broken by the surface of the material structure.
For example, two closely spaced nanoparticles possess inversion symmetry only if they
are of equal size. Thus, the second-order nonlinear response of metals can be geometri-
cally engineered. Strong second-harmonic generation and sum-frequency generation have
been observed from non-centrosymmetric configurations, such as metal tips and pyramidal
nanoparticles.

12.6 Conclusion

In this chapter we have discussed the basic properties of surface plasmons. We have pointed
out the nature of these modes as being a hybrid between local optical fields and associated
electron-density waves in a metal. As nano-optics in general deals with optical fields in the
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close vicinity of nanostructures it is obvious that such collective excitations play a major
role in the field. There are many applications and prospects of surface plasmons that we
could not mention here. The study of plasmons on metal nanostructures has developed into
a research field of its own called “plasmonics.” For more information, the interested reader
is referred to Ref. [9] and references therein.

Problems

12.1 Study the effect of a complex dielectric function on the propagation of a plane
wave. What happens if a plane wave is normally incident on the interface between
a transparent dielectric (positive, real ε) and a metal?

12.2 Show that for an ansatz similar to Eq. (12.23), but with s-polarized waves, a reflected
wave has to be added to fulfill the boundary conditions and Maxwell’s equations
simultaneously.

12.3 Show that, if we do not demand the solution to be a surface wave, i.e. if the per-
pendicular wavevector, Eq. (12.30), may be real, then we arrive at the well-known
condition for the Brewster effect.

12.4 Write a program that plots the reflectivity of a system of (at least up to four) stratified
layers as a function of the angle of incidence using the notation of (12.26). Study
a system consisting of glass, gold, and air with a thickness of the gold layer of
about 50 nm between the glass and the air half-spaces. Plot the reflectivity for light
incident from the glass side and from the air side. What do you observe? Study the
influence of thin layers of additional materials on top of or below the gold. A few
nanometers of titanium or chromium are often used to enhance the adhesion of gold
to glass. What happens if a monolayer of proteins (∼5 nm in diameter, refractive
index ∼1.33) is adsorbed on top of the gold layer? Hint: consider a stratified layer
of thickness d (medium 1) between two homogeneous half-spaces (media 0 and 2).
According to (12.26) the fields in each medium for p-polarization read as

E0 = E+
0

⎛
⎝ 1

0
−kx/k0,z

⎞
⎠ eik0,zz + E−

0

⎛
⎝ 1

0
kx/k0,z

⎞
⎠ e−ik0,zz, (12.75)

E1 = E+
1

⎛
⎝ 1

0
−kx/k1,z

⎞
⎠ eik1,zz + E−

1

⎛
⎝ 1

0
kx/k1,z

⎞
⎠ e−ik1,z(z−d), (12.76)

E2 = E+
2

⎛
⎝ 1

0
−kx/k2,z

⎞
⎠ eik2,z(z−d). (12.77)

Exploiting the continuity of E‖ and D⊥ yields after some manipulation(
E+

0
E−

0

)
= 1

2

(
1 + κ1η1 1 − κ1η1

1 − κ1η1 1 + κ1η1

)(
1 0
0 eik1,zd

)(
E+

1
E−

1

)
(12.78)
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as well as(
E+

1
E−

1

)
=
(

e−ik1,zd 0
0 1

)
1

2

(
1 + κ2η2 1 − κ2η2

1 − κ2η2 1 + κ2η2

)(
E+

2
0

)
, (12.79)

where κi = ki−1,z/ki,z and ηi = εi/εi−1. Equations (12.78) and (12.79) can be
combined to give (

E+
0

E−
0

)
= T0,1 ·�1 · T1,2

(
E+

2
0

)
. (12.80)

Here

T0,1 = 1

2

(
1 + κ1η1 1 − κ1η1

1 − κ1η1 1 + κ1η1

)
, (12.81)

T1,2 = 1

2

(
1 + κ2η2 1 − κ2η2

1 − κ2η2 1 + κ2η2

)
, (12.82)

and

�1 =
(

e−ik1,zd 0
0 eik1,zd

)
. (12.83)

From this we can infer a general relation connecting the fields outside an arbitrary
system of stratified layers which reads as(

E+
0

E−
0

)
= T0,1 ·�1 · T1,2 ·�2 · · · · · Tn,n+ 1

(
E+

n+1
0

)
. (12.84)

The reflectivity R(ω, kx) can be calculated from (12.84) as

R(ω, kx) = |E−
0 |2

|E+
0 |2

, (12.85)

from which E+
n+ 1 cancels out. To test the program plot the reflectivity of a glass/air

interface and find the Brewster angle.
12.5 Extend the program you have just written to determine the amount of intensity

enhancement obtained right above the metal layer by determining the ratio between
the incoming intensity and the intensity just above the metal layer.

12.6 Prove that Eq. (12.41) actually is exactly the electrostatic field of a point dipole,
except that it oscillates in time with eiωt.

12.7 Solve the Laplace equation (12.55) for a spherical particle and verify the results
(12.59) and (12.60).

12.8 The nonlinear response of a thin metal film can be described by a surface non-
linearity. Incident fields induce a nonlinear surface polarization P, which acts as
a source current for fields at the nonlinear frequency ω. Consider a polarization
current P = [Px, 0, Pz]T exp(ikxx)δ(z) confined to the z = 0 plane between two
dielectric media with dielectric constants ε1 and ε2, respectively, and calculate the
fields E emitted into the two half-spaces according to



411 References

E(r) = ω2

ε0c2

∫
surface

↔
G (r, r′)P(r′)d2r′.

Use the Weyl identity (c.f. Chapter 10) and assume that
√
ε2 > ckx/ω >

√
ε1.
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13 Optical antennas

An optical antenna is a mesoscopic structure that enhances the local light–matter interac-
tion. Similarly to their radiowave analogs, optical antennas mediate the information and
energy transfer between the free radiation field and a localized receiver or transmitter.
The degree of localization and the magnitude of transduced energy indicate how good an
antenna is. We thus define an optical antenna as a device designed to efficiently convert free-
propagating optical radiation to localized energy, and vice versa [1]. In this sense, even a
standard lens is an antenna, but since the degree of localization is limited by diffraction,
the lens is a poor antenna. To characterize the quality and the properties of an antenna,
radio engineers have introduced antenna parameters, such as gain and directivity. Opti-
cal antennas hold promise for controllably enhancing the performance and efficiency of
optoelectronic devices, such as photodetectors, light emitters, and sensors.

Although many of the properties and parameters of optical antennas are similar to those
of their radiowave and microwave conuterparts, there are important differences resulting
from their small size and the plasmon resonances of metal nanostructures. In this chapter
we introduce the basic principles of optical antennas, building on the background of both
radiowave antenna engineering and plasmonics.

13.1 Significance of optical antennas

The length scale of free radiation is determined by the wavelength λ, which is on the
order of 500 nm. However, the characteristic size of the source generating this radiation
is significantly smaller, typically sub-nanometer. To illustrate this, let us consider a simple
particle-in-a-box model with energy difference �E12 = hc/λ between the ground state
and the first excited state. Using λ = 500 nm, we readily find that the box size needs to be
∼1 nm. Thus, there is a mismatch of almost three orders of magnitude between the wave-
length of radiation and the electronic confinement. Since the wavelength is also the relevant
scale for diffraction effects, e.g. in the focusing of light, this mismatch prevents photons
from being confined to the size of a quantum emitter. This leads, for example, to the ineffi-
cient absorption of light by a single quantum emitter under ambient conditions even when it
is illuminated with a tightly focused laser beam (see Chapter 9). Similar arguments explain
the small cross-section for the generation of excitons in a semiconductor material – a fun-
damental process for solar energy conversion. A further consequence of the mismatch is
the rather long lifetime of the excited state of a quantum emitter in vacuum.

414
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Because the size of a quantum emitter is so much smaller than the wavelength of light,
the “birth” of a photon is a highly inefficient process [5]. This is illustrated by considering
the total power emitted by a time-harmonic point dipole, Eq. (8.71). Assuming that the
dipole p has a small, but non-negligible, size �l and that it is oscillating at the frequency
ω, we can express the dipole moment in terms of the current as |p| = I�l/ω, with I
being the peak amplitude of the current. We then find that the total radiated power can be
written as

Prad = π

3
I2Zw

(
�l

λ

)2

, (13.1)

where Zw = √
μ0/ε0 = 377 � is the wave impedance of free space. The radiated power

turns out to be proportional to the square of the length-to-wavelength ratio and is therefore
very small. Note that we can represent Eq. (13.1) as Prad = (1/2)RradI2, where Rrad defines
the radiation resistance. Evidently, the smaller �l is, the smaller Rrad will be, and the less
efficient it is to release energy from the emitter.

The radiation emitted by a quantum emitter is composed of discrete quanta of energy
E = �ω = (hc/λ) and hence P = Eγ , with γ being the photon-emission rate. γ spec-
ifies how fast the emitter is being cycled between the ground state and the excited state.
Evidently, the maximum value of γ is defined by the emitter’s excited-state lifetime τ ,
that is, γmax = 1/τ . Typically, τ is on the order of nanoseconds, and hence the maximum
number of photons that can be emitted per unit time is relatively small, which limits the
use of single quantum emitters as sources of single photons [6] and their detectability in

radiation
(a)

antenna

receiver

radiation

antenna

(b)

transmitter

�Fig. 13.1 The optical antenna principle. (a) Receiving antenna. (b) Transmitting antenna. Arrows indicate the direction of
energy flow. The two configurations are related by the principle of reciprocity (see Section 2.13).
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spectroscopic applications as well as in sensor devices. Furthermore, there is plenty of time
for transitions to dark states or for the excited-state energy to be dissipated through alter-
native non-radiative channels, including photochemical processes. By coupling a quantum
emitter to an optical antenna we can reduce τ and thereby improve the photon-emission
rate and reduce the likelihood of dark-state transitions.

Thus, optical antennas enable (i) the confinement of optical radiation to nanoscale
dimensions and (ii) the efficient release of radiation from localized sources, thereby
enhancing the light–matter interaction.

13.2 Elements of classical antenna theory

As a basis for our discussion we recall basic elements of classical antenna theory. The
classical theory of antennas, which is documented in many textbooks (see e.g. [7, 8]), uses
Maxwell’s equations to describe the interplay of time-dependent currents and electromag-
netic waves. Most of the characteristic features of classical antennas are related to the two
facts that (i) antenna wires can be treated as perfect conductors (there is no field penetra-
tion into the metal and respective boundary conditions) and (ii) critical dimensions, such
as the antenna feed-gap and wire thickness, can be made negligibly small compared with
the wavelength.

The electromagnetic field emitted by an antenna can be expressed in terms of the current
density j(r) and the charge density ρ(r) of the antenna elements. j(r) and ρ(r) are related
by the continuity relation (2.5). It is most common to express the electromagnetic field in
terms of the vector potential A(r) and the scalar potential �(r), which, using the Lorenz
gauge (c.f. Eq. (2.78)), satisfy a set of four scalar Helmholtz equations[

∇2 + k2
]

A(r) = −μ0μj(r), (13.2)[
∇2 + k2

]
�(r) = − 1

ε0ε
ρ(r). (13.3)

The solutions of these equations can be expressed in terms of the scalar Green function G0

(c.f. Eq. (2.84)) as

A(r) = μ0μ

∫
V

j(r′) G0(r, r′) dV ′, (13.4)

�(r) = 1

ε0ε

∫
V
ρ(r′) G0(r, r′) dV ′. (13.5)

These solutions define the field distribution, radiation pattern, and radiated power. The
electric and magnetic fields are found by straightforward differentiation according to
Eqs. (2.75) and (2.76).

Note that the procedure outlined above depends on a-priori knowledge of the sources
j(r) and ρ(r). It turns out, however, that it is quite difficult to accurately determine the
current distribution on the antenna elements. For popular center-fed antennas consisting of
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�Fig. 13.2 A harmonically driven two-wire transmission line terminated by (a) an open end and (b) a finite-length antenna. For
a given instant of time, the arrows indicate the magnitude and direction of the current, plus and minus signs indicate
local charge accumulation, and the solid line indicates the standing current wave; (c) equivalent circuit of the system
including the internal impedance of the generator, Zin, the characteristic impedance of the transmission line, Z0, and
the impedance of the antenna, ZL, acting as a load.

thin wires and small feed-gaps an approximate current distribution can be found by solving
an integral equation that accounts for radiation reaction (see e.g. [9] for details). Here, for
reasons of simplicity, we discuss important antenna parameters under the assumption that
the current distribution has a sinusoidal shape. Specifically, as sketched in Fig. 13.2(a), we
consider a two-wire transmission line terminated by an open end and driven by a high-
frequency voltage source.

The truncated transmission line itself, although it sustains time-harmonic currents with a
spatially varying amplitude, does not radiate into the far-field if the gap between the wires
is small, since each current element of one wire has its counterpart in the other wire oscil-
lating 180◦ out of phase. Radiation therefore largely cancels out in the far-field, although
there is a strong near-field that is localized between the wires. Since good conductors are
being considered, the wavelength of the standing wave is practically the same as the wave-
length in free space. For an infinitely long transmission line the local ratio of the voltage
between the wires and the current through the wires is a constant called the characteris-
tic impedance, Z0 = U(z)/I(z), which is independent of the position z along the line. It
depends solely on the materials used and on the geometry of the transmission line [10].
It has to be emphasized that the characteristic impedance Z0 is different from the wave
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impedance Zw, despite their having the same units. The former is the ratio of voltages and
currents, whereas the latter is the ratio of the electric and magnetic fields. For example, a
parallel-plate waveguide with a spacing of d < λ/2 has a wave impedance of 377�, which
is similar to that of free space, but its characteristic impedance depends on the particular
geometrical parameters.

Let us now consider the situation depicted in Fig. 13.2(b), where the parallel wires are
bent by 90◦ at a distance of L/2 from the open end – one upwards and one downwards.
We assume that the bending does not significantly affect the sinusoidal current distribution
along the bent part of the wires, which is true for thin wires. Considering that the current
is zero at the wire ends, we write

I(z) = Imax sin

[
k

(
1

2
L − |z|)

)]
. (13.6)

z = ±L/2 corresponds to the wire ends and z = 0 to the location of the bend. The max-
imum current amplitude becomes Imax = I(0)/ sin( 1

2 kL), which is to be expected from
a simple standing-wave model. The actual current amplitude, however, differs from that
found in the unbent transmission line. The reason is that the antenna arms can be thought of
as a resonant circuit with a complex impedance ZL �= Z0, leading in general to a reflection
at the bending point and a shift in the standing-wave pattern as sketched in Fig. 13.2(b).
It is then natural to define the input impedance of an antenna by the ratio of the volt-
age measured over the input terminals and the current flowing into each antenna arm,
ZL = U(0)/I(0) = RL + iXL. As for any frequency-dependent complex impedance, the
equivalent circuit of the antenna shows a resonance for that driving frequency for which
Im(ZL) = XL = 0, which also leads to a maximum in the current amplitude. We will refer
to such a resonance as an “antenna resonance.”

The power dissipated by the antenna is determined by the real part of the antenna
impedance RL, which includes ohmic losses, Rnr, as well as losses due to radiation, Rrad,
and accordingly

RL = Rrad + Rnr. (13.7)

Once the radiation resistance is known, the radiated power can be calculated as Prad =
(1/2)RradI(0)2. A corresponding relation holds for the nonradiative power dissipated into
heat. However, since ohmic losses for radio-frequency antennas are very small, Rnr can
often be neglected.

The equivalent circuit for the system made of the antenna, the transmission line, and an
electrical source is shown in Fig. 13.2(c). The equivalent circuit allows one to describe the
relevant parameters of the circuit. In particular, the power delivered to the antenna can be
maximized by seeking impedance matching between the transmission line and the antenna.
In an unmatched situation it is possible that the antenna is on resonance (i.e. Im(ZL) =
XL = 0) but very little power is delivered to it via the transmission line because of a
large impedance mismatch. This is a situation that occurs, for example, for an antenna
with L = λ in which the current vanishes in the gap according to Eq. (13.6). Although it
has favorable properties, such an antenna cannot be fed by connecting wires at the feed-
gap because the antenna impedance diverges. The question of how to feed an antenna in
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an optimal way is also of importance for nanoantennas at optical frequencies, as we will
discuss later on.

For a given source current I(0) the radiation resistance defines the total radiated power.
However, for an antenna it is important not only to efficiently radiate but also to direct the
radiation towards a target, such as a receiving antenna. To visualize the angular distribu-
tion of radiation one plots the radiation pattern p(θ ,φ). For a thin linear antenna with a
sinusoidal current distribution (Eq. (13.6)) we find [7]

p(θ ,φ) ∼
∣∣∣∣∣∣
cos
(

1
2 kL cos θ

)
− cos

(
1
2 kL
)

sin θ

∣∣∣∣∣∣
2

, (13.8)

where the angle θ is measured from the direction of the antenna wires and φ is the
azimuthal angle. For small antenna arms all current elements are in phase and hence the
radiation pattern is very similar to that of a Hertzian dipole (L � λ) except that its angular
dependence becomes slightly narrower. Only when the antenna length increases beyond λ
are current elements on the same wire that oscillate 180◦ out of phase introduced, causing
strong interference effects and radiation cancellation in some directions. In this case, the
radiation pattern features multiple lobes (see Fig. 13.3). The radiation pattern can be further
influenced by deviating from the linear shape of the antenna or by adding additional wires
as passive elements at well-chosen positions, as is done in the famous Yagi–Uda antenna
design.
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behaves as a single-wire antenna. A sketch of the current standing wave is provided beside each emission pattern.
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13.3 Optical antenna theory

The physics described by Maxwell’s equations in vacuum is scale-invariant, i.e. indepen-
dent of the wavelength. However, this is no longer true in the presence of matter, whose
frequency-dependent properties enter Maxwell’s equations via the material equations.
Metal nanowires, the constituting elements of optical antennas, can no longer be con-
sidered to be perfect conductors at optical frequencies. Since typical wire diameters are
smaller than the skin depth, electromagnetic fields fully penetrate the wire and induce
volume currents as opposed to the pure surface currents that determine the behavior of
radiowave antennas. Furthermore, noble-metal nanowires can support wire plasmon modes
with wavelengths less than that for free space, which dominate the antenna behavior at
optical frequencies (see Chapter 12). While optical antenna design can adapt some design
principles known from radiowave antenna technology, important antenna parameters need
to be recalculated considering the volume currents and the reduced wavelength.

A major difference between radiowave and optical antennas is the way in which a
receiver or transmitter is connected to the antenna. As illustrated in Fig. 13.2, a transmitter
or receiver is typically connected to a radiowave antenna by means of an impedance-
matched transmission line. However, at optical frequencies, the small size of receivers and
transmitters prevents them from being wired to antenna elements in the traditional fash-
ion. Instead, interconnects become part of the antenna design, and, in the extreme limit,
receivers and transmitters become discrete quantum objects such as molecules, quantum
dots, or tunnel junctions that couple to the antenna by energy or charge transfer.

The objective of optical antenna design is equivalent to that of classical antenna design,
namely to optimize the energy transfer between a localized source or receiver and the free
radiation field. As illustrated in Fig. 13.4, optical antennas can enhance several distinct

photodetectionlight emission

(a) (b) (c)

spectroscopy

e− e− e−

hν hν hν hν

h+h+
h+

�Fig. 13.4 Antenna-coupled optical interactions. The circle indicates a material system in which (a) charges are combined to
produce radiation, (b) radiation generates charge separation, or (c) incident radiation generates polarization currents
that give rise to secondary radiation.
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photophysical processes. In light-emitting devices (LEDs), an electron and a hole combine
to emit a photon. The reverse process takes place in photodetection.

Optical antennas can have a variety of different shapes depending on the specific purpose
they are intended to fulfill. Figure 13.5 shows a selection of structures that have been
investigated so far. In most of the structures single metal wires are used as fundamental
building blocks. Structures consisting of multiple wires are used to tailor the polarization
response and the emission pattern much as in radiowave antenna engineering.

13.3.1 Antenna parameters

Figure 13.6 illustrates a generic antenna problem. It consists of a transmitter and a receiver,
both represented by dipoles p. The antenna is introduced to enhance the transmission effi-
ciency from the transmitter to the receiver. This enhancement can be achieved by increasing
the total amount of radiation released by the transmitter or by altering the radiation pattern
such that more power is directed towards the receiver. To quantify these processes radio
engineers have introduced specific parameters, which we shall discuss in the following.

Antenna efficiency

The total power P that is dissipated by an antenna-coupled emitter is the sum of the radiated
power Prad and the power dissipated into heat and other channels (Ploss). The antenna
efficiency is defined as

ηrad = Prad

P
= Prad

Prad + Ploss
. (13.9)

ba c d

gfe

�Fig. 13.5 SEM images of optical antennas: (a) coupled-dipole antenna, (b) nanoparticle antenna, (c) bowtie antenna, (d)
square-spiral antenna [11], (e) cross antenna, (f) Yagi–Uda antenna [12], and (g) Hertzian dimer antenna. All scale
bars 100 nm.
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While P is most conveniently determined by calculating the field E at the dipole’s position
according to Eq. (8.74), Prad requires the calculation of the energy flux through a surface
enclosing both the dipole and the antenna.

Intrinsic efficiency

It is useful to distinguish dissipation in the antenna and the transmitter, which is not
accomplished by Eq. (13.9). We therefore define the intrinsic efficiency of the emitter as

ηi = P o
rad

P o
rad + P o

intrinsic loss
, (13.10)

where the superscripts o designate the absence of the antenna. With this definition of ηi we
can rewrite Eq. (13.9) as

ηrad = Prad/P o
rad

Prad/P o
rad + Pantenna loss/P o

rad + (1 − ηi)/ηi
. (13.11)

For an emitter with ηi = 1 (no intrinsic loss) the antenna can only reduce the efficiency.
Note, however, that even if the efficiency gets reduced, the emission rate of the emitter can
be enhanced (see Section 13.4). For emitters with low ηi the antenna can increase η.

Radiation pattern

The transmission efficiency from emitter to receiver can also be improved by directing
the radiation in the direction of the receiver. To account for the angular distribution of
the radiated power we define the normalized angular power density p(θ ,φ), or radiation
pattern, as ∫ π

0

∫ 2π

0
p(θ ,φ)sin θ dφ dθ = Prad. (13.12)

p2
p1

antenna

(θ, φ)
receiver

radiation

transmitter

�Fig. 13.6 The generic antenna problem. An antenna enhances the transmission efficiency from the transmitter to the receiver.
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Directivity

The directivity is a measure of an antenna’s ability to concentrate the radiated power into
a certain direction. It corresponds to the angular power density relative to a hypothetical
isotropic radiator. Formally,

D(θ ,φ) = 4π

Prad
p(θ ,φ). (13.13)

When the direction (θ ,φ) is not explicitly stated one usually refers to the direction of
maximum directivity, i.e. Dmax = (4π/Prad)Max

[
p(θ ,φ)

]
.

Because the fields at a large distance from an antenna are transverse, they can be writ-
ten in terms of two polarization directions, nθ and nφ . The partial directivities are then
defined as

Dθ (θ ,φ) = 4π

Prad
pθ (θ ,φ) and Dφ(θ ,φ) = 4π

Prad
pφ(θ ,φ). (13.14)

Here, pθ and pφ are the normalized angular powers measured after polarizers aligned in
the directions nθ and nφ , respectively. Because nθ · nφ = 0 we have

D(θ ,φ) = Dθ (θ ,φ) + Dφ(θ ,φ). (13.15)

The influence of an optical antenna on the radiation pattern of a single molecule was studied
by van Hulst et al. [12, 13], and it has been shown that the antenna provides a high level of
control for the direction and polarization of the emitted photons (see Fig. 13.7).
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�Fig. 13.7 An optical Yagi–Uda antenna directing the photon emission from a single quantum dot (QD). (a) An SEM image of the
antenna fabricated on a quartz surface. It consists of a reflector, three directors, and a feed element to which the QD is
coupled. (b) The radiation pattern, showing photon emission in the direction of the antenna. (b) The reference
radiation pattern of a QD emitting in the absence of the antenna. θc indicates the critical angle and θNA the maximum
angle accessible, as determined by the numerical aperture (NA) of the collection lens. (c) Comparison of the
experimental and theoretical radiation patterns. Adapted from Ref. [12].
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Effective area

D(θ ,φ)/(4π ) defines the fraction of the total radiated power that is radiated in the direction
of (θ ,φ). In other words, it is the fraction of power radiated into the infinitesimal unit solid
angle d� = sin θ dθ dφ. At a distance R � λ from the antenna, this fraction of power
spreads over an area of dA = R2 d�, which assumes that we’re in free space and that there
are no obstructions and other inhomogeneities. Thus, on writing p(θ ,φ) = dPrad/d� =
[dPrad/dA] [dA/d�] = I(θ ,φ)R2 we find

D(θ ,φ) = 4πR2 I(θ ,φ)

Prad
, (13.16)

where I is the intensity.
Let us now express D(θ ,φ) in terms of an effective aperture Aeff. This aperture is placed

at the location of the antenna and is irradiated by a plane wave. Its surface normal points in
the direction of (θ ,φ). After the wave has passed through the aperture it spreads out due to
diffraction. We want to adjust the size of Aeff such that the diffracted beam has a directivity
D(θ ,φ). Assuming that the radius w0 of the aperture is larger than λ, diffraction theory
yields (c.f. Fig. 3.1 and Eq. (3.16))

θ = λ/(πw0). (13.17)

In terms of the power emitted by the aperture (Prad), the effective aperture area (Aeff =
πw2

0), and the beam area π (Rθ )2 we can now express the beam intensity at a distance R as
I = AeffPrad/(λ2R2). Inserting this into Eq. (13.16) yields

Aeff = λ2

4π
D(θ ,φ). (13.18)

Thus, in terms of radiation, an antenna behaves like an aperture that directs radiation in
the direction of observation (θ ,φ). Note that, if we reverse the flow of radiation, then Aeff

defines the power received by the antenna, that is, Preceived = AeffIA, with IA being the
intensity at the aperture. Aeff then assumes the meaning of an absorption cross-section,
which will be discussed later on.

Gain

The combination of antenna efficiency and directivity is referred to as the antenna gain,

G = 4π

P
p(θ ,φ) = ηradD. (13.19)

D and G are usually measured in decibels (dB). Since perfectly isotropic radiators do
not exist in reality, it is often more practical to refer to an antenna of a known direc-
tional pattern. The relative gain is then defined as the ratio of the power gain in a
given direction to the power gain of a reference antenna in the same direction. A dipole
antenna is the standard choice as a reference because of its relatively simple radiation
pattern.
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The Chu limit

In most antenna problems, G is the quantity of relevance since it defines the transmission
efficiency from emitter to receiver. An interesting question is whether there is an upper
limit for G. Evidently, the larger we make an antenna the more engineering degrees we
have available and the larger G will be. Similarly, G can be optimized by reducing the
bandwidth of transmission frequencies and making the antenna more resonant. A limit
for G can indeed be derived for a fixed volume V and a fixed relative bandwidth B (the
bandwidth divided by the center frequency) [14, 15]

GB ≤ c0V/λ3, (13.20)

where c0 is a constant of order unity that depends on the geometry of V . This limit goes
back to L. G. Chu’s work in 1948 and is based on ideal conductors and a field expansion in
spherical harmonics [14]. Chu’s theory was later expanded and generalized by Gustafsson
and coworkers [15].

Reciprocity

According to the reciprocity theorem (see Eq. (2.102)) we can interchange the fields and
sources. For a pair of dipoles (c.f. Fig. 13.6) we obtain p1 · E2 = p2 · E1, where E1 (E2)
is the field of dipole p1 (p2) evaluated at the location of p2 (p1). The separation between
the two dipoles is assumed to be sufficiently large (kR � 1) to ensure that they interact
only via their far-fields. Furthermore, the direction of p2 is chosen to be transverse to the
vector connecting the two dipoles.

In the classical picture, we assume that dipole p1 has been induced by the field E2 of

dipole p2 according to p1 =↔
α 1E2, where

↔
α 1= α1np1np1 is the polarizability tensor. Here,

np1 is the unit vector in the direction of p1. According to Eq. (8.74), the power absorbed
by the dipole at r1 is

Pabs = (ω/2)Im
{
p∗1 · E2(r1)

} = (ω/2)Im{α1}
∣∣np1 · E2(r1)

∣∣2 . (13.21)

We now substitute into Eq. (13.21) the reciprocity relation in the form |p1 |np1 · E2 =
|p2 |np2 · E1, and obtain

Pabs = (ω/2)|p2/p1|2 Im{α1}
∣∣np2 · E1(r2)

∣∣2 . (13.22)

The term
∣∣np2 · E1(r2)

∣∣2 corresponds to the power a photodetector at r2 would read if it
were placed behind a polarizer oriented in the direction np2 .

We now invoke the partial directivities defined in Eqs. (13.14). In terms of the field E
evaluated at r2 = (R, θ ,φ) the partial directivity Dθ reads

Dθ (θ ,φ) = 4π
|nθ · E(R, θ ,φ)|2∫

4π |E(R, θ ,φ)|2 d�
, (13.23)

where� is the unit solid angle and nθ the unit polar vector. Dφ(θ ,φ), referring to radiation
polarized in azimuthal direction nφ , is expressed similarly.
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To proceed, we choose the dipole p2 to point in the direction of nθ . Equation (13.22)
can then be represented as

Pabs,θ (θ ,φ) = (ω/2)|p2/p1|2 Im{α1} Prad

2πε0cR2
Dθ (θ ,φ). (13.24)

Here, Prad = (1/2)ε0cR2
∫

4π |E(R, θ ,φ)|2 d� is the total radiated power. Pabs,θ (θ ,φ),
specifies the power absorbed by dipole p1 when excited by the field of dipole p2 located at
(R, θ ,φ) and oriented in the nθ direction. Because kR � 1 the field exciting dipole p1 and
the antenna is essentially a plane wave polarized in the direction nθ .

We now remove the antenna and write down an equation similar to Eq. (13.24). Dividing
one of the two equations by the other yields

Pabs,θ (θ ,φ)

P o
abs,θ (θ ,φ)

= Prad

P o
rad

Dθ (θ ,φ)

D o
θ (θ ,φ)

, (13.25)

where the superscipts o carry the same meaning as in Eq. (13.10), namely the absence of
an antenna. Using the fact that Pabs is proportional to the excitation rate γexc and Prad is
proportional to the radiative decay rate γrad (see, for example, Eq. (8.116)) we can rewrite
Eq. (13.25) as

γexc,θ (θ ,φ)

γ o
exc,θ (θ ,φ)

= γrad

γ o
rad

Dθ (θ ,φ)

D o
θ (θ ,φ)

, (13.26)

which states that the enhancement of the excitation rate due to the presence of the antenna
is proportional to the enhancement of the radiative rate, a relationship that has been used
qualitatively in various studies [16–18]. Note that the same analysis can be repeated with
nφ instead of nθ , which corresponds to polarization rotated by 90◦.

Antenna aperture

The antenna aperture describes the efficiency with which incident radiation is captured.
It corresponds to the area of incident radiation that interacts with the antenna, and is
defined as

σA(θ ,φ, npol) = Pabs

I
, (13.27)

where Pabs denotes the power absorbed by the receiver and I is the intensity of radiation
incident from (θ ,φ) and polarized in the direction npol. If the direction or polarization is
not specified one usually refers to the one that yields the maximum aperture. Formally, the
antenna aperture is equivalent to the absorption cross-section.

The antenna increases the optical energy density that falls on a target and thereby
increases its efficiency. For a detector that is small compared with the wavelength λ the
received power is calculated according to Eq. (8.74) as

Pabs = (ω/2)Im{α}∣∣np · E
∣∣2 . (13.28)
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I0 I0

A a
I I

�Fig. 13.8 Reduction of the area of the photodetector. Left: light with intensity I0 is incident on a photodetector with area A to
produce a photocurrent I. Right: same situation for an antenna-coupled detector. The detector area can be reduced
(a � A) without affecting the response I/I0. The reduced detector area improves the signal-to-noise ratio and
reduces the response time and energy consumption.

Here, np is the unit vector in the direction of the absorption dipole p, and E is the field at
the location of the detector. If we denote the field at the target in the absence of the antenna
as E0 we can represent the antenna aperture as

σA = σ 0
A

∣∣np · E
∣∣2/∣∣np · E0

∣∣2 , (13.29)

where σ 0
A is the aperture in the absence of the antenna and E is the field at the target in the

presence of the antenna. Thus, we find that the absorption enhancement corresponds to the
local intensity-enhancement factor.

Theoretical and experimental studies have shown that intensity enhancements of
104–106 are readily achievable [19] and hence, for typical molecules with free-space cross-
sections of σ 0

A = 1 nm2, we find that a layer of molecules spaced 0.1–1 μm apart can
absorb all of the incident radiation if each molecule is coupled to an optical antenna. Of
course, this estimate ignores the coupling between antennas and therefore has limited valid-
ity. Note that in general both σA and σ 0

A depend on the direction of incidence (θ ,φ) and the
polarization direction npol.

The application of optical antennas in photodetectors is particularly promising (see
Fig. 13.8). The main reason is that, according to Eq. (13.29), an optical antenna increases
the absorption cross-section and hence the light flux that impinges on a detector. Thus, an
antenna-coupled detector requires a much smaller detector area for the same signal output.
Because the dark current iD of a photodetector scales with the detector area we find that
the noise current iN = (2eiD�f )1/2 and the noise equivalent power (NEP) defined as

NEP = iN
η

hν

e
(13.30)

both scale with the square root of the area. Here, η is the quantum efficiency, ν the fre-
quency, and �f the bandwidth. The NEP corresponds to the lowest power a detector can
detect with a signal-to-noise ratio (SNR) of one. In order to eliminate the dependence
on detector area, one defines the detectivity D∗ = (A�f )1/2/NEP, with units of Jones
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= cm Hz1/2 W−1. Authors of recent studies have reported values of NEP = 1.53 nW and
D∗ = 2.15×106 Jones for antenna-coupled infrared detectors based on metal–oxide–metal
diodes [20]. Note that a reduced detector area also reduces the power consumption and the
response time.

Friis equation

Let us now consider the situation of two antennas, one transmitting (subscript “t”) and one
receiving (subscript “r”), located in free space and separated by a large distance (kR � 1).
We place the transmitting antenna at the origin of our coordinate system and the receiving
antenna at (R, θ ,φ). Multiplying Eq. (13.16) with the antenna efficiency ηrad and making
use of the definition of the gain G in Eq. (13.19) renders the intensity It radiated by the
transmitter at the location of the receiver

It(θ ,φ) = Pt

4πR2
Gt(θ ,φ), (13.31)

where Pt is the power with which the transmitting antenna is being driven. The power
incident on the receiving antenna is Prad = σAIt and the power that is generated by the
receiving antenna is Pr = ηrad,rPrad. We now make use of Eq. (13.18) and the fact that σA

is equivalent to the effective area Aeff and obtain

Pr = Gr(θ ,φ)
λ2

4π
It(θ ,φ). (13.32)

The combination of Eqs. (13.31) and (13.32) finally yields

Pr

Pt
=
[
λ

4πR

]2

Gr(θ ,φ)Gt(θ ,φ), (13.33)

which is referred to as the Friis equation [21]. In deriving this equation we have neglected
antenna reflections, inhomogeneities in space, and polarization effects. These can be
included in a more detailed derivation. The Friis equation states that the transmission
efficiency is better for long wavelengths, which is a consequence of diffraction (c.f.
Eq. (13.17)). The Friis equation follows from simple dimensional considerations. First,
it is evident that the transmission efficiency between two antennas must be proportional to
the product of their gains G. Second, on grounds of energy conservation, it has to scale as
1/R2. Finally, we multiply by λ2 to match the units.

Effective wavelength

Radiowave antennas have design rules that relate to the wavelength of incident radiation λ.
For example, a half-wave antenna has a length L of λ/2, and a Yagi–Uda antenna has sepa-
rations between elements that correspond to certain fractions of λ. Because all elements are
proportional to λ, it is straightforward to scale the antenna design from one wavelength to
another. However, this scaling fails at optical frequencies because the penetration of radi-
ation into metals can no longer be neglected. Owing to the finite electron density, there is
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a delay between the driving field and the electronic response, resulting in a skin depth that
is typically larger than the diameter of the antenna elements. As a consequence, electrons
in metals do not respond to the wavelength λ of the incident radiation but to an effective
wavelength λeff, which is determined by a simple linear scaling rule [22]

λeff = n1 + n2
λ

λp
, (13.34)

where n1 and n2 are geometric constants and λp is the plasma wavelength. This wave-
length scaling rule follows from a Fabry–Pérot model for a metal wire of finite length (see
Fig. 12.24). The proportionality between λeff and λ is a consequence of the small-radius
approximation (R → 0) for the wire’s propagation constant. According to Eq. (13.34), an
optical half-wave antenna is not λ/2 in length but has a shorter length of λeff/2. The dif-
ference between λ and λeff depends on geometrical factors, but is typically in the range of
a factor of 2–5 for most metals that are used for optical antenna fabrication. For example,
according to Fig. 13.9, to build a half-wave antenna with a gold wire of radius R = 5 nm
that responds to incident light of wavelength λ = 800 nm, we need to cut the wire length
to �l = λeff/2 ≈ 160 nm rather than �l = λ/2 = 400 nm.

Because the wavelength scaling rule is linear in λ we can, in principle, downscale
established radiowave antenna designs to the optical frequency regime. However, the
antenna dimensions will not simply scale with the ratio of wavelengths, but with the ratio
λeff(λopt)/λrf, where λopt and λrf are the design wavelengths in the optical and radiowave
frequency regimes, respectively.

k

E

20nm

600 1000 1400 1800

λ (nm)

200

400

600

800

1000

1200

1400

0

λ
eff (nm

)

Au

20

10

5

(a) (b)

�Fig. 13.9 Effective wavelength scaling for linear gold antennas. (a) Intensity distribution (E2, with a factor of 2 difference
between contour lines) for a gold half-wave antenna irradiated with a plane wave (λ = 1150 nm). (b) Effective
wavelength scaling for gold rods of different radii (5, 10, and 20 nm). The dip atλ = 550 nm is a consequence of
interband transitions (bound electrons).
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Radiation resistance

As discussed in Section 13.2, the radiation resistance Rrad is defined by Prad =
(1/2)I(0)2Rrad, where Prad is the power radiated by the antenna and I(0) is the source cur-
rent at the feed-point. The larger Rrad the better the antenna radiates. For a dipole antenna,
Eq. (13.1) yields

Rrad = 2π

3
Zw

(
�l

λ

)2

, (13.35)

where �l is the antenna length. For a half-wave antenna we would typically have �l =
λ/2.1 However, according to the wavelength scaling rule discussed above, we have to
choose �l = λeff/2. Consequently, the radiation resistance of a half-wave antenna at opti-
cal frequencies is smaller by a factor of (λeff/λ)2 than that of its radiowave analogue, which
implies that the antenna radiates poorly and that most energy remains stored as reactive
power, which is characteristic of a resonator! A significant portion of this reactive power
is finally dissipated to heat. Thus, a major challenge for optical antennas is to increase the
radiation resistance and thereby improve their radiation efficiency.

Lumped-circuit elements

The concept of lumped circuit elements is a well-established method to simplify the
analysis of complex electrical circuits that otherwise would have to be treated as physi-
cal systems with distributed parameters. Lumped elements can be defined as long as the
characteristic size of each element in the circuit is much smaller than the operating wave-
length. The concept of impedance is then introduced to describe the properties of each
element and the interactions between different lumped elements in the circuit by using
Kirchhoff’s laws. The applicability of Kirchhoff’s voltage law locally requires the quasi-
static approximation to be valid, i.e. ∇ × E � 0. When the object size is increased and
becomes comparable to the operating wavelength this might no longer be valid. Although
antennas are clearly not subwavelength elements, their feed-points are usually very close
to each other, and in the specific region of the feed-gap the condition ∇ × E � 0 is ful-
filled, thus justifying the introduction of an input impedance. For coupled-dipole antennas
one can therefore calculate an input impedance by taking the voltage to (displacement)
current ratio across the subwavelength feedgap. In this way, numerical simulations can
provide impedance values which compare well with those of standard radiofrequency
antennas [23].

