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Preface

This book is meant as an introduction to nanophotonics for students. It covers a
number of topics that are important to the subject and which supply a basis for
continuing on to a more advanced undertaking in the field. References to the recent
literature and reviews of that literature are provided to direct the student on to a
more advanced treatment.

The focus in the presentations is on analytical treatments. These often provide
insight into the principles operating in a phenomenon. Such insights are not as
readily available in computer simulation methods. However, work in nanophotonics
is often simulation oriented so that the commonly used methods of computer
simulation in electrodynamics are explained.

A chapter on mathematical preliminaries discusses common methods used in the
study of composite and periodic media, providing an introduction to material sci-
ence techniques. Simulation methods are also addressed, undertaking a basic
consideration of the standard simulation techniques.

A focus is on presenting an introduction to photonic crystals, plasmonics, and
metamaterials as foundations of many nanophotonic studies. Discussions of optical
waveguides, circuitry, and impurity systems are presented for these types of media.
In addition, topics of negative refraction, perfect lenses, and the propagation of
radiation in metamaterials are introduced. Enhanced transmission is discussed along
with a variety of other device-related properties in these types of engineered media.

Forces in nanosystems are discussed, involving a variety of magnetic, electric,
and electrodynamic effects. These have various technological applications in
biology, nanoscience systems, and nanomechanical devices. Included in these
discussions are diverse nanoparticle mechanical interactions, the optical tweezer,
Penning and Paul ion traps, and the Casimir force between surfaces.

A brief review of the properties of lasers is given. The approach is based on the
ideas of nonlinearity and the similarity of the laser transition to that of a
second-order phase transition. A focus is on discussions of the vertical column laser
and on spasers. Unlike lasers, the spaser involves the generation of coherent surface
plasmon polaritons in nanooptical systems.
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Basic principles of near-field microscopy are presented. This technique intro-
duces the possibility of sub-wavelength resolution of optical images. As such it
provides for a significant advance in optical imaging technology.

A final topic is a discussion of the Einstein–Podolsky–Rosen paradox, the Bell’s
inequality, and an introduction to quantum computing. These have been of great
current interest and provide a potential for the application of many of the ideas in
nanophotonics.

In the history of the development of nanophotonics, a variety of different sys-
tems of units have been used to present new results. In the presentation given here,
the development of the various results has been made in the original system of units
in which they were formulated.

The author would like to thank the Department of Physics at the University of
California, Riverside, for extending the use of the University Library. I also thank
Ms. Robin De Haan in our Physics Department at Western Michigan University for
help with Word. I thank Western Michigan University for providing the opportunity
to write this book.

Rancho Mirage, California Arthur McGurn
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Chapter 1
Introduction

In the last thirty years many new ideas focused on the nanosciences have been
introduced into the field of optics [1–23]. These involve efforts in the development
of: optical materials, technologies for the manipulation of light, techniques for the
manipulation of atoms and nano- systems by means of light, applications of light in
imagining and focusing with subwavelength resolutions, technologies of computer
design and computation, new types of lasers and laser technologies, and realizations
of nano-optical device designs. This is a partial list of the developing ideas that
have rapidly advanced from year to year. In addition, each year new areas of the
nanoscience applications of light are advanced and added to the list.

This book will focus on the theory of the operations of some of the above
technological applications of light to the development of nanosciences. A point of
particular interest will be on the basics of the earlier listed fields, giving a pre-
sentation of some of the theoretical ideas needed to understand the elementary
functions proposed, applications of optical principles to the systems studied, and
designs formulated in these fields.

The mathematical techniques that have been applied in nanophotonics will be
introduced, developed, and illustrated with some applications to simple examples of
the earlier listed applications of nanophotonics. In addition, some review of the
experimental results for nanophotonics systems will be given. The book, however,
is an introductory text to the field and is not meant to act as a comprehensive review
of the fields presented here in outline. Rather efforts will be made to guide the
student to the scientific literature in order for the student to begin on a fuller
understand of the fields that are found of interest.

Some of the topics that are covered include: photonic crystals [1–6], metamate-
rials [7–10], plasmonics [1, 12], subwavelength focusing [7, 8], near-field scanning
optical microscopy [17, 18], optical tweezers [19], some useful topics of quantum
optics [20–23], trapped atoms [23], and ideas of quantum computing [21–23]. These
fields have in common ideas for the manipulation of light on the nanoscale or the
investigation of the interaction of nanoscale systems with light or the manipulation
of nanoscale system though the application of light.

© Springer International Publishing AG, part of Springer Nature 2018
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1.1 Mathematical Preliminaries and Examples of Specific
Techniques

To begin with, some mathematical preliminaries will be developed which are most
necessary for the study of nano-optical systems. An important initial division of the
mathematical methods involves those techniques formulated to handle composite
media and those formulated for the study of photonic crystal media. The first type
of materials are disordered whereas the second type of materials involve ordered
arrangement of media.

Mathematical techniques for the treatment of the dielectric response of general
composites are treated [24–26]. Specific techniques are developed for the study of
the refractive effects of composite systems on wavelengths of light which are large
compared to the basic composite structure. The idea is to formulate the response of
the composite system in an effective medium format.

In this approach the large scale properties of the composite are approximated and
represented as properties of an homogeneous medium. The idea is then how best to
choose the homogeneous medium with the effective composite response. As will be
discussed later an effective medium treatment is most useful when the optical probe
of the composite has a spatial variation which is large on the typical length scales
defining the dielectric variation of the composite material.

The ideas used to treat composites are important in the study of many types of
materials generated for technological applications and in particular can be of use in
the study of metamaterials. Metamaterials, as discussed later, are media composed
of artificially engineered nano-features [7–11]. They are designed to operate as
homogeneous optical materials when interacting with the electromagnetic fields
they are engineered to moderate. This is essentially the idea encountered in the
refraction of light at visible wavelengths by glass. Glass is composed of a crys-
talline arrangement of atoms which on the atomic scale appears to be a discrete
structure, however, on the scale of the wavelength of visible light the crystal is a
homogeneous medium described by an index of refraction [10, 27, 28].

Techniques are also developed for the treatment of periodically varying
dielectric systems. Specifically, these are systems designed to interact with light
through their periodic properties. For this, the dielectric properties of such materials
are chosen to be periodic over length scales of order of the wavelengths of the light
that interacts with them.

Systems of this type are found in the study of photonic crystals which interact
with light through the mechanism of diffraction. While metamaterials are designed
to interact with light refractively, photonic crystals interact with light diffractively
[1–5]. This difference in the interaction of these two classes of materials with light
gives rise to great differences in the nanoscience applications of these two different
types of media.

Important mathematical techniques in the study of new types of nanomaterials
are computer simulation techniques [29–33]. In this regard, discussion of the basics
of commonly used methods such as the finite difference time domain method,
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the method of moments, and finite element methods will be presented and dis-
cussed. These form the basis of many of the simulation studies that are published in
the scientific literature and will be the source of some of the theoretical results on
nanphotonics presented in the course of this book.

Other mathematical methods necessary for and focused on in the study of
nonlinear optical systems will be presented [34, 35]. These include discussions of
the mathematical properties and approaches necessary to discuss soliton modes and
the generation of higher harmonics in nonlinear systems. In the treatment of soli-
tons, some of the properties of bright, dark, and grey solitons in Kerr nonlinear
media are studied. In addition, the propagation characteristics of these basic soliton
modes will be treated in both metamaterial and photonic crystal models.

The origins, properties, and problems associated with the generation of second
harmonics of radiation will also be discussed [36–40]. Refocusing on the materials
side of these problems of nonlinear dynamics, the origins of the nonlinear polar-
ization in systems exhibiting solitons and systems exhibiting second harmonic
generation are explained [36–40]. Discussion are also given of the restrictions
placed on the nonlinear polarization associated with these mechanisms and the
symmetry properties of the crystal structure of the generating media as related to
these restrictions [36–40].

The mathematics needed to understand the forces generated by electromagnetic
fields on atoms and nanoparticles of matter are developed. These are important is
some of the applications of optics to biology, problems of nano-engineering, and
the confinement of trapped atoms. The last of these mentioned techniques of atomic
manipulation is of potential application in the design of quantum computers. Some
discussions of the elementary principles of quantum computing will be developed at
the end of this work [41, 42].

1.2 Photonic Crystals

Photonic crystals are important to optical technology as they provide a means of
diffractively molding the flow of light through space [1–5]. The photonic crystal is
an optical system which has dielectric properties that vary periodically in space.
Light with wavelengths of order of the spatial periodicity is diffracted by the
photonic crystal, just as electrons moving in a semiconductor are diffracted by the
periodic potential of the positively charged ions that binds the electrons and affects
their motion in the semiconductor [43].

The effects of the periodic positive ion background on the electron motion in
semiconductors is to alter the electron dispersion relation, opening a series of pass
and stop bands in the semiconductor. The pass bands are regions of electron energy
in which the electrons can propagate through the system, while the stop bands are
regions of the electron energy in which the electrons cannot propagate through the
system.
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Similarly, the periodic dielectric constant of photonic crystals changes the dis-
persion relation of light in the photonic crystal, opening up a series of pass bands in
which light propagates through the system and a series of stop bands in which light
does not propagate through the photonic crystal. As in the case of the electronic
semiconductors, the important effect here is the energy regions in which light does
not propagate within the photonic crystal. These energy stop bands allow for
molding the flow of light through space.

Photons with stop band energies cannot propagate into the bulk of a photonic
crystal. For these photons the photonic crystals acts in a way similar to the action
displayed by stones when they are placed in the bed of a stream. Stones in a stream
can be used to rechannel the flow of water as it moves through the path of a stream.
This follows as water cannot pass through the stones but must find a course around
the stones. Similarly, light at stop band energies will not pass into the bulk of a
photonic crystal so that the light is constrained to move only in the region outside of
the photonic crystal. This constraint, arising from the electromagnetic band struc-
ture of photonic crystals, is nicely used in many device applications.

Photonic crystals can be designed to function as one-, two-, or three-dimensional
devices. An example of a one-dimensional photonic crystal is a periodic layering of
dielectric slabs [1–5]. Light incident perpendicular or nearly perpendicular to the
interfaces of the slabs of the layered photonic crystal exhibits a band structure in
the system. As a result only light at pass band energies is allowed to travel through
the layering. Light with energies in a stop band is reflected from the layering. This
effect is commonly used in laser mirrors and in dielectric coatings. In these designs
an advantage of photonic crystals is that they can be made of layers of low con-
ductivity dielectrics so that the system exhibits low energy losses. Such energy
considerations are particularly important is the design of laser mirrors [2, 40].