For the case in which a transmission line is attached to drive an optical antenna the
impedance discontinuity at the connection points between the leads and the antenna that
acts as a load will result in a reflection of the forward-traveling voltage wave. The related
reflection coefficient is then given by [10]

1 A half-wave antenna is no longer a dipole antenna. Equation (13.35) yields a value that is too large by a factor
of 2.7.
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� = ZL − Z0

ZL + Z0
, (13.36)

where Z0 is the characteristic impedance of the transmission line and ZL is the antenna
impedance. Experimentally, � can be obtained by imaging the standing-wave pattern that
builds up in the transmission line due to reflection at the antenna by means of near-
field [24, 25] or photoemission-electron microscopy techniques [26]. The characteristic
impedance of the transmission line, Z0, can be calculated by two-dimensional field sim-
ulations. Equation (13.36) therefore provides a practical approach by which to determine
antenna impedances [27].

Kinetic inductance

Inductance is a property of an electrical circuit. It generates a 90◦ phase shift between the
applied current and the induced voltage. Commonly, inductance is associated with a coil of
wire that generates a magnetic field in the center, a so-called inductor. At optical frequen-
cies, however, another form of inductance comes into play, namely the kinetic inductance.
This inductance originates from the inertia of charge carriers, that is, from their inability to
immediately respond to the driving field.

Let us recall that the current density j in a medium can be written as a sum of a conduc-
tion current density jc, a polarization current density −iωP, and a magnetization current
density ∇ ×M (see Eq. (2.10)). At optical frequencies we can mostly ignore the last term.
We now write jc = σE and P = ε0(ε′ − 1)E, with ε′ being the real part of the frequency-
dependent dielectric constant. We now express the conductivity in terms of the imaginary
part of ε as σ = ωε0ε

′′ (see Eq. (2.32)) and obtain

j = ωε0
[
ε′′ − i(ε′ − 1)

]
E. (13.37)

Because ε′′ and ε′ are real, the first term generates a current that is in phase with the electric
field, whereas the second term gives rise to a current that is 90◦ out of phase with E, as in
an inductor. It is this term that is referred to as the kinetic inductance.

To understand the frequency regime for which the kinetic inductance becomes rele-
vant we replace ε by the Drude model discussed in Section 12.2.1. Using the fact that the
damping constant � is much smaller than the plasma frequency ωp, we find

j = ε0
ω2

p

ω

(
�

ω
+ i

)
E. (13.38)

Thus, for low frequencies (ω � �) we can neglect the kinetic inductance, but at optical
frequencies (ω > �) we can no longer ignore it. The appearance of the kinetic inductance is
a further challenge for optical antenna design and prevents a straightforward downscaling
of established radiowave-antenna concepts.

To estimate the magnitude of the kinetic inductance, we consider a half-wave antenna
made of a silver wire of radius R = 5 nm and cut to a length of �l = 150 nm. The kinetic
inductance becomes Lkin = �l/(πR2ω2

pε0) = 1.1 pH, which corresponds to the inductance
of a single-loop coil of radius 500 nm made of infinitely thin and perfectly conducting wire.
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The density of states

Arguably, one of the most important quantities in a discussion of antennas is the
impedance, which is defined in circuit theory in terms of the source current I and volt-
age V as Z = V/I. This definition assumes that the source is connected to the antenna via
a current-carrying transmission line, as illustrated in Fig. 13.2. But optical antennas are
typically fed by localized light emitters, not by real currents. Thus, the definition of the
antenna input impedance needs some adjustments. A viable alternative definition involves
the local density of electromagnetic states (LDOS) discussed in Section 8.4.3, which can

be expressed in terms of the Green-function tensor
↔
G, and which accounts for the energy

dissipation of a dipole in an arbitrary inhomogeneous environment. An optical antenna
enhances the LDOS, thereby making it possible for the emitter to dissipate its energy more
easily.

We recall from Section 8.4.3 that the partial LDOS can be expressed in terms of the
system’s dyadic Green function as

ρp(r0,ω) = 6ω

πc2

[
np · Im

{↔
G (r0, r0,ω)

}
· np

]
, (13.39)

where np is a unit vector pointing in the direction of dipole p. The Green function used in
Eq. (13.39) is indirectly defined by the electric field E at the observation point r generated
by a dipole p located at r0 (c.f. Eq. (2.68)). The total LDOS (ρ) is obtained by assum-
ing that the quantum emitter has no preferred dipole axis and averaging Eq. (13.39) over
different dipole orientations.

In terms of the LDOS we can express the total power dissipated by an oscillating
dipole as

P = πω2

12ε0
|p|2ρp(r0,ω). (13.40)

Evidently, for free space ρp = ω2/(π2c3) and hence P o = |p|2ω4/(12πε0c3), which is
the classical dipole-radiation formula. Thus, we can express the LDOS in terms of the
normalized power dissipation from a dipole as

ρp(r0,ω) = ω2

π2c3
P/P0. (13.41)

An optical antenna is a means to locally “engineer” the LDOS and to enhance the power
dissipation from a dipole emitter placed close by.

Greffet and coworkers have established an analogy between the LDOS and the antenna
resistance Re{Z} [28]. The latter accounts for the total power dissipation, including the
radiated and absorbed power. If we express the dipole p in Eq. (13.40) in terms of the
current density j ∼ iωp and the power P in terms of a resistance according to P ∼ Re{Z}|j|2
we arrive at

Re{Z} = π

12ε0
ρp(r0,ω), (13.42)
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and hence an equivalence of LDOS and Re{Z}. The units of Re{Z} are ohms per area
instead of the usual ohms. Notice that Z depends both on the location r0 and on the ori-
entation np of the receiving or transmitting dipole. As discussed by Greffet et al., the
imaginary part of Z accounts for the energy stored in the near-field (reactive power).

13.3.2 Antenna-coupled light–matter interactions

In free space, the momentum of a photon with energy E = �ω is pph = �ω/c. On the other
hand, the momentum of an unbound electron with the same energy is pe = (2m∗

�ω)1/2,
which is a factor of [2 m∗c2/(�ω)]1/2 ≈ 102–103 larger than the photon momentum.
Therefore, the photon momentum can be neglected in electronic transitions, i.e. opti-
cally excited transitions are vertical in an electronic band diagram. However, near optical
antennas the photon momentum is no longer defined by its free-space value. Instead, the
localized optical fields are associated with a broad momentum distribution whose band-
width pph = π�/� is given by the spatial confinement �, which can be as small as
1–10 nm. Thus, in the optical near-field the photon momentum can be increased by a fac-
tor of λ/� ∼ 100, which brings it into the range of the electron momentum, especially
in materials with small effective mass m∗. Hence, localized optical fields can give rise
to “diagonal” transitions in an electronic band diagram, thereby increasing the overall
absorption strength represented by Im{α}. The increase of photon momentum in opti-
cal near-fields has been discussed in the context of photoelectron emission [29] and
photoluminescence [30].

The strong field confinement near optical antennas also has implications on selection
rules in atomic or molecular systems. The light–matter interaction involves matrix ele-
ments of the form 〈 f |p̂ · Â|i〉, with p̂ and Â being the momentum and field operators,
respectively (c.f. Eq. (8.39)). As long as the quantum wavefunctions of states |i〉 and | f 〉
are much smaller than the spatial extent over which Â varies, it is legitimate to pull Â out
of the matrix element. The remaining expression

〈
f |p̂|i〉 is what defines the dipole approx-

imation and leads to standard dipole selection rules. However, the localized fields near
optical antennas give rise to spatial variations of Â of a few nanometers and hence it might
no longer be legitimate to invoke the dipole approximation. This is especially the case in
semiconductor nanostructures, where the low effective mass gives rise to quantum orbitals
with large spatial extent. In situations where the field confinement becomes comparable
to quantum confinement it is possible to expand the light–matter interaction in a multi-
pole series (see Section 8.1). Theoretical studies have shown that higher-order multipoles
have different selection rules [31]. Additional “transition channels” are opened up in near-
field interactions, which can be exploited for boosting the sensitivity of photodetection.
Once the field confinement becomes stronger than the quantum confinement, the multi-
pole series no longer converges and transition rates are solely defined by the local overlap
of ground-state and excited-state wavefunctions. In this limit, an optical antenna can be
used to spatially map out the quantum wavefunctions, providing direct optical images of
atomic orbitals. However, this would require antennas with field confinements of better
than 1 nm.
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13.3.3 Coupled-dipole antennas

One of the simplest antenna geometries is the optical half-wave antenna consisting of a
metal rod whose length�l is resonant with the incident wavelength λ. As discussed before,
the lowest resonance is reached when �l = λeff/2, which is generally smaller than λ/2 by
a factor of 2–5. Additional degrees of freedom arise when two linear antenna elements are
coupled end-to-end, as shown in Fig. 13.10. We will call this geometry a coupled-dipole
antenna. It is also referred to as a gap antenna. The antenna resonance can be adjusted by
altering the length of the antenna segments, the gap size, and also the material in the gap. It
has been shown that the gap properties sensitively influence the antenna impedance and its
radiation efficiency [23]. In the following we will analyze coupled-dipole antennas from a
perspective of mode hybridization (c.f. Fig. 12.25).

When an external field irradiates the coupled-dipole antenna, it creates oscillating sur-
face charges on the two antenna elements. Each element can be thought of as a spring with
a respective effective mass attached to it [32]. The induced charges give rise to Coulomb
interactions between the two elements, which can be accounted for by a spring coupling
the two elements together. We thus end up with a mechanical analog consisting of two
coupled harmonic oscillators, as discussed in Section 8.7.1.

Figure 13.11(a) illustrates the coupled harmonic-oscillator system. The coupling of the
two antenna arms results in the appearance of two eigenmodes of different frequencies.
One eigenmode exhibits in-phase oscillation of the two springs, while the other eigenmode

+ − +−
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25nm

|E |2(a)

(b)

�Fig. 13.10 Normalized near-field intensity-enhancement eigenmode patterns of the bonding (upper panel) and the antibonding
(lower panel) antenna mode for an antenna consisting of two cylindrical gold nanowires with spherical end caps in
vacuum. The intensity in a plane including the long wire axis is shown. The plus and minus signs indicate the
momentary surface charge distribution on each nanowire. Note the strong field localization in the feed-gap for the
bonding-mode resonance, while for the antibonding-mode resonance there is a node line in the feed-gap and strong
enhancement at the rod ends.
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is characterized by an anti-phase oscillation. In the former case, the interaction spring shifts
the resonance to lower frequencies, whereas in the latter case the interaction shifts the res-
onance to higher frequencies. This simple and intuitive classical model contains the most
characteristic features of strongly coupled systems. However, for the electromagnetically
coupled antenna arms the coupling strength is not the same for the two modes and depends
on the gapwidth. This difference is due to the different charge distributions of the two
modes (see Fig. 13.10). For the bonding mode, the presence of opposite charges on either
side of the gap generates an attractive force and hence an increase of the overall surface
charge density. The opposite is the case for the antibonding mode. Therefore the coupling
strength increases for the in-phase oscillation while it slightly decreases for the out-of-
phase mode. The modification of the coupling strength leads to a characteristic redshift of
the in-phase mode and a small blueshift of the anti-phase mode.

Figure 13.11(b) illustrates the dependence of the mode splitting on the interaction
strength. The latter increases with decreasing gapwidth. As a consequence, the splitting
between the bonding-mode resonance and the antibonding-mode resonance becomes larger
when the gap is reduced from 16 nm to 6 nm, as shown in Fig. 13.11(b). The antibonding
resonance can be described in terms of two counter-oscillating dipoles, which is charac-
teristic for a dark mode. The coupling to the radiation field is strongly suppressed for
a dark mode, and the reduced radiation rate results in a narrow linewidth (sharp reso-
nance). On the other hand, the bonding mode defines a bright mode with a wider linewidth.
Figure 13.10 shows the near-fields of the two eigenmodes. The + and − signs symbolize
the momentary charge distribution. For the bonding mode, opposite charges at the gap give
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�Fig. 13.11 Interparticle coupling and mode splitting in two-wire antennas. (a) A sketch of the mass-and-spring model for the
coupling between two plasmonic oscillators. Upper panel, antibonding mode; lower panel, bonding mode. (b) The
energy-level diagram and simulated near-field intensity spectra for 30-nm-high, 50-nm-wide, and 110-nm-long
(arm length) symmetric two-wire gold antennas with gaps of 6 nm (black dashed line) and 16 nm (gray dash–dotted
line), as well as for a single-wire antenna with the same dimensions (black solid line).
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rise to strongly enhanced fields, whereas for the antibonding mode the field is suppressed
due to the existence of equal charges at the gap.

Alù and Engheta have shown that the gap between the two antenna arms can be modeled
as a load impedance Zload [23] and that the load can be tuned by filling the gap with suitable
materials. For a gap in the form of a disk of height t, radius R, and dielectric constant εgap,
the load impedance is calculated as

Zload = i
t

πωR2εgap
. (13.43)

Figure 13.12 shows the effect of such antenna loading. The antenna resonance shifts
depending on εgap of the gap. Note that if the gap material is the same as that of the antenna
arms we obtain a “half-wave” antenna; that is, the gap becomes perfectly impedance-
matched. The scenario is similar to a traditional radiowave λ/2 antenna, which consists
of two segments of length λ/4 separated by a tiny feed-gap connected to an impedance-
matched transmission line (Z = 73 + i42�) that supplies the antenna with current. The
perturbation introduced by the feed-gap is essentially eliminated by impedance matching
and discontinuity of electrical current across the gap is largely eliminated.

To conclude this section we note that the loading of a coupled-dipole antenna with a
nonlinear material is of interest for applications such as optical switching. Theoretical
studies have shown that optical bistability can be achieved with a gap material hav-
ing a Kerr nonlinear coefficient of n2 ≈ 10−12 cm2 W and with threshold intensities of
I < 1 GW cm−2 [33]. The threshold intensity can be reduced by orders of magnitude by
choosing a nonlinear material with gain.
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�Fig. 13.12 Loading of a coupled-dipole antenna. The antenna response can be tuned by the gap material and the gap can be
modeled as a load impedance Zload. From [23].
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13.4 Quantum emitter coupled to an antenna

Radiofrequency antennas are connected to transmission lines that either drive the antenna
or collect the received signal. Signal transduction can be optimized by proper impedance
matching. At optical frequencies, however, antennas are typically used as isolated elements
and a description in terms of circuit theory is not straightforward. As discussed before, the
emission and absorption of light by a discrete quantum system can be described in terms
of the local density of states (LDOS), or simply by the Green function, and here we use
this concept to understand the interaction of a quantum emitter with an optical antenna.

While the spontaneous decay rate of a quantum emitter is related to Einstein’s A coef-
ficient, stimulated emission is described by Einstein’s B coefficient. In a homogeneous
medium, the two coefficients are proportional and the proportionality constant depends
solely on the frequency and on the index of refraction. Various laser parameters depend on
the product of the A and B coefficients. Examples are the saturation intensity Isat and the
gain coefficient g. By engineering the local environment of quantum emitters we may gain
access to controlling different laser parameters.

Let us consider a single quantum emitter interacting with an optical antenna. As shown
in Fig. 13.13, we model the quantum emitter as a four-level system, with state |1〉 being the
ground state. External laser radiation controls the transitions between states |1〉 and |2〉 and
between states |3〉 and |4〉. An external “pump” laser excites the system from the ground
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FOUR-LEVEL SYSTEM

|1>
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�Fig. 13.13 Schematic energy-level diagram of a four-level quantum system coupled to its local environment, such as an optical
antenna. The environment enhances the local field, thereby increasing the pump rate γ12 and the
stimulated-emission rate γstim. The local environment also influences the local density of statesρ(r0,ω34), thereby
affecting the balance between the different rates.



438 Optical antennas

state |1〉 to the excited state |2〉 with a rate of γpump, and a “depletion” laser forces state |3〉
to relax to state |4〉 by stimulated emission.

For simplicity, we assume that the relaxation from level |2〉 to level |3〉 is fast (inter-
nal conversion, vibrational relaxation) and that it isn’t influenced by the lasers and the
local environment. We also assume that the physical dimensions (orbitals) of the four-level
system are much smaller than the length scale of light confinement imposed by the local
environment. In this regime, all transitions are treated in the dipole approximation and the
system can be considered to be point-like.

Let us first consider the excitation rate γ12 from state |1〉 to state |2〉. We restrict our
analysis to the case of weak excitation. In this limit, the system resides predominantly in the
ground state and the dynamics is described by first-order perturbation theory; excited-state
saturation and Rabi flopping are outside of this framework. γ12 can then be represented in
terms of the laser frequency ω12 and the local excitation field E at r0 as

γ12 = 3
σ12

�ω12
I12 = 3

2

ε0cσ12

�ω12
|n12 · E(r0,ω12)|2 . (13.44)

Here, σ12 is the absorption cross-section and n12 is the unit vector defined by the transition
dipole moment 〈1|p̂|2〉. The factor 3 appearing in Eq. (13.44) compensates for the orienta-

tional averaging of σ12. The local field can be written as E = (1+↔
f 12)E0, with

↔
f 12 being

the local field enhancement factor. For sufficiently strong
↔
f , the effective absorption cross-

section, which relates to the incident field, can be written as σeff ≈ σ12|
↔
f 12 ·E0|2/|E0|2.

The field-enhancement factor depends on the properties of the local environment and on
the frequency. It has to be derived from rigorous field calculations or near-field measure-
ments. As an example consider the field distributions plotted in Fig. 13.10(a) showing that
a single emitter placed in the gap between the two nanowires would experience the largest
effective absorption cross-section.

After excitation, the system relaxes rapidly from state |2〉 to state |3〉. Once in state |3〉,
the system relaxes to state |4〉 by different decay mechanisms, by stimulated emission, by
spontaneous emission, or by non-radiative energy transfer to the antenna material or local
environment. The latter pathway is usually associated with non-radiative losses leading to
fluorescence quenching. The transition rate γ34 between states |3〉 and |4〉 can be written as

γ34 = 1/τ + γstim, (13.45)

where τ is the lifetime of state |3〉 and γstim is the stimulated emission rate. Similarly to
Eq. (13.44), the stimulated emission rate is related to the local field at frequency ω34 as

γstim = 3
σ34

�ω34
I34 = 3

2

ε0cσ34

�ω34
|n34 · E(r0,ω34)|2 , (13.46)

where σ34 is the cross-section for stimulated emission.
Within the validity of Fermi’s golden rule (see Appendix B), the excited-state lifetime τ

in Eq. (13.45) is derived from the partial local density of electromagnetic states ρ(r0,ω34)
as (see Section 8.4)

1

τ
= γrad + γloss = γ o

rad
2πc3

ω2
34

ρ(r0,ω34), (13.47)
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where γ o
rad is the free-space decay rate (c.f. Eq. (8.121)) and γloss is the rate of energy

transfer to the local environment. The local density of states is calculated via the Green
function according to (c.f. Eq. (8.115))

ρ(r0,ω34) = 6ω34

πc2

[
n34 · Im

{↔
G (r0, r0;ω34)

}
· n34

]
(13.48)

and can be calculated by simply replacing the molecule by a classical dipole and evaluating
the fields at the origin. Evidently, these fields are influenced by the local environment.

We have now established the procedure for calculating the transition rates γ12 and γ34.
The rates require the calculation of (1) the local excitation field, (2) the local depletion
field, and (3) the local density of states. If the objective is to enhance the emission of
photons, then the ratio γrad/γloss needs to be maximized. It has been demonstrated that γloss

becomes dominant for very short separations between the quantum emitter and material
boundaries [17] and hence a minimum distance between emitter and material boundaries
of the antenna needs to be ensured.

Because of the short-range energy-transfer dependence, γloss can be estimated by ignor-
ing the curvature of the material boundaries. In this case, the quantum emitter interacts
with its mirror image and the energy-transfer rate can be expressed as [17]

γloss = γ o
rad

3

16
Im

{
ε − 1

ε + 1

}
1

(k34 z)3
[n34 · n‖ + 2n34 · n⊥], (13.49)

where z is the distance between the molecule and the antenna material’s surface, k34 =
ω34/c, and ε is the material’s dielectric function at frequency ω34. The last term in brackets
is an orientational factor, with n‖ and n⊥ denoting normal vectors parallel and perpendicu-
lar to the material surface, respectively. For emitters in the gap between two interfaces the
expression of Eq. (13.49) has to be adapted accordingly.

In the situation studied here, the processes |1〉 → |2〉 and |3〉 → |4〉 are decoupled.
Therefore, the photoemission rate can be represented as

γem = γ12(1 − γloss/γ34), (13.50)

where the term in brackets denotes the probability of transitioning from state |3〉 to state
|4〉 radiatively, i.e. by emitting a photon. Figure 13.14 shows the enhanced emission of
photons by a single quantum emitter placed near a gold nanoparticle antenna. For distances
of z ≈ 5 nm the photon-emission rate can be enhanced sevenfold, but for shorter distances
the photon-emission rate drops rapidly because of energy transfer according to Eq. (13.49).

Notice that we assumed a quantum emitter with an intrinsic quantum yield of unity,
which means that there is no intrinsic non-radiative decay. Hence, the local environ-
ment can only decrease the emitter’s quantum yield. The photoluminescence enhancement
shown in Fig. 13.14 is therefore a consequence of excitation-rate enhancement according
to the first term in Eq. (13.50). If, however, the quantum emitter has a low intrinsic quantum
yield, the local environment is also able to enhance the quantum yield and bring out a very
strong photoluminescence enhancement. For example, a gold nanoparticle has been used to
enhance the photoluminescence from rare-earth ions by two orders of magnitude [35], and
a gold bowtie antenna has been employed to enhance the photoemission of a near-infrared



440 Optical antennas

dye by three orders of magnitude [19]. To account for a finite intrinsic quantum yield we
need to include an additional term γint in Eq. (13.45).

Laser parameters, such as the saturation intensity Isat and the laser gain coefficient
g, depend on the balance of spontaneous- and stimulated-emission rates. Spontaneous
emission is characterized by the excited-state lifetime τ , whereas stimulated emission is
represented by the effective cross-section

σeff = σ34

∣∣∣∣∣∣
n34 · [1+ ↔

f 34]E0(r0,ω34)

n34 · E0(r0,ω34)

∣∣∣∣∣∣
2

. (13.51)

Here, E0 is the incident field and
↔
f 34 is the local field-enhancement factor. In terms of τ

and σeff the saturation intensity and the laser gain coefficient are defined as

Isat = �ω34

τσeff
, g ∝ γ12

τσeff

1 + I/Isat
. (13.52)

It is evident that the product τσeff is of central importance. Hence, favorably engineered
optical antennas and local environments in general could provide access to novel laser host
materials.

13.5 Quantum yield enhancement

The excitation energy of a molecule or any other quantum system can be dissipated either
radiatively or non-radiatively. Radiative relaxation is associated with the emission of a
photon, whereas non-radiative relaxation can have various pathways, such as coupling to
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vibrations, energy transfer to the environment, or quenching by other molecules. Often it
is desired to generate conditions that maximize the radiative output of a quantum system.
A useful measure for this output is the quantum yield defined as

Q = γrad

γrad + γnr
, (13.53)

where γrad and γnr are the radiative and non-radiative decay rates, respectively. Notice that
Q is formally equivalent to the antenna efficiency ηrad (c.f. Eq. (13.9)). We simply have to
express “powers” in terms of “rates.” In a homogeneous environment, Q is identical to the
intrinsic quantum yield qi defined in Section 8.5.1. However, γrad and γnr are functions of
the local environment and thus are affected by the presence of an optical antenna.

To determine the quantum yield in a particular environment, it is necessary to divide the
total decay rate in Eq. (8.141) into a radiative and a non-radiative part:

γ = γrad + γnr. (13.54)

The two contributions can be determined by calculating the balance between radiation
emitted to the far-field, Prad, and radiation absorbed in the environment, Pabs.

Let us denote the decay rate of an excited molecule in free space as γ o = γ o
rad + γ o

nr.
Notice that γ o

nr accounts for non-radiative losses inside the molecule only, i.e. it is an intrin-
sic molecular property. The intrinsic quantum yield of the isolated molecule is defined
as qi = γ o

rad/(γ
o
rad + γ o

nr). The interaction of the molecule with its local environment
introduces an additional non-radiative rate γloss, thereby modifying the quantum yield to
Q = γrad/(γrad + γ o

nr + γloss). Using the definition of qi, this can be recast as

Q = γrad/γ
o
rad

γrad/γ
o
rad + γloss/γ

o
rad + (1 − qi)/qi

. (13.55)

Here, γrad is the radiative rate in the presence of the optical antenna. We assumed that the
antenna does not influence the intrinsic non-radiative rate γ o

nr. Therefore, γnr = γ o
nr + γloss.

Note that (13.55) is identical to Eq. (13.11) if we replace all rates γ with corresponding
powers P.

To understand the significance of the intrinsic quantum yield qi we consider a quantum
emitter placed at a variable distance from an optical antenna. For large separations between
emitter and antenna we have γloss → 0 and γrad → γ o

rad, and hence Q = qi. On the other
hand, for an emitter with high intrinsic quantum yield (qi = 1) we obtain Q = γrad/(γrad +
γloss) and hence γloss is the only non-radiative decay channel. By bringing the emitter
close to the particle we increase γloss and therefore lower the quantum yield Q. A 100%-
efficient emitter simply cannot be made more efficient. The situation is different, however,
for an emitter with a low qi. Here, the local environment, such as a single nanoparticle, can
increase a molecule’s quantum efficiency, an effect that was observed in 1983 by Wokaun
and coworkers [36]. The distance between emitter and particle is very critical. For distances
that are too large there is no interaction between emitter and particle, and for distances that
are too small all the energy is dissipated into heat.

As an illustration for quantum yield enhancement we consider the situation shown in
Fig. 13.14, where a single molecule interacts with a gold particle of radius a and dielectric
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�Fig. 13.15 Quantum yield as a function of the separation between a gold nanoparticle and a molecule with different qi. The
lower qi is, the higher the quantum yield enhancement can be. The curves are scaled to the same maximum value.
Hereλ = 650 nm and a = 40 nm.

constant ε. If we represent the molecule by a radiating dipole p pointing in the direction of
the particle’s origin then the normalized radiative rate can be calculated as [17]

γrad

γ o
r

= |p + pind|2
|p|2 =

∣∣∣∣1 + 2
ε − 1

ε + 2

a3

(a+z)3

∣∣∣∣
2

, (13.56)

where pind is the induced dipole in the gold particle and z is the distance between the
molecule and the surface of the particle. On the other hand, the energy dissipation in the
gold particle can be calculated according to Eq. (13.49). In Fig. 13.15 we plot the quantum
yield Q according Eq. (13.55) as a function of the molecule–particle distance z and for
different values of the intrinsic quantum yield qi. The gold particle enhances the quantum
yield of a molecule with qi ∼ 0.001 by roughly a factor of 10. Much higher enhancements
are possible for favorably designed particles, such as two-wire and bowtie optical antennas;
see Figs. 13.5(b) and (d).

Notice that, while Eq. (13.56) has a term ε+2 in the denominator, Eq. (13.49) features a
term ε+1. The origin of this difference is that the particle scatters radiation as a sphere, but
it dissipates power as if it were an infinitely extended plane. For optimum quantum yield
enhancement it is therefore favorable to operate near the ε = −2 resonance as opposed to
the ε = −1 resonance. For a dielectric function modeled by a Drude-type electron gas (see
Chapter 12) the emission wavelength of the molecule therefore needs to be red-detuned
from the particle’s surface plasmon resonance.

In the case of weak excitation, the number of emitted photons is proportional to the
product of the excitation rate and the quantum yield, γ12 · Q. If in the presence of an
antenna the reduction of the quantum yield is larger than the increase in the excitation rate
then the number of emitted photons per unit time is reduced (see Fig. 13.14 for the case of
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small separations). If such a coupled system is driven into saturation the number of photons
emitted per unit time is determined by the saturation emission rate, which is proportional
to the product of the enhanced radiative decay rate and the quantum yield. Consequently,
in the low-excitation-rate regime it is more favorable to tune the antenna resonance to the
absorption peak of the quantum emitter, whereas in the saturated regime the antenna should
be tuned to the wavelength at which the emission is at a maximum.

13.6 Conclusion

In this chapter we summarized the basic principles of optical antennas. The chapter defines
concepts and terminology, but many aspects and applications have been left out. The field
of optical antennas is still in its infancy, and new ideas and developments are emerging at
a rapid pace. Today, the building blocks for optical antennas are plasmonic nanostructures
fabricated from the bottom up by colloidal chemistry or top-down with nanofabrication
techniques, such as electron-beam lithography and focused-ion-beam milling. It is con-
ceivable that future optical antenna designs will draw inspiration from biological systems,
such as light-harvesting proteins and use molecular systems as antenna building blocks.

Problems

13.1 Consider an antenna in the simple form of a spherical nanoparticle with radius a and
dielectric constant ε. This antenna is used to enhance the radiation properties of a
dipole quantum emitter as described in Section 13.4. For simplicity we assume that
the dipole moment p is pointing in the direction of the nanoparticle’s origin and that
the interaction between emitter and nanoparticle can be treated in the quasi-static
limit. The distance of the dipole from the particle’s surface is z.
(a) The nanoparticle is irradiated by a plane wave with electric field E0. The elec-

tric field vector is parallel to the dipole p. Treat the nanoparticle as a polarizable
sphere with polarizability α and determine the field E at the location of the
emitter. From this, determine the normalized excitation rate γexc/γ

o
exc, where

γ o
exc refers to the absence of the nanoparticle.

(b) Assume now that the emitter is radiating and that it induces a dipole pind in the
nanoparticle. The radiated power is then proportional to |p + pind|2. Calculate
the normalized radiative rate γrad/γ

o
rad, where γ o

rad refers to the absence of the
nanoparticle.

(c) On the basis of the previous two results, discuss to what extent the directivity
D(θ ,φ) of the dipole’s emission is influenced by the nanoparticle.

(d) Using Eq. (13.49), determine the normalized non-radiative rate γloss/γ
o
rad.

(e) Assume that qi = 1 and calculate the quantum yield Q(z).
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(f) Plot the normalized fluorescence emission rate γem/γ
o
em as a function of z.

Assume that the particle is made of gold and that a = 80 nm. The wave-
length of excitation and emission is λ = 650 nm. What is the maximum
enhancement?

(g) Determine the density of states ρz(z) and discuss the different terms.

13.2 Assume that the equivalent circuit of an optical antenna is an RLC series resonant
circuit. Assume that in the limit of very small dimensions the capacitance scales as
C(x) = ε0A/d = ε0x, where x is a characteristic size of the antenna. Similarly, the
inductivity is assumed to be given by L = μ0x. Show that, assuming small ohmic
and radiation damping, the characteristic size x is on the order of λ/(2π ). Further-
more, show that the quality factor of the resonance scales as the wave impedance of
free space divided by the sum of ohmic and radiation resistance.

13.3 Consider a side-by-side aligned nano-rod dimer. Using the plasmon hybridization
model find the four fundamental eigenmodes of such a system considering that the
dimer according to its symmetry can be excited by two independent directions of
polarizations. Classify the modes with respect to dark and bright resonances.

13.4 To understand the principle of a multi-element antenna, such as a Yagi–Uda antenna,
we consider three dipoles p1, p2, and p3 placed on an axis x. As shown in the
figure below, the dipoles are parallel to each other and oriented perpendicular to
the x axis. p1 is a driven dipole (the feed element) and is placed at x = 0. p2 is
a parasitic element and is intended to operate as a director, whereas p3 is also a
parasitic element but intended to work as a reflector.

x0

x

d−d 0

p1p3 p2

(a) Use the Green function
↔
G defined in Section 8.3.1 and evaluate the phase

φ(x) of the field E1 of dipole p1. Plot φ as a function of x/λ, where λ is the
wavelength of radiation. Hint: the phase at x = 0 is φ(0) = 180◦.

(b) Find the distance of the first extremum of φ, i.e. determine the distance x = d
for which the phase assumes a first maximum or minimum.

We want that the fields from the different dipoles are in-phase at a distant point
x = x0 � λ, that is, that they constructively interfere in the forward direction. Since
p1 is the only driven dipole, we require that the phase along different paths

φ 0→x0 =
∫ x0

0

dφ

dx
dx (13.57)

is the same (within multiples of 2π ).
(c) Let us consider the direct path (path 1) from 0 to x0 and an indirect path

(path 2) via the director dipole. The phase along the latter can be written as
φ 0→x0 = φ 0→d + φinteraction + φ d→x0 , where φinteraction is the phase due to
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the interaction with the director dipole. Assume that d = λ/5 and calculate the
value of φinteraction that is required to make the phase along paths 1 and 2 equal.

(d) Repeat the above but for a path (path 3) via the reflector dipole instead of the
director dipole. What is the required interaction phase φinteraction?

(e) φinteraction is directly related to the polarizability α of the director or reflector.
Assume that α is a Lorentzian function and discuss what is the best choice for
the center frequencies both for the director and for the reflector.
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14 Optical forces

As early as 1619 Johannes Kepler suggested that the mechanical effect of light might be
responsible for the deflection of the tails of comets entering our Solar System. The clas-
sical Maxwell theory showed in 1873 that the radiation field carries with it momentum
and that “light pressure” is exerted on illuminated objects. In 1905 Einstein introduced the
concept of the photon and showed that energy transfer between light and matter occurs
in discrete quanta. Momentum and energy conservation was found to be of great impor-
tance in microscopic events. Discrete momentum transfer between photons (X-rays) and
other particles (electrons) was experimentally demonstrated by Compton in 1925 and the
recoil momentum transferred from photons to atoms was observed by Frisch in 1933 [1].
Important studies on the action of photons on neutral atoms were carried out in the 1970s
by Letokhov and other researchers in the USSR and by Ashkin’s group at the Bell Lab-
oratories in the USA. The latter group proposed bending and focusing of atomic beams
and trapping of atoms in focused laser beams. Later work by Ashkin and coworkers
led to the development of “optical tweezers.” These devices allow optical trapping and
manipulation of macroscopic particles and living cells with typical sizes in the range of
0.1–10 μm [2, 3]. Milliwatts of laser power produce piconewtons of force. Owing to the
high field gradients of evanescent waves, stronger forces are to be expected in optical
near-fields.

The idea that an object might cool through its interaction with the radiation field had
been suggested in 1929 by Pringsheim [4]. However, the first proposal to cool atoms in
counter-propagating laser beams was made by Hänsch and Schawlow in 1975 [5]. This pro-
posal was the starting point for a series of exciting experiments that led to the 1997 Nobel
Prize in physics. The mechanical force in laser trapping and cooling experiments can be
understood on a semiclassical basis whereby the electromagnetic field is treated classically
and the particle being trapped is treated as a quantized two-level system [6]. However, the
quantum theory of photons is used for the correct interpretation of the results [7]. Further-
more, the photon concept asserts that there are quanta of energy and momentum transfer
between the radiation field and the atom.

In this chapter we use classical electrodynamics to derive the conservation law for lin-
ear momentum in an optical field. The net force exerted on an arbitrary object is entirely
determined by Maxwell’s stress tensor. In the limiting case of an infinitely extended object,
the formalism renders the known formulas for radiation pressure. Similarly, in the small-
object limit, we obtain the familiar expressions for gradient and scattering forces. Using
the expression for the atomic polarizability derived in Appendix A, it is possible to derive
the forces acting on atoms and molecules in optical traps.

448
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14.1 Maxwell’s stress tensor

The general law for forces in electromagnetic fields is based on the conservation law for
linear momentum. We therefore derive this conservation law in the following. Later we
will discuss two different limits, the dipolar limit and the limit of the planar interface. For
simplicity, we consider Maxwell’s equations in vacuum. In this case we have D = ε0E and
B = μ0H. Later we will relax this constraint. The conservation law for linear momentum
is entirely a consequence of Maxwell’s equations,

∇ × E(r, t) = −∂B(r, t)

∂ t
, (14.1)

∇ × B(r, t) = 1

c2

∂E(r, t)

∂ t
+ μ0 j(r, t), (14.2)

∇ · E(r, t) = 1

ε0
ρ (r, t), (14.3)

∇ · B(r, t) = 0, (14.4)

and of the force law

F(r, t) = q [E(r, t) + v(r, t) × B(r, t)] (14.5)

=
∫

V
[ρ(r, t)E(r, t) + j(r, t) × B(r, t)]dV .

The first expression applies to a single charge q moving with velocity v and the second
expression to a distribution of charges and currents satisfying the continuity equation

∇ · j(r, t) + ∂ρ (r, t)

∂ t
= 0, (14.6)

which is a direct consequence of Maxwell’s equations. The force law connects the electro-
magnetic world with the mechanical one. The two terms in the first expression are basically
definitions of the electric and magnetic fields.

If we operate on Maxwell’s first equation by ×ε0E and on the second equation by
×μ0H, and then add the two resulting equations, we obtain

ε0(∇ × E) × E + μ0(∇ × H) × H = j × B − 1

c2

[
∂H
∂ t

× E
]
+ 1

c2

[
∂E
∂ t

× H
]

.

(14.7)

We have omitted the arguments (r, t) for the different fields and we used ε0μ0=1/c2. The
last two expressions in Eq. (14.7) can be combined to give (1/c2)d/dt [E×H]. For the first
expression in Eq. (14.7) we can write
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ε0(∇ × E) × E = ε0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
(E2

x −E2/2) + ∂

∂y
(ExEy) + ∂

∂z
(ExEz)

∂

∂x
(ExEy) + ∂

∂y
(E2

y −E2/2) + ∂

∂z
(EyEz)

∂

∂x
(ExEz) + ∂

∂y
(EyEz) + ∂

∂z
(E2

z −E2/2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
− ε0E ∇ · E

= ∇ · [ε0EE − (ε0/2)E2↔I ] − ρE, (14.8)

where Eq. (14.3) has been used in the last step. The notation EE denotes the outer product,
E2 = E2

x + E2
y + E2

z is the electric field strength, and
↔
I denotes the unit tensor. A similar

expression can be derived for μ0(∇ × H) × H. Using these two expressions in Eq. (14.7),
we obtain

∇ ·
[
ε0EE + μ0HH − 1

2
(ε0E2 + μ0H2)

↔
I
]
= d

dt

1

c2
(E × H) + ρ E + j × B. (14.9)

The expression in brackets on the left-hand side is called Maxwell’s stress tensor in

vacuum, which is usually denoted as
↔
T. In Cartesian components it reads as

↔
T =

[
ε0EE + μ0HH − 1

2
(ε0E2 + μ0H2)

↔
I
]

=
⎡
⎢⎣
ε0(E2

x −E2/2) + μ0(H2
x −H2/2) ε0ExEy + μ0HxHy

ε0ExEy + μ0HxHy ε0(E2
y −E2/2) + μ0(H2

y −H2/2)

ε0ExEz + μ0HxHz ε0EyEz + μ0HyHz

ε0ExEz + μ0HxHz

ε0EyEz + μ0HyHz

ε0(E2
z −E2/2) + μ0(H2

z −H2/2)

⎤
⎥⎦ . (14.10)

After integration of Eq. (14.9) over an arbitrary volume V that contains all sources ρ and j
we obtain ∫

V
∇ · ↔

T dV = d

dt

1

c2

∫
V

(E × H)dV +
∫

V
(ρ E + j × B)dV . (14.11)

The last term is recognized as the mechanical force (cf. Eq. (14.5)). The volume integral
on the left can be transformed into a surface integral using Gauss’s integration law∫

V
∇ · ↔

T dV =
∫
∂V

↔
T · n da. (14.12)

∂V denotes the surface of V , n the unit vector perpendicular to the surface, and da an
infinitesimal surface element. We then finally arrive at the conservation law for linear
momentum: ∫

∂V

↔
T (r, t) · n(r) da = d

dt

[
Gfield + Gmech

]
(14.13)
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B

V

F

incident field

scattered field

�Fig. 14.1 The mechanical force F acting on the object B is entirely determined by the electric and magnetic fields at an arbitrary
surface ∂V enclosing B.