Two-dimensional photonic crystals are formed of media with a spatially periodic
dielectric variation in two-dimensions [2–5]. These types of photonic crystals have
been used in various optical circuit applications [14, 44–53] and in the design of
surface emitting lasers [53, 54]. A typical geometry of interest in these applications
is a thin dielectric slab waveguide which has a periodic spatial dielectric pattern
written into it. The periodicity pattern is chosen to be periodic in the large planar
surfaces of the slab.

In the design of optical circuits the light acted upon by the photonic crystal is
taken to move within the slab where it is confined to the slab by internal reflection
at the slab surfaces and manipulated by its encounter with the patterning. In laser
applications the slab photonic crystal acts as a Fabry-Perot resonator for a light
source placed within a cavity contained within the photonic crystal slab. The
periodic patterning of the slab is used to confine light that would otherwise prop-
agate in the plane of the slab patterning, while the light is confined within the slab
by internal reflection from the dielectric mismatch at the slab surfaces. These ideas
can also be extended to three-dimensional systems.

In three-dimensional systems the band structure effects are important in sup-
pressing the propagation of radiation in all spatial directions. Three-dimensional
photonic crystals are important for additional applications to those discussed above
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for one- and two-dimensional systems. Some examples of these are in the
enhancement or in the suppressing of thermal radiation emitted from matter and in
various antenna design applications [52].

For all of the discussed photonic crystals technologies mentioned earlier, there
are limitations placed on the functioning of photonic crystals in their proposed
applications. Techniques for building nanostructures with photonic crystal pat-
terning have improve rapidly through the years, but there is a continuing efforts to
improve the quality of photonic crystals made in the laboratory. Due to the artificial
nature of photonic crystals and the restrictions of current engineering practice, most
of the photonic crystal applications have been applied to light between the
microwave and the optical spectrum.

Some of the applications of photonic crystals are now qualitatively discussed.
First some ideas of the Purcell effect from atomic physics are introduced, these are
followed by discussions related to engineering and device applications of photonic
crystals [48–56].

An early idea put forth was that photonic crystals could be used to suspend
atoms in their excited states [2–5, 54–56]. This idea is based on the stop bands
present in photonic crystals. If the energy of the photon emitted by an atom in the
transition from its excited state to its ground state is in the stop band of a photonic
crystal, the excited atom would not be able to emit the photon into the photonic
crystal. Consequently, if it were in the bulk photonic crystal, it would be suspended
in its excited state [56].

Under these condition, there would be no photon states available in the photonic
crystal for the photon generated in the decay process to enter into and propagate
away from the atom. This outcome is also readily seen from the Fermi Gold Rule
transition rate equation in which the rate of atomic decay by photons from an
excited state is proportional to the density of final photonic states available to
accommodate the atomic transition.

Continuing this line of reasoning, remember that in semiconductor physics the
electron density of states at the upper and lower edges of an electron stop band are
enhanced [43]. Consequently, the electron density of states have maxima just
outside of the stop band but near to both the upper and lower edges of the stop
band.

In photonic crystals the same type of enhancement of density of states occurs
near photonic stop bands in the density of states of the photonic crystal. As a
consequence, atomic transitions with frequencies within the stop band are not
allowed, but as the density of states is enhanced at the upper and lower edges of the
photonic stop band the atomic transition rates can be increased for frequencies at
these maxima [55, 56]. This follows from the proportionality of the transition rate to
the density of photonic modes available for the decay photon to enter. Photonic
crystals, consequently, offer mechanisms for both the suppression and for the
enhancement of atomic excited state decay.

These ideas can be extended to the design of electromagnetic cavity resonators,
waveguides, and circuits formed as networks of interconnecting waveguides [2–5].
A cavity resonator can be formed within the bulk of a photonic crystal by removing
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a closed region of photonic crystal from the bulk of the photonic crystal. (See
Fig. 1.1 for schematic drawings of the example of a two dimensional photonic
crystal formed as a triangle lattice and the introduction into the photonic crystal of a
resonator cavity.)

The resultant cavity will act as a cavity resonator for modes in the stop band of
the bulk photonic crystal. For appropriately chosen materials the dissipative losses
of such a cavity can be made to be much smaller than those found for cavities based
on other technologies [2–5].

In a similar fashion waveguides are introduced into the bulk of a photonic crystal
by surrounding a propagating channel by photonic crystal and sending electro-
magnetic waves at the frequencies of the stop bands of the photonic crystal to
propagate down the channel. (See Fig. 1.1c for a schematic of a photonic crystal
waveguide.) This is similar to the guiding applications of optical fibers. In fiber
optics light is confined to the optical fiber through total internal reflection at the
interface between the media of the optical fiber and the outside air. In photonic
crystals the confining mechanism is the stop band effect of the photonic crystal
surrounding the guiding channel. The photonic crystal confining mechanism is
often more effective than the mechanism of total internal reflection found in fiber
optics [2–5, 57]. For example, photonic crystals can exhibit low loses in waveg-
uides with larger channel bends that are not possible in fiber optics technology.

Fig. 1.1 Schematic drawings of a two-dimensional photonic crystal composed of parallel axis
dielectric cylinders. The cylinder array is represented in the plane perpendicular to the cylinder
axes for: a a triangle lattice patterning of photonic crystal, b a triangle lattice patterning with a
resonant cavity, and c the triangle patterning surrounding a waveguide channel
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Optical fibers often suffer high losses when they are bent through large angles and
this is a limitation on their applications [57].

Schematics of a simple two-dimension photonic crystal formed as a periodic
array of dielectric cylinders and a photonic crystal waveguide formed within it by
removing a channel of dielectric cylinders are shown in Fig. 1.1. Light injected into
the waveguide channel, propagating within the plane of the page at stop band
energies, will propagate within the confining waveguide channel. In practical
applications, two-dimensional photonic crystals are made in a slab geometry
involving placing a periodic patterning parallel to the surfaces of the slab. This type
of system has been used in various circuit applications and in the design of surface
emitting lasers.

In circuit applications the slab is designed with various intersecting waveguide
channels which allow the electromagnetic guided waves to pass through a variety of
branchings. Light traveling this these circuits can be offloaded from the slab by
means of optical multiplexers.

The slab geometry is not only effective in problems involving light traveling
confined within the slab but has applications for light outside the slab. Light at
normal incidence to slab photonic crystals [58, 59] can display enhanced trans-
mission effects and filtering effects associated with the surface modes of the pho-
tonic crystal slab.

For two-dimensional photonic crystals the band structure is found to be
dependent on the polarization of the modes propagating in the system [2, 60]. For
photonic crystals patterned as an array of dielectric cylinders or as an array of
cylindrical holes in an otherwise uniform dielectric medium, the modes are found to
be polarized with electric fields polarized parallel to the cylinder axis or with their
magnetic fields parallel to the cylinder axis. These two different polarization exhibit
different dispersion properties in the system.

Consequently, the stop bands of the two polarization may not overlap one
another. Early on the non-overlap was noted, and after some investigation it was
found that in certain triangle lattice arrangements of dielectric cylinder or holes
some of the stop bands can partially overlap. For these reasons, generally, triangular
lattice have been used in the development of surface emitting lasers [44, 61].

A variety of three-dimensional structures have been investigated for photonic
crystal applications. Again in three-dimensional systems the band structure can be
polarization dependent and the modes may have similar polarization properties to
those found in the harmonic modes of an atomic crystal. The diamond lattice of
dielectric spheres was one of the earliest structures to exhibit complete photonic
crystal stop bands in all directions of space [2–5]. Photonic band structures,
however, have been computed for photonic crystals with a wide variety of
three-dimension Bravais lattices. Some other three-dimensional arrangements have
included three-dimensional layerings formed from nanoscopic strips or nanowires.
In these types of photonic crystals the layering is built up as layers in which all of
the strips of the layer are aligned in one direction. The strips of neighboring layers
are arranged to be aligned in different directions. This is a type of system that can be
built by various deposition processes which makes it of great experimental interest.
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The nice property of three-dimensional photonic crystal is the ability to design
systems with stop bands. This finds application in various antenna, sensor, and solar
cell problems [63–65] and in controlling the thermal emission or the thermal sig-
nature of materials and shielded devices [63–65].

Photonic crystals have also been applied to the enhancement of some already
existing technologies. An important example of this is in fiber optics technologies
[57]. Fiber optical systems are often designed of a variety of materials so as to
create a change in dielectric constant going from the center of the fiber to its
interface with the air surrounding the fiber. This is done to improve the confining
characteristic of the electromagnetic waves traveling along the fiber. One way to do
this is to put a cladding or coating layer around the inner fiber forming the core of
the optical fiber. In some recent applications the ideas of photonic crystals have
been applied in the design of fiber cladding applied to optical fiber [66–68]. These
are the so-called photonic crystal fibers [66–68].

In such systems a periodic photonic crystal pattern is introduced into the clad-
ding of the optical fibers. The patterning is perpendicular to the axis of the fiber and
is otherwise translational invariant along the axis of the fiber [66–68].

Enhancement of the fiber properties occur through two different mechanism in
two different types of photonic crystal fibers. In a first type of photonic crystal fiber,
the pass band-stop band properties of the photonic crystal patterning are directly
applied. The frequencies of the guided modes are chosen to be within the stop
bands of the cladding. This absence of transmission through the stop bands offers a
more effective mechanism of confine light to the fiber than in the dielectric mis-
match approach [66–68].

In a second type of fiber, the pass band properties of the photonic crystal fiber are
not directly employed. Rather the photonic crystal patterning is used to manipulate
the dielectric properties of the cladding materials, treating the photonic crystal
cladding as a type of composite material that controls the system through its
average dielectric properties [66–68].

Aside from their waveguide properties, photonic crystals fibers have found
important applications in the design of sensors and fiber lasers. The laser design is
based on doping the fiber so that the system can be pumped and operated as a laser
[66–68].

Additional applications that have been suggested for photonic crystals are in the
design of antennas [65]. Here they can be used to focus and improve the efficiency
of antenna design. Other applications will be the focus of the Chapter on photonic
crystals.

1.3 Metamaterials

Metamaterials are engineered materials that are designed to display, at certain
frequencies of radiation, particular properties of permittivity and permeablitiy
[7–11]. They are typically composite materials, formed by the inclusion of
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nano-features consisting of resonant structures, wires, etc., and are set to display the
response of an homogeneous material at the wavelength at which they are designed
to operate. This means that the engineered features forming the composite are
generally small compared to the wavelength of the light with which the material
interacts.