Here, Gmech and Gfield denote the mechanical momentum and the field momentum,
respectively. In Eq. (14.13) we have used Newton’s expression of the mechanical force
F = d/dt Gmech and the definition of the field momentum (Abraham density)

Gfield = 1

c2

∫
V

(E × H)dV . (14.14)

This is the momentum carried by the electromagnetic field within the volume V . It is cre-
ated by the dynamic terms in Maxwell’s curl equations. The time derivative of the field
momentum is zero when it is averaged over one oscillation period and hence the average
mechanical force becomes

〈F〉 =
∫
∂V
〈↔T(r, t)〉 · n(r)da , (14.15)

with 〈...〉 denoting the time average. Equation (14.15) is of general validity. It allows the
mechanical force acting on an arbitrary body within the closed surface ∂V to be calculated.
The force is entirely determined by the electric and magnetic fields on the surface ∂V . It is
interesting to note that no material properties enter the expression for the force; the entirety
of the information is contained in the electromagnetic field. The only material constraint
is that the body is rigid. If the body deforms when it is subject to an electromagnetic field,
we have to include electrostrictive and magnetostrictive forces. Since the enclosing surface
is arbitrary, the same results are obtained irrespective of whether the fields are evaluated
at the surface of the body or in the far-field. It is important to note that the fields used to
calculate the force are the self-consistent fields of the problem, which means that they are
a superposition of the incident and the scattered fields. Therefore, prior to calculating the
force, one has to solve for the electromagnetic fields. If the object B is surrounded by a
medium that can be represented accurately enough by a non-dispersive dielectric constant
ε and magnetic susceptibility μ (Fig. 14.1), the mechanical force can be calculated in the
same way if we replace Maxwell’s stress tensor Eq. (14.10) by
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↔
T=

[
ε0εEE + μ0μHH − 1

2
(ε0εE

2 + μ0μH2)
↔
I
]

. (14.16)

14.2 Radiation pressure

Here, we consider the radiation pressure on a medium with an infinitely extended planar
interface as shown in Fig. 14.2. The medium is irradiated by a monochromatic plane wave
at normal incidence to the interface. Depending on the material properties of the medium,
part of the incident field is reflected at the interface. On introducing the complex reflection
coefficient r, the electric field outside the medium can be written as the superposition of
two counter-propagating plane waves

E(r, t) = E0 Re
{

[eikz + re−ikz]e−iωt
}

nx. (14.17)

Using Maxwell’s curl equation (14.1), we find for the magnetic field

H(r, t) = √ε0/μ0 E0 Re
{

[eikz − re−ikz]e−iωt
}

ny. (14.18)

To calculate the radiation pressure P, we integrate Maxwell’s stress tensor on an infinite
planar surface A parallel to the interface as shown in Fig. 14.2. The radiation pressure can
be calculated by using Eq. (14.15) as

Pnz = 1

A

∫
A
〈↔T(r, t)〉 · nz da. (14.19)

We do not need to consider a closed surface ∂V since we are interested in the pressure
exerted on the interface of the medium rather than in the mechanical force acting on the

k

E0

A

H0

nx

ny

nz

�Fig. 14.2 The configuration used to derive the radiation pressure.
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medium. Using the fields of Eqs. (14.17) and (14.18), we find that the first two terms in
Maxwell’s stress tensor Eq. (14.10) give no contribution to the radiation pressure. The third
term yields

〈↔T (r, t)〉 · nz = −1

2
〈ε0E2 + μ0H2〉nz = ε0

2
E2

0[1 + |r|2]nz. (14.20)

Using the definition of the intensity of a plane wave I0 = (ε0/2)cE2
0, with c being the

vacuum speed of light, we can express the radiation pressure as

P = I0

c
(1 + R), (14.21)

with R = |r|2 being the reflectivity. For a perfectly absorbing medium we have R = 0,
whereas for a perfectly reflecting medium R = 1. Therefore, the radiation pressure on a
perfectly reflecting medium is twice as high as for a perfectly absorbing medium.

14.3 Lorentz force density

Let us return to the force law defined in Eq. (14.5) and assume that all charges and currents
are secondary sources associated with the polarization P. Then, according to Eq. (2.10),
we can express the current density as j = ∂P/∂t, and the charge density follows from the
conservation law Eq. (14.6) as ρ = −∇ · P. Inserting this into the force law gives

F(r, t) =
∫

V
f(r, t)dV , f(r, t) = −E (∇ · P)+ ∂P

∂t
× B. (14.22)

Here, f(r, t) denotes the Lorentz force density. Equation (14.22) makes no use of material
properties and therefore is generally valid. Using constitutive relations, the polarizability
P can be expressed in terms of the electric field E in a linear or nonlinear way.

14.4 The dipole approximation

A quantized two-level system such as an atom with transitions restricted to two states is
well described by a dipole. The same is true for a macroscopic particle with dimensions
much smaller than the wavelength of the illuminating light (a Rayleigh particle). To derive
the electromagnetic force acting on a dipole located at r0 we could introduce the polariz-
ability P = pδ(r − r0) into the Lorentz force density f. Likewise, we could express the
field E in the Maxwell stress tensor by an incident field and the field scattered by a dipole.
While both of these procedures are formally correct, it is more intuitive to approach the
force acting on a dipole from a microscopic perspective. We will return to the Lorentz
force density later and show that it produces the same results.

Consider two oppositely charged particles with masses m1 and m2, separated by a
tiny distance |s| and illuminated by an arbitrary electromagnetic field E, B, as shown in
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Fig. 14.3. In the non-relativistic limit, the equation of motion for each particle follows from
Eq. (14.5) by setting F equal to m1r̈1 and m2r̈2, respectively. The dots denote differentiation
with respect to time. Since the particles are bound to each other we have to consider their
binding energy U. Including this contribution, the equation of motion for the two particles
reads as

m1r̈1 = q[E(r1, t) + ṙ1 × B(r1, t)] − ∇U(r1, t), (14.23)

m2r̈2 = −q[E(r2, t) + ṙ2 × B(r2, t)] +∇U(r2, t). (14.24)

The two particles constitute a two-body problem, which is most conveniently solved by
introducing the center-of-mass coordinate

r = m1

m1 + m2
r1 + m2

m1 + m2
r2. (14.25)

Expressing the problem in terms of r allows us to separate the internal motion of the
two particles from the center-of-mass motion. The electric field at the position of the two
particles can be represented by a Taylor expansion as

E(r1) =
∞∑

n=0

1

n!

[
(r1 − r) · ∇

]n
E(r) = E(r) + [(r1 − r) · ∇] E(r) + · · · ,

E(r2) =
∞∑

n=0

1

n!

[
(r2 − r) · ∇

]n
E(r) = E(r) + [(r2 − r) · ∇] E(r) + · · · .

(14.26)

A similar expansion can be found for B(r1) and B(r2). For |s| � λ, λ being the wave-
length of the radiation field, the expansions can be truncated after the second term (the
dipole approximation). A straightforward calculation using Eqs. (14.23)–(14.26) and the
definition of the dipole moment

p = qs, (14.27)

s

r

r1

r2

1q, m

2q, m

�Fig. 14.3 Graphical representation of the symbols used to derive the mechanical force in the dipolar limit. r denotes the
center-of-mass coordinate. The two particles are bound to each other by the potential U.
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where s = r1−r2 leads to the following formula for the total force F= (m1 + m2)r̈ acting
on the system of particles

F = (p · ∇)E + ṗ × B + ṙ × (p · ∇)B. (14.28)

Here, we have omitted the arguments (r, t) for clarity. The brackets in (p · ∇)E indicate
that the inner product p · ∇ = (px, py, pz) · (∂/∂x, ∂/∂y, ∂/∂z) has to be evaluated prior
to operating on E. Equation (14.28) is the central equation of this section. It renders the
mechanical force exerted by the electromagnetic field on the two particles represented by
the dipole moment p. The force consists of three terms: the first originates from the inho-
mogeneous electric field, the second is the familiar Lorentz force, and the third is due to
movement in the inhomogeneous magnetic field. For non-relativistic speeds (|r| � c), the
third term is much smaller than the other two terms, and it will be omitted in the following
discussion. It is interesting to note that the fields appearing in Eq. (14.28) correspond to
the exciting field. It is assumed that the system represented by the dipole does not change
the fields. This is different from the general formalism based on Maxwell’s stress tensor,
in which the self-consistent fields are considered.

We now return to the Lorentz force density f(r, t) and show that it reproduces the terms
in Eq. (14.28). We consider the ith Cartesian component of f and denote it as fi, where
i ∈ [x, y, z]. The first term in the expression of fi (c.f. Eq. (14.22)) can be expressed as∫

V
−Ei(∇ · P)dV =

∫
V
(P · ∇)Ei dV −

∫
∂V
(PEi) · n da, (14.29)

where we made use of Gauss’s theorem. We now place a dipole with polarization P =
pδ(r − r0) into the volume V . The last term in Eq. (14.29) vanishes if we make sure that
the dipole’s origin is not on the surface of the volume, i.e. r0 /∈ ∂V . In this case, only
the first term on the right-hand side of Eq. (14.29) contributes. After integration this term
yields (p · ∇)Ei, which corresponds to the first term in Eq. (14.28). The second term is
readily reproduced if we substitute P = pδ(r− r0) into the expression for f in Eq. (14.22).

14.4.1 Time-averaged force

The second term in Eq. (14.28) can be represented as

ṗ × B = −p × d

dt
B + d

dt
(p × B) = p × (∇ × E) + d

dt
(p × B). (14.30)

We have approximated dB/dt by ∂B/∂t because the velocity of the center of mass is
assumed to be small compared with c. After dropping the last term in Eq. (14.28) for
the same reason, we obtain

F = (p · ∇)E + p × (∇ × E)+ d

dt
(p × B), (14.31)

which can be rewritten as

F =
∑

i

pi ∇Ei + d

dt
(p × B), i = x, y, z. (14.32)
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In the time average, the last term vanishes, and the force can be cast into the concise form

〈
F
〉 =∑

i

〈
pi(t)∇Ei(t)

〉
, (14.33)

where 〈. . .〉 denotes the time average. We have included the arguments of p and E in order
to distinguish them from their corresponding complex amplitudes introduced below.

Notice that the optical force is additive and that we can sum up the forces acting on
individual dipolar subvolumes to obtain the net force acting on a macroscopic body. If we
represent Eq. (14.33) by a dipole per unit volume (the polarization P) and add up all the
forces acting on the volume we obtain

〈F〉 =
∫

V

∑
i

〈
Pi(r, t)∇Ei(r, t)

〉
dV , (14.34)

where Pi denotes the Cartesian components of the polarization P.

14.4.2 Monochromatic fields

Consider a dipolar particle irradiated by an arbitrary monochromatic electromagnetic wave
with angular frequency ω. In this case the fields can be represented as1

E(r, t) = Re{E(r)e−iωt},
B(r, t) = Re{B(r)e−iωt}.

(14.35)

If there is a linear relationship between dipole and fields, the dipole assumes the same time
dependence and can be written as

p(t) = Re{pe−iωt}. (14.36)

We assume that the particle has no static dipole moment. In this case, to first order, the
induced dipole moment is proportional to the electric field at the particle’s position r,

p = α(ω)E(r0), (14.37)

where α denotes the polarizability of the particle. Its form depends on the nature of the
particle. For a two-level system, explicit expressions for α are derived in Appendix A.
Generally, α is a tensor of rank two, but for atoms and molecules it is legitimate to use a
scalar representation since only the projection of p along the direction of the electric field
is important.

The cycle-average of Eq. (14.28) reads as

〈F〉 = 1

2
Re
{

(p∗ · ∇)E − iω(p∗ × B)
}

, (14.38)

1 For clarity, we will designate the complex amplitudes of the fields by an underline.
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where we have dropped the third term as discussed before. The two terms on the right-hand
side can be combined as done before and we obtain

〈F〉 =
∑

i

1

2
Re
{

p∗
i
∇Ei

}
. (14.39)

After introducing the linear relationship (14.37) and rearranging the different terms, we
find

〈F〉 = α′

2

∑
i

Re
{
E∗

i ∇Ei

}+ α′′

2

∑
i

Im
{
E∗

i ∇Ei

}
, (14.40)

where we used α = α′ + iα′′. The first term can be written as (α′/4)∇(E∗ · E), which
implies that the force 〈Fgrad〉 associated with the first term is conservative, i.e.∇×〈Fgrad〉 =
0. On the other hand, the force associated with the second term 〈Fscatt〉 cannot be repre-
sented as the gradient of a potential and hence it is not conservative. We thus find that two
different terms determine the average mechanical force: the first is denoted the gradient
force (or dipole force) and the second one is called the scattering force. The gradient force
originates from field inhomogeneities. It is proportional to the dispersive part (real part)
of the complex polarizability. On the other hand, the scattering force is proportional to the
dissipative part (imaginary part) of the complex polarizability. The scattering force can be
regarded as a consequence of momentum transfer from the radiation field to the particle.
The dipole force accelerates polarizable particles towards extrema of the radiation field.
Therefore, a tightly focused laser beam can trap a particle in all dimensions at its focus.
However, the scattering force pushes the particle in the direction of propagation and, if the
focus of the trapping laser is not tight enough, the particle can be pushed out of the trap.
Because of radiation reaction, α′′ and the scattering force never vanish, even for a loss-
less particle (c.f. Eq. (8.222) in Problem 8.5). For a small homogeneous sphere with a real
quasi-static polarizability α′ the imaginary part turns out to be

α′′ = k3

6πε0
α′ 2, (14.41)

where k = n(2π/λ), n being the index of refraction of the surrounding medium. The last
term in Eq. (14.40) together with α′′ determine the scattering force for a small loss-free
particle.

Let us take a closer look at the scattering force in Eq. (14.40). Using the identity∑
i E∗

i ∇Ei = (E ·∇)E∗+E× (∇×E∗) together with Maxwell’s equation ∇×E = iωμ0H
we can represent the scattering force as [8]

〈Fscatt〉 = α′′

2

∑
i

Im
{
E∗

i ∇Ei

} = σ

c
〈S〉 + cσ

[∇ × 〈L〉]. (14.42)

where σ = α′′k/ε0 is the absorption cross-section, 〈S〉 is the time-averaged Poynting vector
(c.f. Eq. (2.59)), and 〈L〉 = [ε0/(4iω)](E × E∗). While the term with the Poynting vector
represents the radiation pressure, the term with 〈L〉 is a force associated with the spin
density of the light field. This spin curl force has been shown to be relevant in light fields
with non-uniform helicities [8].
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The physical origin of the gradient force and the scattering force becomes more intuitive
if we represent the complex amplitude of the electric field in terms of the real amplitude
E0 and phase φ as

E(r) = E0(r)eiφ(r)nE, (14.43)

with nE denoting the unit vector in the direction of the polarization. It is important to
emphasize that this representation is approximate and applicable only to fields that vary
slowly in space. In general, the different vector components of the fields have different
phases. Nevertheless, for most situations Eq. (14.43) is a good approximation and allows
us to cast the cycle-averaged force in Eq. (14.39) into the following form:

〈F〉 = α′

4
∇E2

0 +
α′′

2
E2

0 ∇φ, (14.44)

where we used ∇E2
0 = 2E0 ∇E0. Notice that φ can be written in terms of the local k vector

as φ=k · r, which renders ∇φ = k.
If we introduce Eq. (14.43) into Eq. (14.35), the time-dependent electric field can be

written as

E(r, t) = E0(r) cos[ωt − φ(r)]nE. (14.45)

The corresponding magnetic field is determined by ∂B/∂t = −∇ × E, which, together
with E leads to the relationships

E2
0 ∇φ = 2ω〈E × B〉, E2

0 = 2〈|E|2〉, (14.46)

with 〈...〉 denoting the cycle-average. Substituting into Eq. (14.44) gives

〈F〉 = α′

2
∇〈|E|2〉 + ωα′′〈E × B〉, (14.47)

where |E| denotes the time-dependent magnitude of the electric field vector. Equa-
tion (14.47) directly proves that the scattering force is proportional to the average field
momentum defined in Eq. (14.14).

It has to be emphasized that Eqs. (14.43)–(14.47) are approximate and one needs to work
with Eq. (14.40) if the fields are localized to dimensions smaller than λ/2.

14.4.3 Self-induced back-action

So far we have assumed that the external electric field E is not affected by the particle
being trapped. This assumption is justified in free space but not necessarily in cavities or
near material boundaries. In Section 11.3.1 we have already seen that a particle can detune
the resonance frequency of a resonator and hence affect the field that is acting on it. This
effect has been named self-induced back-action [9].

The expressions for the force in Eqs. (14.39) and (14.40) remain valid as long as we
account for the modification of the field E by the particle. Assuming that this modification
is weak, we can expand the field in a perturbation series as
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E(r) = E0(r) + ω2

c2ε0

↔
Gs (r, r)α(ω)E0(r)

+ ω4

c4ε2
0

↔
Gs (r, r)α(ω)

↔
Gs (r, r)α(ω)E0(r) + · · · , (14.48)

where
↔
Gs is the scattering part of the Green function (c.f. Section 8.3.3), defined as

↔
Gs=↔

G − ↔
G0, with

↔
G being the total Green function and

↔
G0 being its free-space part.

The first term in Eq. (14.48) (zeroth order) ignores the particle’s back-action and
accounts only for the incident field. The second term (first order) accounts for the scat-
tering of the incident field E0 by the particle. The scattered field is reflected from the
environment and then interacts with the particle again to produce a correction to the field
E0. The interaction order increases by one for every subsequent term. A series expansion
for the force acting on the particle can be derived by inserting Eq. (14.48) into Eq. (14.40).
Note however, that the convergence of the series needs to be verified for the particular con-
figuration under study. If the series does not converge, one has to proceed with the Maxwell
stress-tensor formalism, which often requires computational methods.

14.4.4 Saturation behavior for near-resonance excitation

Saturation is a nonlinear effect that limits the magnitude of the induced dipole moment p.
Differently from most nonlinear effects, saturation does not affect the monochromatic time
dependence of the induced dipole (see Appendix C). Therefore, the linear relationship in
Eq. (14.37) is valid even for saturation. The steady-state polarizability for a two-level atom
excited near its resonance is derived in Appendix A. Using the projection of the transition
dipole moment along the direction of the electric field (p12 · nE), the polarizability can be
written as

α(ω) = (p12 · nE)2

�

ωo − ω + iγ /2

(ω0 − ω)2 + iγ 2/4 + ω2
R/2

. (14.49)

Here, ω0 is the transition frequency, ωR = (p12 · nE)E0/� the Rabi frequency, and γ the
spontaneous decay rate. Substituting α into Eq. (14.44) leads to

〈F〉 = �
ω2

R/2

(ω0 − ω)2 + γ 2/4 + ω2
R/2

[
(ω − ω0)

∇E0

E0
+ γ

2
∇φ
]

, (14.50)

where we used γ � ω0. Introducing the so-called saturation parameter p as

p = I

Isat

γ 2/4

(ω − ω0)2 + γ 2/4
, (14.51)

with the intensity I and the saturation intensity Isat defined as

I = ε0c

2
E2

0 , Isat = 4πε0
�

2cγ 2

16π (p12 · nE)2
= γ 2

2ω2
R

I, (14.52)
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�Fig. 14.4 Dipole force and scattering force for sodium atoms (1/γ =16.1 ns,λ0=590 nm) as a function of the excitation
frequencyω. The numbers in the figures indicate the value of the ratio I/Isat.

allows us to write the cycle-averaged force in the form

〈F〉 = �p

1 + p

[
(ω − ω0)

∇E0

E0
+ γ

2
∇φ
]

. (14.53)

This formula was originally developed by Gordon and Ashkin using a quantum-mechanical
derivation [10]. The present derivation uses quantum mechanics only for the calculation of
the atomic polarizability (see Appendix A). It follows from quantum theory that the scat-
tering force originates from cycles of absorption and spontaneous emission, whereas the
dipole force is due to cycles of absorption and stimulated emission. Notice that the maxi-
mum value for the saturation parameter p is obtained for exact resonance, i.e. ω=ω0. In
this case, the factor p/(1+ p) cannot exceed the value of unity, which limits the maximum
value of the force (saturation). For an intensity of I = Isat (Isat ≈ 1.6 mW for rubid-
ium atoms) the force amounts to half of the maximum force. For frequencies ω<ω0 (red
detuning) the dipole force is proportional to −∇E0, causing an atom to be attracted towards
regions of high intensity. On the other hand, for frequencies ω > ω0 (blue detuning) atoms
are repelled from regions of high intensity because the dipole force is proportional to ∇E0.
The dipole force vanishes for exact resonance. Figure 14.4 shows qualitatively the fre-
quency behavior of the dipole and scattering force for different excitation intensities. Using
k = ∇φ and conditions far from saturation, the scattering force can be written as

〈Fscatt〉 = �k
γ

2

I

Isat

γ 2/4

(ω − ω0)2 + γ 2/4
, I � Isat, (14.54)

which has a maximum for exact resonance. The influence of saturation on the scattering
force is illustrated in Fig. 14.5.

In atom-manipulation experiments the scattering force is used to cool atoms down to
extremely low temperatures, thereby bringing them almost to rest. Under ambient con-
ditions atoms and molecules move at speeds of about 1000 m s−1 in random directions.
Even at temperatures as low as −270 ◦C the speeds are on the order of 100 m s−1. Only
for temperatures close to absolute zero (−273 ◦C) does the motion of atoms slow down
significantly. The initial idea regarding how to slow down the motion of atoms is based
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on the Doppler effect. It was first proposed by Hänsch and Schawlow in 1975 [5]. Neutral
atoms are irradiated by pairs of counter-propagating laser beams. If an atom moves against
the propagation direction of one of the laser beams, the frequency as seen from the atom
will shift towards higher frequencies (blueshift) according to the Doppler effect. On the
other hand, an atom moving in the direction of beam propagation will experience a shift
towards lower frequencies (redshift). If the laser frequency is tuned to slightly below a
resonance transition, an atom will predominantly absorb a photon when it moves against
laser-beam propagation (c.f. Eq. (14.54)). The absorption process slows the atom down
according to momentum conservation. Once the atom has been excited, it will eventually
reemit its excitation energy by spontaneous emission, which is a random process and does
not favor any particular direction. Thus, averaged over many absorption–emission cycles,
the atom moving towards the laser will lose velocity and effectively cool. To slow the atom
down in all dimensions one requires six laser beams opposed in pairs and arranged in three
directions at right angles to each other. In whichever direction the atom tries to move it
will be met by photons of the right energy and pushed back into the area where the six
laser beams intersect. The movement of the atoms in the intersection region is similar to
the movement in a hypothetical viscous medium (optical molasses). It can be calculated
that two-level atoms cannot be cooled below a certain temperature, called the Doppler
limit [7]. For sodium atoms the limiting temperature is 240 μK, corresponding to speeds
of 30 cm s−1. However, it was experimentally found that much lower temperatures could
be attained. After surpassing another limit, the so-called recoil limit, which states that the
speed of an atom should not be less than that imparted by a single photon recoil, temper-
atures as low as 0.18 μK have been generated for helium atoms. Under these conditions
the helium atoms move at speeds of only 2 cm s−1. Once the atoms are sufficiently cold
they would fall out of the optical molasses due to gravity. To prevent this from happening,
an initial trapping scheme based on the dipole force allowed one to grip the atoms at the
focal point of a tightly focused beam [11]. Unfortunately, the optical dipole trap was not
strong enough for most applications and a new three-dimensional trap based on the scat-
tering force has been developed. This kind of trap is now called the magneto-optical trap.
Its restoring force comes from a combination of oppositely directed circularly polarized
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�Fig. 14.5 The scattering force for sodium atoms (1/γ = 16.1 ns,λ0 = 590 nm) as a function of I/Isat. The numbers in the
figure indicate the frequency detuning in units of 107 (ω − ω0)/ω0.
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laser beams and a weak, varying, inhomogeneous magnetic field with a minimum in the
intersection region of the laser beams. The magnetic field strength increases with distance
from the trap center and gives rise to a force towards the trap center.

14.4.5 Beyond the dipole approximation

In principle, any macroscopic object can be regarded as being composed of individual
dipolar subunits. The self-consistent solution for the electric and magnetic fields generated
by these dipoles is (see Section 2.12)

E(r) = E0(r) + ω2

ε0c2

N∑
n=1

↔
G(r, rn)p

n
,

H(r) = H0(r) − iω
N∑

n=1

[∇× ↔
G(r, rn)

]
p

n
, r �= rn,

(14.55)

where we used the complex representation of the time-harmonic fields.
↔
G denotes the

dyadic Green function, p
n

the electric dipole moment at r = rn, and E0, H0 the exciting
field. The system is assumed to consist of N individual dipoles. To first order, the dipole
moment p

n
is

p
n
= α(ω)E(rn). (14.56)

By combining Eqs. (14.55) and (14.56) we obtain implicit equations for the fields E and
H, which can be solved by matrix-inversion techniques. In principle, the mechanical force
acting on an arbitrary object made of single dipolar subunits can be determined by using
Eq. (14.40) in combination with Eqs. (14.55) and (14.56). However, if we require that
the object does not deform under the influence of the electromagnetic field, the internal
forces must cancel out and the mechanical force is entirely determined by the fields out-
side of the object. In this case, the mechanical force can be determined by solving for the

k
E

k
E

k
E

�Fig. 14.6 Illustration of the coupled-dipole approach. A macroscopic object is subdivided into individual microscopic dipolar
subunits. Each dipole moment can be calculated self-consistently by using the Green-function formalism. In a rough
approximation the field in front of a metal tip can be replaced by the field of a single dipole. However, the parameters
of the polarizability have to be deduced from a rigorous calculation.
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fields outside the object and evaluating Maxwell’s stress tensor according to Eqs. (14.10)
and (14.15). See Figure 14.6.

14.5 Optical tweezers

In 1986 Ashkin and coworkers showed that a single tightly focused laser beam could be
used to hold, in three dimensions, a microscopic particle near the beam focus. This has now
become established as a powerful non-invasive technique known as optical tweezers [2].
Optical tweezers have found widespread application, especially in biology, and have been
used to manipulate dielectric spheres, living cells, DNA, bacteria, and metallic particles.
Optical tweezers are routinely applied to measure the elasticity, force, torsion, and position
of a trapped object. Forces measured with optical tweezers are typically in the range 1–
10 pN. While trapping of small particles (diameters d�λ) is well explained by the dipole
force (the first term in Eq. (14.44)), a theory for trapping of larger particles requires an
extension of the dipole approximation by including higher multipole orders, similar to Mie
scattering. The trapping force can be represented in the form

〈
F(r)

〉 = Q(r)
ε2

s P

c
, (14.57)

where εs is the dielectric constant of the surrounding medium, P is the power of the trap-
ping beam, and c is the vacuum speed of light. The dimensionless vector Q is called the
trapping efficiency. In the dipole limit and in the absence of particle losses, Q depends on
the normalized gradient of the light intensity and the polarizability α given by

α(ω) = 3ε0V0
ε(ω) − εs(ω)

ε(ω) + 2εs(ω)
, (14.58)

where V0 and ε are the particle’s volume and dielectric constant, respectively. Figure 14.7
shows the maximum axial trapping efficiency Max[Qz(x = 0, y = 0, z)] for a polystyrene
particle (ε=2.46) with variable radius r0 irradiated by a focused Gaussian beam. For small
particles (r0 < 100 nm) the trapping efficiency scales as r3

0 in accordance with the dipole
approximation and Eq. (14.58). However, for larger particles, the dipole approximation
becomes inaccurate.

As illustrated in Fig. 14.8, a simple ray-optical analysis can be applied to describe trap-
ping of particles larger than the wavelength. In this model, every refraction of a light ray at
the particle surface transfers momentum from the trapping laser to the particle. The time
rate of change of the momentum is the trapping force. The total force can be calculated
by representing the light beam as a collection of rays (see Section 3.5) and summing the
forces due to each of the rays. Stable trapping requires that there is a position for which the
net force on the particle is zero and any displacement results in a restoring force towards
the “zero-force” position. The reader is referred to the work of Ashkin for further details
on optical trapping in the ray-optics regime [13].

An important concept in applications of laser tweezers is the trap stiffness k. For small
displacements x from the equilibrium position, the trapping potential can be approximated
by a harmonic function and the restoring force becomes linearly dependent on x,
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〈
F
〉 = kx. (14.59)

In principle, k is a tensor of rank two since the stiffness depends on the direction
of displacement. For a single-beam gradient trap it is often sufficient to distinguish
between transverse and longitudinal stiffness. The trap stiffness depends on the parti-
cle’s polarizability, the excitation power and the field gradients. Figure 14.9 illustrates
the linear approximation for a paraxial Gaussian beam. The trap stiffness can be measured
experimentally by using the viscous drag force Fd acting on a particle inside a medium with
relative velocity v. For a spherical particle with radius r0, Fd is described by Stokes’ law,〈

Fd
〉 = 6πηr0v. (14.60)

Here, η is the viscosity of the medium (10−3 N s m−2 for water) and it is assumed that
inertial forces are negligible (small Reynolds number). Thus, on moving the surrounding
medium with velocity v past a stationary trapped particle of known size, Stokes’ law deter-
mines the force

〈
Fd
〉

exerted on the particle. This force has to be balanced by the trapping
force

〈
F
〉

in Eq. (14.59), which allows us to determine the stiffness k by measuring the
displacement x. There are different ways to establish a relative speed v between a particle
and a surrounding medium: (1) the medium is pumped past a stationary particle using a
flow chamber, (2) the chamber containing the medium is moved past a stationary parti-
cle using piezo-transducers or a motorized stage, and (3) the optical trap is moved using
beam-steering methods while the medium remains stationary. No matter what the method
is, the calibration of k relies on an accurate measurement of the displacement x. Most com-
monly, x is determined by refocusing the scattered light from the trapped particle onto a
position-sensitive detector, such as a silicon quadrant detector [14].

Brownian motion has to be taken into account if the depth of the trapping potential
is not negligible compared with the energy kBT . Stable trapping often requires a trap
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�Fig. 14.8 Illustration of the ray-optics picture for optical trapping of particles larger than the wavelength. (a) A single ray is
refracted twice at the surface of the particle. The net momentum change�p is calculated by taking the vectorial
difference of the momenta of incoming and outgoing rays. Momentum conservation requires that the momentum
transferred to the particle is−�p. (b) Refraction of two light rays with different intensities. The particle is pulled
towards the higher intensity. (c) Axial trapping of a particle in a single-beam trap. A particle initially located beneath
the focus is pulled towards the focus.

depth of ≈10kBT . Brownian motion leads to noise in force measurements, giving rise to a
characteristic power spectrum [3]. Unfortunately, the Langevin equation cannot be solved
for a trapping potential with finite depth. Therefore, to answer questions regarding trap
stability it is necessary to solve the Fokker–Planck equation [15].

14.6 Angular momentum and torque

Besides energy and momentum, an electromagnetic field can also carry angular
momentum, which exerts a mechanical torque on an irradiated structure. This torque can
be calculated from a conservation law for angular momentum similar to Eq. (14.13):

−
∫
∂V

[↔
T (r, t) × r

] · n(r)da = d

dt

[
Jfield + Jmech

]
. (14.61)

As before, ∂V denotes the surface of a volume enclosing the irradiated structure, n is the
unit vector perpendicular to the surface, and da is an infinitesimal surface element. Jfield

and Jmech denote the total mechanical and electromagnetic angular momentum, respec-

tively, and [
↔
T × r] is the angular-momentum flux-density pseudotensor. The mechanical

torque N acting on the irradiated structure is defined as

N = d

dt
Jmech. (14.62)

For a monochromatic field the time-averaged torque can be represented as

〈N〉 = −
∫
∂V

〈↔
T (r, t) × r

〉 · n(r)da, (14.63)
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where we have used the fact that 〈dJfield/dt〉 = 0. Equation (14.63) allows us to calculate
the mechanical torque acting on an arbitrary body within the closed surface ∂V . The torque
is entirely determined by the electric and magnetic fields on the surface ∂V .

One of the first demonstrations of angular momentum transfer from an optical beam to
an irradiated object was performed by Beth in 1936 [16]. He measured the torque on a
suspended birefringent half-wave plate as circularly polarized light passed through it. This
experiment provided evidence that the angular momentum per photon in a pure circularly
polarized state is �. Since Beth’s experiment, various demonstrations have been performed,
demonstrating that optical beams with non-vanishing angular field momentum can indeed
be used to promote a trapped particle into a spinning state [17] and applications as optical
and biological micromachines have been suggested [18].

14.7 Forces in optical near-fields

Optical near-fields are mainly composed of evanescent-field terms that decay rapidly with
distance from the source. This fast decay leads to strong field gradients and thus to strong
dipole forces. Evanescent waves created by total internal reflection at a glass/air interface
have been used as atomic mirrors. In these experiments, an atomic beam incident on the
interface is deflected by the dipole force exerted by the evanescent field if the light fre-
quency is tuned to the blue side of an electronic resonance [19]. Evanescent fields have
also been used to accelerate micrometer-sized particles along a plane surface and along
planar waveguides by means of the scattering force [20]. Optical near-field traps have been
proposed for atom trapping [21] and also for the manipulation of polarizable particles with
diameters down to 10 nm [20]. The strongest dipole forces arise from strongly enhanced
fields near material edges, corners, gaps, and tips. Therefore, as an application of the theory
developed in Section 14.4 we calculate the forces near a sharp metal tip.

The electric field distribution for a laser-illuminated gold tip is strongly polarization
dependent [20]. Figure 14.10 shows the electric field distribution (calculated with the
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75
nm

k

E

36nm

�Fig. 14.10 Trapping of a dielectric particle by a laser-irradiated gold tip in water. The figure shows contour lines of E2 = E · E∗
(with a factor of 2 between successive lines) for plane-wave excitation withλ=810 nm and polarization along the
tip axis. The diameters of tip and particle are 10 nm. The arrow indicates the direction of the trapping force.

MMP method) near a sharply pointed gold tip irradiated with a monochromatic plane wave
polarized along the tip axis. The field lines are slightly distorted by a small particle in the
vicinity of the tip. The arrow indicates the trapping force acting on the particle. While
the intensity at the foremost part of the tip is strongly enhanced over the intensity of the
excitation light, no enhancement beneath the tip is observed when the exciting light is
polarized perpendicular to the tip axis. Calculations for platinum and tungsten tips show
lower enhancements, whereas the field beneath a glass tip is reduced compared with the
excitation field.

With the field distribution around the tip determined, the force acting on the particle can
be calculated by evaluating Maxwell’s stress tensor. However, in order to avoid elaborate
computations, we represent both the tip and the particle by point dipoles. The dipole force
acting on a Rayleigh particle can be easily calculated as (cf. Eq. (14.47))

〈F〉 = (α′/2)∇〈|E|2〉 = (α′/2)∇(E · E∗), (14.64)

where α′ is the real part of the polarizability of the particle and E is the electric field in
the absence of the particle. The particle tends to move to the higher-intensity region where
its induced dipole has lower potential energy. We neglect the scattering force (the sec-
ond term in Eq. (14.47)) because of the small particle size. The assumptions inherent in
Eq. (14.64) are that the external field is homogeneous across the particle and that the par-
ticle does not alter the field E in Eq. (14.64). These assumptions, however, do not hold for
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the particle shown in Fig. 14.10. The intensity contours are distorted around the particle
and the field inside is highly inhomogeneous. Nevertheless, it will be shown later by com-
parison with the exact solutions that the point-dipole approximation leads to reasonable
results.

The situation to be analyzed is shown in Fig. 14.11. The metal tip is illuminated by a
plane wave at right angles such that the polarization is parallel to the tip axis.

Calculations show that the spatial distribution of the fields close to the metal tip is sim-
ilar to the field of an on-axis dipole pt. Without loss of generality, we place this dipole
at the origin of the coordinate system. The dipole moment pt can be expressed in terms
of the computationally determined enhancement factor, f , for the electric field intensity
(|E|2) as

E(x = 0, y = 0, z = rt) = 2pt

4πε0εsr3
t
≡ √f E0, (14.65)

where rt denotes the tip radius (z = rt is the foremost end of the tip), εs is the dielectric
constant of the environment, and E0 is the electric field amplitude of the exciting plane
wave. Equation (14.65) allows us to calculate the dipole moment of the tip as a function
of the tip size and the enhancement factor. Since we consider tip–particle distances d for
which kd � 1, we retain only the dipole’s near-field, from which we calculate

E · E∗ = |pt|2
(4πε0εs)2

1 + 3(z/r)2

r6
, (14.66)

where r=√x2 + y2 + z2 .
We assume that the coupling between tip and particle can be neglected. In this limit,

the incident field E0 excites a dipole moment pt in the tip and the fields generated by pt

induce a dipole moment p in the particle. Using Eq. (14.66) together with the expression

pt

p
r

k

E0

�Fig. 14.11 Trapping of a particle by a laser-illuminated metal tip. The tip is illuminated by a plane wave polarized along the tip
axis. Both the tip and the particle are represented by dipoles.
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for α(ω) in Eq. (14.58), the force acting on the particle located at (x, y, z) is determined by
Eq. (14.64) as

〈F〉 = −3r6
t fE2

0α
′

4r6

[
ρ(1 + 4z2/r2)nρ + 4(z3/r2)nz

]
. (14.67)

Here, nz and nρ denote the unit vectors along the tip axis and in the transverse direction,
respectively, and the transverse distance is ρ = √

x2 + y2. The minus sign indicates that
the force is directed towards the tip. We find that 〈F〉 is proportional to the enhancement
factor f , the intensity of the illuminating light I0 = (1/2)

√
ε0 εs/μ0 E2

0 , the real part of the
particle polarizability α′, and the sixth power of the tip radius at. It has to be kept in mind
that f and rt are not independent parameters; their relationship can be determined only by
rigorous calculations.

We now calculate the potential energy of the particle in the field of the tip dipole (the
trapping potential) as

Vpot(r) = −
∫ r

∞
〈F(r′)〉dr′. (14.68)

The integration path from r to ∞ is arbitrary because F is a conservative vector field.
After carrying out the integration we find

Vpot(r) = −r6
t fE2

0α
′ 1 + 3z2/r2

8r6
. (14.69)

The maximum value of Vpot is reached exactly in front of the tip at z = r0 + rt, r0 being
the particle’s radius. Figure 14.12 shows Vpot along the tip axis and along a transverse axis
immediately in front of the tip. Since in aqueous environments the trapping forces compete
with Brownian motion, the potential is normalized with kBT (kB is the Boltzmann constant,
T = 300 K). Additionally, the curves are scaled with the incident intensity I0.
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�Fig. 14.12 The trapping potential Vpot along the tip axis (a) and along a transverse direction at z= rt + r0 beneath the tip. The
radii of tip and particle are rt= r0=5 nm. The forces are normalized with kBT and the incident intensity I0.
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�Fig. 14.13 The minimum trapping intensity I0 as a function of the particle radius r0. The tip radius is rt=5 nm.

Let us assume for the following that a sufficient condition for trapping is Vpot > kBT .
We can then calculate the intensity required in order to trap a particle of a given size. Using
the expression for the particle polarizability and evaluating Eq. (14.69) at r = (rt + r0)nz,
we find

I0 >
kBT c

4π
√
εs

Re

{
εp + 2 εs

εp − εs

}
(rt + r0)6

f r6
t r3

0

. (14.70)

The curve for which the equality holds is shown in Fig. 14.13. The minimum in the curve
indicates that the incident intensity and the tip radius can be adjusted to selectively trap
particles with sizes in a limited range. Particles that are too small are not trapped because
their polarizability is too small. On the other hand, for particles that are too big the mini-
mum separation between tip and particle (rt + r0) becomes too large. As a rule of thumb,
the particle size should be in the range of the tip size.

Notice that, instead of calculating first the trapping force, the potential Vpot(r) could
have been more easily determined by considering the interaction energy of the parti-
cle in the dipole approximation. With E being the field of the tip dipole pt it is easy to
show that

Vpot(r) = −p · E(r) = −(α′/2)E2(r) (14.71)

leads to the same result as Eq. (14.69).
The simple two-dipole model applied here renders a trapping potential whose general

shape is in very good agreement with the results in Ref. [20]. A comparison shows that the
forces calculated here are off by a factor ≈2–3. Experiments have shown that the formation
of eddy currents in the aqueous environment does have an effect on the trapping scheme.
These eddy currents are generated by laser heating of the metal tip.

14.8 Conclusion

We have discussed light-induced forces acting on polarizable objects. These forces are
conveniently described by Maxwell’s stress-tensor formalism, which yields both gradient
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forces and radiation pressure for arbitrarily shaped objects. For objects much smaller than
the wavelength of light the fields can be represented by a multipole series and the lowest
dipole term yields the familiar gradient force and scattering force. The former is the key
ingredient in optical tweezers, whereas the latter constitutes the recipe for atomic cooling.
In general, the forces are semiclassical in nature, which means that the fields can be treated
classically whereas the material properties (polarizabilities) require a quantum treatment.
Because of the strong field gradients associated with optical near-fields, gradient forces can
potentially be exploited for translating, manipulating, and controlling nanoscale structures.
However, near-fields are strongest at material interfaces and hence additional counteracting
forces (van der Waals, electrostatic) are needed in order to create stable trapping beyond
the material boundaries.

Problems

14.1 A spherical glass particle in water is trapped at the focus of a monochromatic
paraxial Gaussian beam with λ = 800 nm and variable NA (see Section 3.2). The
polarizability of the particle is

α = 3ε0V0
ε − εw

ε + 2εw
, (14.72)

where V0 is the volume of the particle, and the dielectric constants of glass and water
are ε=2.25 and εw=1.76, respectively.
(1) Show that for small transverse displacements (x) from the focus the force is

proportional to x. Determine the spring constant as a function of NA, d0, λ,
and P0, where d0 is the particle diameter and P0 the laser power.