One of the original motivations for the study of metamaterials was in the design
of materials that exhibit a negative refractive index. Naturally occurring substances
are only found with positive indices of refraction, i.e., in Snell’s law [69].

n1 sin h1 ¼ n2 sin h2 ð1:1aÞ

the indices n1 and n2 are only positive. (See Fig. 1.2 for a schematic of Snell’s law
for light incident in the first quadrant at a planar interface between two media with
n1 and n2.)

This seems to be a fundamental limitation of nature, arising from the properties
of the frequency dependent permittivity, e xð Þ, and permeabilities, l xð Þ, in natu-
rally occurring materials and their relation to the index of refraction [7–11, 14, 69]

n xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e xð Þl xð Þ
p

: ð1:1bÞ

Fig. 1.2 Schematic showing the refraction of light at the planar interface between two different
optical media where n1 is the index of refraction of the upper medium and n2 is the index of
refraction of the lower medium. In a the refraction from the second to fourth quadrant is shown for
light passing from a positive index medium to another positive index medium. In b the refraction
from the second to third quadrant is shown for light passing from a positive index medium to a
negative index medium. In the figures, hincidence is the angle of incidence, hreflection is the angle of
reflection, and hrefraction is the angle of refraction. In the figure the positive sense of hincidence is
measure anti-clockwise from the vertical, the positive sense of hreflection is measure clockwise from
the vertical, and the positive sense of hrefraction is measure in the anti-clockwise sense from the
vertical
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While both the e xð Þ and l xð Þ in naturally occurring materials can be positive or
negative, materials have not been found to occur in which both e xð Þ and l xð Þ are
simultaneously negative at the same frequency.

From a study of the Maxwell equations and a subsequent derivation of the
electromagnetic wave equations, it is found that in the case that both e xð Þ and l xð Þ
are negative the natural definition of the index of refraction occurring in Snell’s law
becomes [2–11, 14]

n xð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e xð Þl xð Þ
p

: ð1:1cÞ

This causes new physical effects to arise in the application of Snell’s law which
shall now be illustrated.

To illustrate the difference between refraction effects between positive and
negative index media, consider the schematic illustrations in Fig. (1.2). In the figure
n1 is the index of refraction of the upper medium and n2 is the index of refraction of
the lower medium.

Figure (1.2a) qualitatively describes the refraction of light incident at a planar
interface from the second quadrant of a positive index media, n1 [ 0, into the
fourth quadrant of a second positive index media, n2 [ 0. Figure (1.2b), however,
describes the refraction of light incident at a planar interface from the second
quadrant of a positive index media, n1 [ 0, into the third quadrant of a second
negative index media, n2\0.

The difference between the refraction into the positive and negative index
materials at the planar interface is the difference in the quadrant into which the
refracted light enters. In the past, optics was limited in that light could only be
refracted into paths similar to those shown in Fig. (1.2a). With the new metama-
terials, however, light can now be refracted into paths similar to those shown in
Fig. (1.2b). These features greatly expand the possibilities of optical design.

The earlier observations can be continued to the study of the planar interface
between negative and positive indexed materials. In Fig. 1.3, if n1\0 and n2 [ 0,
(i.e., if the sign of the indices of refraction are reversed.) light incident on the
interface in the second quadrant of n1 will be refracted into the third quadrant n2.
This again is a new refractive response available in the study of optics [7–11, 14].

The expansion of the refractive properties of optical materials was then, in part, a
great motivating factor in the search for designer materials that would exhibit
negative index properties. An initial proposal for a metamaterial design was made
by Pendry et al. [70–72] and requires the introduction of features of
nano-technology.

An essential idea of the proposal is to generate a negative l xð Þ by including
resonant nano-features in the design of the metamaterials. The design of the
nano-feature is made so that a negative l xð Þ response is generated at frequencies
for which l xð Þ is only positive in naturally occurring materials. This extends the
range of l xð Þ and allows it to be adjusted. The nano-features used are known as
split ring resonators and are basically designed to act as nano-circuits with the
characteristics of inductor-resistor-capacitor, LRC, resonator circuits studied in
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elementary physics courses. The resonators are tune so that l xð Þ\0 at the same
frequencies that the metamaterial has also been set to exhibit e xð Þ\0 [7–11, 14]. In
nature such an arrangement has not been observed.

A difficulty with this approach can be seen in the requirement of a resonator
circuit in the design of the metamaterial. This comes from the split ring resonator
nano-features. In this regard, it is know from the Kramers-Kronig relations [69] that
a resonance in the response of an electromagnetic system will exhibit an energy
loss, and the loss will be greatest near resonance. This, in itself, of course, affects
the propagation characteristics of the metamaterial, causing an energy decay as the
waves propagate through the electromagnetic medium. Energy loss then presents a
problem as it is near the resonances of the split ring resonators that the optimal
effect for the generation of l xð Þ\0 are found.

Another difficulty is that the resonance producing the l xð Þ\0 is generated only
over a narrow band of frequencies so that materials based on this mechanism tend to
have a small frequency band of negative refractive index. The problems of fabri-
cation of these materials have also restricted most applications to the microwave
and terahertz regions [7, 12, 14]. These problems of loss, limited frequency bands,
and fabrication are the focus of many current research efforts.

Fig. 1.3 Schematic showing the refraction of light at the planar interface between two different
optical media where n1 is the index of refraction of the upper medium and n2 is the index of
refraction of the lower medium. The figure shows the refraction from the second to third quadrant
for light passing from a negative index medium to a positive index medium. In the figures, hincidence
is the angle of incidence, hreflection is the angle of reflection, and hrefraction is the angle of refraction.
In the figure the positive sense of hincidence is measure anti-clockwise from the vertical, the positive
sense of hreflection is measure clockwise from the vertical, and the positive sense of hrefraction is
measure in the anti-clockwise sense from the vertical
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Returning to a consideration of the Maxwell equations in the case that both e xð Þ
and l xð Þ are negative, other important qualitative differences between the optics of
positive and negative index materials are found. These follow from a direct
application of e xð Þ\0 and l xð Þ\0 within the Maxwell equations.

In the electromagnetic solutions of the Maxwell equation for positive index
media, the Poynting vector,~S ¼ 1

l
~E �~B, of plane wave solutions is parallel to the

wave vector, ~k, of the radiation. In negative index media, however, the Poynting
vector,~S ¼ 1

l
~E �~B, of plane wave solutions is anti-parallel the wave vector,~k, of

the radiation [10].
For the plane wave solutions, the differences in the relationship between the

wave vector and Poynting vector in the positive and negative index materials
account for the unusual refractive properties observed in Fig. 1.2b. Because of the
translational symmetry of the interface between the two materials in Fig. 1.2b, the
wave vectors of the positive and negative index plane wave solutions must be
conserved across the planar interface between the two media. The energy flow in
the positive index medium flows in the direction of its wave vector so that for
energy to travel towards the interface the wave vector of the plane wave must point
towards the interface. In the negative index material, however, to have an energy
flow away from the interface the wave vector of the plane wave solution must be
opposite the direction of the energy flow. The wave vector must point towards the
interface. For the wave vector in the negative index medium to point towards
the interface and have a component of wave vector at the interface equal to that of
the incident wave in the positive index medium the refracted wave must be in the
third quadrant. Because of the translational symmetry of the interface, the reflected
wave in the positive index medium, following the usual argument, is such that the
angle of incidence is equal to the angle of reflection.

Similar arguments can be made for the refraction at a planar interface of a wave
incident from a media with a negative index of refraction into a media with a
positive index of refraction. (See Fig. 1.3 for a schematic for this case.) The energy
flows in Fig. 1.3 follow from this.

An interesting consequence follows from the refractive properties illustrated in
Fig. 1.2b for light going from a positive index medium into a negative index
medium and in Fig. 1.3 for light going from a negative index medium into a
positive index medium. From these properties a focusing lens can be designed
which is a slab of negative index materials surrounded by a universe of positive
index medium. Figure 1.4 illustrates the function of such a lens. The rays from an
object in the positive index medium to the left of the slab lens pass through the lens
and are focused to an image in the positive medium to the right of the lens. This is a
very unusual property as a slab of positive index material does not form a focusing
lens [7–11, 14].

In the optics of positive index media, the function of lenses to focus light is
based not just on the refractive properties of the materials forming the lens but also
on the curved surfaces of the lens. In positive index media the curved surfaces of
the lens are an essential part of its operation, and lenses without curvature will not

12 1 Introduction



focus light [69]. In lens based on positive index media, the curvature of the surfaces
are used to make up for the fact that the positive index medium refracts light only
from the second to the fourth quadrant. Only materials which refract light from the
second to the third quadrant are able to form a focus utilizing flat surfaces alone.
Such materials bend light through a greater change in path, accommodating the
addition path changes that are provided by the curvature of the surfaces in positive
index lens.

A problem that arises in the design of positive index lens arises from the need to
employ curved surfaces in their design. The curved surfaces of the lens must
intersect, forming a lens with a finite lens aperture. The finite aperture of the lens
introduces a fundamental limitation on its ability to resolve images at its focus. The
light emanating from an object is composed of a complete spectrum of Fourier
components of the space-time components of light carrying information away from
the object. Due to the finite size of the lens aperture only a restricted set of Fourier
components are allow to pass through the lens. This is a basis of the Rayleigh
criterion for the resolution of lenses with apertures and would not be restriction in
the case of slabs which have infinite apertures [69].

This, however, in not the only property of slab lens in the new optics based on
negative index of refraction materials. The slab lens of negative index of refraction
can also project evanescent wave between the object on one side of the slab and the
image formed on the opposite side of the lens. Consequently, all of the optical
components emitted by the object can be potentially assembled in the focused
image. The image would be a perfect replica of the object. Because of this property,
the slab of negative index medium is often referred to as a perfect lens or a
superlense [71].

Fig. 1.4 The focusing properties of a perfect lens. The perfect lens is a slab of negative refractive
index material with parallel planar surfaces. Three rays pass through the lens from the object to be
reassembled at the image. The details of the properties and workings of the ideal lens will be
discussed in Chap. 4
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Negative index materials have also been applied in so-called optical cloaking
devices [70]. These are based on the ability afforded by the new metamaterials of
designing media in which the dielectric constant of the material can assume values
ranging over the entire set of real numbers. A ray of light traveling in such a system
can be bent through any angle within it forward quadrants as it passes through the
medium. In principle it is then possible to create a metamaterial with a spatially
varying dielectric constant, exhibiting any positive or negative index of refraction
value at any point in space. This is done by spreading different types of
nano-features throughout the volume of the material, choosing the feature appro-
priate for the desired index of refraction.