(2) Is it possible to derive in the same way a spring constant for longitudinal dis-
placements z? If yes, calculate the corresponding spring constant as a function
of NA, d0, and P0.

(3) Assume NA = 1.2 and d0 = 100 nm. What laser power is necessary in order
to create a trapping potential V > 10kBT , where kB is Boltzmann’s constant
and T = 300 K is the ambient temperature? What is the restoring force for a
transverse displacement of x=100 nm?

14.2 Consider the total internal reflection of a plane wave with wavelength λ= 800 nm
incident at an angle θ = 70◦ from the normal of a glass/air interface (ε = 2.25).
The plane wave is incident from the glass side and is s-polarized. The normal of the
interface is parallel to the gravitational axis and the air side is pointing to the bottom.
A tiny glass particle is trapped on the air side in the evanescent field generated by
the totally internally reflected plane wave. Calculate the minimum required intensity
I of the plane wave to prevent the glass particle from falling down (α given by
Eq. (14.72) with εw =1). The specific density of glass is ρ=2.2 × 103 kg m−3 and
the particle diameter is d0=100 nm. What happens if the particle size is increased?

14.3 A particle is placed into the field of two counter-propagating plane waves of iden-
tical amplitudes, phases, and polarizations. The gradient force retains the particle
in a transverse plane formed by the constructive interference of the two waves. The
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intensity of a single plane wave is I and the polarizability of the particle is α. Calcu-
late the energy required to promote the particle from one constructive interference
plane to the next as a function of I.

14.4 Calculate the mutual attraction force between two identical dipolar particles that
are irradiated by a plane wave polarized along the axis defined by the two particle
centers. Plot the force as a function of the interparticle distance and use suitable
normalizations for the axes.

14.5 Evaluate Maxwell’s stress tensor on a spherical surface enclosing a Rayleigh particle
irradiated by a plane wave. What does the result tell you?
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15 Fluctuation-induced interactions

The thermal and zero-point motion of electrically charged particles inside materials gives
rise to a fluctuating electromagnetic field. Quantum theory tells us that the fluctuating par-
ticles can only assume discrete energy states and, as a consequence, the emitted fluctuating
radiation takes on the spectral form of blackbody radiation. However, while the familiar
blackbody radiation formula is strictly correct at thermal equilibrium, it is only an approx-
imation for non-equilibrium situations. This approximation is reasonable at large distances
from the emitting material (far-field) but it can strongly deviate from the true behavior
close to material surfaces (near-field).

Because fluctuations of charge and current in materials lead to dissipation via radiation,
no object at finite temperature can be in thermal equilibrium in free space. Equilibrium
with the radiation field can be achieved only by confining the radiation to a finite space.
However, in most cases the object can be considered to be close to equilibrium and the
non-equilibrium behavior can be described by linear-response theory. In this regime, the
most important theorem is the fluctuation–dissipation theorem. It relates the rate of energy
dissipation in a non-equilibrium system to the fluctuations that occur spontaneously at
different times in equilibrium systems.

The fluctuation–dissipation theorem is of relevance for the understanding of fluctuating
fields near nanoscale objects and optical interactions at nanoscale distances (e.g. the van
der Waals force). This chapter is intended to provide a detailed derivation of important
aspects in fluctuational electrodynamics.

15.1 The fluctuation–dissipation theorem

The fluctuation–dissipation theorem has its roots in Nyquist’s relation for voltage fluctu-
ations across a resistor. However, it was Callen and Welton who derived the theorem in
its general form [1]. The derivation presented here is purely classical. A substitution at
the end of the derivation introduces the Planck constant into the theorem. We consider a
nanoscale system with characteristic dimensions much smaller than the wavelength of light
(see Fig. 15.1). This allows us to treat the interaction with the system in the electric-dipole
approximation. The theory can be easily extended by including higher-order multipolar
terms. The nanoscale system consists of a finite number of charged particles with N degrees

474
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�Fig. 15.1 Interaction of an optical field with a system of particles initially at thermal equilibrium. The state of the system is
defined by the phase-space coordinate s=[q1 ... qN ; p1 ... pN], with qj and pj being the coordinates and conjugate
momenta, respectively. If the characteristic length scale d of the system is small compared with the wavelengthλ,
the interaction energy between the optical field and the system is given by the electric dipole approximation
δH=−p(s, t) · E(t), where p is the electric dipole moment.

of freedom. At thermal equilibrium, the probability of the system’s dipole moment p being
in state s=[q1 ... qN ; p1 ... pN

]
is given by the distribution function

feq(s) = f0e−H0(s)/(kBT), (15.1)

where f0 is a normalization constant ensuring that
∫

feq ds = 1. H0 is the equilibrium
Hamiltonian of the system, kB the Boltzmann constant, and T the temperature. qj and pj

denote the generalized coordinates and conjugate momenta, respectively. s is a point in
phase-space and can be viewed as a short-hand for all the coordinates and momenta of the
system. At thermal equilibrium the ensemble average of p is defined as

〈p(s, t)〉 =
∫

feq(s)p(s, t)ds∫
feq(s)ds

= 〈p〉, (15.2)

where the integration runs over all coordinates
[
q1 ... qN ; p1 ... pN

]
. Because of equilibrium

the ensemble average is independent of time.

15.1.1 The system response function

Let us consider an external field E(r, t) that perturbs the equilibrium of the system. Assum-
ing that the characteristic dimension d of the system is much smaller than the wavelength
λ, we can apply the dipole approximation and the Hamiltonian of the perturbed system
becomes

H = H0 + δH = H0 − p(s, t) · E(t) = H0 −
∑

k=x,y,z

pk(s, t)Ek(t). (15.3)

Owing to the external perturbation E(t) the expectation value of p will deviate from its
equilibrium average 〈p〉. We will designate the expectation value of p in the perturbed
system by p̄ in order to distinguish it from 〈p〉. We assume that the deviation

δp̄(t) = p̄(t) − 〈p〉 (15.4)
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Ek(t)

t
Ek

0

�Fig. 15.2 The time dependence of the considered perturbation. The perturbation ensures complete relaxation of the system at
times t=0 (immediately before the step) and t→∞.

is small and that it depends linearly on the external perturbation, i.e.

δp̄j(t) = 1

2π

∑
k

t∫
−∞

α̃jk(t − t′) Ek(t′)dt′, j, k=x, y, z. (15.5)

Here, α̃jk is the response function of the system. We have assumed that the system is sta-
tionary, α̃jk(t, t′) = α̃jk(t− t′), and causal, α̃jk(t − t′) = 0 for t′ > t. Equation (15.5) states
that the response at time t depends not only on the perturbation at time t but also on the
perturbations prior to t. The “memory” of the system is contained in α̃jk. Our goal is to
determine α̃jk as a function of the statistical equilibrium properties of the system. It is con-
venient to consider the perturbation shown in Fig. 15.2, which promotes the system from
one completely relaxed (equilibrated) state to another [2]. The relaxation time can be intu-
itively associated with the memory of the response function. Evaluating Eq. (15.5) for the
perturbation shown in Fig. 15.2 gives

δp̄j(t) = E0
k

2π

0∫
−∞

α̃jk(t − t′)dt′ = E0
k

2π

∞∫
t

α̃jk(τ ) dτ , (15.6)

which can be solved for α̃jk as

α̃jk(t) = −2π

E0
k

�(t)
d

dt
δp̄j(t). (15.7)

Here, we assumed that α̃jk and its time derivative tend to zero for times t →∞ and we
introduced the Heaviside step function �(t) to ensure causality; α̃jk(t − t′) = 0 for t′ > t.1

According to Eq. (15.7), we find α̃jk if we calculate the time derivative of δp̄j at time t.
The expectation value of p at time t is determined by the distribution function f (s) at the

initial time t=0 according to (see Fig. 15.3)

p̄(t) =
∫

f (s)p(s, t)ds∫
f (s)ds

. (15.8)

1 �(t) = 0 for t < 0, �(t) = 1/2 for t = 0, and �(t) = 1 for t > 0.
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s(t)

t
0

f(s)

t0
�Fig. 15.3 Newton’s equations of motion map each phase-space point s at time t=0 into a phase-space point at time t0. The

dipole moment at time t0 can be expressed as p[s(t0)]=p[s(0), t0]=p[s, t0] and its ensemble average at time t0 is
determined by the initial distribution function f (s).

Because of thermal equilibrium at time t=0, the distribution function reads as

f (s) ∝ e−[H0+δH]/(kBT) = feq(s) e−δH(s)/(kBT)

= feq(s)

(
1 − 1

kBT
δH(s) + · · ·

)
, (15.9)

where feq(s) is given by Eq. (15.1). The last term in brackets is the series expansion of
exp[−δH/(kBT)]. By insertion into Eq. (15.8) and retaining only terms up to linear order
in δH we obtain2

p̄(t) =
〈
p
〉
− 1

kBT

[〈
δH(s)p(s, t)

〉
−
〈
p(s, t)

〉〈
δH(s)

〉]
, (15.10)

where 〈...〉 denotes the expectation value in the absence of the perturbation, i.e. the expec-
tation value calculated by using the distribution function feq in Eq. (15.1). Since δH(s) is the
perturbation at time t=0 we have δH(s) = −pk(s, 0)E0

k and Eq. (15.10) can be rewritten as

δp̄j(t) = p̄j(t) − 〈pj〉 = − E0
k

kBT

[〈
pj

〉〈
pk

〉
−
〈
pk(0)pj(t)

〉]

= E0
k

kBT

〈[
pk(0) − 〈pk〉

][
pj(t) − 〈pj〉

]〉 = E0
k

kT

〈
δpk(0)δpj(t)

〉
, (15.11)

where we used Eq. (15.2) and defined δpj(t) = [pj(t) − 〈pj〉]. On introducing this result
into Eq. (15.7) we finally find

α̃jk(t) = − 2π

kBT
�(t)

d

dt

〈
δpk(0)δpj(t)

〉
(classical). (15.12)

This important result is often referred to as the time-domain fluctuation–dissipation theo-
rem. It states that the system’s response to a weak external field can be expressed in terms

2 [1 − 〈δ H〉/(kBT)]−1 ≈ [1 + 〈δ H〉/(kBT) − · · · ].
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of the system’s fluctuations in the absence of the external field! Notice that the correla-
tion function 〈δpk(0)δpj(t)〉 is a property of the stationary equilibrium system and that the
correlation function can be offset by an arbitrary time τ as〈

δpk(0)δpj(t)
〉
=
〈
δpk(τ )δpj(t + τ )

〉
. (15.13)

For many problems it is convenient to express Eq. (15.12) in the frequency domain by
using the Fourier transforms3

αjk(ω) = 1

2π

∫ ∞

−∞
α̃jk(t)eiωt dt, δp̂j(ω) = 1

2π

∫ ∞

−∞
δpj(t) eiωt dt. (15.14)

The correlation function in the frequency domain 〈δp̂j(ω)δp̂∗k (ω′)〉 can be calculated by
substituting the Fourier transforms for δp̂j(ω) and δp̂∗k (ω′) as

〈
δp̂j(ω) δp̂∗k (ω′)

〉
= 1

4π2

∞∫
−∞

∫ 〈
δpj(τ

′) δpk(τ )
〉

ei[ωτ ′−ω′τ ] dτ ′ dτ

= 1

4π2

∞∫
−∞

∫ 〈
δpk(τ ) δpj(t + τ )

〉
ei[ω−ω′]τ eiωt dτ dt, (15.15)

where we used the substitution τ ′ =τ+t. Because of stationarity, the correlation function in
the integrand does not depend on τ and the integration over τ reduces to a delta function.4

The final relation is known as the Wiener–Khintchine theorem,

〈
δp̂j(ω)δp̂∗k (ω′)

〉
= δ(ω − ω′) 1

2π

∞∫
−∞

〈
δpk(τ )δpj(t + τ )

〉
eiωt dt, (15.16)

which demonstrates that spectral components that belong to different frequencies are
uncorrelated. The integral on the right-hand side is known as the spectral density. To obtain
a spectral representation of the fluctuation–dissipation theorem, we need to Fourier trans-
form Eq. (15.12). The right-hand side leads to a convolution between the spectrum of the
step function, �̂(ω),5 and the spectrum of d/dt 〈δpk(0)δpj(t)〉. To get rid of the imaginary
part of �̂ we solve for αjk(ω) − α∗kj(ω) instead of αjk(ω). Making use of stationarity, the
Wiener–Khintchine theorem, and the fact that 〈δpk(τ )δpj(t + τ )〉 is real, we obtain[

αjk(ω) − α∗kj(ω)
]
δ(ω − ω′) = 2π iω

kBT

〈
δp̂j(ω)δp̂∗k (ω′)

〉
(classical). (15.17)

This is the analogue of Eq. (15.12) in the frequency domain. The factor kBT can be
identified as the average energy per degree of freedom of a particle in the system (the
equipartition principle). This average energy is based on the assumption that the energy
distribution of electromagnetic modes is continuous. However, according to quantum

3 Because the function δpj(t) is a stochastic process it is not square integrable and therefore its Fourier transform
is not defined. However, these difficulties can be overcome by the theory of generalized functions, and it can
be shown that the Fourier transform can be used in symbolic form [3].

4 ∫∞−∞exp(ixy)dy = 2πδ(x).
5 �̂(ω) = 1

2 δ(ω) − 1/(2π iω).
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mechanics these modes can only assume discrete energy values separated by �E = �ω

and, as a consequence, the average energy kBT has to be substituted as

kBT → �ω

exp[�ω/(kBT)] − 1
+ �ω, (15.18)

which corresponds to the mean energy of the quantum oscillator (first term) plus the
zero-point energy �ω (second term). We choose �ω instead of �ω/2 in order to be consis-

tent with quantum theory, which requires that
〈
δp̂j(ω)δp̂∗k (ω′)

〉
is an antinormally ordered

quantity for ω > 0 (see Section 15.1.4).
In the limit � → 0 or �ω� kBT the substitution (15.18) recovers the classical value

of kBT . Rewriting the right-hand side of Eq. (15.18) as �ω/{1 − exp[−�ω/(kBT)]} and
substituting into Eq. (15.17) renders the quantum version of the fluctuation–dissipation
theorem [4, 5]:

〈
δp̂j(ω)δp̂∗k (ω′)

〉
= 1

2π iω

[
�ω

1 − e−�ω/(kBT)

] [
αjk(ω) − α∗kj(ω)

]
δ(ω − ω′).

(15.19)

While dissipation is associated with the right-hand side, the left-hand side represents fluc-
tuations of the equilibrium system. It is important to notice that quantum mechanics leads
to dissipation even for temperatures at absolute zero. The remaining fluctuations affect
only positive frequencies! This can easily be seen by noting the following limit:

lim
T→0

[
1

1 − e−�ω/(kBT)

]
= �(ω) =

⎧⎨
⎩

1 ω > 0,
1/2 ω = 0,
0 ω < 0.

(15.20)

The fluctuation–dissipation theorem can be generalized to include the spatial depen-
dence of the sources. It turns out that as long as the system’s response function is local,
i.e. ε̃jk(r, t)= ε̃jk(t) or εjk(k,ω)=εjk(ω), fluctuations at two distinct spatial coordinates are
uncorrelated [6]. For a fluctuating current density δj(r, t) in an isotropic and homogeneous
medium with dielectric constant ε(ω), Eq. (15.19) can be generalized as [7]〈

δ ĵj(r,ω)δ ĵ
∗
k (r′,ω′)

〉
= ωε0

π
ε′′(ω)

[
�ω

1 − e−�ω/(kBT)

]
δ(ω − ω′)δ(r − r′)δjk. (15.21)

ε′′ is the imaginary part of ε, δ ĵ denotes the Fourier transform of δj, and the Kronecker
delta δjk is a consequence of isotropy.

15.1.2 Johnson noise

We finally write the fluctuation–dissipation theorem in the form originally developed by
Callen and Welton [1]. We note that the fluctuating dipole moment δp is related to a local
stochastic electric field δE according to

δp̂j(ω) =
∑

k

αjk(ω)δÊk(ω), j, k=x, y, z, (15.22)
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which directly follows from the time-domain relationship of Eq. (15.5) on using the
definitions of Fourier transforms in Eq. (15.14). Substituting the linear relationship into
Eq. (15.19) leads to〈

δÊj(ω)δÊ∗
k (ω′)

〉
= 1

2π iω

[
�ω

1 − e−�ω/(kBT)

] [
α∗ −1

kj (ω) − α−1
jk (ω)

]
δ(ω−ω′). (15.23)

This equation renders the local electric field correlation induced by the fluctuating dipole.
Integrating on both sides over ω′ and applying the Wiener–Khintchine theorem leads to

1

2π iω

[
�ω

1 − e−�ω/(kBT)

] [
α∗ −1

kj (ω) − α−1
jk (ω)

]

= 1

2π

∞∫
−∞

〈
δEk(τ ) δEj(t + τ )

〉
eiωt dt. (15.24)

Further integration over ω gives rise to a delta function on the right-hand side, which allows
the time integral to be evaluated. The final result reads as

〈
δEk(τ )δEj(τ )

〉
= 1

2π

∞∫
−∞

1

iω

[
�ω

1 − e−�ω/(kBT)

] [
α∗ −1

kj (ω) − α−1
jk (ω)

]
dω. (15.25)

We now apply this formula to charge fluctuations in a resistor. The fluctuating current
density can be expressed in terms of the fluctuating dipole moment as δj = d/dt [δp]δ(r−r′).
Assuming an isotropic resistor (j = k), the relationship between current and field in the
spectral domain becomes δ ĵ(ω) = −iωα(ω)δ(r−r′)δÊ, which allows us to identify the
term [−iωα(ω)δ(r−r′)]−1 with the resistivity ρ(ω). Assuming that ρ(ω) is real, we can
express Eq. (15.25) as〈

δE2
〉
= 1

π

∫ ∞

−∞

[
�ω

1 − e−�ω/(kBT)

]
ρ(ω)δ(r − r′)dω, (15.26)

which can be rewritten in terms of the voltage V and resistance R as〈
δV2
〉
= 1

π

∫ ∞

−∞

[
�ω

1 − e−�ω/(kBT)

]
R(ω)dω

= 1

π

∫ ∞

0

{[
�ω

1− e−�ω/(kBT)

]
R(ω) −

[
�ω

1 − e−�ω/(kBT)
− �ω

]
R(−ω)

}
dω

= 2

π

∫ ∞

0

[
�ω

e�ω/(kBT) − 1
+ 1

2
�ω

]
R(ω)dω. (15.27)

We reduced the integration range to [0 ...∞] and made use of R(ω)=−R(−ω). The left-
hand side can be identified with the mean-square voltage fluctuations. For temperatures
kBT � �ω , which is fulfilled for any practical frequencies at room temperature, we can
replace the expression in brackets by its classical limit kBT . Furthermore, for a system
with finite bandwidth B= (ωmax − ωmin)/(2π ) and a frequency-independent resistance we
obtain 〈

δV2
〉
= 4kBTBR. (15.28)
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This is the familiar formula for the white noise, also called Johnson noise, generated in
electrical circuits by resistors. In a bandwidth of 10 kHz and at room temperature, a resistor
of 10 M� generates a voltage of ≈40 μVrms.

15.1.3 Dissipation due to fluctuating external fields

We have derived the dissipation of a system as a function of its charge fluctuations. Here we
intend to express the dissipation in terms of the fields that the fluctuating charges generate.
The current density δĵ in Eq. (15.21) generates an electric field according to

δÊ(r,ω) = iωμ0

∫
V0

↔
G (r, r0;ω)δĵ(r0,ω)d3r0, (15.29)

where all currents are confined in the source region V0. Multiplying the above expression
by the corresponding expression for the field δÊ(r′,ω′), taking the ensemble average, and
applying Eq. (15.21) gives〈

δÊj(r,ω)δÊ
∗
k (r′,ω′)

〉
= ω3

πc4ε0

[
�ω

1 − e−�ω/(kBT)

]
δ(ω − ω′)

×
∑

n

∫
V0

Gjn(r, r0;ω)ε′′(ω)Gkn(r′, r0;ω)d3r0. (15.30)

We now note that the dielectric properties of the source region are defined not only by ε′′

but also by
↔
G because its definition depends on the factor k2 = (ω/c)2ε(ω) (cf. Eq. (2.87)).

Therefore, it is possible to rewrite the above equation for the electric field correlations by
using the identity [8, 9]

ω2

c2

∑
n

∫
V0

Gjn(r, r0;ω)ε′′(ω)Gkn(r′, r0;ω)d3r0 = Im
{
Gjk(r, r′;ω)

}
, (15.31)

which can be derived by using Gij(r′, r;ω) = Gji(r, r′;ω), requiring that the Green function

is zero at infinity, and making use of the definition of
↔
G (Eq. (2.87)). In order for

↔
G to be

zero at infinity,
↔
G has to consist of an outgoing and an incoming part, ensuring that there

is no net energy transport, i.e. the time-averaged Poynting vector has to be zero for any
point in space. This condition ensures that all charges are in equilibrium with the radiation
field [10].

The fluctuation–dissipation theorem for the electric field can now be expressed in terms
of the Green function alone as

〈
δÊj(r,ω)δÊ

∗
k (r′,ω′)

〉
= ω

πc2ε0

[
�ω

1 − e−�ω/(kBT)

]
Im
{
Gjk(r, r′;ω)

}
δ(ω − ω′).

(15.32)

This result establishes the correspondence between field fluctuations (left side) and dissi-
pation (right side), which is expressed in terms of the imaginary part of the Green function.
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As before, the result is strictly valid only at equilibrium, i.e. when the field and the sources
are at the same temperature.

15.1.4 Normal and antinormal ordering

Let us split the electric field E(t) at an arbitrary space point r into two parts as

E(t) = E+(t) + E−(t) =
∞∫

0

Ê(ω)e−iωt dω +
0∫

−∞
Ê(ω)e−iωt dω, (15.33)

where Ê(ω) is the Fourier spectrum of E(t) (see Section 2.5). The functions E+ and E−
are no longer real functions but are so-called complex analytic signals [3]. E+ is defined
by the positive frequencies of Ê, whereas E− is defined by the negative frequencies of Ê.
Because E(t) is real we have Ê∗(ω) = Ê(−ω), which implies that E− = [E+]∗. Let us also
define the (inverse) Fourier transforms of E+ and E−:

E+(t) =
∞∫

−∞
Ê+(ω)e−iωt dω, E−(t) =

∞∫
−∞

Ê−(ω)e−iωt dω. (15.34)

Obviously, the spectra are related to the original spectrum Ê as

Ê+(ω) =
{

Ê(ω) ω > 0,
0 ω < 0,

Ê−(ω) =
{

0 ω > 0,
Ê(ω) ω < 0.

(15.35)

In quantum mechanics, Ê− is associated with the creation operator â† and Ê+ with the
annihilation operator â (see Section 8.4). The sequence Ê−Ê+ describes the probability
of photon absorption and the sequence Ê+Ê− the probability of photon emission [3]. The
important thing is that in quantum mechanics the two processes are not the same, i.e. Ê+
and Ê− do not commute. Therefore, we need to calculate separately the correlations of
Ê−Ê+ (normal ordering) and Ê+Ê− (antinormal ordering).

We now turn our attention to the fluctuating field δÊ(r, t) with zero average value and
we decompose its Fourier spectrum into positive- and negative-frequency parts. Using the
results from Ref. [4] and procedures similar to those used to derive Eq. (15.32), we find〈

δÊ
−
j (r,ω)δÊ

+∗
k (r′,ω′)

〉
= ω�(−ω)

πc2ε0

[
�ω

1 − e−�ω/(kBT)

]
Im
{
Gjk(r, r′;ω)

}
δ(ω − ω′), (15.36)〈

δÊ
+
j (r,ω)δÊ

−∗
k (r′,ω′)

〉
= ω�(ω)

πc2ε0

[
�ω

1 − e−�ω/(kBT)

]
Im
{
Gjk(r, r′;ω)

}
δ(ω − ω′), (15.37)

where �(ω) is the unit step function. Hence the correlation of the normally ordered opera-
tors is zero for positive frequencies. Similarly, the correlation of the antinormally ordered
operators is zero for negative frequencies.
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It can be shown that
〈
δÊ−

j δÊ−∗
k

〉 = 〈
δÊ+

j δÊ+∗
k

〉 = 0, and hence the correlations for

the total field Ê = Ê
−+ Ê

+
are simply the sum of the correlations for the normally and

antinormally ordered fields given above. This recovers our result Eq. (15.32) and allows us
to interpret the correlation

〈
δÊj δÊ

∗
k

〉
as a sequence of absorption and emission events.

For completeness, we also state the fluctuation–dissipation theorem for symmetrized
correlation functions. The quantity of interest is

1

2

〈 [
δÊj(r,ω)δÊ

∗
k (r′,ω′) + δÊk(r,ω)δÊ

∗
j (r′,ω′)

] 〉
. (15.38)

Using Eqs. (15.36) and (15.37) it is straightforward to show that the above expression
equals

ω

πc2ε0
�ω

[
1

2
+ 1

e�ω/(kBT) − 1

]
Im
{
Gjk(r, r′;ω)

}
δ(ω − ω′). (15.39)

Thus, the only difference compared with Eq. (15.32) is the replacement of a factor of 1 by
1/2. Consequently, for T = 0 the symmetrized correlations are no longer zero at negative
frequencies.

15.2 Emission by fluctuating sources

The energy density of an arbitrary fluctuating electromagnetic field in vacuum is given by
(cf. Eq. (2.57))

W(r, t) = ε0

2
δE(r, t) · δE(r, t) + μ0

2
δH(r, t) · δH(r, t). (15.40)

For simplicity, we will skip the position vector r in the arguments. Assuming stationary
fluctuations, the average of W becomes

W =
∫ ∞

−∞
Wω(ω)dω = ε0

2

〈
δE(t) · δE(t)

〉
+ μ0

2

〈
δH(t) · δH(t)

〉
. (15.41)

The mean-square value of δE can be expressed as

〈
δE(t) · δE(t)

〉
= 1

2π

∞∫
−∞

∫ 〈
δE(t) · δE(t + τ )

〉
eiωτ dω dτ , (15.42)

with a similar expression for δH. We can now identify the spectral energy density Wω in
Eq. (15.41) as6

Wω(ω) =
∞∫

−∞

[ ε0

4π

〈
δE(t) · δE(t + τ )

〉
+ μ0

4π

〈
δH(t) · δH(t + τ )

〉]
eiωτ dτ . (15.43)

6 Keep in mind that Wω is defined for positive and negative frequencies.
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After multiplication on both sides by δ(ω−ω′), making use of the Wiener–Khintchine
theorem (cf. Eq. (15.16)), and reintroducing the spatial dependence we obtain

Wω(r,ω)δ(ω − ω′) = ε0

2

〈
δÊ∗(r,ω) · δÊ(r,ω′)

〉
+ μ0

2

〈
δĤ∗(r,ω) · δĤ(r,ω′)

〉
,

(15.44)

where δÊ and δĤ are the Fourier transforms of δE and δH, respectively. In the far-field,
|δĤ| = |δÊ|√ε0/μ0 and the electric and magnetic energy densities turn out to be equal.

We would like to determine the spectral energy density Wω due to a distribution of
fluctuating currents δj in an arbitrary polarizable reference system. We assume that the

latter can be accounted for by a dyadic Green function
↔
G(r, r′,ω). Using the volume-

integral equations discussed in Section 8.3.1, we obtain

δÊ(r,ω) = iωμ0

∫
V

↔
G (r, r′,ω)δĵ(r′,ω)dV ′, (15.45)

δĤ(r,ω) =
∫

V

[
∇× ↔

G (r, r′,ω)
]
δĵ(r′,ω)dV ′. (15.46)

After introducing these equations into the expression for Wω, the averages over the fields
reduce to averages over the currents.7 The latter can then be eliminated by using the
fluctuation–dissipation theorem given in Eq. (15.21). Integration over ω′ leads to

Wω(r,ω) = ω

π c2

[
�ω

1 − e−�ω/(kBT)

]

×
∑
j,k

∫
V
ε′′(r′,ω)

[
ω2

c2

∣∣∣[↔G (r, r′,ω)]jk

∣∣∣2 + ∣∣∣[∇×↔
G (r, r′,ω)]jk

∣∣∣2]dV ′, (15.47)

with [
↔
G]jk and [∇ ×↔

G]jk denoting the jkth elements of the tensors
↔
G and (∇ × ↔

G), respec-
tively. The first term in the brackets originates from the electric contribution to Wω whereas
the second term is due to the magnetic field. In general, the result for Wω can be written in
the form

Wω(r,ω) = w(ω, T)N(r,ω), (15.48)

where w(ω, T) is the average energy per mode. N(r,ω) depends only on the dielectric
properties ε(ω) and the Green function of the reference system. It has a similar meaning
to the local density of states defined previously. In fact, as will be shown later, N(r,ω) is
identical with the local density of states if the system considered is an equilibrium system.
In a non-equilibrium system, N(r,ω) comprises only a fraction of the total number of
possible modes.

7 The fields due to a set of discrete fluctuating dipoles can be written in a similar form (see Section 8.3.1). Wω

can then be derived by using the fluctuation–dissipation theorem of Eq. (15.23).



485 15.2 Emission by fluctuating sources

15.2.1 Blackbody radiation

Consider a body that is made of fluctuating point sources. Thermal equilibrium with the
radiation field implies that the averaged Poynting vector vanishes at all points r in space
(there is no net heat transport). In this case we can use the fluctuation–dissipation theorem
Eq. (15.32). In free space, the two terms in Eq. (15.47) turn out to be identical and we
obtain [10]

Wω(r,ω) =
[

�ω

1 − e−�ω/(kBT)

]
ω

πc2

∑
j

Im
{

[
↔
G (r, r,ω)]jj

}
(equilibrium). (15.49)

Remember that the total energy is given by integration over positive and negative fre-
quencies. Let us replace the term in brackets by an antisymmetric part and a symmetric
part as

�ω

2
+
[

�ω

2
+ �ω

e�ω/(kBT) − 1

]
. (15.50)

Considering that Im{↔G} is an odd function of ω, we can drop the first term in the above
expression because its contribution cancels out on integrating over positive and negative
frequencies. The remaining integral can be written over positive frequencies only as

W =
∫ ∞

0
W

+
ω (ω)dω =

∫ ∞

0
w(ω, T)N(r,ω)dω, (15.51)

where

w(ω, T) =
[

�ω

2
+ �ω

e�ω/(kBT) − 1

]
,

N(r,ω) = 2ω

πc2

∑
j

Im
{

[
↔
G (r, r,ω)]jj

}
= 2ω

πc2
Im
{

Tr[
↔
G (r, r,ω)]

}
.

N(r,ω) is identical with the local density of states (cf. Eq. (8.118)) and w(ω, T) corresponds
to the average energy of a quantum oscillator. W

+
ω (ω) is the spectral energy density defined

over positive frequencies only.

By expanding the exponential term exp(ikr) in
↔
G into a series, it has been shown in

Section 8.3.3 that Im{↔G} is not singular at its origin. Using the free-space Green function,

we obtain Im{[↔G (r, r,ω)]jj}=ω/(6πc) and Eq. (15.51) becomes

W +
ω (ω) =

[
�ω

2
+ �ω

e�ω/(kBT) − 1

]
ω2

π2c3
. (15.52)

This is the celebrated Planck blackbody radiation formula which renders the electromag-
netic energy per unit volume in the frequency range [ω ...ω + dω] (Fig. 15.4). It is strictly
valid only for an equilibrium system.
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�Fig. 15.4 The blackbody radiation spectrumW
+
ω for T=300 K. Equilibrium conditions require that the net Poynting vector

vanishes everywhere.

15.2.2 Coherence, spectral shifts, and heat transfer

Thermal equilibrium between matter and the radiation field is practically never encoun-
tered. Therefore, the spectral energy density has to be calculated by Eq. (15.47) and the
local density of states N becomes position-dependent. Shchegrov et al. [7] calculated
N(r,ω) near a planar material surface and found that it strongly depends on the distance
to the surface. Figure 15.5 shows the spectral energy density at T = 300 K above an SiC
half-space. At large distances from the surface (Fig. 15.5, top), the spectrum looks like
a blackbody spectrum multiplied by the SiC emissivity. The latter is responsible for the
dip in the spectrum. The emitted radiation is incoherent, with a typical coherence length
of ≈λ/2 (a Lambertian source). At distances considerably smaller than λ, the spectrum is
dominated by a single peak (Fig. 15.5, bottom) that originates from a surface mode (surface
phonon polariton). The narrow linewidth of the peak leads to increased coherence and thus
to almost monochromatic fields. The sequence of figures clearly indicates that the spectrum
changes on propagation.

The observed increase of Wω near material surfaces has implications for radiative heat
transfer. Radiative heat transfer will occur between two bodies that are kept at different
temperatures. However, even a single body in free space will lose its thermal energy by
continuous radiation. Mulet et al. [11] showed that the radiative heat transfer between two
bodies can be increased by several orders of magnitude as the spacing between the bodies is
decreased. This increase originates from the interaction of surface waves localized near the
interfaces. The interaction gives rise to heat transfer limited to a narrow spectral window.

Near-field heat transfer has been systematically investigated by Greffet and co-
workers [12]. They measured the thermal conductance G between a heated surface and
a microsphere as a function of the separation d and temperature difference �T . As shown
in Fig. 15.6, the experimental data show a steep distance dependence that can be accurately
described by
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�Fig. 15.5 Spectra of thermal emission from a semi-infinite sample of SiC at T=300 K evaluated at three different heights z
above the surface. From [7].

G(d,�T) = Gff + H

�T
δ(d), (15.53)

where Gff corresponds to far-field heat transfer and the second term accounts for near-field
heat transfer. H is a constant and δ(d) is a short-range distance function. Besides its fun-
damental interest, near-field heat transfer also finds application in heat-assisted magnetic
recording. Areal bit densities as high as 1.5 Pb m−2 have been demonstrated by use of a
heated optical antenna [13].

Thermal near-fields affect not only the spectral energy density of the emitted radiation
but also their spatial coherence. A measure for spatial coherence is given by the electric-
field cross-spectral density tensor Wjk defined as

Wjk(r1, r2,ω) δ(ω − ω′) =
〈
δÊj(r1,ω) δÊ∗

k (r2,ω′)
〉
. (15.54)

Carminati and Greffet [14] have evaluated Wjk near surfaces of different materials. They
find that an opaque material not supporting a surface mode (e.g. tungsten) can have a spatial
coherence length much smaller than the well-known λ/2 coherence length of blackbody
radiation. The coherence length can be arbitrarily small, being limited only by non-local
effects close to the material surface. On the other hand, near material surfaces supporting
surface modes (e.g. silver) the correlation length can reach several tenths of λ.
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�Fig. 15.6 Thermal conductance between a sphere of diameter 40μm and a heated plate as a function of the gap distance. The
temperature difference between the sphere and the plate is�T = 21 K. The inset illustrates the experimental
arrangement. Reprinted by permission fromMacmillan Publishers Ltd [12].

15.3 Fluctuation-induced forces

Fluctuating charges in a neutral body give rise to fluctuating electromagnetic fields that
interact with the charges in other bodies. As a consequence, electromagnetic fields medi-
ate between the charge fluctuations in separate bodies. The resulting charge correlations
give rise to an electromagnetic force that is referred to as the dispersion force. For short
distances between two bodies, the force is called the van der Waals force, whereas at larger
separations it is designated the Casimir force. Although these forces are small on macro-
scopic scales, they cannot be ignored on the scales of nanostructures. For example, two
parallel conducting plates each of area 1 μm2 placed 5 nm apart will experience an attrac-
tive force of ≈2 nN. This force is sufficient to squash a biomolecule! Dispersion forces are
also responsible for weak molecular binding and for adhesion of particles to interfaces. For
example, geckos climb even the most slippery surfaces with ease and can hang from glass
using a single toe. The secret behind this extraordinary climbing skill lies in the millions
of tiny keratin hairs on the surface of each foot. Although the dispersion force associated
with each hair is minuscule, the millions of hairs collectively produce a powerful adhesive
effect. The “gecko effect” is applied to the design of strongly adhesive tapes.

In this section we derive the force acting on a small polarizable particle in an arbitrary
environment following the steps of Ref. [5]. To simplify the notation we assume that all
fluctuations have zero average. This allows us to write p(t) = δp(t) and E(t) = δE(t). To
calculate the force acting on a polarizable particle located at r = r0 we use the expres-
sion for the gradient force derived in Section 14.4 (cf. Eq. (14.33)). However, we have to
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consider that both the field E and the dipole moment p have fluctuating and induced parts.
Therefore,

〈
F(r0)

〉 =∑
i

[〈
p(in)

i (t)∇E(fl)
i (r0, t)

〉
+
〈
p(fl)

i (t)∇E(in)
i (r0, t)

〉]
, (15.55)

where i = {x, y, z}. The first term describes the field fluctuations (spontaneous and thermal)
that correlate to the induced dipole moment according to

p̂(in)(ω) = α1(ω)Ê(fl)(r0,ω), (15.56)

where we assumed an isotropic polarizability. For later purposes, we denote the properties
of the particle by an index 1. The second term in Eq. (15.55) originates from the particle’s
dipole fluctuations and the corresponding induced field according to

Ê(in)(r,ω) = ω2

c2

1

ε0

↔
G (r, r0;ω)p̂(fl)(ω). (15.57)

Here,
↔
G is the Green function of the reference system and r denotes an arbitrary field point

as visualized in Fig. 15.7. Correlations between the fluctuating field and the fluctuating
dipole are zero because they originate from different physical systems. Likewise, there are
no correlations between the induced quantities.

After expressing p and E in Eq. (15.55) by their Fourier transforms and making use of
the fact that E(t) = E∗(t), we obtain

〈
F(r0)

〉 =∑
i

∫ ∞∫
−∞

〈
p̂(in)

i (ω)∇Ê∗ (fl)
i (r0,ω′)

〉
ei(ω′−ω)t dω′ dω

+
∑

i

∫ ∞∫
−∞

〈
p̂(fl)

i (ω)∇Ê∗ (in)
i (r0,ω′)

〉
ei(ω′−ω)t dω′ dω. (15.58)

r0

r

F < > G(r, r0; ω)
α 1(ω)

�Fig. 15.7 The dispersion force acting on a polarizable particle located at r = r0. The force originates from correlated charge
fluctuations in the particle and other bodies in the environment. The latter are accounted for by the Green function

↔
G .
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Introducing the linear relationships (15.56) and (15.57) and arranging terms allows us to
express the first term as a function of Ê(fl) and the second term as a function of p̂(fl) as

〈
F(r0)

〉 =∑
i

∫ ∞∫
−∞

α1(ω)∇2

〈
Ê∗ (fl)

i (r0,ω)Ê∗ (fl)
i (r0,ω′)

〉
ei(ω′−ω)t dω′ dω

+
∑

i,j

∫ ∞∫
−∞

ω′2

c2

1

ε0
∇1G∗

ij(r0, r0;ω′)
〈
p̂(fl)

i (ω)p̂∗ (fl)
j (ω′)

〉
ei(ω′−ω)t dω′ dω, (15.59)

where∇n specifies that the gradient has to be taken with respect to the nth spatial variable in
the argument. Using the fluctuation–dissipation theorems for dipole and field (Eqs. (15.19)
and (15.32)) and the fact that

∇1
↔
G (r, r0;ω) = ∇2

↔
G (r, r0;ω) (15.60)

allows us to write the force in the compact form

〈
F(r0)

〉 =∑
i

∞∫
−∞

ω

πc2ε0

[
�ω

1 − e−�ω/(kBT)

]
Im
{
α1(ω)∇1Gii(r0, r0;ω)

}
dω.

(15.61)

Notice that the force is determined by the properties of the environment that is encoded

in the Green function
↔
G. The force vanishes in the absence of any objects, i.e. when

↔
G

equals the free-space Green function. Equation (15.61) allows us to calculate the force
acting on a small polarizable particle in an arbitrary environment. The equation is valid
for an isotropic particle but it can be generalized to account for anisotropic polarizabilities
such as for molecules with fixed transition dipole moments.

15.3.1 The Casimir–Polder potential

In this section we derive the force acting on a particle with polarizability α1 due to another
particle with polarizability α2. As indicated in Fig. 15.8, the two particles are separated
by a distance R. For short distances, the force varies as R−7, whereas for larger distances
the force assumes an R−8 dependence. The stronger distance dependence at large distances

r1 = (0,0,0)

F < >

r2 = (x,0,0)

x

R

�Fig. 15.8 Definition of coordinates for the calculation of the dispersion force between two polarizable particles.
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is counter-intuitive since the decay of electromagnetic fields becomes weaker on going
from the near-field to the far-field. It will be shown that, for temperature T = 0, the force
at all distances can be deduced from a single potential U(R), called the Casimir–Polder
potential. Finite temperatures affect the force only marginally [5], hence we will restrict
the analysis to the case T = 0.