The idea of the cloaking device is to create a metamaterial with a spatially
varying index of refraction designed to gradually refract rays of light around an
object and send them out from metamaterial along paths the light would have taken
if the cloak and object were not present. In Fig. 1.5 a schematic of such a device is
shown, for a two-dimensional system. An object is placed within a cylinder of
metamaterial in the form of a hollow cylinder surrounding the object to be hidden.
The metamaterial is assumed to be designed with a position dependent index of
refraction engineered for the function now proposed.

In the figure, light is incident on the system from the left as a series of parallel
rays. As the light encounters the cylinder of metamaterial it is successively
refracted around the hidden object and passes out of the metamaterial along the
parallel paths that it would have taken in the absence of the metamaterial and the
object it cloaks [70].

Experiments and computer simulation studies on such devices were originally
made by Pendry et al. [70]. The systems designed involved the distribution of split
ring resonators through a cylinder of materials, varying the resonator configuration
along the circuit of the cylinder. This provided the spatially varying index of
refraction of the cylinder. The limitations on the functioning of the system designed
in this way are, consequently, due to the resonant nature of the split ring resonator

Fig. 1.5 Schematic of the application of a metamaterial in the form of a hollow cylinder to hide an
object placed within the cylinder. Parallel rays of light incident from the left are sent through the
system, exiting as parallel rays on the right of the system. The object within the cylinder is not
evident in the light passing to the right of the cylinder
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function. These include the restriction of the effect to a narrow band of frequencies
associated with the resonators and the problems of loss again associated with the
resonator operation [7–11, 70].

With the freedom to engineer materials with arbitrarily spatial varying dielectric
properties many types of system applications have been suggested. Some of these
include the design of metamaterials to exhibit properties found in systems of
general relativity [73–75], these are based on spatial coordinate transforms [74] that
can be related to spatially dependent permittivities and permeablities.

Other topics in metamaterials are the so-called hyperbolic materials [76] which
are introduced as a means to achieve negative refractive properties. These materials
exhibit unusual properties due to their optical dispersion relations, e.g., strong
enhancement of spontaneous emission, negative index of refraction, and enhanced
superlensing effects. Some of these properties have found applications in the design
of metamaterial surfaces formulated for the modulation of light incident on them.
The ideas of metamaterials have also been extended to the design of acoustic
materials used to manipulate the properties of phonon systems.

1.4 Plasmonics

Plasmonics technologies are based on the excitation and use of surface electro-
magnetic waves known as surface plasmnon-polaritons to perform device functions
[82–89]. Surface plasmons-polaritions occur at the interface of certain types of
materials and exhibit a dispersive propagation along the interface. The nature of the
dispersion depends on the dielectric properties of the media forming the interface
and the nature of the interface geometry over which the plasmons travel.

Surface plasmon-polaritons are a type of electromagnetic plane wave that is
bound to and travels along the interface with electromagnetic fields that have
concentrated field intensities at the interface. Away from the interface the fields
decrease to zero at infinite separation from the interface [82]. Surface
plasmon-polariton modes exist on a wide range of planar and curved surface
geometries and are responsible for a range of important optical phenomena, some of
which are of technological importance. Applications based on surface plasmon
excitations include: circuit applications, waveguides, sensors, enhanced field
transmission, and other particular device based designs [82–89].

Commonly studied examples are the plasmon-polaritons at the interface of a
metal and dielectric, but these excitations may also be found on the interface
between two different dielectrics or on metal and dielectric slabs and thin films [82].
In the absence of dielectric losses from the media forming the interface, surface
plasmon-polaritions exist indefinitely on ideal planar interfaces. With the intro-
duction of surface corrugation or roughness, however, the plasmon-polaritions tend
to scatter into electromagnetic modes that propagate away from the interface and
into the bulk.
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Surface plasmon-polaritions are closely related to the study of the refraction of
light at an interface between two media. They first appear in the elementary
treatments of the properties of light at the planar interface between media. Here they
show up as a set of optical solutions which are distinctly different from those
involving reflected and refracted waves of light incident on the interface [82].

In this regard, it is a common text book study to treat the electrodynamics of the
refraction of light at a planar interface between two different media [69]. (See the
schematic in Fig. 1.6a.) The Maxwell equation solution of the problem considers a
plane wave incident from one media onto the interface. Upon encountering the
interface, part of the incident wave is reflected back into the media through which
the incident wave traveled and part of the incident wave is transmitted into the
media on the other side of the interface as a refracted wave traveling away from the
interface. These are, respectively, the reflected and refracted waves and represent
one important class of electrodynamic solutions at the interface.

However, depending on the dielectric properties of the two media a second class
of important solutions often exist on the interface. (See the schematic in Fig. 1.6b.)
From a similar treatment to that in the treatment of refraction, one can often obtain
the surface plasmon-polariton solutions at the planar interface between the two
media. These propagate parallel to the interface between the two media and have
fields which decrease in intensity with the separation from the interface. They are
no more difficult to study than the solutions for refraction at an interface but are
usually omitted in standard treatments of the electrodynamics of the planar
interface.

The solutions of the surface plasmon-polartion modes at the interface involve
treating the electromagnetic boundary conditions for waves traveling parallel to the
interface in the two media [82]. In addition, to complete the solution an additional
boundary condition is required that the fields in the media decay to zero at infinite
separation from the interface. From these arise the surface plasmon-polariton modes

Fig. 1.6 Schematics for: a the refraction of light at a planar interface between two media and
b the surface plasmon-polariton modes traveling at a planar interface. The surface
plasmon-polaritions propagate parallel to the interface between the two media and have fields
which decrease in intensity with the separation from the interface
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which along with the refractive solutions are required to understand all of the
electrodynamics of the media and the interface.

A particular example of the importance of surface plasmon-polaritons is in the
study of light scattering from rough surfaces supporting surface plasmon-polaritons
[83, 84]. For such systems, it is shown that the diffuse scattering from the rough
surface involves the coupling of bulk electromagnetic waves into and out of the
surface plasmon-polariton modes. This coupling is provided by the surface
roughness. As an example, it can be shown that the Anderson localization of
surface electromagnetic waves at the interface is responsible for certain important
backscattering enhancement from the interface.

In a similar way, the excitation of surface plasmon-polaritons is often important
is surface enhanced Raman spectroscopy [85]. In this phenomenon, the intense
fields of surface plasmon-polaritons excited on an interface can increase the
spectroscopic signals detected from molecules on the surface. An incident wave on
the surface couples to and excites surface plasmon-polaritons which are then used
to create spectroscopic transitions in molecules bound to the interface.

Related phenomena that utilized the enhanced fields of surface electromagnetic
waves to enhance physical effects are enhanced transmission phenomena of screens
and systems developed for near field microscopy [86, 87]. Thin films with a
periodic patterning of subwavelength holes can exhibit an enhanced optical trans-
mission. The enhancement is due to surface plasmon polaritons which travel
through the holes to given them an enhancement over the transmission observed in
the absence of surface electromagnetic waves.

Near field microscopes also utilize surface plasmon-polaritons [17, 18, 88]. In
this case the surface electromagnetic waves increase the resolution of the near field
microscope significantly over that of far field systems. This is due to the increased
information carried in surfaces waves and the conversion of surface wave infor-
mation to bulk electromagnetic waves by probe scattering. As a result, the system is
found to offer a significant subwavelength resolution. This resolution increase
represents a fundamental increase over that of far field microscopic techniques.

A final important example to nano-circuit technology is found in the formulation
of laser-like systems involving surface-plasmon polaritons. These are the basis of
the design of spasers [89]. Where the laser operates on the simulated emission of
photons to produce an amplified coherent beam of photons, the spaser does this for
the creation of a coherent beam of plasmon-polaritons. These provide for an easier
and more natural coupling of light into plasmonic circuits and nano-devices.

1.5 Nonlinear Properties of Nano-optical Systems

The ideas of metamaterials, photonic crystals, plasmonic surfaces, and other
nano-systems can be extended to include designs utilizing materials of nonlinear
optics [34–40, 45–50, 81]. Nonlinear optical materials are of interest as the prop-
erties that they display depend on the intensity of the electromagnetic fields
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interacting with them. This shows up in a change of the index of refraction as the
intensity of the electric fields applied to the nonlinear material are increased. It can
also show up within some materials in the generation of higher harmonics of an
initially applied harmonic electromagnetic mode [40, 81].

Nonlinear effects ultimately arise from the field dependence in electromagnetic
materials of the electric polarization on the fields applied to them. In linear materials
the electric polarization has a simple relationship to the applied electric field, i.e., it
is found to be directly proportional to the applied electric fields. For
non-ferroelectric materials the linear polarization is the first term in a Taylor
expansion of the electric polarization in the applied field, and it is generally the
dominant term of the expansion. The remaining terms of the expansion of the
polarization, containing higher powers of the field, are responsible for the effects
studied in nonlinear optics. These include the Kerr effect, and the generation and
mixing of higher harmonics of radiation within the material [34–40].

In a crystalline material, the polarization and the applied field are defined relative
to a crystal lattice containing chemical features which are repeated throughout the
lattice [34–40]. Both the lattice and the chemical features possess certain spatial
symmetries which are important in determining the properties of the polarization
and its response to an applied field. In particular, the symmetry properties of the
material are essential in determining the nonlinear effects displayed by the material.
As a result, it is found that the tensors describing how the polarization vector is
related to the various components and products of components of the applied
electric field are accordingly symmetry restricted.

An important example of symmetry restrictions involves second harmonic
generation [40]. Crystalline symmetry considerations are particularly important in
the study of the generation of second harmonics of radiation, accounting for the
absence of the phenomena in many materials. In particular, as a technologically
important example, symmetry considerations are responsible for the absence of
second harmonic generation in the bulk of metals. Metals generally have symmetry
groups that are inconsistent with second harmonic generation. It is only at the
surface of a metal were the surface breaks the symmetry of the bulk metal that
second harmonics can be generated in metallic systems [40].

A particularly interesting class of materials are those exhibiting Kerr nonlinearity
[34–40]. In these types of systems the dielectric constant of the nonlinear media
depends on the intensity of the electric field applied to the material. This forms the
basis of optoelectronic interest in Kerr media where it offers considerations of
possible use in the design of optical switches, transistor, and diodes. Here the
intensity of the applied electric field can cause a change in the dielectric response of
a nonlinear material that is functioning as part of an optical device. The change in
the dielectric response is used to modulate the output of the device, leading to a type
of switching functionality. In addition, multiple beam of light can be caused to
interact with each other in a Kerr material. This allows for the beams of light to
modulate one another’s transmission or reflection from the material.

The Kerr nonlinearity also leads to a number of interesting nonlinear optical
excitations to exist in some nonlinear systems [34–40]. In systems formed of linear
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media the excitations are the linear optical modes. These linear modes usually arise
as solutions of eigenvalue problems generated from the Maxwell equations. From
these the general solutions of the system are, consequently, written as a linear
combination of linear eigenmodes. This idea of a general solution expressed in
linear combinations of modal solutions is no longer the case in nonlinear systems.

In the limit of small nonlinearity there are solutions which look like renormal-
ized versions of the linear modes of the linear limit of the system, but because of the
nonlinearity in the system, these solutions do not form linear combinations which
are also solutions of the nonlinear system [34]. In addition, there exist completely
new types of excitations in nonlinear systems that do not have counterparts in linear
systems [35]. The nonlinear system is much more difficult to approach theoretical
than the linear system, and often there are no standardized methods for finding and
generating solutions for the excitations in nonlinear systems.

New, technologically important, types of excitations are found in nonlinear
media solutions which are seen to vanish from the system in its linear limit. These
are unlike the modes of the linear media systems as they have unique propagation
properties unlike modes of the linear media. The new class are soliton modes and
multiple solitons modes. These have been objects of study in many types of non-
linear systems, and they have a long history in many branches of physics, engi-
neering, and applied mathematics. The soliton modes that will be treated in this
book and that are of primary interest in nonlinear optics are bright, dark, and grey
solitons [35–40].

Solitons arise in nonlinear media because the dielectric constant of the media
depends on the intensity of the fields applied to it. In systems formed of linear
media it is usually possible to introduce localized dielectric impurities to the system
in such a way that the impurity media can support electromagnetic modes that are
bound to the impurity media. These are localized modes of the linear system which
are bound to the region in the vicinity of the impurity. In nonlinear optical media,
the intensity of an electromagnetic solution changes the dielectric response of the
media that binds the electromagnetic solution to the system. If the electromagnetic
solution is of the form of a localized pulse, it is possible for the field intensity of the
pulse to generate a dielectric response of the nonlinear medium so as to support the
pulse as a solution of the system. This is the origin of pulses known as bright
solitons. It represents a pulse of electromagnetic energy that is propagated through
the nonlinear media.

In addition, it is sometimes found that an intensity dip in the electromagnetic
fields can, through intensity modification of the dielectric of the nonlinear medium,
in the same way be supported by the nonlinearity of the system [35]. This type of
solution is known as a dark soliton. It represents a decrease in the electromagnetic
field and energy which is propagated through the system. A solution generated as a
partial dip in field intensity can also exist and propagate through the nonlinear
media. This known as a grey soliton. It is similar to the dark soliton but never has an
extinction of the field energy density in space. The bright, dark and grey solitons are
the single soliton solutions encountered in the study of nonlinear optics.
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Solutions representing combinations of the various solitons and extended non-
linear wave forms may also be generated and studied in nonlinear media [35].
These are multiple soliton and nonlinear wave interactions. It is important to note
that while the components of these multiple soliton modes have similar appearances
to the single solitons and/or the multiple mode solutions, they are not linear
combinations of the single soliton and nonlinear wave solutions. The multiple
soliton solutions are of interest in the study of the scattering of the various com-
ponents of the system from one another as the system evolves in time. In this way,
all of the solitons and multiple solitons generated in Kerr nonlinear media arise
though the mechanism of self-consistent interaction of the solution with the non-
linear medium which in turn supports the solution. In this book only nonlinear wave
and single solitons will be treated.

The solutions of systems formed of nonlinear optical media allow for important
new physics and engineering properties to be displayed for device applications. The
possibility of excitations to interact with themselves and with other excitations of
the nonlinear media provides the basis for the design and functioning of optical
transistor, diodes, and switches [36–40, 45–50]. In addition, nonlinearity expands
the excitations possible in the system adding new features to the response of the
system.

The transmission and reflection properties of devices formed of nonlinear media
are found to exhibit anomalies associated with the various excitations that can be
found within the nonlinear media. This may be an important element in the
determination of the functioning characteristics of devices employing these types of
materials. In addition, bright soliton modes find interest in system designs as the
field intensity peaks that they display can be used as a means of generating enhance
electromagnetic fields in nonlinear materials. Such enhanced fields may have
important applications in the generation of second harmonics of radiation and in the
design of optical switches.

In fiber optics systems bright solitons may also provide an effective means of
transmission of information as they offer energy efficiency and stability [90]. This
should also extend to the current study of these solutions in applications of photonic
crystals and metamaterial devices. These type of applications are currently devel-
oping as areas of interest in telecommunications and offer great promise.

Both photonic crystal and metamaterial technologies have also been applied to
the enhancement of second harmonic generation [81]. This is another field of
technological potential in the applications of the ideas of nonlinear optics. Second
harmonic generation in these materials is now discussed.

A second class of materials that are important in nano-science applications are
those used in the generation of second harmonics of radiation [36–38]. Second
harmonics generation results when an harmonic of light is introduced into a non-
linear medium which has the appropriate crystal symmetry for second harmonic
generation. Once introduced into the medium, the light interacts with the nonlin-
earity of the medium so as to create a new component of light in the system at twice
the frequency of the introduced harmonic. The generation of second harmonics has
applications in lasers technologies, microscopy of biological systems, and in
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spectroscopies of molecules and surfaces. In these applications the composition of
some of the laser components or of the biological samples or molecules studied
have second harmonic generating components associated with them.

The generation of second harmonics has many technological applications, but
there are also a number of problems associated with the technology employed for
second harmonic generation. As shall be shown later many of these difficulties are
naturally solved using photonic crystal and metamaterial technologies.

The problems of creating high intensity fundamental harmonics to enhance the
terms of the frequency doubled time components of the nonlinear polarization has
already been mentioned. Along with this problem is a material science considera-
tion of finding materials that, during their use in the generation process, will handle
intense fundamentals applied to them without having a breakdown of the material.
Solutions to these problems are topics of much research. The focus is on endeav-
oring through material science to find new materials with more efficient conversion
properties and to understand what features of materials will assist in the formulation
of more efficient conversions. Even if these problems are overcome, however, it
does not necessarily result in an efficient generation process.

An additional important consideration during the generation of second har-
monics is the problem of phase matching. As the fundamental propagates through a
uniform medium of nonlinear material, it can continuously generate second har-
monic radiation all along its trajectory. The waves generated at different points
along the trajectory will have different phases. This means that waves from par-
ticular regions of the trajectory will add constructively with waves generated along
other parts of the trajectory. However, waves generated in particular regions along
the trajectory will also encounter waves from other parts along the trajectory that
will add destructively with them. When considered as a whole, the destructive and
constructive inference effects result in second harmonic generation which is of low
efficiency in uniform homogeneous systems [36–38, 40].

1.6 Forces

A topic of interest in nanophotonics involves the application of force to
nano-particles and atoms [41, 91, 92]. This can provide a means of manipulating
them or trapping them is space. Both applied electric and magnetic fields can exert
forces on nanoparticles [41, 91]. These may be static fields with a spatial gradient or
time dependent fields. The interaction of electromagnetic waves with individual
particles, in itself, provides a means of spatially manipulating the particles [92].

For static fields, the energy of interaction with particles is described by the field
energy density so that a particle experiences an electromagnetic force as it moves in
space to lower its energy [41]. This also applies to the interaction with electro-
magnetic waves [92]. In this case, it may be seen from the conservation of
momentum and the change in the radiation pressure of an electromagnetic wave as
it scatters with a nano-particle.
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These are very basic electrodynamic features of the interaction of particles and
fields, but they have interesting applications for investigations in biology and other
nano-particle systems. Here they have been used to direct the motions of bacterium
and in combination with chemical reactions to create the motion of mano-projectiles
[41]. This is a form of nano-machine [41].

At the atomic level, an important problem is the trapping in space of individual
ions [91]. This requires the application of time dependent electromagnetic fields as
it is a theorem of electrostatics that a static trapping potential cannot be formulated
in three-dimensional space. The time-dependent fields are adjusted so that, on time
average, they provide a trapping mechanism in three-dimensions. This is done in
one of two basic trapping schemes which form the basis of the Penning and Paul
traps.

An important application of trapped atoms, aside from studies in quantum optics,
is in the proposed designs for quantum computers [91]. Here there are, however,
many other types of quantum systems that have been of interest in quantum
computing.

A final important topic in nanoscience forces is the Casimir force [93]. This is a
force arising between surfaces due to the vacuum fluctuations in quantum elec-
trodynamics. The force arises from the change in zero-point energy with changes in
the surface configuration and the associated field boundary conditions. It is a
short-ranged interaction which can be significant on the scale of nanoscience
systems.

A similar type of force is observed in the attractive force between two closely
parked boats arising from the wave motion on the water between the two vessels.
The force again arises from the changing energy of the waves as the boundary
conditions change with the vessel separation. In this analogy, it should not be
forgotten that the Casimir force is only present in quantum systems whereas the
boat analogy is solely a classical mechanics based phenomenon.

1.7 Near-Field Microscopy

Another important technology based on nanoscience phenomena is near-field
microscopy [94–98]. This is the key to subwavelength imaging which allows for the
study of the features of systems which cannot be imaged in far-field microscopy. It
is a recent development bases on a proposed system suggested by Synge in 1928
[94, 95]. As it required a close, measured, approach to the surface being studied, it
required many years of development for its implementation [96–98].

Due to a fundamental limitation from the principles of microscopy, the far-field
microscope has a limited resolution that it can achieve. This is a limitation fixed by
the wavelength of the radiation and arises from the nature of the dispersion relation
of light and the far-field nature of the collection process.

An important aspect of the formulation of the near-field system is that the
near-field microscope measures the components of the evanescent waves from the
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object being imaged. The measurement of these components is required to accu-
rately represent the image generated within the microscopy process. The evanescent
components decay exponentially with separation from the object so that they are
absent in the collected fields of far-field devices.

While far field microscopes involve the use of lenses in order to collect and
process the collected radiation into an image, this is not the case with the near-field
microscope. An important component of a near-field microscope is a probe which
transforms the evanescent field waves of the object into propagating waves carrying
the subwavelength features of the information gathered from the object.