The force in Eq. (15.61) is defined by the Green function
↔
G. Therefore, let us derive the

Green function accounting for the presence of a polarizable particle with polarizability α2

centered at r2. The field E at r due to a dipole at r1 can be expressed as

Ê(r,ω) = ω2

c2

1

ε0

↔
G

0
(r, r1;ω)p̂1(ω) + Ês(r,ω), (15.62)

with
↔
G

0
denoting the free-space Green dyadic. The scattered field Ês originates from the

particle at r2 and is determined as

Ês(r,ω) = ω2

c2

1

ε0

↔
G

0
(r, r2;ω)p̂2(ω)

= ω2

c2

1

ε0

[
ω2

c2

1

ε0

↔
G

0
(r, r2;ω)α2(ω)

↔
G

0
(r2, r1;ω)

]
p̂1(ω). (15.63)

Combining Eqs. (15.62) and (15.63) allows us to identify the Green function of the system
of “free-space plus particle at r2” as

↔
G (r, r1;ω) = ↔

G
0
(r, r1;ω) + ω2

c2

1

ε0

↔
G

0
(r, r2;ω)α2(ω)

↔
G

0
(r2, r1;ω). (15.64)

The gradient of
↔
G evaluated at its origin r = r1 is

∇1
↔
G (r1, r1;ω) = ω2

c2

1

ε0
α2(ω)

[
∇1

↔
G

0
(r1, r2;ω)

] ↔
G

0
(r2, r1;ω). (15.65)

Let us choose the coordinates as r1 = 0 and r2 = (x, 0, 0) = xnx. We then obtain for the

sum of the diagonal elements of ∇↔
G

∑
i

∇1Gii(r1, r1;ω) = ω2

c2

1

ε0
α2(ω)

∑
i

[
∂

∂x
G0

ii(i, 0;ω)

]
G0

ii(i, 0;ω), (15.66)

where we made use of the properties of the free-space Green function
↔
G

0
. Using the explicit

form of
↔
G

0
in the above expression (cf. Section 8.3.1) gives

∑
i

∇1Gii(r1, r1;ω) = c2

ω2

1

ε0

exp(2ixω/c)

8π2x7
α2(ω)

×
[
−9 + 18i

(ω
c

x
)
+ 16

(ω
c

x
)2 − 8i

(ω
c

x
)3

− 3
(ω

c
x
)4 + i

(ω
c

x
)5
]

nx

=
∑

i

∇1Gii(x;ω). (15.67)
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We now introduce this Green function into the force formula (15.61), which, for T = 0,
reads as

〈
F(x)

〉 = �

πc2ε0

∞∫
0

ω2 Im

{
α1(ω)

∑
i

∇1Gii(x;ω)

}
dω. (15.68)

Here, we made use of the fact that contributions with negative frequencies vanish (cf.
Eq. (15.20)).

It is straightforward to show that ∇ × 〈F〉 = 0 and hence the force is conservative.
Therefore, we can derive the force from a potential U by integration over the variable x.
We obtain

U = −
∫
〈F(x)〉dx = �

16π3ε2
0x6

Im

∞∫
0

α1(ω)α2(ω)e2ixω/c

×
[
−3 + 6i

(
ω

c
x

)
+ 5

(
ω

c
x

)2

− 2i

(
ω

c
x

)3

−
(
ω

c
x

)4
]

dω.

(15.69)

We now substitute the integration variable as ω̃ = ωc and replace the interparticle distance
by R. We then realize that the integrand is analytic in the upper half-space of the integration
variable and that the integrand goes to zero as ω̃→∞. Therefore, we can integrate along
the imaginary axis using

∞∫
0

f (ω̃)dω̃ = i

∞∫
0

f (iη)dη. (15.70)

By combining these mathematical tricks we obtain for the interparticle potential

U = − �c

16π3ε2
0 R6

∞∫
0

α1(icη)α2(icη)e−2ηR[3 + 6ηR + 5(ηR)2

+ 2(ηR)3 + (ηR)4]dη.

(15.71)

We made use of the fact that αi(�) is purely real on the imaginary axis � = iη. Equa-
tion (15.71) is the celebrated Casimir–Polder potential, which is valid for any interparticle
separation R. Our result agrees with rigorous calculations based on quantum electrody-
namics using fourth-order perturbation theory [15]. The derivation presented here allows
us to incorporate higher-order corrections by simply adding additional interaction terms to

the Green function
↔
G in Eq. (15.64). The force can be retrieved from the potential using

〈F〉 = −∇U.
It is interesting to evaluate the potential for the limiting cases of large and small inter-

particle distances. For short distances we retain only the first term in the bracket, set
exp(−2ηR) = 1, and obtain
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U(R → 0) = − 6�

32π3ε2
0

1

R6

∞∫
0

α1(iη)α2(iη)dη. (15.72)

This is the van der Waals potential valid for short interparticle distances R. The potential
depends on the dispersive properties of the particle polarizabilities and scales with the
inverse sixth power of the particle separation R.

To obtain the limit for large R, we make the substitution u = ηR in Eq. (15.71), which
leads to the following expression for the interparticle potential:

U = − �c

16π3ε2
0R7

∞∫
0

α1(icu/R)α2(icu/R)e−2u
[
3 + 6u + 5u2 + 2u3 + u4

]
du. (15.73)

Then, in the large-distance limit (R → ∞), one can replace the polarizabilities by their
static values αi(0). After moving the polarizabilities out of the integral one obtains

U(R →∞) = − �c

16π3ε2
0

α1(0)α2(0)

R7

∞∫
0

e−2u
[
3 + 6u + 5u2 + 2u3 + u4

]
du. (15.74)

Finally, using the equality

∞∫
0

une−2u du = n!

2n+1
∀ n ≥ 0, (15.75)

one can analytically perform the integration in Eq. (15.74). We then obtain the Casimir–
Polder interparticle potential in the limit of large distances as

U(R →∞) = − 23�c

64π3ε2
0

α1(0)α2(0)

R7 . (15.76)

This result is a pure manifestation of vacuum fluctuations and it is referred to as the Casimir
potential, which was first derived in 1948 by Hendrik Casimir [16]. It is remarkable that
the potential scales with the inverse seventh power of the interparticle distance R. Thus, the
force decays more rapidly for large distances than it does for short distances. This behavior
is opposite to the distance dependence of the electromagnetic energy density, which shows
the fastest decay (R−6) close to the sources. The Casimir potential depends only on the
static (ω = 0) polarizabilities of the particles and hence it does not matter what their
spectral properties are. Notice that in deriving the Casimir–Polder potential we considered
only the gradient force and neglected the influence of the scattering force. The scattering
force is non-conservative and it must be zero if the particle(s) remain in equilibrium with
the vacuum field.

It has to be emphasized that the Casimir–Polder potential originates solely from zero-
point fluctuations and does not account for thermal fluctuations. At room temperature,
thermally induced forces are usually more than one order of magnitude weaker than the
forces associated with vacuum fluctuations [5].
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15.3.2 Electromagnetic friction

Electromagnetic interactions between two charge-neutral objects give rise not only to con-
servative dispersion forces but also to a non-conservative friction force if the two objects
are in motion relative to each other. This friction force is associated only with thermal
fluctuations and it brings the motion of an object ultimately to rest. Although this force is
small, it has direct consequences for the development of nano-electro-mechanical systems
(NEMS) and for various proposals in the field of quantum information. Electromagnetic
friction leads to increased decoherence in miniaturized particle traps such as ion traps and
atom chips, and limits the Q-factor of mechanical resonances.

Let us consider a small, charge-neutral particle such as an atom, molecule, or cluster, or
a nanoscale structure that is small compared with all relevant wavelengths λ. In this limit,
the particle is represented by the polarizability α(ω). The particle is placed in an arbitrary

environment characterized by the Green function
↔
G and we assume that the motion of its

center-of-mass coordinate x(t) is governed by the classical Langevin equation

m
d2

dt2
x (t)+

∫ t

−∞
γ
(
t − t′

) d

dt′
x
(
t′
)
dt′ + mw2

0x(t) = Fx(t). (15.77)

Here, m is the mass of the particle, γ (t) is the damping coefficient originating from thermal
electromagnetic field fluctuations, w0 is the natural frequency of the oscillating particle,
and Fx(t) is the stochastic force. Note that the restoring force mw2

0x(t) is added only for
generality and does not influence the final result. In thermal equilibrium, Fx(t) is a station-
ary stochastic process with zero ensemble average. The spectral force spectrum SF(ω) is
given by the Wiener–Khintchine theorem as (cf. Eq. (15.16))

SF(ω) = 1

2π

∫ ∞

−∞
〈Fx(τ )Fx(0)〉eiωτ dτ , (15.78)

where ω is the angular frequency. Furthermore, at thermal equilibrium SF is related to
the friction coefficient by the fluctuation–dissipation theorem. Because the motion of the
macroscopic particle is classical, we consider the classical limit, i.e.

kBT γ̂ (ω) = πSF(ω), (15.79)

with γ̂ (ω) being the Fourier transform of γ (t) defined only for t> 0.
In Eq. (15.77), we assumed a general friction force term whose magnitude at time t

depends on the particle’s velocity at earlier times. We now consider that the interaction
time of the thermal bath with the particle is short compared with the particle’s dynamics,
thus the change of velocity of the particle during the interaction time is very small. In this
Markovian approximation friction has no memory and thus

Ffriction(t) = −γ0
d

dt
x(t), γ0 =

∫ ∞

0
γ (t)dt. (15.80)

On evaluating Eq. (15.79) at ω = 0 and using Eq. (15.80), we find that the damping
constant is related to the force spectrum by

kBTγ0 = πSF(ω = 0). (15.81)
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This is the final expression that relates the linear-velocity damping coefficient to the force
spectrum. To calculate γ0, we need to solve for the force spectrum, which, in turn, is
defined by the electromagnetic fields due to fluctuating currents in the environment and
the fluctuating dipole (cf. Eq. (15.55)).

Using the Wiener–Khintchine theorem (15.78), the Fourier transform of the dipole
force (15.55), and the stationarity of the fluctuations we obtain〈

F̂∗
x (ω′)F̂x(ω)

〉
= SF(ω)δ(ω − ω′)

=
3∑

i,j=1

〈[(
p̂∗ (fl)

j (ω′) + p̂∗ (in)
j (ω′)

)
⊗
(
∂

∂x
Ê∗ (fl)

j (ω′) + ∂

∂x
Ê∗ (in)

j (ω′)
)]

×
[(

p̂(fl)
i (ω) + p̂(in)

i (ω)
)
⊗
(
∂

∂x
Ê(fl)

i (ω) + ∂

∂x
Ẽ(in)

i (ω)

)]〉
,

(15.82)

where ⊗ denotes convolution. Each of the additive terms in 〈F̃∗
x (ω′)F̃x(ω)〉 is a fourth-

order frequency-domain correlation function. Because the fluctuation–dissipation theorem
involves second-order correlations and not fourth-order correlations it is not possible to
find a solution using near-equilibrium statistical mechanics. However, there is a way out:
thermal fluctuating fields can be thought of as arising from the superposition of a large
number of radiating oscillators with a broadband spectrum. Consequently, the central-limit
theorem applies. The same is true for the dipole fluctuations because of their broad thermal
spectrum. Stochastic processes with Gaussian statistics have the property that a fourth-
order correlation function can be expressed by a sum of pair-products of second-order
correlation functions. Thus, Eq. (15.82) can be calculated by knowing the second-order
correlations of the thermal electromagnetic fields and the electric dipole fluctuations. At
thermal equilibrium, these correlation functions are given by the fluctuation–dissipation
theorems Eqs. (15.19) and (15.32). Thus, we have all the ingredients to calculate the
damping coefficient γ0 in Eq. (15.81). We replace the induced terms in Eq. (15.82) by the
fluctuating terms using the linear relationships Eqs. (15.56) and (15.57). Then we intro-
duce the fluctuation–dissipation theorems Eqs. (15.19) and (15.32). Finally, we make use
of Eq. (15.81), through which we find the spectrum of the damping constant γ0. The four
additive terms in Eq. (15.82) lead to four additive damping constants, of which two are
negligibly small.

It can be shown that friction disappears as T → 0, which indicates that friction is asso-
ciated only with thermal fluctuations and not with quantum zero-point fluctuations. In fact,
this result is also implied by the requirement that zero-point fluctuations are invariant under
the Lorentz transformation [17]. Furthermore, another remarkable result is that friction is
present even in empty space as long as the temperature is finite. Thus, an object moving in
empty space ultimately comes to rest. In the free-space limit we obtain

γ0 = �
2

18π3c8ε2
0kBT

∫ ∞

0
|α(ω)|2ω8η(ω, T)dω

+ �
2

3π2c5ε0kBT

∫ ∞

0
Im[α(ω)]ω5η(ω, T)dω, (15.83)
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2

ε 1 = 1

z

x
z0

ε

�Fig. 15.9 A particle in vacuummoves parallel to a planar substrate with a dielectric function ε2(ω).

where

η(ω, T) ≡
[
1/(e�ω/(kBT) − 1)

] [
1 + 1/(e�ω/(kBT) − 1)

]
. (15.84)

The first term in Eq. (15.83) is consistent with the result by Boyer [17], whereas the second
term was independently derived in Refs. [18, 19].

In Ref. [19], electromagnetic friction has been analyzed for the special case of a polariz-
able spherical particle (of radius a) placed near a semi-infinite half-space (substrate) with a
complex dielectric constant ε2(ω). Similar studies have been presented in Refs. [20, 21]. It
is assumed that the particle is moving parallel to the surface (in the x-direction) at a vertical
height of z0 (see Fig. 15.9). These studies revealed not only a steep distance dependence
of the damping constant but also a strong dependence on the material properties of the
particle and substrate.

The friction between a particle and a planar substrate can be explained by the follow-
ing qualitative physical picture [19]. The fluctuating currents in the particle and substrate
generate a fluctuating electromagnetic field. This field polarizes the particle and induces
an electric dipole with a corresponding image dipole beneath the surface of the substrate.
The motion of the particle gives rise to motion of the image dipole. The Joule losses asso-
ciated with the motion of the image dipole become larger with increasing resistivity of the
substrate. As a consequence, the damping coefficient increases too. Physically, more work
is needed to move the induced dipole beneath the surface as the resistivity increases and,
consequently, the damping coefficient becomes larger. In the limit of a perfect dielectric
the induced dipole cannot be displaced and damping becomes infinitely strong. On the one
hand, it is surprising to find this result for a perfect (lossless) dielectric since there is no
intrinsic dissipation. On the other hand, a lossless dielectric does not exist from the point
of view of causality (Kramers–Kronig relations) and the fluctuation–dissipation theorem
(fluctuations imply dissipation). Nevertheless, in the limit T → 0, the damping coefficient
vanishes even for a perfect dielectric. Notice that, because γ0 is much weaker for metals,
local friction measurements render metals transparent and reveal buried dielectric struc-
tures. This property can be used for subsurface imaging in metals and for the localization
of defects.



497 Problems

15.4 Conclusion

In this chapter we have derived the fluctuation–dissipation theorem. The theorem is of fun-
damental importance and finds applications in different fields of science and technology.
For example, the theorem explains Brownian motion in fluids and Johnson noise in elec-
trical resistors. Applied to electromagnetic fields and sources, the theorem yields Planck’s
blackbody radiation spectrum, explains radiative heat transfer, and predicts the electro-
magnetic spectrum near material surfaces. We have applied the fluctuation–dissipation
theorem to derive the dispersion force acting between separate objects and found that for
small objects the force can be represented by the Casimir–Polder potential. For objects in
relative motion, thermal fluctuations give rise to a dissipative interaction force (friction)
even in the absence of mechanical contact between the objects. It is fascinating that the
fluctuation–dissipation theorem accounts for so many apparently different physical phe-
nomena. However, it should be kept in mind that the theorem can become insufficient for
systems that are strongly out of equilibrium. In these situations, the system’s response
depends on the particular dynamics of the system’s constituents.

Problems

15.1 Derive Eq. (15.10) by using the series expansion of Eq. (15.9) for the distribution
function.

15.2 Equation (15.47) describes the spectral energy density Wω as a function of the
dielectric constant ε(r,ω). Derive a similar equation for a system of N particles
with coordinates rn and polarizabilities αn(ω). Hint: use the fluctuation–dissipation
theorem in Eq. (15.19).

15.3 Determine the spectral energy density Wω originating from fluctuating sources in
a small particle (diameter �λ) with polarizability α. Show that the electric and
magnetic energy densities are identical and that there is no near-field contribution.
Hint: use the Green functions defined in Eqs. (8.55) and (8.57).

15.4 The polarizability of an aluminum cluster can be approximated by the quasi-static
formula

α(ω) = 3ε0V0
ε(ω) − 1

ε(ω) + 2
, (15.85)

where V0 is the volume of the cluster and ε is the dielectric constant of aluminum.
The latter is described by the Drude model as

ε(ω) = 1 − ω2
p

ω2 + iγω
, (15.86)

with ωp and γ being the plasma frequency and the damping constant, respec-
tively. A good approximation is obtained using the values �ωp = 15.565 eV and
�γ = 0.608 eV. Calculate the mean square of the fluctuating dipole moment in the
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frequency range [ω ...ω + dω] and plot this quantity as a function of frequency for
temperatures kT��ωp. Determine the total radiated power.

15.5 Derive the force formula (15.61) starting with Eq. (15.55) and following the steps
outlined in Section 15.3.

15.6 The polarizability of a helium atom can be approximated by a single Lorentzian
function as

α(ω) = (e2/me) f0
ω2

0 − ω2 − iωγ0
,

where the resonance frequency ω0 accounts for all 1S →1P0 transitions. The oscil-
lator strength is related to the static polarizability by f0 = α(0)ω2

0 (me/e2), and γ0 is
the effective linewidth.
(1) Derive α(iη) and show that it is real. Make use of γ0 � ω0.
(2) The van der Waals potential between two helium atoms can be represented as

Uv = −C6/R6. Calculate the coefficient C6 and express it in terms of α(0) and
�ω0. The resulting expression is known as London’s empirical formula. Hint:∫ ∞

∞
1

(A2 + x2)2
dx = π

2A3
. (15.87)

(3) Determine the distance R0 for which Uv is equal to the Casimir potential (Uc).
Use λ0 = 2πc/ω0 ≈ 58 nm.

(4) The static polarizability is α(0) = 2.280× 10−41 C m2 V−1 and ω0 is given by
λ0 ≈ 58 nm. Plot the Casimir–Polder potential (Ucp) as a function of R. Include
the curves for Uv and Uc and discuss the validity of these approximations.
Provide the value of Ucp at the distance R0.
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16 Theoretical methods in nano-optics

A key problem in nano-optics is the determination of electromagnetic field distributions
near nanoscale structures and the associated radiation properties. A solid theoretical under-
standing of field distributions holds promise for new, optimized designs of near-field
optical devices, in particular by exploitation of field-enhancement effects and favorable
detection schemes. Calculations of field distributions are also necessary for image-
reconstruction purposes. Fields near nanoscale structures often have to be reconstructed
from experimentally accessible far-field data. However, most commonly the inverse scat-
tering problem cannot be solved in a unique way, and calculations of field distributions
are needed in order to provide prior knowledge about source and scattering objects and to
restrict the set of possible solutions.

Analytical solutions of Maxwell’s equations provide a good theoretical understanding,
but can be obtained for simple problems only. Other problems have to be strongly simpli-
fied. A pure numerical analysis allows us to handle complex problems by discretization of
space and time but computational requirements (usually given by CPU time and memory)
limit the size of the problem and the accuracy of results is often unknown. The advantage
of pure numerical methods, such as the finite-difference time-domain (FDTD) method and
the finite-element (FE) method, is the ease of implementation. We do not review these
pure numerical techniques since they are well documented in the literature. Instead we
review two commonly used semi-analytical methods in nano-optics: the multiple-multipole
method (MMP) and the volume-integral method. The latter exists in different implementa-
tions such as the coupled-dipole method, the dipole–dipole approximation, and the method
of moments. Both the MMP and the volume-integral method are semi-analytical methods
since they render an analytical expansion for the electromagnetic field by numerical means.

16.1 Themultiple-multipole method

The MMP is a compromise between a pure analytical and a pure numerical approach.
It is a well-established technique for solving Maxwell’s equations in arbitrarily shaped,
isotropic, linear, and piecewise homogeneous media [1]. The method is suited to analyzing
extended structures since only the boundaries between homogeneous media need to be
discretized and not the media themselves, as in methods such as finite elements and finite
differences. The MMP technique provides an analytical expression for the solution of the
electromagnetic field and it also provides a reliable validation of the results, since the
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errors can be calculated explicitly. In the past, the method was used for solving problems in
various areas, such as antenna design, electromagnetic compatibility, bioelectromagnetics,
and waveguide theory, as well as optics.

With the MMP technique, the electromagnetic field F ∈ {E, H} within individual media
(domains) Di is expanded by analytical solutions of Maxwell’s equations:

F(i)(r) ≈
∑

j

A(i)
j Fj(r).

The basis functions Fj (partial fields) are any known solutions of the vector Helmholtz
equation, such as plane waves, multipole fields, and waveguide modes, among others. The
expansions of the different subdomains are numerically matched on the interfaces, i.e., the
parameters A(i)

j of the series expansions result from numerical matching of the boundary
conditions. Consequently, Maxwell’s equations are exactly fulfilled inside the domains but
are only approximated on the boundaries. There are various methods similar to the MMP
technique that are based on fictitious sources.

In linear, isotropic, homogeneous media, the electric field E and magnetic field H must
satisfy the vector Helmholtz equation

(∇2 + k2)F = 0. (16.1)

The fields are assumed to be harmonic in time but the factor exp(−iωt) will not be used
explicitly. The value of k is given by the dispersion relation k2 = (ω/c)2με, where ω, c,
and ε are the angular frequency, the vacuum velocity of light, and the dielectric constant,
respectively.

The general solution to Eq. (16.1) can be constructed from a scalar function f that
satisfies the scalar Helmholtz equation

(∇2 + k2) f (r) = 0. (16.2)

A common representation of the solutions of Eq. (16.1) is given by the two independent
and mutually perpendicular vector fields [2]

M(r) = ∇ × cf (r), (16.3)

N(r) = 1

k
∇ × M(r), (16.4)

which are called vector harmonics. In general, c is an arbitrary constant vector, but it can
be shown that c may also represent the radial vector R in spherical coordinates. To prove
that M and N are indeed solutions of the vector Helmholtz equation, they can be inserted
into Eq. (16.1). With the help of vector identities it can then be shown that Eq. (16.1)
reduces to Eq. (16.2). Thus, the problem of finding solutions to the field equations reduces
to the simpler problem of finding solutions to the scalar Helmholtz equation. The vector
harmonics M and N represent transverse or solenoidal solutions

∇ · M(r)
N(r)

= 0. (16.5)
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For the vector wave equation (Eq. (2.31)), for which the fields are not necessarily
divergence-free, an additional longitudinal solution can be determined [3],

L(r) = ∇f (r), (16.6)

which satisfies

∇ × L(r) = 0. (16.7)

In electromagnetic theory, the electric and magnetic fields are always divergence-free in
linear, isotropic, homogeneous, and source-free domains as long as the boundaries are
not part of the domains (unbounded media). In this case the vector harmonic L must be
excluded from the expansion of the fields [4] and the electromagnetic field can be entirely
expanded in terms of the two vector harmonics M and N.

In the MMP technique the infinite space is divided into subdomains Di. The interfaces
between the individual subdomains usually follow the physical boundaries given by the
material properties, but fictitious boundaries may be defined as well. In every Di the scalar
fields f may be approximated by a series expansion

f (i)(r) ≈
∑

j

a(i)
j fj(r), (16.8)

in which the basis functions fj cover any of the known analytical solutions of the Helmholtz
equation (16.2). In order not to overburden the notation, the domain index (i) will be
omitted. Of special importance for MMP are solutions in spherical coordinates.

In spherical coordinates r = (R,ϑ ,ϕ) the solutions of Eq. (16.2) can be written in the
well-known form

fnm(r) = bn(kR)Ym
n (ϑ ,ϕ). (16.9)

Ym
n are the spherical harmonics and bn ∈ [jn, yn, h(1)

n , h(2)
n ] are the spherical Bessel func-

tions, of which only two are linearly independent. Solutions that use Bessel functions of
the first kind (jn) for the radial dependence are called normal expansions, whereas solu-
tions using one of the other three radial functions are called multipoles. Similar relations
exist for cylindrical solutions, which are relevant for two-dimensional problems. Multi-
poles with Hankel functions of the first kind (h(1)

n ) (radiative multipoles) have particularly
favorable characteristics. They represent outgoing waves and fulfill Sommerfeld’s radia-
tion condition at infinity. Because they are singular in their origin, they must be located
outside the domain in which the field is expanded. Normal expansions, on the other hand,
remain finite at the origin but do not fulfill the radiation condition. Therefore they can be
used only in finite domains.

To obtain the vector harmonics M and N in spherical coordinates, it is advantageous
to set the vector c in Eq. (16.3) equal to the radial vector R [3]. It was initially required
that c be a constant vector; but this would not hold for the choice c=R. However, for the
spherical coordinate system it can in fact be shown that two independent solutions can be
obtained from a radial vector [3].
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With the choice c=R, the solution M is tangential to any spherical surface R = constant
and reads

M(r) = (∇ × R) f (r) =
⎡
⎣ 0

sin−1ϑ ∂/∂ϕ

−∂/∂ϑ

⎤
⎦ f (r), (16.10)

where M = [MR, Mϑ , Mϕ]. Apart from a factor i� the operator (∇ × R) is equal to the
quantum-mechanical angular momentum operator. The vector field N can be derived from
Eqs. (16.4) and (16.10).

There are many ways to relate the vector harmonics M and N to the electric and magnetic
fields. Since the electromagnetic field in sourceless, linear, isotropic, and homogeneous
media is entirely defined by two scalar fields (potentials) that satisfy the scalar Helmholtz
equation and fulfill the appropriate boundary conditions [5, 6], one usually introduces two
potentials from which all other field vectors can be deduced. In Mie scattering theory
these potentials are most commonly chosen to correspond to Debye potentials [7]. The
MMP technique follows a similar but somewhat easier approach that was first suggested
by Bouwkamp and Casimir [5] and is also used in Jackson’s book [8]. The two potentials
are related to the electric and magnetic fields by

f e(r) = Ae

n(n + 1)
R · Ee, (16.11)

f m(r) = Am

n(n + 1)
R · Hm, (16.12)

and are both explicitly given by Eq. (16.9). The factor n(n + 1) is introduced for later
convenience and the amplitudes Ae and Am are necessary in order to retain dimension-
less potentials. f e and f m define two independent solutions [Ee, He] and [Em, Hm]. With
Maxwell’s equations and the help of vector identities it can be shown that the field defined
by f e corresponds to

He(r) = −iωε0εA
e(∇ × R) f e(r) = −iωε0εA

e M(r), (16.13)

Ee(r) = − 1

iωε0ε
∇ × He(r) = k AeN(r). (16.14)

Since the radial component of the magnetic field vanishes, this solution is called transverse
magnetic (TM). Similarly, the potential f m defines a transverse electric solution (TE)
given by

Em(r) = iωμ0μAm(∇ × R) f m(r) = iωμ0μAmM(r), (16.15)

Hm(r) = 1

iωμ0μ
∇ × Em(r) = k AmN(r). (16.16)

The general solution is obtained by combining the TE and TM solutions. A complete mul-
tipole expansion of order N, i.e. an expansion in which both m and n (in Eq. (16.9)) run
from 0 to N, contains N(N + 2) parameters each for the TE and the TM cases. In the MMP
technique these parameters have to be determined from the boundary conditions.

Close to its origin, a multipole function decreases with ρ−(n+1) and therefore affects
mainly its immediate neighborhood. This fact led to the idea of using several origins for
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Di Dj

multipole expansions
for domain Di

multipole expansions
for domain Dj

Dij

�Fig. 16.1 A schematic representation of the principle of the multiple-multipole method. Multipole expansions located in
domain Dj approximate the electromagnetic field inside domain Di and vice versa. On each side of the boundary ∂Dij
the field close to a point on the interface is defined mainly by the closest multipole (indicated by the sectors for the
field in domain Di).

multipole expansions. Such a multiple-multipole approach achieves a better convergence
for boundaries deviating considerably from spherical surfaces. Usually several multipoles
are set along the boundary of the domain in which the field is expanded (Fig. 16.1). To
avoid numerical dependences, the origins have to be sufficiently separated. The highest
possible degree and order of an individual multipole are limited by a spatial sampling cri-
terion that depends on the boundary discretization and on the proximity of the multipole
to the boundary [1]. Figure 16.2 shows the MMP modeling for the example of a single
scatterer in free space. The interior field of the scatterer is entirely expanded by multi-
poles, although a normal expansion in the interior could be used to support the multipoles.
For the exterior field only multipoles with bn = h(1)

n can be used in order to fulfill the
radiation condition at infinity. Note that for complete expansions m, n → ∞ the fields
of the individual multipoles would be linearly dependent. This is not so for the finite
expansions used in the numerical implementation. Hence, it is very advantageous to use
several origins, since the computational requirements can be considerably reduced.

The unknown parameters a(i)
j in Eq. (16.8) have to be determined from the electric

and magnetic boundary conditions. This is done by matching the expansions of adjacent
domains Di and Dj at discrete points rk on their interface ∂Dij according to

n(rk) × [Ei(rk) − Ej(rk)] = 0, (16.17)

n(rk) × [Hi(rk) − Hj(rk)] = 0, (16.18)

n(rk) · [εi(rk)Ei(rk) − εj(rk)Ej(rk)] = 0, (16.19)

n(rk) · [μi(rk)Hi(rk) − μj(rk)Hj(rk)] = 0, (16.20)

where n(rk) defines the normal vector to the boundary ∂Dij in point rk. If conditions
(16.17) and (16.18) are exactly fulfilled everywhere on the boundary (analytical solution),
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(a) (b)

�Fig. 16.2 MMPmodeling of a single scatterer. (a) Multipoles for the outer domain, (b) multipoles for the inner domain. The
circles indicate the area of greatest influence. The boundary is discretized and the normal vector to each matching
point is indicated.

then conditions (16.19) and (16.20) are automatically satisfied. To produce more balanced
errors, all the boundary conditions are considered in the MMP method. Problems with
numerical dependences can be reduced by using an over-determined system of equations
(more equations than unknowns) that is solved in the least-squares sense, i.e. by minimiz-
ing the squared (optionally weighted) error in the matching points. This procedure leads
to a smoother error distribution along the boundaries than is obtained by the usual point
matching. In addition, the error in each matching point can be computed and is a measure
for the quality of the result. If the result is not accurate enough, additional or more appro-
priate basis functions have to be included in the series expansion Eq. (16.8). The choice of a
suitable set of basis functions is the most difficult task in MMP modeling since no optimum
can be determined in a unique way. Therefore, prior knowledge about the solution makes
it possible to define favorable basis functions. A cylindrical structure, for example, would
be expanded in cylindrical waveguide modes rather than in multipoles. Usually the solu-
tion of a given problem is improved by an iterative and interactive procedure. Automatic
algorithms based on simple rules have been developed for the placement of the multipole
origins and for the determination of the allowed maximum orders and degrees.

Once the system of equations has been solved and the parameters determined, the elec-
tromagnetic field can be readily computed at any point, because the solution is given in
analytical form (Eq. (16.8)). Note that Maxwell’s equations are exactly fulfilled within
the individual domains, whereas they are approximated on the boundaries. The quality of
this approximation depends on the choice of the expansion functions and on the numerical
algorithm that is used for solving the unknown parameters.

The system of equations leads to a dense M × N matrix, which is commonly solved
by means of the Givens procedure [9]. The computational time is proportional to MN2,
where M is the number of equations and N the number of parameters. Symmetries allow
considerable reduction of the computational effort.

As an example, Fig. 16.3 shows the MMP model of a two-dimensional aperture near-
field optical microscope in the probe–sample region [10]. The structure consists of five
domains characterized by their distinct dielectric constants. For each of the domains the



506 Theoretical methods in nano-optics

�Fig. 16.3 The MMPmodel of a two-dimensional aperture-type near-field optical microscope. The locations of the multipole
origins for the respective shaded domains are indicated by small crosses. Domain 5 is expanded by a normal
expansion. The structure consists of a vacuum gap (1), a truncated glass wedge (2) embedded in an aluminum screen
(3), and a planar transparent glass substrate (4) carrying a cylindrical silver particle (5).

corresponding multiple-multipole expansion is indicated by the crosses. The entire field
is excited by a plane wave at λ = 488 nm, which hits the structure from above at nor-
mal incidence. The interior of the cylindrical silver particle is expanded by a normal
expansion. All multipole expansions have maximum orders of less than N = 5, lead-
ing to 2N + 1 = 11 unknowns per origin. The resulting fields (|E|2) of the model are
shown in Fig. 16.4 for the two principal polarizations. In s-polarization the electric field
is always parallel to the boundaries. The contour lines are continuous across the boundary
because of the continuity of the tangential electric field components. For p-polarization the
field is characterized by the formation of maxima at the edges of the slit (field enhance-
ment). In p-polarization a dipole moment is induced in the particle. Therefore the field
close to the particle resembles a dipole field. Although the near-field interaction is stronger
for p-polarization, the influence on the propagation of the field is more pronounced for
s-polarization [10].

16.2 Volume-integral methods

Small particles can often be approximated by dipolar cells as in the case of Rayleigh scat-
tering. The induced dipole moment in such a particle is proportional to the local field at
the dipole’s position. As long as a single particle is considered, the local field corresponds
to the illuminating incident field. However, if an ensemble of particles is considered, the
local field is a superposition of the incident radiation and all the partial fields scattered by
the surrounding particles. It thus turns out that each particle is dependent on all the other
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30 nm

(b)(a)

�Fig. 16.4 Contours of constant |E|2 for the model of Fig. 16.3 (log scale, with a factor of√2 difference between successive
lines): (a) s-polarization and (b) p-polarization.

particles. To solve this problem, a formalism for solving self-consistently the fields of an
arbitrary number of coherently interacting particles is needed.

The particles are not required to be spatially separated from each other. They can be
joined together to form a macroscopic object. Indeed, the response of matter to incident
radiation can be formulated as a collective response of individual dipoles, each occupying
a volume element. This superposition of elementary dipole fields (Green’s functions) has
to be done in a self-consistent way, i.e. the magnitude and the orientation of each individ-
ual dipole are functions of the local field defined by the excitation and other surrounding
dipoles.

Methods based on this concept usually involve summations over all dipolar centers. In
the limit, as the size of the dipolar centers goes to zero, the summations become volume
integrals. Therefore, these formalisms are called volume-integral methods.

Both a microscopic and a macroscopic point of view exist for basically the same for-
malism. While, in the former, microscopic dipolar particles are joined together to form a
macroscopic ensemble, the latter considers a macroscopic object that is divided into small
homogeneous subunits. It will be shown in Section 16.2.4 that the two formalisms are
physically and mathematically equivalent. The method following the microscopic point
of view will be denoted the coupled-dipole method (CDM) and the method following the
macroscopic point of view the method of moments (MOM).

Both the CDM and the MOM are well-established methods for solving Maxwell’s equa-
tions in various fields of study. The CDM is widely used in astrophysics [11] for the
investigation of interstellar grains, but it also finds applications in other fields such as
meteorological optics and surface-contamination control [12]. The MOM has its origins
in electromagnetic practice [13], with special focus on antenna theory. However, the MOM
also finds applications in biological investigations, in optical scattering, and in near-field
optics [14, 15]. In the literature, the two methods very often bear different names. As an
example, the CDM is also called the discrete-dipole approximation (DDA) and the MOM
is designated the digitized Green-function method [16] or simply the volume-integral equa-
tion method [17]. Furthermore, because of the analogy to quantum mechanics, the volume-
integral equation is denoted by some authors as the Lippmann–Schwinger equation [15].



508 Theoretical methods in nano-optics

Both the CDM and the MOM can be derived from the same volume-integral equation.
In the past, some authors compared inadequate forms of the two methods and stated that
one method is superior to the other [18]. However, as shown by Lakhtakia [19] for bian-
isotropic scatterers in free space, the two methods are fully equivalent to each other. The
main difference between the CDM and the MOM is the point of view: while the MOM
involves the fields that are actually present at a given point r, the CDM considers the fields
that arrive at the point r and thus excite the small region�V centered at r. Lakhtakia distin-
guishes between weak and strong forms of the two methods, and we shall adopt the same
terminology.

16.2.1 The volume-integral equation

Consider an arbitrary reference system, such as a planar layered substrate, whose dielec-
tric properties are sufficiently well represented by a spatially inhomogeneous dielectric
constant εref(r), r being the position vector. For simplicity, the reference frame is assumed
to be non-magnetic (μref = 1) and isotropic. All the fields are further assumed to be time-
harmonic. The dielectric constant of all space will be denoted as ε(r). Then, as long as the
reference system is unperturbed (no other objects are present), ε is identical to εref. In the
presence of perturbing objects embedded in the reference system, ε(r) − εref(r) defines
the dielectric response of the objects relative to the reference system.

In the absence of any source currents and charges, Maxwell’s curl equations read as

∇ × E(r) = iωμ0H(r), (16.21)

∇ × H(r) = −iωε0εref(r)E(r) + je(r), (16.22)

where je is the volume distribution of the induced electric current density,

je(r) = −iωε0[ε(r) − εref(r)]E(r). (16.23)

From Eqs. (16.21) and (16.22) it follows that E has to fulfill the inhomogeneous wave
equation

∇ × ∇ × E(r) − k2
0 εref(r)E(r) = iωμ0 je(r), (16.24)

where the free-space wavenumber k0 is equal to ω/c. Using the definition of the dyadic
Green function (Fig. 16.5) (see Section 2.12)

∇ × ∇× ↔
G (r, r′) − k2

0 εref(r)
↔
G (r, r′) =↔

Iδ(r − r′), (16.25)

the electric field can be represented as

E(r) = E0(r) + iω

ε0c2

∫
V

↔
G(r, r′) je(r′)dV ′, r �∈ V , (16.26)

where the prime in V ′ indicates that the integration refers to r′. While E0 denotes the
homogeneous solution (je = 0 everywhere), the term on the right-hand side represents the
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V

p

�Fig. 16.5 Illustration of the dyadic Green function
↔
G(r, r′). r′ and r represent the dipolar source and the point of observation,

respectively. The field at r depends on the orientation of the dipole at r′. The three columns of
↔
G denote the electric

fields for the three major orientations of the dipole.

particular solution. A similar procedure can be applied to obtain the magnetic field. One
finds

H(r) = H0(r) +
∫
V

[
∇× ↔

G(r, r′)
]

je(r′)dV ′, r �∈ V . (16.27)

Upon substitution of je into Eqs. (16.26) and (16.27) implicit integral equations (Fredholm
equations of the second kind) are obtained for the fields E and H. These equations are
denoted as the volume-integral equations for the electric and magnetic fields and form the
basis for the MOM.

The current density of an electric dipole with moment p0 located at r=r0 is

je(r) = −iωp0δ(r − r0), (16.28)

where the delta function has the units m−3. On inserting this current into Eqs. (16.26)
and (16.27) and assuming the homogeneous solution is zero (no external excitation), the

electromagnetic fields can be expressed in terms of
↔
G(r, r′) as

E(r) = ω2

ε0 c2

↔
G(r, r0)p0, (16.29)

H(r) = −iω
[
∇× ↔

G(r, r0)
]

p0. (16.30)

Thus, the E field of a dipole with orientation p0 = |p|nx located at r=r0 corresponds to

the first column of
↔
G(r, r0). Similarly, the E field of a y-oriented (z-oriented) dipole cor-

responds to the second (third) column of
↔
G(r, r0). In other words, the columns of

↔
G(r, r0)

render the E vectors for the three major orientations of the dipole. The same relationship

holds for the H field and [∇× ↔
G(r, r0)]. The electromagnetic field of an arbitrarily oriented

dipole can therefore simply be represented in terms of
↔
G and [∇× ↔

G].

For later purposes it will be convenient to split
↔
G into two separate contributions,

↔
G(r, r0) = ↔

G0 (r, r0)+ ↔
Gs(r, r0). (16.31)
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↔
Gs is the scattering part of the Green function and accounts for the secondary electromag-
netic field, i.e. the field that is reflected from or transmitted through inhomogeneities in

the environment. Similarly,
↔
G0 is the primary part of the Green function (Eq. (16.32)) and

determines the direct dipole field. While
↔
G0 is singular at its origin r=r′, the scattering part

↔
Gs behaves regularly.

↔
G0 will contribute only to the field in the (sub)domain in which it is

located.
↔
G0 corresponds to the Green dyadic in free space and can be determined in closed

analytical form from the scalar Green function G0(r, r′) according to (cf. Section 2.10)

↔
G0 (r, r′) =

[
↔
I + 1

k2
∇∇
]

G0(r, r′), (16.32)

where G0(r, r′) is a solution of

∇2G0(r, r′) + k2G0(r, r′) = −δ(r − r′). (16.33)

The solution of this equation is

G0(r, r′) = 1

4π

e±ik|r−r′|

|r − r′| , (16.34)

where the plus sign refers to an outgoing wave and the minus sign to an incoming wave.
So far, the field E has been derived for points outside the scattering objects (r �∈ V).

However, if the fields within the source volume (r ∈ V) are to be evaluated, a principal

volume Vδ must be introduced in order to exclude the singularity of
↔
G0 at r = r′. In this

case, the solution of Eq. (16.24) reads

E(r) = E0(r) + iω

ε0c2

∫
V

↔
Gs(r, r′) je(r′)dV ′

+ iω

ε0c2
lim
δ→0

∫
V−Vδ

↔
G0 (r, r′) je(r′)dV ′ +

↔
L je(r)

iωε0εref(r)
, r ∈ V . (16.35)

A similar expression can be found for the magnetic field H. In the limit as the maximum
chord length δ approaches zero, the exclusion volume Vδ becomes infinitely small. The

source dyadic
↔
L accounts for the depolarization of the excluded volume Vδ and turns out

to depend entirely on the geometry of the principal volume [20],

↔
L = 1

4π

∫
Sδ

n(r′)(r′ − r)

|r − r′|3 dS′. (16.36)

The limit as δ→0 is omitted in the expression for
↔
L because the surface integral depends

only on the geometry of Vδ . For cubic or spherical principal volumes the source dyadic

turns out to be
↔
L = (1/3)

↔
I . As Yaghjian points out, the value of the volume integral

also varies with the geometry of the principal volume and in just the right way to keep
the sum of the volume and surface integrals independent of the geometry of the principal
volume [20].
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Equation (16.35) is known as the (electric) volume-integral equation. It can be repre-
sented by the simpler equation (16.26) if the Green function is written in the symbolic
form

↔
G(r, r′) = P.V.

[↔
G(r, r′)

]
−

↔
Lδ(r − r′)
k2

0 εref(r′)
. (16.37)

The symbol P.V. denotes the principal value and was introduced by van Bladel [21]. A

volume integral over P.V.[
↔
G (r, r′)] acting on a current j(r′) implies that an infinitesimal

exclusion volume at r= r′ has to be invoked and that depolarization of this volume must
be taken into account. In other words∫

V

P.V.
[↔
G(r, r′)

]
je(r′)dV ′ = lim

δ→0

∫
V−Vδ

↔
G(r, r′) je(r′)dV ′ +

↔
L je(r)

k2
0 εref(r)

. (16.38)

In the usual notation, the symbol P.V. is taken out of the integral. The principal-volume
notation is stated here for completeness only and will not be used in the following.

The source volume V can be split into N volume elements �Vn such that

V =
N∑

n=1

�Vn. (16.39)

It is assumed that the individual volume elements are sufficiently small, such that the
current density je can be regarded as constant over the dimensions of �Vn

je(r) = je(rn), r ∈ �Vn, (16.40)

where rn is an arbitrary point inside �Vn. In this case, the solution for the field E can be
written as

E(r) = E0(r) +
N∑

n=1

�E0
n(r) +

N∑
n=1

�Es
n(r), (16.41)

where �E0
n is the primary field generated by the current in the subvolume �Vn, and �Es

n
is the corresponding scattered field. �E0

n and �Es
n are determined by

�E0
n(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iω

ε0c2

⎡
⎢⎣ ∫
�Vn

↔
G0 (r, r′)dV ′

⎤
⎥⎦ je(rn), r �∈ �Vn,

iω

ε0c2

⎡
⎢⎣ lim
δ→0

∫
�Vn−Vδ

↔
G0 (r, r′)dV ′ −

↔
L

k2
0 εref(r)

⎤
⎥⎦ je(rn), r ∈ �Vn,

(16.42)

�Es
n(r) = iω

ε0c2

⎡
⎢⎣ ∫
�Vn

↔
Gs(r, r′)dV ′

⎤
⎥⎦ je(rn). (16.43)
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Owing to the smooth behavior of
↔
G0 at r �=r′, the integral in the expression for r �∈�Vn can

be approximated by �Vn
↔
G0 (r, rn). This approximation cannot be applied for r ∈�Vn

because of the strong variation of
↔
G0 near r = r′. Instead, the volume integral has to be

carried out explicitly for a given geometry of the principal volume Vδ . Since
↔
Gs is well

behaved for all r, the integration of
↔
Gs can be replaced by �Vn

↔
Gs(r, rn) everywhere. For

later convenience, the remaining volume integral will be denoted as

↔
M = lim

δ→0

∫
�Vn−Vδ

↔
G0 (r, r′)dV ′. (16.44)

After inserting Eqs. (16.42) and (16.43) into Eq. (16.41) and evaluating the field E at the
positions rk=rn, the following N vector equations are obtained:

E(rk)=E0(rk) + iω

ε0c2

[
↔
M(rk) −

↔
L(rk)

k2
0 εref(rk)

+�Vk
↔
Gs(rk, rk)

]
je(rk)

+ iω

ε0c2

N∑
n=1
n�=k

↔
G(rk, rn)je(rn)�Vn, k = 1, ..., N.

(16.45)

These N equations are the basis for both the MOM and the CDM. The dyadics
↔
L

and
↔
M are given by Eqs. (16.36) and (16.44), respectively.

↔
G is the Green function and

↔
Gs denotes its scattering part. Note that the term in brackets, containing

↔
M,

↔
L, and

↔
Gs,

defines the interaction of the volume element �Vk with itself, whereas the sum in the sec-
ond row accounts for interactions with other dipolar subunits. The various contributions
to E(rk) are illustrated in Fig. 16.6 for the case of two single, spatially isolated volume
elements.

The dyadics
↔
M and

↔
L can be evaluated for a specific geometry of Vδ , but their

symbolic representation will be maintained for general validity. It can be shown that
↔
M(rn) approaches zero as the subvolume �Vn is reduced arbitrarily. Therefore, in

the limit �Vn → 0 the contribution of
↔
M(rn) can be ignored. The dyadic

↔
L(rn),

on the other hand, does not vanish in the limit �Vn → 0. This dyadic accounts
for self-depolarization and its incorporation is absolutely necessary in a self-consistent
formalism.

Since Eq. (16.45) considers both
↔
M and

↔
L, the equation represents a so-called strong

form. The weak form is obtained if
↔
M is ignored and only

↔
L is considered. According to

Lakhtakia [19], only comparisons between strong forms or weak forms are appropriate.
A comparison between the strong form of the MOM and the weak form of the CDM will
show the same inconsistency as a comparison between the strong and weak forms of the
same method.
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j(rn) ΔVn

j(rk) ΔVk

j(rn) ΔVn

j(rk) ΔVk

(a)

G0(rk,rn)

L(rk), M(rk)

L(rk), M(rk)

E0(rk)

E0(rk)

Gs(rk,rn)

Gs(rk,rk)

Gs(rk,rn) Gs(rk,rk)

(b)

→

↔
↔↔

↔

↔ ↔

↔→

�Fig. 16.6 Interaction of a volume element�Vk with its environment and with itself. For clarity, only a single interacting
volume element�Vn is shown. (a) Volume elements�Vk and�Vn in the same material domain. (b) Volume
elements�Vk and�Vn in different domains. The arrows indicate the “path” of interaction and the symbols denote
the quantities involved. The Green function can be split into a primary and a scattering part,

↔
G = ↔

G 0+ ↔
G s, and it

fulfills the boundary conditions imposed by the reference system.

16.2.2 The method of moments (MOM)

The method of moments considers the fields that are actually present at a given point r.
These fields are directly represented by Eq. (16.45). In order to arrive at a solvable system
of equations, the electric current density

je(r) = −iωε0[ε(r) − εref(r)]E(r) = −iωε0�ε(r)E(r) (16.46)

is introduced into Eq. (16.45). This leads to the following system of equations:

E0(rk) =
N∑

n=1

↔
AknE(rn), k = 1, ..., N, (16.47)

where the submatrices
↔
Akn are given by

↔
Akn =

[
↔
I −
[

k2
0

↔
M(rk) −

↔
L(rk)

εref(rk)
+ �Vk k2

0

↔
Gs(rk, rk)

]
�ε(rk)

]
δkn

−
[
�Vn k2

0

↔
G(rk, rn)�ε(rk)

]
(1 − δkn). (16.48)

Since Eq. (16.47) is a vector matrix equation,
↔
Akn is a 3N×3N submatrix. Different

computational schemes, such as the conjugate-gradient method, serve to solve the system
of equations. Probably the most difficult task associated with the MOM is that of finding
an efficient and reliable algorithm for solving Eq. (16.47). Because the resulting matrices
usually have low conditions, a direct solution can become numerically unstable for large
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systems. To overcome this problem, Martin et al. [15] introduced an iterative procedure
that is based on Dyson’s equation.

The current je given by Eq. (16.46) can also be inserted into Eq. (16.26) or Eq. (16.35) in
order to obtain an integral formulation of Eq. (16.47). Furthermore, it should be noted that
the formalism is not restricted to isotropic scatterers. Equation (16.47) remains unaffected
if ε(r) is assumed to be a tensor. The extension to bianisotropic scatterers can be found in
Ref. [19].

16.2.3 The coupled-dipole method (CDM)

In contrast to the MOM, the CDM considers the field Eexc that excites a given volume-
element. This field is different from the field E in Eq. (16.45). In order to obtain the field

Eexc, the “self-fields” associated with
↔
M and

↔
L have to be subtracted from the actual field

E to yield

Eexc(rk)= E0(rk) + iω

ε0c2

↔
Gs(rk, rk) je(rk)�Vk

+ iω

ε0c2

N∑
n=1
n�=k

↔
G(rk, rn) je(rn)�Vn, k = 1, ... , N.

(16.49)

While the dyadics
↔
M and

↔
L define the direct interaction, the term containing

↔
Gs accounts

for the indirect interaction. The field associated with
↔
Gs(rk, rk) is the field that was emitted

at r= rk at former times and now arrives back at r= rk after having been scattered in the
environment (Fig. 16.6). Therefore, this field also contributes to the exterior excitation of
the volume element at �Vk and hence must be included in Eq. (16.49).

Using the microscopic polarizability ↔
αk, the dipole moment pk induced in the volume

element �Vk can be related to the field Eexc(rk) by

pk =↔
αk Eexc(rk). (16.50)

This relationship can be introduced in Eq. (16.49) after expressing the current density in
terms of the dipole moment

je(rk) = − iω

�Vk
pk. (16.51)

The resulting system of equations in matrix form reads as

E0(rk) =
N∑

n=1

↔
Bkn Eexc(rn), k = 1, ..., N, (16.52)

where the submatrices
↔
Bkn are given by

↔
Bkn =

[
↔
I − ω2

ε0c2

↔
Gs(rk, rk)↔αk

]
δkn −

[
ω2

ε0c2

↔
G(rk, rn)↔αn

]
(1 − δkn). (16.53)
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If Eq. (16.52) is multiplied by ↔
αk on both sides, a system of equations is obtained for the

dipole moments,

↔
αk E0(rk) =

N∑
n=1

↔
Ckn pn, k = 1, ..., N, (16.54)

where the submatrices
↔
Ckn are given by

↔
Ckn =

[
↔
I − ω2

ε0c2
↔
αk

↔
Gs(rk, rk)

]
δkn −

[
ω2

ε0c2
↔
αk

↔
G(rk, rn)

]
(1 − δkn). (16.55)

Once the dipole moments have been determined, the field can easily be calculated every-
where in space. It has to be emphasized once more that Eexc is identical with E only outside
the scatterer occupied by the volume V . Inside V the two fields are different. In order to

obtain the actual field inside V from Eexc, the “self-field” associated with
↔
L and

↔
M has

to be added to every interior point. However, outside the volume V the field due to the N
induced dipoles reads as

E(r) = E0(r) + ω2

ε0c2

N∑
n=1

↔
G (r, rn)pn, r �∈ V . (16.56)

In order to compare the CDM and the MOM, the polarizabilities ↔
αk have to be expressed

in terms of
↔
L(rk),

↔
M(rk), and ε(rk). The requirement for the CDM to be identical with the

MOM leads to

↔
αk = �Vk ε0�ε(rk)

[
↔
I −

[
k2

0

↔
M(rk) −

↔
L(rk)

εref(rk)

]
�ε(rk)

]−1

. (16.57)

This relation follows from the equality of the current density Eq. (16.46) in the MOM
and the current density Eqs. (16.50) and (16.51) in the CDM. The exciting field Eexc has
further to be expressed in terms of the actual field E according to

Eexc(rk) = E(rk) − iω

ε0c2

[
↔
M(rk) −

↔
L(rk)

k2
0 εref(rk)

]
je(rk)

=
[
↔
I −

[
k2

0

↔
M(rk) −

↔
L(rk)

εref(rk)

]
�ε(rk)

]
E(rk), (16.58)

which follows from Eqs. (16.45), (16.46), and (16.49). It remains to be shown that
Eq. (16.57) reduces to the known forms for the polarizability.

16.2.4 Equivalence of the MOM and the CDM

In the weak forms of the MOM and the CDM, the contribution of the dyadic
↔
M is ignored.

In this case Eq. (16.57) can be expressed as (cf. Section 12.4)

↔
αk = 3ε0εref(rk)�Vk

ε(rk) − εref(rk)

ε(rk) + 2εref(rk)

↔
I , (16.59)
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where we used the explicit value of
↔
L = (1/3)

↔
I . Equation (16.59) is recognized as the

quasi-static polarizability of an electrically small sphere. Thus, the MOM and the CDM
turn out to be identical in their weak forms! Furthermore, since Eq. (16.58) relates the
exciting field Eexc to the actual field E, it can be shown that the field inside the subvolume
�Vk is

E(rk) = 3εref(rk)

ε(rk) + 2εref(rk)
Eext(rk). (16.60)

This relationship is consistent with the corresponding expression obtained for a small
sphere in a homogeneous external field.

In order to compare the strong forms of the MOM and the CDM, an explicit value for the

dyadic
↔
M has to be determined. The calculation is most easily performed for a spherical

principal volume Vδ . In this case, the integral in Eq. (16.44) can be determined and the

expression for
↔
M reads as [21]

↔
M(rk) = 2

3

1

k2
ref(rk)

[[
1 − ikref(rk)ak

]
e ikref(rk)ak − 1

]
↔
I . (16.61)

Here ak is the radius of the spherical subvolume �Vk = (4π/3)a3
k and kref is given by

k2
ref = k2

0εref. As expected,
↔
M equals zero for ak → 0. On inserting Eq. (16.61) into the

expression for the polarizability (16.57) and using
↔
L= (1/3)

↔
I one obtains

↔
αk=

[
3ε0εref(rk)

�ε(rk)�Vk

ε(rk) + 2εref(rk)

][
↔
I − 3k2

ref(rk)�ε(rk)

ε(rk) + 2εref(rk)

↔
M

]−1

. (16.62)

The first factor is recognized as the weak form of the polarizability, whereas the second
expression defines a correction term that accounts for the finite subvolume Vδ . For�Vk→0
this term equals

↔
I . The polarizability αk in Eq. (16.62) was first explicitly determined by

Lakhtakia [19], and it is this form which must be considered in a comparison with the
strong form of the MOM. It therefore turns out that the strong forms of the MOM and
the CDM are also equivalent. Since the strong forms account for the finite size of the
subvolumes, they generally lead to faster convergence than the weak forms.

It has been shown by several authors that the electrostatic polarizability given by
Eq. (16.59) satisfies neither energy conservation nor the optical theorem for particles mod-
eled by a single dipole [22, 23]. According to the equivalence of the MOM and the CDM,
neither does the weak form of the MOM provide physical solutions for single dipolar scat-

terers! Therefore, the dyadic
↔
M is significant even for very small particles. In order to

achieve physical solutions, various other forms of the CDM were proposed, but all of them
modify the weak form of the CDM to include higher-order terms in kref(rk ak).

It is repeated here that the main difference between the MOM and the CDM is the point
of view. While the CDM considers the field incident on a subvolume (the exciting field),
the MOM deals with the field that is actually present in the subvolume. Therefore, the field
of the CDM represents only the solution for the fields outside the scatterer, whereas inside
the scatterer the relation between the exciting field Eexc and the actual field E is given by
Eq. (16.58).
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Note that the same formalism can be applied to particles having magnetic polarizabili-
ties. In this case the dual substitutions of Section 10.9 have to be carried out and Green’s
dyadic

↔
G has to be replaced by (∇× ↔

G).

16.3 Effective polarizability

The effective polarizability ↔
αeff is often introduced in order to account for the interaction

of a single dipolar particle with its environment. The interaction originates from the fact
that part of the field emitted by the dipole at previous times is reflected back and influences
the dipole’s properties. The dipole moment p of a polarizable particle located at r=r0 with
polarizability ↔

α (ω) is related to the local exciting field Elocal=Eexc(r=r0) by

p =↔
α (ω)Elocal, (16.63)

where the polarizability is given by Eq. (16.57). Note that Elocal is the field that excites
the particle and is thus not equal to the actual field at r = r0. Elocal can be split into two
contributions,

Elocal = E0(r0) + Es(r0), (16.64)

where E0 is the exciting field and Es is the dipole’s field that is reflected back to its position
(the scattered field). The latter can be written as

Es(r0) = ω2

ε0c2

↔
Gs(r0, r0)p. (16.65)

Note that
↔
Gs, unlike

↔
G0, has no singularity and hence may be evaluated at its origin. With

Eqs. (16.63)–(16.65) it follows that

p − ω2

ε0c2
↔
α (ω)

↔
Gs(r0, r0)p =↔

α (ω)E0(r0). (16.66)

This equation is identical to Eq. (16.54) of the CDM if a single particle is considered. The
right-hand side is simply the primary dipole moment p0, i.e. the dipole moment induced
by the exciting field E0. Thus, Eq. (16.66) can be rewritten as

p − ω2

ε0c2
↔
α (ω)

↔
Gs(r0, r0)p = p0, (16.67)

which can be solved for p. The self-consistent dipole moment p is determined by
↔
Gs,

containing the information relating to the optical properties of the environment, and by ↔
α,

describing the properties of the particle itself. From Eq. (16.66) an effective polarizability,
↔
αeff, can be calculated as

p =↔
αeff(ω)E0(r0). (16.68)

In free space ↔
αeff is equal to ↔

α. Inhomogeneities in the environment change the polarizabil-
ity from ↔

α to ↔
αeff. These changes are due to the dipole’s interaction with the environment.
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If ↔
α represents a molecule or atom with well-defined transition energies, then the interac-

tion with the environment leads to resonance shifts and alterations of the decay rates (cf.
Section 8.5).

16.4 The total Green function

The entire electromagnetic information of a system consisting of an arbitrary number of

particles can be represented by a single dyadic function. This function is denoted
↔
Gt,

where the index t stands for “total.” The term “particle” represents any dipolar center,
whether spatially isolated from others or merged together with others to form a macro-
scopic medium. Consider an arbitrary number of particles embedded in an inhomogeneous
reference system, such as a planarly layered structure. It is assumed that the Green func-

tion
↔
G accounts for the inhomogeneous reference system. According to Eq. (16.58), the

actual field E(r) outside of all the particles in the system is equal to the exciting field Eexc

because r is an exterior point. For μ=1 this field is given by Eqs. (16.52) and (16.53) and
reads

E(r) = E0(r) + ω2

ε0c2

N∑
n=1

↔
G(r, rn)↔αn E(rn), (16.69)

where E0 is the field in the absence of the particles. For the present purpose E0 is the field
of an exciting dipole at r = rk with the dipole moment pk. According to Eq. (16.29) the
dipole field can be expressed in terms of the Green function as

E0(r) = ω2

ε0c2

↔
G(r, rk)pk. (16.70)

The combination of these two equations leads to

E(r) = ω2

ε0c2

↔
G(r, rk)pk + ω2

ε0c2

N∑
n=1

↔
G(r, rn)↔αn E(rn). (16.71)

If the Green function of the entire system were known, the field at r could simply be
calculated from

E(r) = ω2

ε0c2

↔
Gt(r, rk)pk. (16.72)

Here,
↔
Gt accounts not only for the inhomogeneous reference system, but also for the parti-

cles. The field E in Eq. (16.72) can be substituted for the fields E(r) and E(rn) in Eq. (16.71)
to obtain

↔
Gt(r, rk)pk =

↔
G(r, rk)pk + ω2

ε0c2

N∑
n=1

↔
G(r, rn)↔αn

↔
Gt(rn, rk)pk. (16.73)
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This equation can be postmultiplied by pk/|pk|2 to give

↔
Gt(r, rk) = ↔

G(r, rk) + ω2μ0

N∑
n=1

↔
G(r, rn)↔αn (ω)

↔
Gt(rn, rk). (16.74)

This is the discrete form of Dyson’s equation [15, 24] and was first derived in quantum
mechanics. In the present approach it was assumed that only exterior points are consid-
ered. The derivation for interior points follows the same steps but with a slightly more

complicated expression for Eq. (16.69) including the scattering part of
↔
G. The beauty of

↔
Gt is that it incorporates all information about the environment. Once

↔
Gt is known, the field

of a dipole placed at an arbitrary location rk is readily calculated using Eq. (16.72). The
formalism of Dyson’s equation is elaborated in more detail by Martin et al. [25] for van der

Waals interactions and for electromagnetic scattering. In the former,
↔
Gt is called the “field

susceptibility,” whereas for the latter it bears the name “generalized field propagator.”

16.5 Conclusion

In this chapter we discussed theoretical methods that are commonly encountered in the field
of nano-optics. We primarily concentrated on methods that use numerical means for finding
analytical expressions for the fields under study. We left out purely numerical methods
because they are well documented elsewhere. The reader should also notice that we did not
cover many fascinating theoretical concepts that have been put forward recently. Among
those are primarily inverse methods aimed at reconstructing the object space (geometry
and material properties of the sample) using the information accessible through detectors
in the near-field or far-field [26]. It has been shown that concepts in inverse scattering
can be applied to optical near-fields and that, by sampling information under different
angles of excitation or detection, near-field optical tomography can be established, i.e. the
three-dimensional reconstruction of the object space [27].

Problems

16.1 Consider a single dipolar particle with radius a and dielectric constant εp located
above a dielectric half-space with dielectric constant ε. Derive the effective polar-
izability ↔

αeff as a function of the distance d between surface and center of the
particle.

16.2 Calculate the effective polarizability of two dielectric spheres with radius a and
dielectric constant ε, separated by a distance d.

16.3 Two metal particles with radii a = 20 nm are separated by the distance d = 3a
(center to center). Calculate the scattering cross-section for an incident plane wave
polarized in the direction of the two particles (along the x-axis). The wavelength is
λ = 488 nm and the dielectric constant ε = −34.5+ i8.5 (aluminum). Compare the
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result with the first Born approximation (no interaction between the two particles).
What separation d is necessary in order to achieve an accuracy of 10% for the first
Born approximation?

16.4 The quasi-static polarizability α does not fulfill the optical theorem. To prove this
inconsistency, consider the scattering from a single dipolar particle with polarizabil-
ity α. The optical theorem states that the extinction cross-section of a plane wave
propagating in the direction of z and scattering off an arbitrary object reads as

σext = 4π

k2
Re{X · nE}

∣∣x,y=0, (16.75)

where k is the wavenumber, nE the unit vector in the direction of the incident polar-
ization, and X the scattering amplitude evaluated for z → ∞. x, y = 0 indicates
that the value is to be evaluated along the propagation direction. X is related to the
scattered far-field Es by

Es = −eikR

ikR
XE0, (16.76)

with R being the radial distance from the scattering object and E0 the amplitude
of the incident plane wave. Notice that X is dimensionless. In the case of a small
particle, the field Es originates from the dipole p, which in turn is induced by the
incident field E0.
(a) Derive the result σext = (k/ε0)Im{α}.
(b) Calculate the scattering cross-section σscatt by using the relationship p = αE0,

the formula for dipole radiation Pscatt = |p|2ω4/(12πε0c3), and the incident
intensity I0 = ε0c |E0|2/2.

(c) Derive the absorption cross-section σabs using the relationship Pabs =
(ω/2)Im{p · E∗

0} and show that it is identical with σext.
It follows that the extinction cross-section calculated through the optical theorem
accounts only for absorption and not for scattering. Thus, the quasi-static polariz-
ability has to be handled with care. A solution of this dilemma is considered in
Problem 8.5, where radiation reaction leads to an additional contribution to the
polarizability (cf. Eq. (8.222)).
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A
Appendix A Semi-analytical derivation of the

atomic polarizability

The purpose of this section is to derive the linear polarizability of a two-level quantum
system in the dipole approximation. The quantum system might be an atom, a molecule, or
a quantum dot. For simplicity, we denote the system as an atom. Once the atomic polariz-
ability is known, the interaction between atom and radiation field can be treated classically
in many applications. A generally valid analytical expression for the polarizability cannot
be derived. Instead, one has to distinguish among several approximate expressions that
depend on the relative spectral properties of the atom and the field. The two most impor-
tant regimes are off-resonance and near-resonance excitation. In the former case, the atom
resides mostly in its ground state, whereas in the latter case saturation of the excited level
becomes significant.

According to quantum mechanics, the behavior of a system of N particles is described
by the wavefunction

�(r, t) = �(r1, . . . , rN , t), (A.1)

where ri denotes the spatial coordinate of particle i and t represents the time variable. To
make the notation simpler, the entire set of particle coordinates is represented by the single
coordinate r, which also includes spin. However, it should be kept in mind that operations
on r are operations on all particle coordinates r1, . . . , rN . The wavefunction� is a solution
of the Schrödinger equation

Ĥ�(r, t) = i�
d

dt
�(r, t). (A.2)

Ĥ denotes the Hamilton operator, also called the Hamiltonian. Its form depends on the
details of the system considered.

For an isolated atom with no external perturbation the Hamiltonian is time-independent
and it has the general form

Ĥ0 =
∑

i,j

[
− �

2

2mi
∇2

i + V(ri, rj)

]
. (A.3)

The sum runs over all particles involved in the system. The index in ∇i specifies operation
on the coordinate ri. V(ri, rj) is the potential interaction energy of the ith and jth particles.
In general, V has contributions from all four fundamental interactions so far known, namely
strong, electromagnetic, weak, and gravitational interactions. For the behavior of electrons
only the electromagnetic contribution is of importance, and within the electromagnetic
interaction the electrostatic potential is dominant. Since the masses of nuclei are much

523
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greater than the mass of an electron, the nuclei move much slower than the electrons.
This allows the electrons to practically instantaneously follow the nuclear motion. For an
electron, the nucleus appears to be at rest. This is the essence of the Born–Oppenheimer
approximation which allows us to separate the nuclear wavefunction from the electronic
one. We therefore consider a nucleus of total charge qZ, Z being the atomic number. We
assume that the nucleus is located at the origin of coordinates (r = 0) surrounded by
Z electrons each of charge −q. We can restrict the index i in Eq. (A.3) to run only over
electron coordinates. In the case of a time-independent Hamiltonian we can separate the
t and r dependence as

�(r, t) =
∞∑

n=1

e−(i/�)En tϕn(r). (A.4)

By inserting this wavefunction into Eq. (A.2) and using Ĥ = Ĥ0 we obtain the energy
eigenvalue equation (time-independent Schrödinger equation)

Ĥ0ϕn(r) = Enϕn(r), (A.5)

where En are the energy eigenvalues of the stationary states |n〉. In the following we restrict
ourselves to the case of a two-level atom (n= [1, 2]) with the two stationary wavefunctions

�1(r, t) = e−(i/�)E1 tϕ1(r),

�2(r, t) = e−(i/�)E2 tϕ2(r).
(A.6)

In the next step, we expose the atomic system to the radiation field. The system
then experiences an external, time-dependent perturbation represented by the interaction
Hamiltonian Ĥ′(t). We obtain for the total Hamiltonian

Ĥ = Ĥ0 + Ĥ′(t), (A.7)

where Ĥ0 represents the unperturbed system according to Eq. (A.5). The size of an atom
is on the order of a couple of Bohr radii, aB ≈ 0.05 nm. Since aB � λ, λ being the
wavelength of the radiation field, we can assume that the electric field E is constant across
the dimensions of the atomic system. Assuming time-harmonic fields, we can write

E(r, t) = Re
{

E(r)e−iωt
}
≈ E0 cos(ωt), (A.8)

where we have set the phase of the field equal to zero or, equivalently, we have chosen the
complex field amplitude to be real. Each electron in the system experiences the same field
strength E0 and the same time dependence cos(ωt). Using the total electric dipole moment
of the atom

p̂a(r) = p̂a(r1, . . . , rZ) = q
Z∑

i=1

r̂i, (A.9)

we find for the interaction Hamiltonian in the dipole approximation

Ĥ′ = −p̂a(r) · E0 cos(ωt). (A.10)

The dipolar interaction Hamiltonian is real and has odd parity, i.e. Ĥ′ changes sign if the
inversion operation r̂i →−r̂i is applied to all r̂i.
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To solve the Schrödinger equation (A.2) for the perturbed system we make a time-
dependent superposition of the stationary atomic wavefunctions in Eq. (A.6) as

�(r, t) = c1(t)�1(r, t) + c2(t)�2(r, t). (A.11)

We choose the time-dependent coefficients c1 and c2 such that the normalization condition
〈�|�〉= ∫�∗� dV = |c1|2 + |c2|2 = 1 is fulfilled. For clarity, we will drop the arguments
in the wavefunctions. After inserting this wavefunction into Eq. (A.2), rearranging terms,
and making use of Eqs. (A.3) and (A.6) we obtain

Ĥ′(c1�1 + c2�2) = i� [�1ċ1 +�1ċ2], (A.12)

where the dots denote differentiation with respect to time. It should be kept in mind that the
arguments of � and ϕ are (r, t) and (r), respectively. To eliminate the spatial dependence
we multiply Eq. (A.12) from the left by�∗

1 on both sides, introduce the expressions in (A.6)
for the wavefunctions, and integrate over all space. After repeating the procedure with �∗

2
instead of �∗

1 we obtain a set of two time-dependent coupled differential equations:

ċ1(t) = c2(t)(i/�)p12 · E0 cos(ωt)e−(i/�)(E2−E1)t, (A.13)

ċ2(t) = c1(t)(i/�)p21 · E0 cos(ωt)e+(i/�)(E2−E1)t. (A.14)

We have introduced the definition of the dipole matrix element between the states |i〉
and | j〉 as

pij = 〈i|p̂a |j〉 =
∫
ϕ∗i (r)p̂a(r)ϕj(r)dV . (A.15)

It has to be emphasized again that the integration runs over all electron coordinates r =
r1, . . . , rZ . In Eqs. (A.13) and (A.14) we have used the fact that pii=0. This follows from
the odd parity of Ĥ′, which makes the integrands of pii odd functions of r. Integration over
r= [−∞ . . . 0] leads to a result that is the negative of the result associated with integration
over r= [0 . . .∞]. Upon integration over all space the two contributions cancel out. The
dipole matrix elements satisfy p12 = p∗21 because p̂a is a Hermitian operator. However, it
is convenient to choose the phases of the eigenfunctions ϕ1 and ϕ2 such that the dipole
matrix elements are real, i.e.

p12 = p21. (A.16)

In the following, we will assume that �E = E2−E1 > 0, and we introduce the transition
frequency

ω0 = �E/�, (A.17)

for the sake of simpler notation. The state |1〉 is the ground state and the state |2〉 the excited
state.

Semiclassical theory does not account for spontaneous emission. The spontaneous emis-
sion process can only be found by use of a quantized radiation field. To be in accordance
with quantum electrodynamics we have to include the effects of spontaneous emission
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by introducing a phenomenological damping term in Eq. (A.14). The coupled differential
equations then have the form

ċ1(t) = c2(t)(i/�)p12 · E0 cos(ωt)e−iω0t,

ċ2(t)+ γ /2 c2(t) = c1(t)(i/�)p21 · E0 cos(ωt)e+iω0t.
(A.18)

The introduction of the damping term asserts that an excited atom must ultimately decay
to its ground state by spontaneous emission. In the absence of the radiation field, E0 = 0,
Eq. (A.18) can be integrated at once and we obtain

c2(t) = c2(0)e−(γ /2)t. (A.19)

The average lifetime τ of the excited state is τ = 1/γ , γ being the spontaneous decay
rate. Since there is no direct analytical solution of Eqs. (A.18) we have to find approximate
solutions for different types of excitations.

A.1 Steady-state polarizability for weak excitation fields

We assume that the interaction between the atom and the radiation field is weak. The solu-
tion for c1(t) and c2(t) can then be represented as a power series in p21 · E0. To derive
the first-order term in this series we set c1(t) = 1 and c2(t) = 0 on the right-hand side
of Eqs. (A.18). Once we have found the first-order solution we can insert it again into
the right-hand side to find the second-order solution and so on. However, we will restrict
ourselves to the first-order term. The solution for c1 is c1(t)= 1, indicating that the atom
resides always in its ground state. This solution is the zeroth-order solution, i.e. there is no
first-order solution for c1. The next higher term would be of second order. The first-order
solution for c2 is obtained by a superposition of the homogeneous solution in Eq. (A.19)
and a particular solution. The latter is easily found by writing the cosine term as a sum of
two exponentials. We then obtain for the first-order solution of c2

c2(t) = p21 · E0

2�

[
ei(ω0+ω−iγ /2)t − 1

ω0 + ω − iγ /2
+ ei(ω0−ω−iγ /2)t − 1

ω0−ω−iγ /2

]
e−(γ /2) t. (A.20)

We are interested in calculating the steady-state behavior for which the atom has been sub-
jected to the electric field E0 cos(ω t) for an infinitely long period of time. In this situation
the inhomogeneous term disappears and the solution is given by the homogeneous solution
alone.

The expectation value of the dipole moment is defined as

p(t) = 〈�|p̂a|�〉 =
∫
�∗(r)p̂a(r)�(r)dV , (A.21)

The integration again runs over all coordinates ri. Using the wavefunction � of Eq. (A.11)
the expression for p becomes
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p(t) = c∗1c2 p12e−iω0 t + c1c∗2 p21eiω0 t, (A.22)

where we used the definition of the dipole matrix elements of Eq. (A.15) and the property
pii=0. Using the first-order solutions for c1 and c2 we obtain

p(t) = p12[p21 · E0]

2�

×
[

eiωt

ω0 + ω − iγ /2
+ e−iωt

ω0 − ω − iγ /2
+ e−iωt

ω0 + ω + iγ /2
+ eiωt

ω0 − ω + iγ /2

]
.

(A.23)

Since the exciting electric field is expressed as E = (1/2)E0[exp(iωt) + exp(−iωt)] we
rewrite the dipole moment above as

p(t) = 1

2

[↔
α
∗
(ω)eiωt + ↔

α(ω)e−iωt
]
E0 = Re

{↔
α(ω)e−iωt

}
E0, (A.24)

where
↔
α is the atomic polarizability tensor

↔
α(ω) = p12p21

�

[
1

ω0 − ω − iγ /2
+ 1

ω0 + ω + iγ /2

]
. (A.25)

p12p21 denotes the matrix formed by the outer product between the (real) transition dipole
moments. It is convenient to write the polarizability in terms of a single denominator.
Furthermore, we realize that the damping term γ is much smaller than ω0, which allows
us to drop terms in γ 2. Finally, we have to generalize the result to a system with more than
two states. Besides the different matrix elements, each state differing from the ground state
behaves in a similar way to our previous state |2〉. Thus, each new level is characterized by
its natural frequency ωn, its damping term γn, and the transition dipole moments p1n and
pn1. Then the polarizability takes on the form

↔
α(ω) =

∑
n

↔
f n

[
e2/m

ω2
n − ω2 − iωγn

]
,

↔
f n = 2mωn

e2 �
p1npn1, (A.26)

where
↔
f n is the so-called oscillator strength,1 and e and m denote the electron charge and

mass, respectively. It is for historical reasons that we have cast the polarizability in the
form of Eq. (A.26). Before the advent of quantum mechanics, H. A. Lorentz developed a

classical model for the atomic polarizability that, apart from the expression for
↔
f n, is iden-

tical with our result. The model considered by Lorentz consists of a collection of harmonic
oscillators for the electrons of an atom. Each electron responds to the driving incident field
according to the equation of motion

p̈ + γ ṗ + ω2
0 p = (q2/m)

↔
f E(t). (A.27)

In this theory, the oscillator strength is a fitting parameter since there is no direct way to
know how much an electron contributes to a particular atomic mode. On the other hand, the

1 The average over all polarizations reduces the oscillator strength to a scalar quantity with an extra factor of 1/3.
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semiclassical theory directly relates the oscillator strength to the transition dipole matrix
elements and thus to the atomic wavefunctions. Furthermore, the f -sum rule tells us that
the sum of all oscillator strengths is equal to unity.

If the energy �ω of the exciting field is close to the energy difference �E between two
atomic states, the first term in Eq. (A.25) is much larger than the second one. In this case
we can discard the second term (the rotating-wave approximation) and the imaginary part
of the polarizability becomes a perfect Lorentzian function.

It is important to notice that there is a linear relationship between the exciting electric
field E and the induced dipole moment p. Therefore, a monochromatic field with angular
frequency ω produces a harmonically oscillating dipole with the same frequency. This
allows us to use the complex notation for p and E and write

p =↔
α E, (A.28)

from which we obtain the time dependence of E and p by simply multiplying by exp(−iωt)
and taking the real part.

A.2 Near-resonance excitation in the absence of damping

In the previous section we required that the interaction between the excitation beam and
the atom is weak and that the atom resides mostly in its ground state. This condition can be
relaxed if we consider an exciting field whose energy �ω is close to the energy difference
�E between two atomic states. As mentioned before, there is no direct analytical solution
to the coupled differential equations in Eqs. (A.18). However, a quite accurate solution can
be found if we drop the damping term γ and if the energy of the radiation field is close to
the energy difference between excited and ground states, i.e.

|�ω −�E| � �ω +�E. (A.29)

In this case, we can apply the so-called rotating-wave approximation. After rewriting the
cosines in Eqs. (A.18) in terms of exponentials we find exponents with (�ω ± �E). In
the rotating-wave approximation we retain only terms with (�ω − �E) because of their
dominating contributions. Equations (A.18) then become2

i

2
ωRe−i(ω0 −ω)tc2(t) = ċ1(t), (A.30)

i

2
ωRei(ω0 −ω)tc1(t) = ċ2(t), (A.31)

where we introduced the Rabi frequency ωR defined as

ωR = |p12 · E0|
�

= |p21 · E0|
�

. (A.32)

2 We again choose the phases of the atomic wavefunctions such that the transition dipole matrix elements are real.
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ωR is a measure for the strength of the time-varying external field. On inserting the
trial solution c1(t) = exp(iκt) into the first equation, Eq. (A.30), we find c2(t) =
(2κ/ωR)exp(i[ω0 − ω + κ]t). On substituting both c1 and c2 into the second equation,
Eq. (A.31), we find a quadratic equation for the unknown parameter κ , leading to the
two solutions κ1 and κ2. The general solutions for the amplitudes c1 and c2 can then be
written as

c1(t) = Aeiκ1t + Beiκ2t, (A.33)

c2(t) = (2/ωR)ei(ω0 −ω)t
[
Aκ1eiκ1t + Bκ2eiκ2t

]
. (A.34)

To determine the constants A and B we require boundary conditions. The probability for
finding the atomic system in the excited state |2〉 is |c2|2. Similarily, the probability for
finding the atom in its ground state |1〉 is |c1|2. By using the boundary conditions for the
atom initially in its ground state

|c1(t = 0)|2 = 1,

|c2(t = 0)|2 = 0,
(A.35)

the unknown constants A and B can be determined. Using the expressions for κ1, κ2, A, and
B, we finally find the solution

c1(t) = e−(i/2)(ω0−ω)t
[

cos(�t/2) − i(ω − ω0)

�
sin(�t/2)

]
, (A.36)

c2(t) = iωR

�
e(i/2)(ω0−ω)t sin(�t/2), (A.37)

where � denotes the Rabi flopping frequency defined as

� =
√

(ω0 − ω)2 + ω2
R. (A.38)

It can be easily shown that |c1|2 + |c2|2 = 1. The probability of finding the atom in its
excited state becomes

|c2(t)|2 = ω2
R

sin2(�t/2)

�2
. (A.39)

The transition probability is a periodic function of time. The system oscillates between the
levels E1 and E2 at the frequency�/2, which depends on the detuning ω0−ω and the field
strength represented by ωR. If ωR is small we have � ≈ ω0 − ω and, in the absence of
damping, the results become identical with the results of the previous section.