The development, understanding, and interpretation of the images obtained by a
near-field microscopy scheme is a recent, ongoing, project [94–98]. To this end
many different probe and collection arrangement have been employed.

1.8 Quantum Computers

The development of new means of computation has been an important aspect of
nanoscience. Much of this work has been directed at applying new ideas of optics to
develop conventional computers based on the ideas formulated in classical studies
of computation. Some of the work on computers, however, has been focused on
new ideas of quantum computation [99–104]. These involve the development of the
unique properties of quantum mechanical systems in the design of massively par-
allel computational arrangements. For now, most of this work is theory, but there is
a continuing process focused on the experimental implementation of these ideas.

The essential property in the development of quantum computers is that of the
ideas of superposition of quantum states and entanglement [99–101]. These are
essentially quantum mechanical properties which arise as the quantum mechanical
formulation is based on studying the dynamics of probability amplitudes rather than
probability distributions. Entanglement properties are at the basis of the
Einstein-Podolsky-Rosen paradox, and it was shown by Bell to be responsible for
the difference in the idea of probability in quantum and classical mechanics. Ideas
of superposition of states and entanglement are fundamental in developing the
parallel algorithms which would function on quantum computers.

In a classical computer, the operations are based on switches which can register
as on or off. By arranging a sequence of a number of such switchings, information
can be stored and processed. In these processes, however, a switch can only be on
or off. This is not the case in quantum computing.

In a quantum computer, the switch can be represented by an atom so that in the
ground state the atomic switch is off and in the excited state the atomic switch is on
[102–104]. In the quantum mechanics of an atom, however, the atom can be in a
superposition of the ground and excited states. This and the entangled state
involved in the probability amplitudes of states of multiple atomic systems is a new
feature of quantum systems. It does not occur in classical mechanics, and these new
features are found to allow for novel types of parallel computation.
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In a quantum computer, a superposition of states or entangled state of quantum
switches can be developed as an initial state of data input. The mixed input should
consist of equality weight states of all possible input data to the computer. The input
state is then acted upon by an algorithm to generate an output of superposed or
entangled states composed from states each consisting of an original input state
associated with its output from the computation.

The output contains the results from the calculation made on each of the inputs
making up the input superposed state. It is a superposed state composed of both
input and their associated output states with each such composite state in a mixture
of all input-output composite states. The focus of the program for this processing is
to design an algorithm which develops an output superposed state which pre-
dominantly contains the input-answer data which is of interest to the programmer.
Consequently, by redoing the computation a few times it should be possible to
determine the correct answer to the problem being solved.

This type of process is shown theoretically to be effective, for example, in the
factorization of large integers. Using conventional methods of classical computation
this factorization problem quickly becomes intractable. It is found in a number of
computation processes that the parallel nature of the quantum computation repre-
sents an increase in efficiency over the traditional processes of classical
computation.

1.9 The Focus of the Book

The outline of the topics given above will form the focus of the topics presented in
the following chapters. The object is to present the basic ideas involved in the
phenomena which form the study of nanophotonics. Rather than aiming at a
comprehensive presentation or a formal review, the materials are meant as an initial
help to the student to progress in the student’s interests in the field of
nanophotonics.

Reviews have been cited in each of the areas addressed. These should facilitate
the initial steps in each of the fields discussed.
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Chapter 2
Mathematical Preliminaries

In this chapter, the mathematics needed to understand the basic properties of
nanophotonic systems is reviewed. These are basic techniques which have been
developed for general applications in condensed matter physics and in studies of
electrical engineering problems. They are important in nanophotonics as many of
the systems of nanophotonics are similar to systems studied in the general physics
of material science and in engineering applications. The primary difference being
the length scales relevant to the definition of the problems being posed.

First the mathematics of photonic crystals and metamaterials is treated. This
involves the study of periodic structures and the treatment of the response of
composite media that appear homogeneous on the scales of interest for their
applications. On atomic scales, these problems have been studied in solid state
physics and material science, and a number of techniques have been developed in
their treatment. It should not be surprising that ideas formulated at the atomic scale
can be generalized to systems engineered at other scales.

This is followed by an introduction to some of the basic points of the finite
difference time domain method for numerically integrating the Maxwell equations
along with the related approaches of the method moments and the finite element
method. The method of moments and the finite element methods are effective for
the numerical study of electromagnetic frequency modes in complex systems, while
the finite difference time domain method is applied to obtain any of the various
types of time dependent solutions. These three numerical approaches are commonly
used methods, applied to the solution of electrodynamic problems in complicated
materials.

The first treatment is of the general properties of composite media and photonic
crystals [1–11]. As shall be seen later, metamaterials may be viewed as a type of
composite material [1–3]. The approach to composite media which is of interest for
metamaterials is that which determines the properties of composites in an effective
medium approach [1–3]. This approach determines the response of the medium to
fields which change slowly in space compared to the spatial variations of the
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composite medium. The response of the composite material is then viewed as that
of a homogeneous medium.

Photonic crystals, on the other hand, are important for their periodically spatially
varying properties [4–9]. These allow for a variety of properties which are used to
confine and direct the flow of electromagnetic energy through space. The approach
to the study of photonic crystals is to treat them as a medium with periodically
varying dielectric properties [4–11]. For these systems the interest is in the response
to electromagnetic fields with spatial variations that are of the same order as those
of the periodicity of the dielectric properties. In this regard, the theory of photonic
crystals is closely related to that of the theory of electrons in metals and
semi-conductors [4].

2.1 Dielectric Properties of Composites and Photonic
Crystals

In their basic forms photonic crystals and metamaterials are based on periodic
arrays of dielectric structures [1–11]. Photonic crystals interact with waves with
wavelength of order of the basic periodicity of the dielectric properties while
metamaterials interact with waves having wavelength larger than the order of the
basic periodicity of the features which are periodically arrayed. For these materials
it is necessary to review some of the basic mathematical properties of periodic
media and some of the responses of composite materials [1–9].

2.1.1 General Theory for Composites

Some general considerations can be given regarding the nature of the effective
dielectric constant for composite media [1–3]. The focus in the following will be on
composites formed of two different media, though the discussions are subject to a
continuation to include composites of an arbitrary number of different dielectric
media. Only a system of two different dielectrics with permittivities e1 and e2 is
considered in detail.

A. Effective Media Approaches

Effective media approaches are popular in handling composites in which the
granules forming the medium are much smaller that the wavelengths of the elec-
tromagnetic modes interacting with the system. They are based on treating the
granular medium response to an interaction with electrodynamic modes as that of a
uniform averaged effective medium.

The simplest type of approximation of this type is the virtual crystal approxi-
mation. In the virtual crystal approximation a composite of grains with dielectric
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constants feig and volume fractions fpig is replaced by an effective medium with an
effective dielectric constant [1]

eeff ¼
X
i

piei: ð2:1Þ

The response of the systems is that of a system with the volume averaged dielectric
constant of the composite granules. As shown later this can be a very poor
approximation under certain circumstances.

A better approximation is the Maxwell Garnett or Effective Media
Approximation (EMA) [1, 2]. In this approach, the granules of a three dimensional
system with dielectric constants feig and volume fractions fpig are approximated
by spheres. To develop the theory, a sphere of dielectric constants ei is set within an
infinite otherwise homogeneous effective medium of effective dielectric constant
eeff . A uniform electric field, ~Eapp ¼ E0k̂, is then applied to the effective
medium-single sphere system, and the field generated within the sphere is deter-
mined as the response of the granule to the average system.

From classical electrodynamics the field inside the sphere is uniform and given
by [1, 2]

~EinðiÞ ¼ 3eeff
2eeff þ ei

~Eapp: ð2:2Þ

It then follows from this that

~EinðiÞ ¼ 1þ ei � eeff
3eeff

� ��1
~Eapp ð2:3Þ

which is rewritten as

~EinðiÞ ¼ 1� Cdei½ ��1~Eapp ð2:4Þ

where C ¼ � 1
3eeff

and dei ¼ ei � eeff : This approximates the field in the ei granules

as they interacting with the effective medium average of the granular system. An
important point to note is that the radii of the sphere do not enter into the rela-
tionships between the fields in (2.3) and (2.4) and are, consequently, irrelevant to
the effective medium discussions presented here. This is a nice feature of the sphere
approximation [1, 2].

The effective medium is then determined by computing the average of the
electric fields, �EinðiÞ, and the average of the displacement vectors, ~DinðiÞ over the ei
of the composites system [1, 2]. The averages are computed using fpig as weight
functions, taking advantage of the fact that both the electric and displacement vector
fields within the spheres are constant. The effective medium dielectric constant is
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chosen so that the average electric field is related to the average displacement vector
through eeff in the standard way.

Within the sphere the average of the electric fields and of the displacement
vectors are, respectively,

~Ein
� � ¼X

i

pi~EinðiÞ; ð2:5Þ

~Din
� � ¼X

i

piei~EinðiÞ ð2:6Þ

so that from ~Din
� � ¼ eeff ~Ein

� �
or

X
i

piei~EinðiÞ ¼ eeff
X
i

pi~EinðiÞ: ð2:7Þ

Substituting (2.3) and (2.4) in (2.7) then gives [1, 2]

X
i

pi
ei � eeff
1� Cdei

¼ 0; ð2:8Þ

which is then solved for eeff describing the response of the effective medium.

B. Analytic Forms Describing the Response of a Composite Medium

In the following, some general theoretical expressions describing the effective
response of a two component dielectric composite are developed [1–3]. These are
obtained based on the theory of the electrostatics of composite materials considered
in the absence approximations. They offer a less restrictive approach to composites
than those of the virtual crystal and Maxwell Garnett theories.

The theory developed has many useful applications in electrostatics. It is also
important in studying the quasi-static limit of electrodynamics, in which the elec-
tromagnetic wavelength is larger than the typical length scales of the composite
granules [1–3].

Consider a composite medium consisting of granules of dielectric constants e1
and e2 that is the dielectric between the plates of an infinite parallel plate capacitor
[2, 3]. The capacitor plates are located at z ¼ 0 and z ¼ L, and a potential is applied
across the capacitor so that / z ¼ 0ð Þ ¼ 0 and / z ¼ Lð Þ ¼ V0 where /ð~rÞ is the
potential between the plates (see the schematic in Fig. 2.1).