The expectation value of the dipole moment is defined by Eqs. (A.21) and (A.22). On
inserting the solutions for c1 and c2 and using Eq. (A.16) we obtain

p(t) = p12
ωR

�

[
ω − ω0

�
[1 − cos(�t)]cos(ωt) + sin(�t)sin(ωt)

]
. (A.40)

We see that the induced dipole moment oscillates at the frequency of the radiation field.
However, it does not instantaneously follow the driving field: it has in-phase and quadrature
components. Let us write p in the complex representation as

p(t) = Re
{

pe−iωt
}

. (A.41)
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We then find for the complex dipole moment

p = p12
ωR

�

[
ω − ω0

�
[1 − cos(�t)] + i sin(�t)

]
. (A.42)

To determine the atomic polarizability, defined as

p = ↔
αE, (A.43)

we have to express the Rabi frequency ωR by its definition Eq. (A.32) and obtain

↔
α(ω) = p12p21

�

[
ω − ω0

�2
[1 − cos(�t)] + i sin(�t)

]
. (A.44)

The most remarkable property of the polarizability is its dependence on field strength
(through ωR) and its time dependence. This is different from the polarizability derived
in the previous section. In the present case, the time behavior is determined by the Rabi
flopping frequency �. In practical situations the time dependence disappears within tens
of nanoseconds because of the damping term γ , which has been neglected in the present
derivation. For the case of exact resonance (ω = ω0) the polarizability reduces to a sinu-
soidal function of ωR t. This oscillation is much slower than the oscillation of the optical
field. For weak interactions ωR is small and the polarizability becomes a linear function
of t.

A.3 Near-resonance excitation with damping

The damping term γ attenuates the purely oscillatory solution derived in the previous
section. After a sufficiently long time, the system will relax into the ground state. To
calculate the steady-state behavior it is sufficient to solve for the term c1c∗2, which,
together with its complex conjugate, defines the expectation value of the dipole moment
(see Eq. (A.22)). In the steady state, the probability of finding the atom in its excited state
will be time-independent, i.e.

d

dt

[
c2c∗2

] = 0 (steady state). (A.45)

Furthermore, in the rotating-wave approximation, it can be expected that the time depen-
dence of the off-diagonal matrix element c1c∗2 will be solely defined by the factor
exp[−i(ω0 − ω)t]. Thus,

d

dt

[
c1c∗2

] = −i(ω0 − ω)
[
c1c∗2

]
(steady state), (A.46)

with a similar equation for c2c∗1. Using

d

dt

[
cic

∗
j

]
= ci ċ

∗
j + c∗j ċi, (A.47)
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inserting Eqs. (A.18), applying the rotating-wave approximation, and making use of the
steady-state conditions above, we obtain

ωR exp[−i(ω0 − ω)t]
[
c2c∗1

]− ω∗R exp[i(ω0 − ω)t]
[
c1c∗2

]− 2iγ
[
c2c∗2

] = 0, (A.48)

ωR
([

c1c∗1
]− [c2c∗2

])− [2(ω0 − ω) + iγ
]

exp[i(ω0 − ω)t]
[
c1c∗2

] = 0, (A.49)

ωR
([

c1c∗1
]− [c2c∗2

])− [2(ω0 − ω) − iγ
]

exp[i(ω0 − ω)t]
[
c2c∗1

] = 0. (A.50)

This set of equations can be solved for [c1c∗2] and gives

[
c1c∗2

] = e−i(ω0−ω)t
1
2ωR(ω0 − ω − iγ /2)

(ω0 − ω)2 + γ 2/4 + 1
2ω

2
R

, (A.51)

with the complex-conjugate solution for [c2c∗1]. The expectation value of the dipole
moment can now be calculated by using Eq. (A.22) and the steady-state solution for the
atomic polarizability for near-resonance excitation (ω≈ω0) can be determined as

↔
α(ω) = p12p21

�

ω0 − ω + iγ /2

(ω0 − ω)2 + γ 2/4 + 1
2ω

2
R

. (A.52)

The most remarkable difference from the off-resonance case is the appearance of the term
ω2

R in the denominator. This term accounts for saturation of the excited state, thereby reduc-
ing the absorption rate and increasing the linewidth from γ to (γ + 2ω2

R)1/2, which is
denoted saturation broadening. Thus, the damping constant becomes dependent on the
acting electric field strength. For ωR→0, the polarizability reduces to

↔
α(ω) = p12p21

�

1

ω0 − ω − iγ /2
, (A.53)

which is identical with the rotating-wave term of Eq. (A.25).
The polarizability can be calculated once the energy levels E1 and E2 and the dipole

matrix element p12 are known. The latter is defined by Eq. (A.15) through the wavefunc-
tions ϕ1 and ϕ2. It is thus necessary to solve the energy eigenvalue equation (A.5) for the
quantum system being considered, in order to accurately determine the energy levels and
the dipole matrix element. However, Eq. (A.5) can be solved analytically only for simple
systems, which are often restricted to two interacting particles. Systems with more than two
interacting particles have to be treated with approximate methods such as the Hartree–Fock
method or numerically.
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Appendix B Spontaneous emission in the

weak-coupling regime

In this appendix we derive the normalized spontaneous decay rate of an atomic system
using quantum electrodynamics. The analysis is based in part on Ref. [1]. In what fol-
lows, we concentrate exclusively on the weak-coupling regime. Section B.1 presents the
derivation of the decay constant in free space using QED and the Weisskopf–Wigner
approximation [2, 3]. Section B.2 is devoted to calculating the spontaneous-emission decay
constant in a linear and inhomogeneous medium using the Heisenberg picture [1], which
renders a clear connection between classical theory and QED.

B.1 Weisskopf–Wigner theory

We consider a two-level atom interacting with an infinite number of field modes. Each
mode is characterized by its polarization and wavevector k. This atom–field system is
described by the Jaynes–Cummings Hamiltonian [4]

Ĥ = �ω0|e〉〈e| +
∑

k

�ωkâ†
kâk −

∑
k

�gk

[
âk|e〉〈g| + â†

k|g〉〈e|
]

. (B.1)

Here |e〉 (|g〉) is the excited (ground) state of the atom, âk and â†
k are the annihilation and

creation operators for the mode k,1 and gk is the atom–field coupling strength defined as

gk =
√

ωk

2ε0�V
ε̂k · 〈g|p̂|e〉, (B.2)

where V is the volume, ε̂ is the unit vector in the direction of the electric field mode Ek,
and p̂ is the dipole-moment operator.

We assume that at t = 0 the atom is in the excited state and no photons are present.
The initial state is therefore |e, 0〉, with e and 0 designating the excited atomic state and the
initial photon number, respectively. At any later time t the state |ψ(t)〉 of the system can be
expanded as

|ψ(t)〉 = Ce
0(t)e−iω0t|e, 0〉 +

∑
k

Cg
1k(t) e−iωkt|g, 1k〉, (B.3)

1 We use the compressed notation for which k designates simultaneously the k-vector and the polarization state.
Each k-vector possesses two linearly independent polarization states.
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533 B.1 Weisskopf–Wigner theory

where the Cs are time-dependent expansion coefficients. In the state |g, 1k〉 the atom is
in the ground state and one photon of mode k is released. By inserting Eq. (B.3) into the
Schrödinger equation, we obtain

dCe
0

dt
= −

∑
k

|gk|2
∫ t

0
Ce

0(t1) e−i(ωk −ω0)(t− t1) dt1. (B.4)

In the large-volume limit, i.e. V → ∞, the sum in Eq. (B.4) can be substituted as

∑
k

−→ 2
V

(2π )3

∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ ∞

0
dk k2, (B.5)

where the factor of 2 arises from summing over the two polarization states associated with
each k-vector. Assuming that the dipole is oriented along the z-axis, i.e. p=〈g|p̂|e〉=p n̂z,
the field–atom coupling strength becomes

|gk|2 = ωk

2ε0�V
p2 cos2θ . (B.6)

After solving the angular integrals, Eq. (B.4) reduces to

dCe
0

dt
= − p2

6π2ε0�c3

∫ ∞

0
ω3

k

∫ t

0
Ce

0(t1) e−i(ωk −ω0)(t− t1) dt1 dωk. (B.7)

So far, the derivation has been exact. We now introduce the Weisskopf–Wigner approx-
imation to solve Eq. (B.7). This approximation involves the following two assumptions:
(1) the spectrum of the field modes is very broad, and (2) the coefficient Ce

0 changes slowly
in time. Therefore, for times t1 � t the integrand oscillates very rapidly and there is no sig-
nificant contribution to the value of the integral. The most dominant contribution originates
from times t1 ≈ t. We therefore evaluate Ce

0(t1) at the actual time t and move it out of the
integrand. In this limit, the atomic decay becomes a memoryless process (Markov process).
To evaluate the remaining integral we extend the upper integration limit to infinity since
there is no significant contribution for t1 >> t. Equation (B.7) now reduces to

dCe
0

dt
= − p2

6π2ε0�c3
Ce

0(t)
∫ ∞

0
ω3

k

∫ ∞

0
e−i(ωk−ω0)(t−t1) dt1 dωk. (B.8)

The integration can now be carried out analytically and we obtain

dCe
0

dt
= −

(γ0

2
+ i�ω

)
Ce

0(t). (B.9)

Here, γ0 is the free-space decay constant

γ0 = ω3
0p2

3πε0�c3
= πω0p2

3ε0�
ρ(ω0), (B.10)

with ρ(ω0) being the electromagnetic density of modes. The second term in Eq. (B.9) is
the Lamb shift and reads as

�ω = 1

4πε0

p2

3π�c3
P

{∫
ω3

k

ωk − ω0
dωk

}
, (B.11)
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where P denotes the principal value of the integral. Since the integral diverges, it is neces-
sary to introduce a cut-off frequency ωf according to �ωf = 2mec2 (the energy for “pair”
creation). With this correction, the Lamb shift �ω turns out to be in the range of a few
GHz, which is very small compared with the optical transition frequency.

B.2 Inhomogeneous environments

We apply QED to derive the spontaneous decay rate of an atomic system in an inhomoge-
neous medium characterized by the lossless dielectric constant ε(r).

Let us consider the vector potential operator Â(r, t) which satisfies the generalized
Coulomb gauge ∇ · [ε(r)Â] = 0. The transverse vector potential can be expanded in a
complete set of orthogonal modes ak as [5]

Â(r, t) = Â+(r, t) + Â−(r, t), (B.12)

Â−(r, t) =
∑

k

√
�/(2ε0ωkV) âk(t)ak(r), (B.13)

Â+(r, t) =
∑

k

√
�/(2ε0ωkV) â†

k(t)a∗k(r). (B.14)

Here, Â− and Â+ contain only negative- and positive-frequency components, respectively.
The normal modes satisfy the Helmholtz equation

∇ × ∇ × ak(r)+ ε0ε(r)
ω2

k

c2
ak(r) = 0, (B.15)

and they form an orthonormal and complete set, namely∫
ε(r)ak′ (r) · a∗k(r)d3r = δkk′ , (B.16)

∫
a∗k(r′)ak(r)d3k =↔

δ⊥(r′− r). (B.17)

We now express the interaction term in the Hamiltonian (cf. Eq. (B.1)) in terms of the
electron momentum operator p̂m and the vector potential operator Â and obtain

Ĥint = −p̂m · Â =
∑

k

�

[
κ∗k â†

k|g〉〈e| + κkâk|e〉〈g|
]

, (B.18)

where κk denotes the coupling constant defined as

κk = − e

�m

√
�/(2ε0ωkV) p12 · ak(r0), (B.19)

and p12 is the matrix element 〈g|p̂m|e〉.
In QED, spontaneous decay is generated by vacuum fluctuations of the field. These fluc-

tuations give rise to a source current density whose operator is denoted as Ĵ. The frequency
correlation of Ĵ can be calculated as
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〈Ĵ+
ω′ (r

′) Ĵ−ω (r)〉 = e2

m2
p12 p12δ(ω − ω′)δ(ω − ω0)δ(r − r′)δ(r − r0)〈N̂e〉, (B.20)

where r0 is the center of mass of the atom, ω0 the center frequency of the distribution,
andN̂e=|e〉〈e| the number operator of the excited state. The number operator satisfies the
equation

dN̂e

dt
= i

�

∫ [
Ĵ+(r, t) · Â−(r, t) − Â+(r, t) · Ĵ−(r, t)

]
d3r, (B.21)

which can be derived by using Heisenberg’s equation of motion for the different operators.
Let us denote the Fourier transforms of Â(r, t) and Ĵ(r, t) by Âω(r) and Ĵω(r), respec-

tively. Then, as a consequence of Heisenberg’s equations of motion and the restriction to
the weak-coupling regime, we can derive the following quantum wave equation [1]:

∇ × ∇ × Â−
ω (r) − ε(r)

ω2

c2
Â−
ω (r) = 1

ε0c2
Ĵ−ω (r). (B.22)

Using the definition of the dyadic Green function from Eq. (2.87) (see Section 2.12) the
solution for Â−

ω can be represented as

Â−
ω (r) = 1

ε0c2

∫ ↔
G (r, r′;ω)Ĵ−ω (r′)d3r′, (B.23)

where we included ω in the argument of
↔
G. By applying the inverse Fourier transform we

can derive the corresponding solution Â−(r, t) in the time domain. Finally, by combining
this solution with Eq. (B.20) and Eq. (B.21) we obtain the simple equation

d〈N̂e〉
dt

= −γ 〈N̂e〉, (B.24)

with γ being the spontaneous decay rate

γ = − 2e2

ε0�c2m2
p12 · Im

{↔
G (r0, r0;ω0)

}
· p12. (B.25)

In the (generalized) Coulomb gauge the momentum-matrix elements p12 are related to the
dipole-matrix elements p as

p12 = (imω0/e)p, (B.26)

which allows us to write Eq. (B.25) in terms of p̂. Furthermore, in an inhomogeneous

medium, the Green function can be split into a primary (free-space) part
↔
G0 and a scattering

part
↔
Gs. Using the fact that the contribution of

↔
G0 leads to the free-space decay rate γ0 (see

Eq. (B.10)) we can write the ratio γ /γ0 as

γ

γ0
= 1 + 6π c

ω0μ2
p · Im

{↔
Gs(r0, r0;ω0)

}
· p, (B.27)

consistent with the classical derivation (Eq. (8.141)) in Section 8.5.
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C
Appendix C Fields of a dipole near a layered

substrate

C.1 Vertical electric dipole

The cylindrical field components of a vertically oriented dipole (Fig. C.1) p = (0, 0, pz)
read as

E1ρ = ρ(z−z0)
pz

4π ε0 ε1

eik1R0

R 3
0

[
3

R 2
0

− 3ik1

R0
− k2

1

]

− i pz

4π ε0 ε1

∞∫
0

dkρ J1(kρρ)A1kρk1ze
ik1z(z+ z0), (C.1)

E2ρ = i pz

4π ε0 ε1

∞∫
0

dkρ J1(kρρ)
[
A2e−ik2zz− A3eik2zz]kρk2ze

ik1zz0 , (C.2)

E3ρ = i pz

4π ε0 ε1

∞∫
0

dkρ J1(kρρ)A4kρk3ze
i(k1zz0 − k3zz), (C.3)

E1ϕ = E2ϕ = E3ϕ = 0, (C.4)

x, y
μ1 ε1

μ3 ε3

μ2 ε2

z

z0

d

θ
p

�Fig. C.1 An electric dipole with moment p is located at r0= (0, 0, z0) near a layered substrate. The fields in each medium are
expressed in cylindrical coordinates r = (ρ ,ϕ, z).
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E1z = pz

4π ε0 ε1

eik1R0

R0

[
3(z−z0)2

R 4
0

− 3ik1(z−z0)2

R 3
0

− 1 + k2
1(z−z0)2

R 2
0

+ ik1

R0
+ k2

1

]

+ pz

4π ε0 ε1

∞∫
0

dkρ J0(kρρ)A1k2
ρeik1z(z+ z0), (C.5)

E2z = pz

4π ε0 ε1

∞∫
0

dkρ J0(kρρ)
[
A2e−ik2zz + A3eik2zz ]k2

ρeik1zz0 , (C.6)

E3z = pz

4π ε0 ε1

∞∫
0

dkρ J0(kρρ)A4k2
ρei(k1zz0 − k3zz), (C.7)

H1ρ = H2ρ = H3ρ = 0, (C.8)

H1ϕ = − iω pz

4π
ρ

eik1R0

R 2
0

[
1

R0
− ik1

]

− iω pz

4π

∞∫
0

dkρ J1(kρρ)A1kρeik1z(z+ z0), (C.9)

H2ϕ = − iω ε2 pz

4π ε1

∞∫
0

dkρ J1(kρρ)
[
A2e−ik2zz + A3eik2zz ]kρeik1zz0 , (C.10)

H3ϕ = − iω ε3 pz

4π ε1

∞∫
0

dkρ J1(kρρ)A4kρei(k1zz0 − k3zz), (C.11)

H1z = H2z = H3z = 0. (C.12)

C.2 Horizontal electric dipole

The cylindrical field components of a horizontally oriented dipole p= (px, 0, 0) read as

E1ρ = cosϕ
px

4π ε0 ε1

eik1R0

R0

{[
k2

1 +
ik1

R0
− 1

R 2
0

]
+ ρ2

R 2
0

[
3

R 2
0

− 3ik1

R0
− k2

1

]}

+ cosϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1z(z+ z0)
{

1

ρ
J1(kρρ)

[
kρB1 − ik1zC1

]

− ik1zJ0(kρρ)
[
ik1zB1 − kρC1

]}
,

(C.13)
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E2ρ = cosϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1zz0

{
1

ρ
J1(kρρ)

[[
kρB2 + ik2zC2

]
e−ik2zz

+ [kρB3 − ik2zC3
]
eik2zz

]
− ik2zJ0(kρρ)

[[
ik2zB2 + kρC2

]
e−ik2zz

+ [ik2zB3 − kρC3
]
eik2zz

]}
,

(C.14)

E3ρ = cosϕ
px

4π ε0 ε1

∞∫
0

dkρ ei(k1zz0 − k3zz)
{

1

ρ
J1(kρρ)

[
kρB4 + ik3zC4

]

− ik3zJ0(kρρ)
[
ik3zB4 + kρC4

]}
,

(C.15)

E1ϕ = sinϕ
px

4π ε0 ε1

eik1R0

R0

[
1

R 2
0

− ik1

R0
− k2

1

]

+ sinϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1z(z+ z0)
{

1

ρ
J1(kρρ)

[
kρB1 − ik1zC1

]

− k2
1J0(kρρ)B1

}
, (C.16)

E2ϕ = sinϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1zz0

{
1

ρ
J1(kρρ)

[[
kρB2 + ik2zC2

]
e−ik2zz

+ [kρB3 − ik2zC3
]
eik2zz

]

− k2
2J0(kρρ)

[
B2e−ik2zz + B3e+ik2zz]} ,

(C.17)

E3ϕ = sinϕ
px

4π ε0 ε1

∞∫
0

dkρ ei(k1zz0 − k3zz)
{

1

ρ
J1(kρρ)

[
kρB4 + ik3zC4

]

− k2
3J0(kρρ)B4

}
, (C.18)

E1z = cosϕ
px

4π ε0 ε1
ρ(z − z0)

eik1R0

R 3
0

[
3

R 2
0

− 3ik1

R0
− k2

1

]

− cosϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1z(z+ z0)kρJ1(kρρ)
[
ik1zB1 − kρC1

]
, (C.19)
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E2z = cosϕ
px

4π ε0 ε1

∞∫
0

dkρ eik1zz0
{

kρJ1(kρρ)
[[

ik2zB2 + kρC2
]
e−ik2zz

− [ik2zB3 − kρC3
]
eik2zz

]}
,

(C.20)

E3z = cosϕ
px

4π ε0 ε1

∞∫
0

dkρ ei(k1zz0−k3zz)kρJ1(kρρ)
[
ik3zB4 + kρC4

]
, (C.21)

H1ρ = sinϕ
iω px

4π
(z − z0)

eik1R0

R 2
0

[
1

R0
− ik1

]

+ sinϕ
iω px

4π

∞∫
0

dkρ eik1z(z+z0)
{

1

ρ
J1(kρρ)C1 − ik1zJ0(kρρ)B1

}
, (C.22)

H2ρ = sinϕ
iω ε2 px

4π ε1

∞∫
0

dkρ eik1zz0

{
1

ρ
J1(kρρ)

[
C2e−ik2zz+ C3eik2zz]

− ik2zJ0(kρρ)
[
B2e−ik2zz − B3eik2zz ]} ,

(C.23)

H3ρ = sinϕ
iω ε3 px

4π ε1

∞∫
0

dkρ ei(k1zz0−k3zz)
{

1

ρ
J1(kρρ)C4 + ik3zJ0(kρρ)B4

}
, (C.24)

H1ϕ = cosϕ
iω px

4π
(z − z0)

eik1R0

R 2
0

[
1

R0
− ik1

]

− cos ϕ
iω px

4π

∞∫
0

dkρ eik1z(z+z0)
{

1

ρ
J1(kρρ)C1 + J0(kρρ)

[
ik1zB1 − kρC1

]}
,

(C.25)

H2ϕ = cosϕ
iω ε2 px

4π ε1

∞∫
0

dkρ eik1zz0

{
1

ρ
J1(kρρ)

[
C2e−ik2zz + C3eik2zz ]

− J0(kρρ)
[[

ik2zB2 + kρC2
]
e−ik2zz

− [
ik2zB3 − kρC3

]
eik2zz

]}
(C.26)
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H3ϕ = cosϕ
iω ε3 px

4π ε1

∞∫
0

dkρ ei(k1zz0−k3zz)
{

1

ρ
J1(kρρ) C4

− J0(kρρ)
[
ik3zB4 + kρC4

]}
,

(C.27)

H1z = − sinϕ
iω px

4π
ρ

eik1R0

R 2
0

[
1

R0
− ik1

]

− sinϕ
iω px

4π

∞∫
0

dkρ eik1z(z+ z0)kρJ1(kρρ)B1, (C.28)

H2z = − sinϕ
iω ε2 px

4π ε1

∞∫
0

dkρ eik1zz0 kρJ1(kρρ)
[
B2e−ik2zz+ B3eik2zz ], (C.29)

H3z = − sinϕ
iω ε3 px

4π ε1

∞∫
0

dkρ ei(k1zz0−k3zz)kρJ1(kρ ρ)B4. (C.30)

C.3 Definition of the coefficientsAj,Bj, andCj

The coefficients Aj, Bj, and Cj are determined by the boundary conditions on the interfaces.
Using the abbreviations

f1 = ε2k1z − ε1k2z, g1 = μ2k1z − μ1k2z,
f2 = ε2k1z + ε1k2z, g2 = μ2k1z + μ1k2z,
f3 = ε3k2z − ε2k3z, g3 = μ3k2z − μ2k3z,
f4 = ε3k2z + ε2k3z, g4 = μ3k2z + μ2k3z,

(C.31)

the coefficients read as

A1(kρ) = i
kρ( f1f4 + f2f3e2ik2zd)

k1z ( f2f4 + f1f3e2ik2zd)
, (C.32)

A2(kρ) = i
2ε1kρ f4

f2f4 + f1f3e2ik2zd
, (C.33)

A3(kρ) = i
2ε1kρ f3e2ik2zd

f2f4 + f1f3e2ik2zd
, (C.34)

A4(kρ) = i
4ε1ε2kρk2zei(k2z−k3z)d

f2f4 + f1f3e2ik2zd
, (C.35)
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B1(kρ) = i
kρ(g1g4 + g2g3e2ik2zd)

k1z(g2g4 + g1g3e2ik2zd
, (C.36)

B2(kρ) = i
ε1

ε2

2μ1kρg4

g2g4 + g1g3e2ik2zd
, (C.37)

B3(kρ) = i
ε1

ε2

2μ1kρg3e2ik2zd

g2g4 + g1g3e2ik2zd
, (C.38)

B4(kρ) = i
ε1

ε3

4μ1μ2kρk2zei(k2z−k3z)d

g2g4 + g1g3e2ik2zd
, (C.39)

C1(kρ) = i
k1z

kρ
A1(kρ) + i

k1z

kρ
B1(kρ), (C.40)

C2(kρ) = i
k1z

kρ
A2(kρ) − i

k2z

kρ
B2(kρ), (C.41)

C3(kρ) = i
k1z

kρ
A3(kρ) + i

k2z

kρ
B3(kρ), (C.42)

C4(kρ) = i
k1z

kρ
A4(kρ) − i

k3z

kρ
B4(kρ). (C.43)

In order to stay on the proper Riemann sheet, all square roots

kjz =
√

k2
j − k2

ρ , j ∈ {1, 2, 3} (C.44)

have to be chosen such that Im{kjz} > 0.
The integrals have to be evaluated numerically. The integration routine has to account for

both oscillatory behavior and singularities. It is recommended that the integration range is
split into subintervals and that the integration path is extended into the complex-kρ plane.
For some applications it is advantageous to express the Bessel functions Jn in terms of
Hankel functions since they converge rapidly for arguments with an imaginary part. An
integration routine that proved very reliable is the so-called Gauss–Kronrod routine.



D Appendix D Far-field Green functions

In this appendix we state the asymptotic far-field Green functions for a planarly layered
medium. It is assumed that the source point r0 = (x0, y0, z0) is in the upper half-space
(z > 0). The field is evaluated at a point r = (x, y, z) in the far-zone, i.e. r >> λ. The
optical properties of the upper half-space and the lower half-space are characterized by
ε1, μ1 and εn, μn, respectively. The planarly layered medium in between the two half-
spaces is characterized by the generalized Fresnel reflection and transmission coefficients.
We choose a coordinate system with origin on the topmost surface of the layered medium
with the z-axis perpendicular to the interfaces. In this case, z0 denotes the height of the
point source relative to the topmost layer. In the upper half-space, the asymptotic dyadic
Green function is defined as

E(r) = ω2

ε0c2
μ1

[↔
G0 (r, r0) + ↔

Gref (r, r0)
]

p, (D.1)

where p is the dipole moment of a dipole located at r0 and
↔
G0 and

↔
Gref are the primary and

reflected parts of the Green function. In the lower half-space we define

E(r) = ω2

ε0c2
μ1

↔
Gtr (r, r0)p, (D.2)

with
↔
Gtr being the transmitted part of the Green function. The asymptotic Green functions

can be derived by using the far-field forms of the angular spectrum representation.
The primary Green function in the far-zone is found to be

↔
G0 (r, r0) = exp(ik1r)

4π r
exp
[−ik1(x0x/r + y0y/r + z0z/r)

]

×
⎡
⎣1 − x2/r2 −xy/r2 −xz/r2

−xy/r2 1 − y2/r2 −yz/r2

−xz/r2 −yz/r2 1 − z2/r2

⎤
⎦ . (D.3)

The reflected part of the Green function in the far-zone is

↔
Gref (r, r0) = exp(ik1r)

4π r
exp
[
−ik1

(
x0

x

r
+ y0

y

r
− z0

z

r

)]

×

⎡
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ρ2
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(1)
1

xy
ρ2
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(2) − xy

ρ2�
(3)
1

y2
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ρ2�
(3)
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(1)
1

− xz
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(2)
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(2)
1

(
1− z2

r2

)
�

(1)
1

⎤
⎥⎥⎥⎦ , (D.4)

543



544 Appendix D Far-field Green’s functions

where the potentials are determined in terms of the generalized reflection coefficients of
the layered structure as

�
(1)
1 = rp(kρ)

�
(2)
1 = −rp(kρ)

�
(3)
1 = rs(kρ)

⎫⎪⎪⎬
⎪⎪⎭ kρ = k1ρ/r. (D.5)

The transmitted part of the Green function in the far-zone is

↔
Gtr (r, r0) = exp[ikn(r + δz/r)]

4π r

× exp

⎡
⎣−ik1

⎛
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√√√√1−
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)
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− xz
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(2)
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(
1− z2

r2

)
�

(1)
n

⎤
⎥⎥⎥⎦ , (D.6)

where δ denotes the overall thickness of the layered structure.
Here, the potentials are determined in terms of the generalized transmission coefficients

of the layered structure as

�
(1)
n = tp(kρ)

nn

n1

knz/r√
k2

1 − k2
ρ

�
(2)
n = −tp(kρ)

nn

n1

�
(3)
n = ts(kρ)

knz/r√
k2

1 − k2
ρ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

kρ = knρ/r. (D.7)

A vertical dipole is described by the potential �(1) alone and gives rise to purely p-
polarized fields. On the other hand, a horizontal dipole is represented by �(2) and �(3)

and its field contains both s- and p-polarized components. The coordinates (x, y, z) can be
substituted by the spherical angles θ and φ. For angles α = π−θ beyond the critical
angle αc=arcsin(n1/nn) the field depends exponentially on the height z0.
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Abbe, Ernst, 5
aberration

image focus, 79
toroidal, 81

Abraham–Lorentz formula, 241
Abraham–Minkowski controversy, 22
absorption, 228

contrast, 219
cross-section, 259

acceptor, 260, 263, 264
determination of, 295
n-photon, 106
one-photon, 99
peak, 284

dipole moment, 36, 65, 284
dipole orientation, 259
of energy, 259
event, 483
interband, 376
magnetic dipole, 87, 332
near-field, 192
pattern, 92
photon, 482
rate, 259
spectra

acceptor, 263, 278
donor, 262, 263
fluorescein, 263
fluorescent molecules, 285
microcavity, 356
nanocrystals, 288

absorption cross-section, 294–296, 438
peak, 296
physical meaning, 296

acceptor, 258
accuracy

of fit parameters, 108, 113
of position, see position, accuracy

adiabatic approximation, 283
adiabatic transition, 267–271
Airy disk, 136

radius, 90, 91, 93, 97, 105
Airy function, 70, 89, 108

Airy pattern, 137
fitting, 108

Airy profile, see Airy function
allowed light, 314–315
Ampere’s law, 22
amplification

optomechanical, 359–365
parametric, 359–365

angular momentum
conservation law, 465
operator, 503
per photon, 466
transfer, 466

angular spectrum representation, 7, 38, 38, 39, 41,
45–47, 55, 59, 70, 72, 73, 116, 118, 179, 313

p-polarized part, 71
s-polarized part, 71
dipole field, 41, 42
electric field, 40
exp(ikr)/r, 42
far-zone approximation, 53, 324
focal field, 59
Gaussian beam, 47
Green’s functions, 315–317
incident beam, 72
magnetic field, 40
paraxial Gaussian beam, 47, 51
propagator, 40
reference plane, 39
reflected, 72
separation into s- and p-polarized parts, 71
superposition of plane and evanescent waves, 41
transmitted, 72

annular illumination, 75, 108, 305
anomalous refraction, 348
antenna

antibonding mode, 436
aperture, 426
area, 423
bonding mode, 436
Chu limit, 425
current distribution, 416, 418
definition, 414
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dipole, 415, 419
directivity, 422, 425
effective area, 423
efficiency, 421
emission

spontaneous, 437
stimulated, 437

emission pattern, 419
enhancement

fluorescence, 439
nonradiative rate, 441
photoluminescence, 439
quantum yield, 441
radiative rate, 441
spontaneous emission, 437–440
stimulated emission, 437–440

feedgap, 418
gain, 424
gold particle, 442
impedance, 418, 430, 432
impedance matching, 419
inductance, 431
intensity enhancement, 427
intrinsic efficiency, 422
loading, 436
lumped circuit elements, 430
multi-element, 444
parameters, 421–433
quantum yield

enhancement, 440
radiation pattern, 422
radiation resistance, 415, 429
reciprocity, 425
resistance, 418
resonance, 419
scaling, 428
spontaneous and stimulated emission, 437
spontaneous emission, 437
stimulated emission, 437
theory, 416
total radiated power, 415
Yagi–Uda, 419, 444

antennas
coupled-dipole, 433
optical, 414–443

anti crossing, 265–272
antibonding mode, 436
antibunching of photons, 12
antireflection coating, 60
aperture, 5, 6, 115–117

diameter, 122
probe, 170–184, 308, 389

fabrication, 184
surface plasmon excitation by, 391

subwavelength, field distribution near, 307
surface plasmon excitation by, 388

aplanatic
lens, 56, 57, 59, 64, 70, 73, 86, 87
optical system, 56
system, 58

apodization function, 61, 69, 79
artificial atoms, 345
Ash, E. A., 6
astigmatism, axial, 79
atom

cooling, 460–462
manipulation, 460
trapping, 460

atom trapping and manipulation, 7
atomic mirror, 466
atomic polarizability, semianalytical derivation, 523
auxiliary distance feedback, 201
avoided crossing, 265–271

Babinet’s principle, 177
back-aperture

overfilling, 134
backaction

dynamic, 359–365
backward propagating wave, 348
band gap, 341
basis functions, 502, 505
beam, see Gaussian beam

radially polarized, 305
Bell state, 277
Bessel function, 61, 63, 68, 69, 73, 89

closure relation, 82, 96, 127
second order, 89
spherical, 502

Bethe–Bouwkamp aperture, 186
Bethe–Bouwkamp theory, 307
Bethe–Schwinger perturbation formula, 358
Betzig, Eric, 6
biexciton, 290
bipartite system, 276
blackbody radiation, 474, 485
Bloch wavevector, 341
Blondel

André-Eugène, 414
blue shift, 359, 363
bonding mode, 436
Born

approximation, 131, 133
series, 131

Born–Oppenheimer approximation, 283, 524
bound electrons, effective mass, 375
boundary conditions, 4, 7, 19, 21, 34, 72, 74, 83, 503

aplanatic lens, 69
discrete, 504
normal field components, 20
optical element, 56
planar interface, 20
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tangential field components, 19, 20
boundary, discretization, 504
Brewster mode, 384
Brownian motion, 464, 469
Butterworth–Van Dyke equivalent circuit, 211

carbon nanotubes, 156
Casimir–Polder potential, 493, 490–493
causality, 237
cavity, 240, 242

four-mirror ring, 67
losses, 361
micro-, 262, 350–359
optomechanics, 359
perturbation, 356–359
photonic crystal, 344
quantum electrodynamics, 313
volume, 242

cavity optomechanics, 365
central-limit theorem, 495
characteristic equation, 341
charge, 19

acceleration, 52
conservation, 13
continuity equation, 13, 225
density, 12, 13, 224, 225

surface, 9, 20
discrete, 13
discrete distribution, 226
distribution, 28
equation of motion, 229
fluctuating, 488

resistor, 480
in matter, 14
moving, 22
singular character, 12
transfer, 2

χ2, 107, 108
behavior around minimum, 109
optimal set of parameters, 108
partial derivatives of, 109
Taylor expansion, 109

Chu limit, 424
Clausius–Mossotti relation, 251, 497
coherence

spatial, 487
length, 487

coherent anti-Stokes Raman scattering (CARS), 5,
101, 142

optical sectioning, 142
phase matching condition, 142

coherent superposition, 181, 275
colored glass, 401
complex analytic signal, 16
Compton, Arthur H., 448
computational time, 505

conductance
thermal, 486

confidence, level of, 110, 111
confinement, 3, 4, 7, 8, 63, 116, 117

beam, 117, see also Gaussian beam, waist radius w0
detection, 116
excitation, 116
focal fields, 63
focused laser, 56
of light flux, 7, 115
Rayleigh limit, 4
source field, 121, 122
source plane, 117, 118

confocal microscope
4π , 138
4π -theta, 138
collimated beams, 136
confocal principle, 136
dynamic range, 137
higher-order modes, 136
lateral resolution, 137
multiphoton excitation, 139
nonlinear excitation, 139
optical sectioning, 137
point-spread function, 137
saturation, 139
set-up, 134
spotsize, 135
stimulated emission depletion, 140

set-up, 140
theta, 138
two-photon absorption, 139

confocal microscopy
without markers, 141

confocal principle, 136
conjugate gradient method, 513
conjugate ray, 56, 57
conservation law

charge, 449
energy, 23
linear momentum, 449, 450

constitutive relations, 7, 14, 15
linear, 18

control, coherent, 8, 289
cooling

ground state, 364
microlever, 363
optomechanical, 359–365

cooling of atoms, 448
correlation function, 478

symmetrized, 483
Coulomb gauge, generalized, 534, 535
Coulomb’s law, 22
coupled dipole

method, 29, 462, 507, 514–515
coupled dipoles, 433
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coupled oscillators, 265–271, 434
coupling

strong, 264–277
coupling rate

optomechanical, 364
coupling strength

single-photon, 365
critical

metal film thickness, 382
cross-section

absorption, 438, 457
effective, 438, 440
stimulated emission, 438

crossing
avoided level, 265–271

curl force, 457
current, 12, 14

conduction, 18, 225
density, 12, 13, 224, 226

conduction, 14
dipole, 509
magnetization, 14
polarization, 14
source, 14
surface, 19
total, 14

displacement, 22
distribution, 28
eddy, 87
polarization, 18, 225
source, 19, 28, 29, 225
superposition of point, 29

damping, 362
dark current, 428
data sampling, 81
data storage, 100

based on solid immersion, 70
high-density optical, 7
magnetic, 7
magneto-optical, 146
optical, 56
ultra-high-density, 2

Debye potentials, 503
Debye screening length, 373
decay constant, evanescent wave, see evanescence,

wave
decay rate, 245

atomic, classical expression γ0, 250
dipolar emitter, 9
donor, 258, 262
excited state, equality to spontaneous-emission rate,

254
in cavity, 242
modification by interaction, 254
non-radiative, 441

normalized, 278
orientation-averaged, 248
photon in a cavity, 242
quantum mechanical analog, 250
radiative, 99, 100, 441
spontaneous, 8, 248

free space, 248
Green’s function

↔
G, 245

inhomogeneous environments, 242
molecules, 242
two-level quantum system, 247

decay, spontaneous, 242–248
decoherence, 494
defocus z0, 72, 76, 77, 79
delocalized excitations, 264–276
Denk, Winfried, 6
density

of states, 438
density matrix, 276

reduced, 276
eigenvalues, 276

density of states, 288, 356
discrete photonic, 356
large cavity, 344
local, 245, 248, 431, 484–486
partial local, 243, 245, 247

significance, 248
total local, 248

dephasing, 284, 285, 296
degree of, 296

depletion
field, 99, 100
parameter, 99
properties, 100
rate γd, 100
stimulated emission, 101

depolarization
dyadic

↔
L, 510

of principal volume, 511
depth of field, 91
detectors, 37, 89, 90, 97, 98, 104, 107, 120, 121

CCD, 79, 92, 108
confocal, 126
far-field, 120
ideal noise-free, 94
in the image plane, 97
integration, 102
photodetector, 64
pinhole, 101, 104
plane, 119, 120
remote, 37
signal, 96, 98, 102, 104
two separate, 92

detuning, 529
diabatic transition, 267–271
diamond
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color centers, 291–294
NE8 center, 292
NV center, 291

STED imaging, 293
zero-photon line, 292

NV− center, 292
spin polarization, 293

NV0 center, 292
ODMR, 292

dichroic mirror, 101, 136, 149, 304
dielectric constant, 21, 42

complex, 7, 18, 18
imaginary part, 18
inhomogeneous, 508
second-rank tensor, 15

dielectric interface, 83
dielectric medium, 32, 40, 70, 71, 76
dielectric sphere

characteristic equation, 353
effective potential, 352
manipulation, 463
microcavity, 350
Q-factor, 354
radial mode number, 354
TE modes, 352
TM modes, 352

dielectric tip, 117
diffraction, 5

breaking the barrier of, 2
consequence of, 116
Fraunhofer, 55
limit, 2, 3, 5, 8, 86, 120

beyond the, 86
limited focused spot, 80
lobes, 69
rectangular aperture, 55

dipole, 88–90, 95, 96
approximation, 8, 9, 227, 524
average energy, 249
axis, 64
component, 36
current density, 509
dissipated power, 400
electric, 43, 87
emission, 8, 335

decay rate, 321–323
far-fields, 323–326
near planar interface, 42, 313

emitter, 126
position, 96

equation of motion, 249
field, 42, 87–89, 506

angular spectrum representation, 41
field near layered substrate, 537–542
Green’s function, 509
image approximation, 333–335

magnetic, 87, 332–333
matrix elements, 525
moment, 43, 65, 87, 88, 244, 509

degenerate, 289
electric, 226
expectation value, 526
molecular, 64

normalized radiation pattern, 238
operator, 532
orientation, 64, 75, 92, 103

prior knowledge, 94
oscillating, 41
parallel, 91, 92, 94
perpendicular, 91, 94
radiated power, 238
radiating above planar, lossy ground, 313
radiation, 87, 97, 238–239
radiation pattern, 326–328
strength, 92, 95, 103
transition, 52

dipole approximation, 453–463
dipole limit, 242
dipoles

coupled, 433
directivity, 422

partial, 423
dispersion, 5, 30

relation, 501
light in free space, 3

spatial, 15
temporal, 15

displacement
mean square, 364

distance control, 6, 201
constant-gap mode, 217
constant-height mode, 217
normal force methods, 213

dither piezo, 207
divergence angle, 57, 117
divergence-free fields, 502
donor, 258
Doppler

shift, 460–462
double-passage configuration, 159
drag force, 464
dressed states, 265
Drude–Sommerfeld model, 374
Drude–Sommerfeld theory, 374–375
dynamic backaction, 359–365
Dyson’s equation, 514

discrete form, 519

eddy current, 87, 332
damping, 228
in aqueous environment, 470

effective aperture, 154
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effective area, 423
effective medium, 183
effective temperature, 364
effective tip dipole, see optical probe
effective wavelength scaling, 428
efficiency

intrinsic, 422
eigenfrequencies, 265
eigenmodes, 361

coupled oscillators, 434
Einstein

‘A’ coefficient, 438
‘B’ coefficient, 438

electric displacement, 13, 224
electric quadrupole moment, 226

traceless, 227
electrodynamics, macroscopic, 12
electromagnetic

density of modes, 533
energy, 23
field, 2, 8, 9, 13, 15, 22, 23

self-consistent, 14
friction, 494–496

free space, 495
induced transparency, 266
mass, 241
point source, 86
properties, 13, 117
radiation, 12
spectrum, 12
theory, 12–23, 25
waves, 1

emission, 228
anti-Stokes, 142
dipole moment, 284
fluctuating sources, 483–487
light in nano environments, 224
pattern, 92
spectrum

donor, 263
in cavity, 242
normalized, 260

spontaneous, 231, 241, 251, 437
stimulated, 437
zero-phonon, 284

emission rate, 298
Empedocles, 4
energy

bandgap, 338
conservation, 22, 57, 58, 88, 228
density

average, 56
total, 79

density in dispersive and lossy media, 24–25
dissipation, 18, 23
electromagnetic, 22, 23

conservation, 22–25
excitation, 2
Fermi, 373, 408
flow, 23, 35
flux, 57

density, 23
interactions

dipole–dipole, 264
of light, 1
loss due to radiation, 250
photon, 114
potential, of particle, 226
quiver, 372
total particle and field, 228
transfer, 8, 254

between individual particles, 257
between two particles, 257–264
incoherent, 275
radiationless, 257

transfer rate, 439
donor–acceptor, 258

transport, 35
along light rays, 56
by evanescent waves, see evanescence, wave

enhancement
fluorescence, 439
local field, 438
nonradiative rate, 441
photoluminescence, 439
quantum yield, 441
radiative rate, 441
spontaneous emission, 437–440
stimulated emission, 437–440

entangled state, 276, 277
entanglement, 276–277

degree of, 276
environment, inhomogeneous, 254
epi-illumination, 135
equipartition principle, 364, 478
equivalent surface profile, 119
error

distribution, 108
function, 112
limit, 108
statistical, 109
systematic, 108

etching of glass fibers
in buffered HF, 168
multiple tapers, 168
Ohtsu’s method, 168
tube etching method, 167
Turner’s method, 167

Euclid, 4
evanescence

components, 70, 87
field, 32, 32, 33, 116
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at tip, 34
conversion to propagating radiation, 36
of dipole, 314

superposition, 119
wave, 4, 7, 8, 22, 32–38, 41, 45, 54, 59, 74, 86, 116,

117, 119
decay constant, 33
elliptic polarization, 33
energy transport, 34
energy transport along interface, 35
energy transport normal to interface, 35
excitation, 33
intensity, 36
p-polarized, 55
quantum-mechanical tunneling analog, 36
total internal reflection, 32

evanescent
mode, 86
wave

p-polarized, 34
intensity, 34

excitation rate, 438
excited-state lifetime, 285
exciton, 264–276, 286

band, 275
Bohr radius, 287
coherent control, 289
confinement energy, 287
delocalized, 275
localized, 274
multi-, 276
multiple, 289
particle-in-the-box model, 287

expansion
complete, 504
finite, 504

extinction, 400
theorem, 520

extraordinary transmission, 182

Fano
lineshape function, 252–253

far-field
detection, 134–148
optical microscopy techniques, 134–148

feedback loop, 201
feedgap, 430, 436
Fermat’s principle, 348
Fermi

velocity, 371
Fermi’s golden rule, 243
Fermi–Dirac distribution, 408
fiber interferometer, 204
fictitious sources, 501
field, 13

complex analytic, 16

confinement, see confinement
depletion, 99
dipole, see dipole
distribution near small apertures, 176–181
electric, 13
electromagnetic, see electromagnetic, field
enhancement, 7, 188, 189, 506

antennas, 188
factor, 189, 190

evanescent, see evanescence
excitation, 102
exciting, 518
exponentially decaying, see evanescence, wave
focal, 62, 60–64

electric, 62
magnetic, 62
rigorous calculation, 59

focal spot, reflected, 75
focusing, see also focusing, 56
gradient, 227
image, 78, 102
irrotational, 17
local, non-propagating, 7
longitudinal, 17

acceleration of charged particles, 52
electric, 66
focal region, 50
magnetic, 66
orientation of molecular transition dipoles, 52

macroscopic, 224
magnetic, 13
microscopic, 13, 224
momentum, 230, 451
monochromatic, 15, 16
near a small aperture, 117
near a tip, 117
negative frequency part, 16
paraxial, 56
polarized electric (PE), 52
polarized magnetic (PM), 52
positive frequency part, 16
primary, 511
scattered, 511
self-consistent, 240
solenoidal, 17
spectral representation of time-dependent, 15
theory, 12
time-harmonic, 16
transverse, 17, 23
transverse electric (TE), 53
transverse magnetic (TM), 53
vector nature, 63

field enhancement, 155, 159
tip, 308

field-line crowding, 155
filling factor, 61, 63, 74, 80
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confinement of focal fields, 63
quality of focal spot, 63

filter
correlation, 107
function, 45
invariant, 46
pupil, 61
spatial, 67–69, 86, 96–98, 104

fingerprint spectra, 403
Fischer projection pattern, 219
Floquet–Bloch theorem, 341
fluctuation–dissipation

relation, 241
theorem, 474–479, 484, 490, 494–497

generalized, 479
in terms of Green’s function, 481
original form, 479
quantum version, 479
time-domain, 477

fluctuation–dissipation theorem, 299, 361
fluctuational electrodynamics, 474–497
fluctuations, 474–497
fluorescence, 284

blinking, 286
quenching, 309, 322
resonance energy transfer (FRET), 257, 262–264

distance dependence, 260
efficiency, 265
orientation dependence, 260

spectrum, 285
fluorescent molecules, 282–286

excitation, 283
photobleaching, 286
relaxation, 284

flux
electric, 19
energy, 57, 82, see also Poynting vector
magnetic, 19
time-averaged energy, 34

focal depth, 98
focal engineering, 60

stimulated emission depletion (STED), 140
focus, 3

Gaussian, 48
reflected image, 76–81

focusing
fields, 56–60
higher-order laser modes, 64–68
light, 38
limit of weak, 68–70
near planar interfaces, 70–75
optical fields, 45
optics, 8

Fokker–Planck equation, 465
forbidden light, 314–315
forbidden transition, 227

force
average mechanical, 451
Casimir, 7, 488
Casimir–Polder, 9
conservative, 365
dipole, 453–463
dispersion, 488
drag, 464
electromagnetic, 13, 22, 488
electromagnetic friction, 9
gradient, 448, 453–463, 488
in optical near-fields, 466
Langevin, 361
Lorenz law, 22
optical, 9, 362
ponderomotive, 372
scattering, 448, 453–463
shear, 8
van der Waals, 7, 257, 488, 493

force density
Lorentz, 453, 455

forces
optical, 448–471

Förster energy transfer, 242, 257, 262, 262, 264, 275
κ2, 262
backtransfer to the donor, 264
inhomogeneous environment, 262
transfer efficiency, 263

Förster radius, 262, 263
dependence on refractive index, 262

Förster, Thomas, 262
four-wave mixing, 142, 407
Fourier optics, 38, 55
Fourier spectrum, see angular spectrum

representation, 74
Fourier transform, 15, 15

generation of arbitrary time-dependent fields, 30
inverse, 15
two-dimensional, see angular spectrum

representation
Frank–Condon factor, 285
Fraunhofer approximation, 326
Fraunhofer diffraction, 55
Fredholm equations of the second kind, 509
free electrons, effective mass, 374
frequency, see also spatial frequency

angular, 3, 15
conversion, 407–408
shift, 254–255, 362

in molecular fluorescence, 255
spectrum of spatial, 86
window, 3

Fresnel
reflection and transmission coefficients, 34

Fresnel reflection and transmission coefficients, 22,
20–22, 33, 42, 58, 60, 71–73, 76–79
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generalized, 318
Friis equation, 428

gain, 424
gain coefficient, 438, 440
Galilei, Galileo, 1, 5
gauge, 230

arbitrary, 231
condition, 27
Coulomb, 231
freedom of, 231, 232
independence, 233
Lorenz, 27, 29, 30
transformation, 232

Gauss’s theorem, 19, 22
Gauss–Kronrod integration routine, 542
Gaussian beam, 8, 47–49

angular spectrum representation, 47
beam angle, 48
contour plots in focal region, 64
Gouy phase shift, 49
Hermite, 49

fields in focal plane, 50
generation from fundamental mode, 49
generation from superposition of modes, 50
order, 49

Laguerre–Gaussian, 49
longitudinal fields, 51
numerical aperture, 48
paraxial approximation, 47

errors introduced, 49
series expansion, 49

phase evolution, 48
Rayleigh range, 48
transverse electric field distribution, 51
transverse size, 48
waist radius w0, 47, 49, 50
weakly focused, 34

Gaussian distribution, two-dimensional, 108
Gaussian mode, see Gaussian beam
Gaussian reference sphere, 56–59, 72

far-field on, 59
refraction at, 57, 77, 88

Gecko effect, 488
geometrical optics, 56
Givens procedure, 505
gold photoluminescence, 156
Goos–Hänchen shift, 33, 80, 328
gradient force, 448, 488
Green’s function, 7, 25, 28, 45, 234, 239, 245, 439

angular spectrum representation
decomposition into s- and p-polarized fields,

317–318
reflected and transmitted fields, 318–321

asymptotic far-field, 324
derivation, electric field, 27

dyadic, 25, 26, 26, 28, 29, 30, 234, 260, 316, 462
angular spectrum representation, 316
time-dependent, 30

far-field, 235
free space, 260
half-space, 28
Helmholtz operator, 27
intermediate field, 235
mathematical basis, 25–26
modified, 262
near-field, 235
normal modes, 246
planarly layered medium, far-field, 543
scalar, 28, 42

time-dependent, 30
time-dependent, 30, 237
total, 518
two-dimensional space, 28

Grobe–Rzazewski–Eberly number, 276, 277

Hamilton mechanics, 230
Hamilton’s canonical equations, 230
Hamiltonian, 230, 364, 523

classical, 228
particle–field, 228

diagonalization, 272
equilibrium, 475
interaction, 230, 524
Jaynes–Cummings, 532
operator, 228
optomechanical, 364
particle, 230
radiation field, 230
single charge in EM field, 229
total, 364
total, system of charges, 230

Hankel functions, spherical, 502
harmonic generation, 407
Hartree–Fock method, 531
HE11 mode, 165, 171
heat transfer, 486
Heaviside expansion theorem, 301
Heaviside step function, 476
Heisenberg picture, 243
Heisenberg uncertainty, 287
Heisenberg uncertainty relation, 3, 5, 93
Helmholtz equation, 416

homogeneous, 42
inhomogeneous, 27
Lorentz gauge, time-dependent, 30
scalar form, 501
vector form, 39, 501

homogeneous, 19
inhomogeneous, 19

heterodyne detection, 188
highest occupied molecular orbital (HOMO), 282
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history of nano-optics, 4–7
homodyne detection, 188
Hooke, Robert, 1
hybridization, 434
hyper lens, 348
hyperpolarizability, 96

image, 46
field, 78, 102
focus, 78

polarization, 79
plane, 45, 46, 54, 75, 79

pinhole, 81
reflected

focal spot, 75
space, 97

image dipole approximation, 333–335
impedance

antenna, 432
characteristic, 418, 430
load, 418, 430, 436
matching, 436
wave, 415, 418

index of refraction, 39, 40
dispersion-free, 237
relative, 33

inductance
kinetic, 431

information
loss during propagation, 46
prior, 5, 94, 114
spatial, 96
spectroscopic, 96, 100
transfer from near-field to far-field, 118

integration
contour, 270

intensity
definition, 251
law, 56

interaction series, 131–133
interactions

atom–field, theory, 242
atom–photon, in optical near-field, 7
between identical particles, 275
between two particles, 273
charge distribution–electromagnetic field, 226
charge–charge, 228, 257
charge–dipole, 257
coherent, 272
Coulomb, 231, 256–257
dipole, 227, 233
dipole–dipole, 8, 256, 257, 273
electric dipole, 226, 233
electric quadrupole, 226, 233
Hamiltonian, 230, 244, 272

dipole approximation, 243

multipolar, 232, 232
multipole expansion, 231–233

higher expansion terms, 257
level shift, 274
light–matter, 95, 101, 224, 231
light with inhomogeneities, 32
linear, 228
local plasmon, 7
magnetic dipole, 227, 233
non-retarded, 256
nonlinear, 5, 105
nonlinear optical, 98
optical

in nanoscale environments, 224–277
with nanoscale feature, 2

particle–electromagnetic field, 228
potential, 257
quadrupole, 227
sample–source, 117
terms, 272
with backscattered field, 254

interband excitations, 375–376
interband transitions, 375–376
interferometry

heterodyne, 151, 157
homodyne, 157

internal conversion, 284
intersystem crossing, 286
inverse scattering, 519

problem, 500
irrotational field, 17

Jablonski diagram, 296
Janssen, Zacharias, 5
Johnson noise, 479–481
Jordan’s rule, 232

Kasha rule, 284
Keppler, Johannes, 448
kinetic inductance, 431
Kirchhoff approximation, 176
knife-edge method, 66
Kramers–Kronig relation, 496
Kretschmann configuration, 382, 383

Lagrange–Euler equation, 229
Lagrangian, 229, 230
Lamb shift, 533
Lambert–Beer law, 295
Lambertian source, 486
Landau–Zener formula, 267–271
Landau–Zener tunneling, 267–271
Langevin, 361
Langevin equation, 465
Laplace equation, 392
Laplace transformation, 300
laser
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cooling, 460–462
gain coefficient, 438, 440
saturation intensity, 438, 440

laser beam
focusing near interface, 71
Gaussian, 47–49
propagation, 38, 47
strongly focused, 45, 56

near plane interface, 72
theoretical understanding, 56
weakly focused, 47

lateral waves, 328
leaky modes, 353
least squares, 505
least-square fitting algorithm, 146
Leeuwenhoek, Antony van, 1, 5
left-handed materials, 348
level splitting, 265–275
Levenberg–Marquardt algorithm, 127
Lewis, Aaron, 6
lifetime

photon, 361
light, 1

absorption, 242
at supercritical angles, see forbidden light
beam, 56, 57
confinement, 4, 7, 8, 56, 63
energy of, 1, 12
field, see field
focusing, see focusing
harvesting proteins, 2, 257
interaction with inhomogeneities, 32
nature of, 4
path, 75
polarized, 79
pressure, 448
propagation, 3

suppression of, 3
quanta, see photon
rays, 56, 57
scattering, 7, 242
speed in vacuum, 14
theory of, 5

light line, 384
light scattering, 131
light-matter interaction, 433
lightening-rod effect, 155
linear response theory, 45, 474
lineshape

Fano, 252–253
Lorentzian, 251–252

linewidth, 241, 255, 266, 531
effective, 498
radiative, 255

Lippmann–Schwinger equation, 29
local density of states, 438

local density of states (LDOS), 431
local environment, 438, 439
localization, 86, 106
localization microscopy, 145–148

three dimensional, 147
localized excitation, 275
Lommel function, 69
longitudinal field, 17
longitudinal solution, 502
Lorentz force density, 453, 455
Lorentz law, 22
Lorentz model, 527
Lorentzian lineshape function, 251–252, 355
Lorenz gauge, 27, 29, 30
losses

energy, 250
intrinsic, 331
Joule, 496
radiation, 355
reflection, 34
thermal, 329

low-threshold lasing, 351
lowest unoccupied molecular orbital (LUMO), 282
lumped circuit elements, 430
Lycurgus cup, 401

Mach cone, 81
magnetic induction, 13
magnetic moment, 227
magnetization, 13, 225

induced, 228
magnetometry, 293
magnification

longitudinal, 97
transverse, 89, 97, 102

mapping of fields in focus, 305
Markov process, 533
Markovian approximation, 494
Massey, G. A., 6
matching

numerical, 504
points, 505

material properties, 19, 38, 96, 100
matrix, dense, 505
Maxwell’s equations, 12–14, 20, 22, 23, 40

differential form, 12
homogeneous solution, 377
integral form, 19
macroscopic, 12, 13, 224
microscopic, 13
scale invariance, 7
time-dependent, 13, 15
time-harmonic fields, 17

Maxwell’s stress tensor, 9, 448–452, 463
dipole approximation, 463
in vacuum, 450



556 Index

mean free path of electrons, 15
mean-square displacement, 363
medium

anisotropic, 14, 18
bianisotropic, 14, 508
inhomogeneous, 14, 18
linear, 15
linear, homogeneous, and source-free, 13
non-dispersive, 14, 237
non-local, 15
nonlinear, 14
piecewise homogeneous, 18
spatially dispersive, 15

meniscus, 167
metal

thickness, 382
metamaterials, 345–350
method of moments, 29, 513–514

equivalence to coupled-dipole method, 515
method of stationary phase, 54
microcavity, 350–359
microcontact printing, 119
micromachines, 466
microscope

electron, 1
far-field, 115
first optical, 1, 4
inverted, 101
objective, 8

back-aperture, 60
typical, 91

microscope objective
infinity correction, 134

microscopy
aperture scanning near-field optical, 6
atomic force, 5
based on saturation effects, 5
coherent anti-Stokes Raman scattering (CARS), 5
confocal, 5, 56, 70, 134–143

choice of pinhole size, 97
image formation, 101
nonlinear, 105
principles of, 100–105

far-field, 133
high-resolution optical, 7
multiphoton, 5

confocal, 98
near-field detection, 150
near-field excitation, 148
near-field excitation and detection, 154
near-field optical, 5, 94

principles of, 115
near-field reflection, 7
photon scanning tunneling (PSTM), 7, 34, 150–152

amplitude and phase recording, 151–152
scanning near-field optical (SNOM), 5

aperture, 148–150
double-passage, 159
field-enhanced, 154–156
field-enhanced with crossed polarization, 153
modulation techniques, 156

scanning probe, 6
scanning tunneling optical (STOM), 7, 150–152
second harmonic, 5
stimulated emission depletion (STED), 140
super-resolution, 145
third harmonic, 5

Mie scattering, 503
Mie theory, 351
MMP technique, see multiple-multipole method

(MMP)
mode conversion, 136

in external cavity, 67
spatial light modulator, 68
using phase plates, 66

mode matching analysis, 172
mode splitting, 434
modes

cavity, 361
cut-off, 171
doughnut, 50

arbitrary polarization, 64
azimuthally polarized, 50
linear polarized, 50
radially polarized, 50

focused
radially polarized, 66

guided, 34, 329, 331, 332
Hermite–Gaussian, 50
higher-order, 49–50

focusing of, 64
Laguerre–Gaussian, 49
leaky, 353
normal, 245, 267
plasmon, 381
TE, 339, 352
TE0, 321, 331
TE10, 82
thin film, 381
TM, 339, 352
TM0, 321
transverse, 49
waveguide, 505
whispering gallery, 351

modulation techniques, 156
Moiré pattern, 121, 127
molar extinction coefficient, 295
momentum, 3

angular, 9, 227
canonical, 230–232
conjugate, 230
conservation, 433
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electron, 433
field, 230, 451
mechanical, 230, 232
photon, 433

multiphoton excitation, 139
multiple scattering, 131
multiple-multipole method (MMP), 174, 175, 180,

191, 500–506
multipole, 41, 502

degree, 504
expansion, 224–228, 503

Coulombic interaction, 256–257
higher, 227
moments, 226
multiple, 504
order, 504

nano-electro-mechanical systems (NEMS), 494
nano-optics, 2, 3–4, 224

history, 4
role of evanescent field, 32

nanofabrication, 338
nanolithography, 7
nanometer precision, 114
nanoplasmonics, 369
nanoscience, 1
nanosphere lithography, 219
nanotechnology, 1
near-field

heat transfer, 486
near-field optics, 46, 86, 224

confined fields, 233
field gradients, 227

negative-index materials, 345–348
negative refraction, 348
negative refractive index, 345–348
Nichols, G., 6
no-cloning theorem, 302
noble metals

optical properties, 374–376
noise equivalent power (NEP), 428
non-classical light, 299

single-quantum emitter, 300
non-local losses, 381
non-radiative decay, 322
nonlinear

plasmonics, 407–408
susceptibility, 407

nonlinear material, 436
nonlinear optical effects, 338
nonlinearities

metal, 372, 407–408
normal expansion, 502, 506
numerical aperture, 48, 59
numerical aperture increasing lens (NAIL), 144

confocal microscope, 144

numerical dependences, 505
Nyquist plot, 212
Nyquist sampling theory, 146
Nyquist’s relation, 474

O’Keefe, J. A., 6
object

arbitrary, 22
object plane, 45, 46, 54, 55, 92–94, 97, 103, 115, 116,

126
object space, 79, 96, 97, 102, 104
occupancy

thermal, 364
of spatial frequencies

range, 121
opal, 338
operator

annihilation, 16, 244, 482, 532
creation, 16, 244, 482, 532
curl ∇× , 18
dipole moment, 244
electric field, 233, 244
Hamiltonian, 228
Helmholtz, 27
Hermitian, 274, 525
linear, 26
magnetic field, 233

optical antenna, 188, 414–443
optical communication, 7
optical computing, 7
optical constant, 32
optical data storage, 7
optical detector, see detectors
optical frequency, 1, 6, 33, 46
optical imaging, 5
optical microscope, see microscopy
optical microscopy

nanoscale, 131–160
Raman scattering, 141

optical molasses, 460–462
optical probe, 8, 148, 165

antenna, 188
aperture, 170–184

Bethe–Bouwkamp theory, 180
destruction threshold, 172
electrochemical processing, 187
external surface modes, 181
fabrication, 184
field distribution, 176–182
focused-ion-beam milling, 186, 187
mode cut-off, 171
near-field distribution, 181
power transmission, 171–176
punching, 187
temperature, 185
throughput, 175
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aperture-less, 188
effective dipole, 191
fabrication, 192–194
far-field background signal, 190
metallic tip, 188–195
second-harmonic/broadband luminescence, 192
tip-on-aperture, 308
tip-on-aperture approach, 194

bare fiber, 150
collection mode, 166
destruction threshold, 171
fiber, 165
light transmission, 171
metal nanoparticle, 195
mode matching analysis, 172
opening angle, 167–169, 171
plasmon, 194
resonant, 194
taper angle, 154, 175
transparent dielectric

effective optical diameter, 170
fabrication, 166–170
light propagation, 165–166
tetrahedal, 170

optical resolution, see resolution
optical scattering, 39
optical spectrum, 12
optical switching, 436
optical theorem, 241, 278, 400, 520
optical transfer function, free space, 45
optical trapping, 448
optical tunneling, 315
optical tweezers, 1, 56, 70, 228, 448, 463–465
optical waveguide, 47
optomechanical coupling rate, 364
optomechanics, 359–365
ordering, 482

antinormal, 482
normal, 482

orthogonality relation
for normal modes, 246

oscillating mirror, 359–365
oscillator strength, 527
oscillators

harmonic, 434
Otto configuration, 383

paraxial
approximation, 8, 47–52, 60, 86, 90, 106, 117
beam, 71, 72, 75
Gaussian beam, 103
Gaussian mode, 68
limit, 38, 53, 55, 63, 69, 91, 92
optical field, 56
point-spread function, 89, 90, 92

two dipoles, 93

parity odd, 524, 525
Parseval’s theorem, 251
particle-in-the-box model, 287
particular solution, 509
passivation layer, 187
perfect lens, 349

quasistatic approximation, 350
permeability, 13

magnetic, 21, 57
permittivity, 13
perturbation, 508
perturbation theory

degenerate, applied to a non-degenerate system,
273

non-degenerate, 273
photoactivated localization microscopy (PALM), 147
photobleaching, 286
photodetection, 428
photon

antibunching, 299, 302
bunching, 299
momentum, 464

photonic bandgap, 339, 338–344
crystal, 2
materials, 3
natural, 2

photonic crystal, 9, 338–344
air band, 342

reduced group velocity dispersion, 343
bandgap complete, 342
cavity, local density of states, 344
defect, 9, 338, 343
dielectric band, 342
effect on spontaneous emission, 343
fiber, 343
optical modes, 338

photonic resonator, 350–359
photons, 3, 329

count, 249
distinguishable, 107, 114
emission of, 440
fluorescence, 64, 99
flux, 7
rate of emission, 35
source, 2, 3

single-photon, 2, 3
spatial confinement, 3
state, 243
statistics, 8

antibunching, 12
virtual, 7
wavevector, 3

photosynthetic membrane, 2, 257
π -pulse, 290
PI controller, 201
piezoelectric element, 201
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pinhole, 97
confocal, 104, 106
detection, 136
generating axial resolution, 98
in front of detector, 101, 104
in image plane, 81
increase of resolution by, 104
spatial filter, 67, 96, 105

pixel, 137
Planck’s formula, 485
plasma, 370–373

frequency, 371
oscillation, 370–371

plasmon
emission angle, 389
modes, 381
propagation length, 382

plasmon hybridization, 434
plasmon polaritons, see plasmons
plasmon resonance

non-spherical particle, 401
particle, 369, 371
shifted, 388
small spherical particle, 398
spheroid, 401
thin wire, 393
transverse, 392

plasmonics, 369
nonlinear, 436

plasmons
accumulated phase per round trip, 402
aspect ratio dependence, 371
backbending, 397
Brewster mode, 384
dispersion relation, 379, 383
dispersion relation back-bending, 384
electric field decay length, 381
emission pattern, 391
even mode, 381
excitation, 383–387

local, 388
field enhancement, 404
hybridization of, 403
intensity enhancement, 381
interface mode, 379
Kretschmann angle, 389
Kretschmann configuration, 386

reciprocal, 389
leakage radiation, 390, 391
leaky waves, 382
mass-and-spring model, 370

nanorod, 371
odd mode, 381
Otto configuration, 386
plane interfaces, 377–388
propagation along cylindrical wire, 396

propagation constant, 402
propagation length, 380

visualization, 390
radiation pattern, 389
resonance condition, 390
resonance shape, 396
resonances of more complex structures, 403
sensing, 402–403
sensing applications, 402
sensors based on, 387–388
spoof, 183
standing waves, 391
surface, 369

properties, 380–381
wavelength, 380
wavevector, 379
wire and particle, 391–403

resonance condition, 396
Pohl, Dieter W., 6
Poincaré, Henri, 414
point matching, 504
point-spread function, 86–92

axial, 91
confocal microscopy, 104
dyadic, 88
engineering, 96, 138
paraxial, 90
squeezed by saturation, 98
width, 90

Poisson–Boltzmann equation, 373
polarizability, 102, 103, 127, 278, 400, 463

effective, 517
enhanced, 255
imaginary part, 259
in terms of absorption cross-section, 259
quasi-static, 457
radiation reaction correction, 457
tensor, 96, 259

atomic, 527
polarization, 225

induced, 228
macroscopic, 13
p, 21, 506
s, 21, 506

ponderomotive force, 372
ponderomotive potential, 372, 408
position

accuracy, 8, 106, 106–114
single-dye label, 114

control, piezoelectric, 6
high precision, 56
isolated emitter, 107
measurement uncertainty, 107
uncertainty, 111

position-sensitive detector, 464
potential
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barrier, 36
energy, 224

induced, 228
of charge distribution, 226
of particle, 226
permanent dipole, 228

interatomic, 226
scalar φ, 27, 28, 30, 229
spherical

transverse electric (TE), 503
transverse magnetic (TM), 503

vector A, 27, 28, 41, 229
originating from source current, 29

power
average radiated, harmonic oscillator, 238
density, 51
flux density, 23
incident wave, 34
reactive, 432
transported by a ray, 57

power spectral density, 363
power spectrum, 363
Power–Zienau–Woolley transformation, 233
Poynting vector, 23, 34, 36, 457

time-averaged, 23, 42, 79, 82, 91, 238, 326, 481
Poynting’s theorem, 22, 23, 239, 247, 258
pressure

radiation, 362
principal value, 511
principal volume, 510
probability density function, 146
propagation

plasmon, 382
propagator, 118, 120

in direct space, 46
in reciprocal space, 40, 45, 46

pulling glass fibers, 168
pipette puller, 169
polarization issue, 170

Purcell, E. M., 242

quality factor
cavity, 361
mechanical, 362

quantum
ground state, 364

quantum confinement effect, 286
quantum dot

biexciton, 290
bright plane, 289
dark axis, 289
excitation, 288
qubit, 289
self-assembled, 288
single, 8, 12
surface passivation, 287

three-dimensional orientation, 289
quantum dots, 286–291

epitaxial growth, 287
quantum confinement effect, 286

quantum efficiency, 284
quantum electrodynamics (QED), 224
quantum emitter, 282–309, 415

as local field probe, 303
non-classical light, 299
saturation, 298
steady-state analysis, 297
time-dependent analysis, 298
types, 282

quantum information, 300, 494
quantum information theory, 276
quantum logic gate, 290
quantum yield, 329, 440–442

apparent, 329
intrinsic qi, 250, 441

quasi-normal modes, 354
quasi-static approximation, 392
qubit, 289
quenching, 306

Rabi flopping, 290
Rabi frequency, 528–530
Rabi oscillations, 284
radiation, 80

apparent direction of, 82
coherent, 327
damping, 240
direction of, 80
electromagnetic, 12, 240
far UV, 46
fluctuating source, 9
information encoded in, 118
optical, see light
pattern, 9, 23, 327, 329, 330

dipole near layered system, 327
normalized, 238
single-molecules, 327
total integrated, 336

propagating, 36
reaction, 240, 278

Abraham–Lorentz formula, 241
radiation condition, 323, 502, 504
radiation pattern, 422
radiation pressure, 362, 448, 452–453

of near fields, 467
radiation reaction, 457
radiation resistance, 429
radiative heat transfer, 486
Raman scattering, 141, 403

“chemical” enhancement, 406
surface enhanced (SERS), 404
anti-Stokes, 404
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cross-section, 141, 404
frequency mixing, 406
hot spots, 405
resonance enhancement, 404
stimulated, 351
Stokes, 404

Raman, Chandrasekhara V., Sir, 403
rapid adiabatic passage, 267–271
rate

energy transfer, 439
photoemission, 439

ray optical analysis, 463
Rayleigh criterion, 94
Rayleigh diffraction limit, 3, 4, 69
Rayleigh, Lord, 5
Rayleigh particle, 467
Rayleigh range, 48, 117
Rayleigh scattering, 253
reciprocity

antenna, 425
theorem, 31–32

red shift, 359, 363
reference system, 508

planarly layered, 508
reflection coefficient, 430
resistance

radiation, 415
resolution, 7, 46, 81

Abbe’s criterion including depletion, 100
axial, 96–98

multiphoton microscopy, 105–106
beyond diffraction limit, 86
effect of excitation profile, 95
enhancement by saturation, 98–100
idealized view, 94
increase by nonlinear excitation, 105
increase by saturation, 99
increase by selective excitation, 94
lateral, 98
limit, 45, 92–94

Abbe’s criterion, 93, 94
Abbe’s definition, 69
influence of prior information/knowledge, 94
Rayleigh’s criterion, 93, 94
Rayleigh’s definition, 69

optical microscopy, 63
spatial, 5, 8, 86
super-, 86
theory of, 5

resolved sideband cooling, 359–365
resolving power, see resolution, 92
resonant excitation, 283
resonant probe

single spherical gold particle, 155
resonator, 350–359

laser, 66

microdisk, 3
microsphere, 338

response function, 476

retardation dyadic
↔
M, 512

Reynolds number, 464
Ricatti–Bessel function, 353
Riemann sheet, 542
ripple, 351
rotating-wave approximation, 528

s-polarization, 21
sampling criterion, spatial, 504
saturation broadening, 531
saturation intensity, 438, 440, 459
saturation parameter, 459
scanning near-field optical microscopy, see

microscopy
scattering cross-section

metallic sphere, 399
scattering event, 131
scattering force, 476
Schmidt decomposition, 276, 277
Schrödinger equation, 272, 273

effective potential, 352
radial, 352
time-independent, 524

Schrödinger, Erwin, 276
screening, 372–373

Debye, 373
potential, 373
Thomas-Fermi, 373

second-harmonic generation, 156
second-order autocorrelation function, 299
SEIRA, 253
selection rules, 227, 433

modified, 227, 284
standard, 233

violation of, 233
semiconductor heterostructures, 288

epitaxial growth, 288
semiconductor nanocrystals, 286

type I, 287
type II, 288

series expansion of electromagnetic field, 502
shear-force distance regulation, 202–213
sideband cooling, 359–365
sine condition, 56, 57, 144
single emitter, 8, 45, 63, 92, 104

dipole orientation, 92
single molecule, 2, 7, 8, 12, 63, 92

dipole orientation, 75
excitation pattern, 65
excitation rate, 64
local probe, 35
on interface, 56
probe, 66
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transition dipole moment, 64
single-mode laser beam, 101
single-photon emission, 296–303

steady-state analysis, 297
time-dependent analysis, 298

single-photon source, 2, 3
singlet state, 286
singularity, 502

apparent, 29, 239, 245
condition, 177
of primary Green function, 510

skin depth, 172, 181, 184, 392
small aperture

Bethe–Bouwkamp theory, 178
enhanced transmission, 182
far-field, 179
improved directionality, 184

solenoidal field, 17
solenoidal solution, 501
solid electrolyte, 187
solid immersion, 70, 74
solid immersion lens (SIL), 143–145

cone-shaped, 145
Sommerfeld, Arnold, 313
spatial coherence, 487

length, 487
spatial filtering, 134
spatial frequency, 39, 58, 70, 71

bandwidth, 46, 92, 115
cut-off, 70
discrete, 121
evanescent fields, 117
evanescent waves, 41, 93, 116
filtering during propagation, 46
Gaussian distribution, 93
source field, 121
spectrum of, 86
transverse, 41

spectral energy density, 483–487, 497
spectral overlap, 260
spectral shifts, 486
spectrum, 363
spherical coordinate system (r,ϑ ,ϕ), 235
spherical coordinate system (r,ϑ ,ϕ), 502
spherical harmonics, 502
spin density, 457
spin-forbidden transition, 286
split-ring resonator, 347
splitting

frequency, 266
spontaneous and stimulated emission, 437–440
spontaneous decay

classical picture, 249–442
inhibition, 242
modification, 242
quantum electrodynamics (QED), 243–245

rate
two-level quantum system, 247

spontaneous emission, 241, 437
rate, 243, 254

quantum systems, 344
Stark effect, 266, 306
start-stop experiment, 302
state

mixed, 277
pure, 277

steady-state behavior, 526
STED, 140

depletion beam, 140
depletion pulse, 141
pulse, 141

stiffness, 464
stigmatic imaging, 144
stimulated emission, 99–101, 437
stimulated Raman scattering (SRS), 142

microscopy, 142
stochastic optical reconstruction microscopy

(STORM), 147
Stokes’ law, 464
Stokes’ theorem, 19
Stranski–Krastanow (SK) method, 288
strong coupling, 264–277

illustration, 275
optomechanical, 365
regime, 242

structured illumination, 122
subsurface imaging, 143
super lens, 348, 349

quasistatic approximation, 350
super-resolution imaging, 145, 349
super-SIL, see solid immersion lens (SIL)
surface

plasmon
polaritons, 34

polarization, 34
surface defect, 287
surface enhanced Raman scattering (SERS), 141,

403–406
surface phonon polariton, 486
surface plasmon, 9, see plasmons

frequency, 255
waveguide, 2, 3

Surface-enhanced infrared absorption (SEIRA), 253
susceptibility

nonlinear, 408
third-order, 408

switching, 351
symmetries, 59, 104, 505

rotational, 314
Synge, Edward Hutchinson, 5
system of equations, 505

over-determined, 505
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taper angle, 159, 167, 175, 178, 196
Taylor series, 226, 232, 233, 277
TE11 mode, 175
telescope, earliest, 4
TEM, 50
temperature, 475

cryogenic, 255
effective, 364

thermal conductance, 486
thermal equilibrium, 474, 475, 485
thermal near-fields, 487
thermal occupancy, 364
Thomas–Fermi screening length, 373
three-level system, 296–303

steady-state analysis, 297
time-dependent analysis, 298

time-stamping technique, 158
tip effect, see lightning-rod effect
tip-enhanced Raman scattering (TERS), 156
tip-on-aperture (TOA) probe, see optical probe
tip-on-aperture probe, 156
TIR, see total internal reflection
tomography, 519
topographic artifacts, 214–220
toroidal microresonator, 355
torque, 465
total internal reflection (TIR), 32, 33, 42, 74, 79, 143

critical angle, 33, 73, 77, 79, 314, 328, 389
fluorescence microscopy (TIRFM), 35
frustrated, 36, 37, 37

total point-spread function, 137
transfer rate, donor–acceptor, normalized, 260
transition rate, 438
transitions

forbidden, 433
transmission line, 398, 418, 430

characteristic impedance, 417
transverse field, 17
transverse solution, 501
trap stiffness, 463, 464, 466
trapping efficiency, 463
trapping potential, 463

near tip, 469
triplet state, 286
triplet–triplet annihilation, 286
tuning-fork sensor, 205–213

effective harmonic oscillator model, 206–211
equivalent electric circuit, 211
response time, 209

two-level quantum system, 243
linear polarizability, 523
spontaneous decay rate, 247

two-level system, 99, 243, 244, 272
two-photon absorption, 407
two-photon excitation, 139

cross-section, 139

Twyman–Green interferometer, 67

ultrafast, 30, 237
unbounded media, 502
uncertainty

energy, 270

vacuum fluctuations, 493, 534
van der Waals force, 7, 257, 488, 493
vector equation, 512
vector harmonics, 501, 502
verschränkter Zustand, see entangled state
vector potential, 416
Veselago lens, 348, 349
vibrational progression, 285
vibronic coupling, 275
viscosity, 464
viscous drag force, 464
volume excitation in multiphoton microscopy, 106
volume exclusion, 26
volume integral equation, 29, 234, 508–512

electric, 511
volume integral methods, 506–517

Wannier exciton, 310
wave

impedance, 23
wave mixing, 407
wave equation, 14

for normal modes, 245
homogeneous media, 18
inhomogeneous, 14, 508

waveguide, 47
dielectric, 331
hollow, 82
mode

cut-off, 331
slab, 320, 332

lowest modes, 321
surface plasmon, 2, 3

wave impedance, 57
wavelength

effective, 428
wavenumber, 19, 71

longitudinal, 21, 32, 45
of vacuum, 18
transverse, 21, 45

wave–particle duality, 12
wavevector, 15, 21, 47, 55, 71

Bloch, 341
incident, 21
transmitted, 21
transverse, 35, 42, 121
transverse components, 21

waves
electromagnetic, see electromagnetic wave
evanescent, see evanescence wave
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lateral, 328
surface, 313

weak retardation regime, 363
weak scattering, 133
weak-coupling regime, 242
Weierstrass optics, 143
Weisskopf–Wigner approximation, 533
Weisskopf–Wigner theory, 532–534
Weyl identity, 42
Weyl representation, 313

whispering-gallery modes, 351
effective potential approach, 351
Q-factor, 351

white noise, 481
Wiener–Khintchine theorem, 363, 478, 480, 484, 494,

495

zero-mode waveguide, 175
zero-point

oscillation, 365
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