In the static and quasi-static limits the potential in the capacitor is a solution of

r � er/ð Þ ¼ 0; ð2:9Þ

subject to the earlier given capacitor boundary conditions. The composite dielectric
in (2.9) is given by
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e ~rð Þ ¼ e1h ~rð Þþ e2 1� h ~rð Þ½ � ¼ e2þ e1 � e2ð Þh ~rð Þ ð2:10Þ

where

hð~rÞ ¼ 1 in regions of e1
¼ 0 otherwise:

ð2:11Þ

The object in the following discussions is to develop the response of the composite
system to the applied potential in terms of an effective permittivity eeff and effective
electric field Eeff [2, 3].

The effective dielectric constant and electric field are defined such that the
energies of the composite and the effective medium systems are the same. This
requires [2, 3]

eeff ¼ 1
V

Z
V

dVe ~rð ÞE
2 ~rð Þ
E2
eff

ð2:12Þ

where V is the volume between the capacitor plates. Specifically, in obtaining (2.12)
the energies of the composite system capacitor and the capacitor in which the
composite medium is replaced by an effective medium are equated. From ~E ¼
�r/ and (2.12) it then follows that

eeff ¼ � 1
VE2

eff

Z
V

dVe~E � r/: ð2:13Þ

which introduces a connection to the potential between the plates.

Fig. 2.1 Schematic of the
capacitor geometry. The
composite material is
contained between the
capacitor plates which are
located at z ¼ 0 and z ¼ L.
A potential is applied across
the capacitor so that
/ z ¼ 0ð Þ ¼ 0 and
/ z ¼ Lð Þ ¼ V0 where / ~rð Þ is
the potential between the
plates
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The form in (2.13) is important in obtaining an expression for eeff in terms of a
surface integral over the capacitor plates. This is done by applying the vector
identity r � u~að Þ ¼~a � ruþur �~a and Gauss’s law to (2.13) so that

eeff ¼ � 1
VE2

eff

Z
V

dV r � /e~E
� �� /r � e~E

� �� 	 ¼ � 1
VE2

eff

Z
V

dVr � /e~E
� �

: ð2:14Þ

An application of the Divergence theorem to the far right form in (2.14) then
gives eeff as a surface integral over the capacitor plates. In applying the Divergence
theorem only the surfaces corresponding to the two capacitor plates contribute to
the surface integral. The other surfaces are infinitely smaller than the surfaces of the
two plates. In addition, since the potential is only non-zero at z ¼ L.
Equation (2.13) then becomes an integral only over the right capacitor plate [2, 3]

eeff ¼ 1
AE2

eff

Z
RP

dAe~Eeff �~E: ð2:15Þ

In (2.15), ~Eeff ¼ � V0
L k̂ where, for an effective field in the positive z-direction,

V0\0 is the potential on the right capacitor plate. A third and final important
relationship for the effective medium is then given by [2, 3]

eeff ¼ 1
V

Z
V

dVe ~rð Þ
~Eeff �~E ~rð Þ

E2
eff

: ð2:16Þ

Equation (2.16) can be shown to be equivalent to (2.15) and consequently to
(2.12). This is done using the relationships /eff ¼ �Eeff z and ~Eeff ¼ �r/eff

between the effective permittivity and effective potential of the effective media
capacitor to rewrite (2.16)

eeff ¼ � 1
VE2

eff

Z
V

dVe ~rð Þ~E ~rð Þ � r/eff : ð2:17Þ

Equations (2.13) and (2.17) are similar in form and applying the same steps in
going from (2.13) to (2.15) to (2.17) reduces (2.17) to (2.15). Key to this result in
that the effective permittivity in (2.17) only involves a surface integral over the right
hand plate of the capacitor. Consequently, (2.16) is equivalent to (2.12) and (2.15).
These three relationships are of value in the formulation of a general treatment of
the electromagnetism of composite materials.

Combining (2.9) and (2.10) the potential between the capacitor plates is a
solution of [2, 3]
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r2/ ¼ 1� e1
e2


 �
r � h ~rð Þr/½ �: ð2:18Þ

This Poisson equation for / is useful as it allows the boundary value problem for
the capacitor containing a composite medium to be reformulated into an easier to
handle, equivalent, integral equation.

The conversion is accomplished in the standard way, using the Green function
G ~r;~r0ð Þ solution of

r2G ~r;~r0ð Þ ¼ �dd ~r �~r0ð Þ: ð2:19Þ

Here d is the dimension of the space in which the composite medium is defined, and
the Green function is subject to G ¼ 0 boundary conditions on the closed surface
enclosing the infinite parallel plate capacitor.

Before making the reformulation it is important to note that the solution to (2.18)
satisfying the capacitor boundary conditions can be written in the form [2, 3]

/ ¼ /hþ/inh: ð2:20Þ

In (2.20) /h is a solution of r2/h ¼ 0 with boundary conditions /h z ¼ 0ð Þ ¼ 0,
/h z ¼ Lð Þ ¼ V0, and /inh is a solution of

r2/inh ¼ 1� e1
e2


 �
r � h ~rð Þr/½ �; ð2:21Þ

with boundary conditions /inh z ¼ 0ð Þ ¼ /inh z ¼ Lð Þ ¼ 0. The combined solutions
in (2.20) satisfy both (2.18) and the capacitor boundary conditions.

Using the Green function for (2.19) and the considerations of (2.20), (2.18) with
its boundary conditions are expressed by the more tractable integral equation [2, 3]

/ ~rð Þ ¼ �Eeff z� 1� e1
e2

� � Z
V

dV 0G ~r;~r0ð Þr0 � h ~r0ð Þr0/ ~r0ð Þ½ �: ð2:22Þ

Substituting (2.22) into the left side of (2.18) and using (2.19) yields the form on
the right side of (2.18). This shows that (2.22) represents an equivalent integral
equation reformulation of the differential equation boundary value problem.

Equation (2.22) is an inhomogeneous integral equation which is formally treated
using Hilbert- Schmidt theory to give a general idea of the physics of the composite
material. The formal solution of (2.22) in the Hilbert-Schmidt is now considered.

To begin, the identity r � u~að Þ ¼~a � ruþur �~a is applied to the integral in
(2.22) so that [2, 3]
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Z
V

dV 0G ~r;~r0ð Þr0 � h ~r0ð Þr0/ ~r0ð Þ½ �

¼
Z
V

dV 0 r0 � h ~r0ð ÞG ~r;~r0ð Þr0/ ~r0ð Þ½ � � h ~r0ð Þr0/ ~r0ð Þr0G ~r;~r0ð Þf g: ð2:23Þ

Using the Divergence theorem, the first integral on the right in (2.23) is converted to
a surface integral, but G ¼ 0 on the surface enclosing the volume of the capacitor so
that the first integral is zero. This leaves

Z
V

dV 0G ~r;~r0ð Þr0 � h ~r0ð Þr0/ ~r0ð Þ½ � ¼ �
Z
V

dV 0h �r0ð Þr0G ~r;~r0ð Þ � r0/ ~r0ð Þ: ð2:24Þ

Defining the integral operator [2, 3]

C/ ¼
Z
V

dV 0h ~r0ð Þr0G ~r;~r0ð Þ � r0/ ~r0ð Þ; ð2:25Þ

Equation (2.24) and (2.25) applied to (2.22) result in the operator form

/ ¼ �Eeff zþ 1� e1
e2

� �
C/

¼ /hþ/inh

ð2:26Þ

to be solved for /.
The operator equation in (2.26) is studied using the Hilbert-Schmidt theory. In

this approach the solution to the inhomogeneous integral equation is expressed in
terms of the eigenvalues and eigenvectors of the kernel of the integral equation. To
apply the method in the following discussions, the eigenvalue problem for the
kernel is first treated, followed by a discussion of the orthogonally properties of the
eigenvectors, and finally the solution of (2.26) is developed as an expansion in the
eigenfunctions.

Specifically, consider the eigenvalue problem [2, 3]

C/n ¼ sn/n ð2:27Þ

where the eigenfunctions /nf g are equal to zero on the surface of the capacitor. The
problem in (2.27) is shown to give an orthonormal set, f/ng.

To this end, consider the tautological form obtained for the real operator C from
(2.27)
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Z
V

dVhr/m � r C/�n
� �� Z

V

dVhr/�n � r C/mð Þ ¼ s�n � sm
� � Z

V

dVhr/m � r/�n:

ð2:28Þ

This is just the integral equation form of that used to show the orthogonality
properties of differential equation eigenvalue problems. The left side of (2.28) will
be shown to be equal to zero, and from this the orthonormality properties of the
eigenfunctions will follow.

To see this, from (2.25) and (2.28) it follows thatZ
V

dVhr/m � r C/�n
� � ¼ Z

V

dVdV 0h ~rð Þr/mh ~r
0ð Þ � rr0G ~r;~r0ð Þ � r0/�n ~r0ð Þ

¼
Z
V

dVdV 0h ~rð Þr/�n ~rð Þ � rr0G �r;~r0ð Þ � r0/m ~r0ð Þ

¼
Z
V

dVhr/�n � r C/mð Þ

ð2:29Þ

so that the integral operators on the far right and far left of (2.29) are self-adjoint.
Using (2.29) in (2.28) it follows that

s�n � sm
� � Z

V

dVhr/�n � r/m ¼ 0: ð2:30Þ

so that fsng are real and for sn 6¼ sm the eigenfunctions /n and /m are orthogonal.
For properly normalized functions the orthogonality condition is

Z
V

dVhr/�n � r/m ¼ dn;m: ð2:31Þ

For a cases in which a complete set of functions f/ng exist, (2.31) can be used in
(2.22) to express the kernel, the inhomogeneity, and the solution / as an expansion
in f/ng. This allows for (2.22) to be formally solved in terms of the eigenstates of
(2.27).

Specifically, for the complete set f/ng

/ ¼
X
n

an/n; ð2:32Þ
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where from (2.32) and (2.31) an ¼
R
V dVhr/�n � r/ so that [2, 3]

/ ~rð Þ ¼
X
n

Z
V 0

dV 0h ~r0ð Þr0/�n ~r0ð Þ � r0/ ~r0ð Þ
2
4

3
5/n ~rð Þ: ð2:33Þ

A formal solution for / of the operator equation in (2.26) begins by rewriting
(2.26) in the form [2, 3]

/ ¼ �Eeff zþ uC/ ð2:34Þ

for u � 1� e1
e2
. From this

1� uC½ �/ ¼ �Eeff z; ð2:35Þ

with a solution given by

/ ¼ � 1þ uCþ uCð Þ2þ � � � þ uCð Þnþ � � � :
h i

Eeff z: ð2:36aÞ

(Note: one can add to (2.36a) a solution of the homogeneous equation
1� uC½ �/ ¼ 0, but these are analytic and not important to the present discussions.)
If the infinite series in (2.36a) exists, it is seen by direct substitution to be a

solution of (2.35). In problems with a complete set f/ng, a are more tractable form
of (2.36a) is obtained using the completeness properties of f/ng to write z ¼P

n bn/n which, upon substitution into (2.36a) and applying (2.27), gives

/ ¼ �Eeff

X
n

1
1� usn

bn/n: ð2:36bÞ

An expression for the effective dielectric constant in terms of the solutions of the
eigenvalue problem is obtained from (2.36b). This is done by considering the
expression for the effective dielectric constant in (2.16) rewritten in the form [2, 3]

eeff ¼ 1
VE2

eff

Z
V

dVer/eff � r/

¼ � e2
VEeff

Z
V

dV 1� uh ~rð Þ½ �rz � r/

¼ e2
VEeff

Z
V

dV 1� uh ~rð Þ½ �Ez: ð2:37Þ

Here (2.10) and /eff ¼ �Eeff z have been used on the second equality on the right. It
then follows from (2.37) that for s � 1

u
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FðsÞ ¼ 1� eeff
e2
¼ 1

Eeff

1
sV

Z
V

dVh ~rð ÞEz ~rð Þ

¼ � 1
Eeff

1
sV

Z
V

dVh ~rð Þrz � r/; ð2:38Þ

gives a relationship between the solution for the field and the effective dielectric
constant. From (2.36b) and (2.38) it follows that

FðsÞ ¼
X
n

Fn

s� sn
; ð2:39Þ

where FðsÞ ¼ 1
V b

2
n.

Equation (2.39) shows an interesting structure for the effective dielectric con-
stant. The effective dielectric constant as a function of s ¼ e2

e2�e1 consists of a series
of terms that exhibit singularities at the eigenvalues, fsng, of (2.27).

In general it is found, however, that for the eigenvalue problem in (2.27) to have
solutions the condition e1

e2
\0 must hold. This range of e1

e2
is commonly associated

with the quasi-static limit, discussed later, rather than electrostatic problems.
For cases in which e1

e2
[ 0, (2.36a) cannot be summed using eigen-solutions but a

term by term treatment of the series should be handled. When they exist, the poles
of FðsÞ show the strong dependence of the effective medium dielectric constant on
s, revealing that simple approximations such as the virtual crystal approximation
may often be far off the mark in approximating the average response of the
composite.

Later discussions of the simplified nature of the poles in (2.39) for various
effective medium theories and simple composite geometries will be addressed
[2, 3].

Quasi-Static Limit
The above theory has focused on the static system, but in some cases it can be
extended to frequency dependent systems. This is done in the so-called quasi-static
limit of electrodynamics. For an electric field between the capacitor plates of the
form ~Eð~r; tÞ ¼ ~E ~rð Þe�ixt the Maxwell equations become [2, 3]

r � e0~E
� � ¼ 4pq ð2:40aÞ

r �~B ¼ 0 ð2:40bÞ

r �~E ¼ ix
c
~B ð2:40cÞ
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r�~B ¼ 4p
c
r0~E � ix

c
e0~E: ð2:40dÞ

In these equations r0 is the conductivity of the free charge which contributes to the
DC conductivity and e0 is the dielectric constant of the bound charge which con-
tributes to the DC dielectric constant of the system.

It is important to note that this separation of the charges into the r0 and e0

responses of the system is known to be to some extent arbitrary and can be remade
in a number of different ways. As long as one develops a theory that is consistent in
how the separation is made, the electrodynamics in a consistent approach are the
same.

In addition to the Maxwell equations the system dynamics must satisfy the
continuity equation

r � e0E0ð Þ � ixq ¼ 0: ð2:41Þ

This is a statement of the conservation of charge for the system. In the quasi-static
limit of (2.40) and (2.41) the equations for the electric field are rewritten to look like
those in electrostatics. As now shown, this involves a renormalization of the field
equations in the long wavelength limit.

From (2.40a) and (2.41) it follows that [2, 3]

r � e0 þ 4pir0

x


 �
~E

� �
¼ 0; ð2:42Þ

and defining the permittivity e ¼ e0 þ 4pi
x r0 and displacement vector ~D ¼ e~E, (2.42)

becomes

r � D ¼ 0: ð2:43Þ

In the case that the wavelength of the electromagnetic wave generated in the
capacitor medium is much greater than the linear dimensions of the grains forming
the composite medium, i xc~B � 0 so that (2.40c) becomes [2, 3]

r�~E ¼ 0: ð2:44Þ

This last condition is also an important consideration in developing an effective
medium description of the average response of the granular system.

Equations (2.43) and (2.44) which now describe the electric field in the system
are the standard equations of electrostatics, but now the dielectric constant is
complex. Once the electric field is obtained as a solution of (2.43) and (2.44), the
magnetic field corresponding to these electric fields is obtained as a solution of
(2.40b) and (2.40d). The resulting electric and magnetic fields give the complete
field solutions in the quasi-static limit.
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Applications
An interesting use of the effective media approaches come in understanding the
properties of a material with various artistic applications. It is well known that when
small gold particles are dissolved in glass, the dilute mixture develops a beautiful
red color. The color arises from plasmon resonances of the gold particles and their
interaction with light sent through the glass.

To understand this effect, consider the effective dielectric constant of a weakly
dilute suspension of gold particles in a background medium of unit dielectric
constant (approximating that of glasses). For the metal particles take the dielectric
constant to be of the form [2, 3]

eðxÞ ¼ 1� x2
p

x2 ; ð2:45Þ

where xp is the plasma frequency. In (2.45) the response of the conduction elec-
trons of the metal to the frequency dependent electric fields are completely
described by a dielectric constant so that the conductivity effects are included in
(2.45).

An expression for the effective dielectric constant of the dilute mixture of gold
particles in glass is obtained by applying (2.8) to the two media system.
Specifically, consider

e1ðxÞ ¼ 1� x2
p

x2 ð2:46Þ

with a volume fraction p	 1 and

e2ðxÞ ¼ 1 ð2:47Þ

with volume fraction 1� p.
From (2.8) with i ¼ 1; 2 and C ¼ � 1

3eeff
(computed for spheres) it then follows

[2, 3]

p
e1 � eeff

1þ 1
3eeff

e1 � eeff
� � þ 1� pð Þ e2 � eeff

1þ 1
3eeff

e2 � eeff
� � ¼ 0: ð2:48Þ

Notice that (2.48) does not depend on the radii of the sphere but only on their
dielectric constants.

For p	 1 with eeff ¼ e2þ deeff it follows from (2.48) that to first order in p and
deeff ¼ HðpÞ

eeff ¼ e2þ 3pe2
e1 � e2
e1þ 2e2

ð2:49Þ
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It is interesting to note that, as an illustration of the general theory in (2.39), with
a little rewrite (2.49) can be put into the form generated in (2.39). Following some
algebra it is found that [2, 3]

FðsÞ ¼ 1� eeff
e2
¼ p

s� 1
3

ð2:50Þ

where s ¼ e2
s2�s1.

A further useful expression for the frequency dependence of (2.49) is obtained
using (2.46) and (2.47) in (2.49). This gives [2, 3]

eeff ¼ 1� 3p
x2

p

x2

1

3� x2
p

x2

; ð2:51Þ

which now offers an explanation of the red glow of the diluted gold particulate in
glass.

To understand the red glass consider the Maxwell field equations [2, 3]

r � eeff~E
� � ¼ 0: ð2:52aÞ

r �~B ¼ 0 ð2:52bÞ

r �~E ¼ � 1
c
@~B
@t

ð2:52cÞ

r �~B ¼ eeff
c

@~E
@t

ð2:52dÞ

Applying the standard treatment from electrodynamics, it follows from (2.52c) and
(2.52d) that

r r �~E� ��r2~E ¼ � eeff
c2

@2~E
@t2

ð2:53Þ

is the wave equation in the effective medium.
By substitution of a plane wave form, it is found that a longitudinal wave

solution of (2.52) and (2.53) occurs in the case that eeff ¼ 0. The condition, then, for
a longitudinal wave in the system is that [2, 3]

eeff ¼ 1� 3p
x2

p

x2

1

3� x2
p

x2

¼ 0; ð2:54Þ

Solving in the p	 1 limit gives
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x ¼ 1ffiffiffi
3
p 1þ 3

2
p


 �
xp: ð2:55Þ

Light in the effective medium at this frequency will resonantly interact with the
media so as to create the red glow in the dilute gold-glass material.

As an interesting point in regard to this result: The effective medium treatment of
the interaction of light with the plasma resonances, resulting in (2.55), is similar to
that of the Rayleigh scattering of light from molecules in the atmosphere. The sky
blue coloration of the atmosphere and the interaction of light with the atmosphere is
treated in an effective medium theory based on the molecular polarizability of
atmospheric gases. In the result for the atmosphere, the blue coloration is from the
x4 dependence of the molecular elastic scattering cross section. For the glass
problem the scattering of light is from the plasmons of the gold particles.

Some other exact result of the effective medium treatment that are worth men-
tioning are applications of (2.39) to layered media between the plates of the
capacitor. Consider a layered media of slabs formed from a first medium of
dielectric constant e1 and volume fraction p1 and a second medium of dielectric
constant e2e2 and volume fraction p2 ¼ 1� p1.

In the case that the slab surfaces are parallel to the planes of the capacitor, it is
shown that [2, 3]

1
eeff
¼ p1

e1
þ p2

e2
: ð2:56Þ

From (2.39) and (2.56) it follows that

FðsÞ ¼ 1� eeff
e2
¼ p1

s� p2
ð2:57Þ

where s ¼ e2
e2�e1.

In a second case, if the slab surfaces are perpendicular to the planes of the
capacitor, it is shown that [2, 3]

eeff ¼ p1e1þ p2e2 ð2:58Þ

where again p2 ¼ 1� p1. From (2.39) and (2.58) it follows that [2, 3]

FðsÞ ¼ 1� eeff
e2
¼ p1

s
ð2:59Þ

where s ¼ e2
e2�e1. These are simple cases which illustrate the general form for the

theory of composites given in (2.39).
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2.2 General Theory for Periodic Media

The theory of periodic media begins with the complication introduced by the
periodic variation in space of the media properties and the constraints relating to
these properties put on spatial functions of the medium [4–11]. To describe the
periodicity it is natural to introduce a lattice with the periodicity of the medium and
to define functions describing the properties of the media relative to this lattice. This
is done in three dimensions by choosing a set of three smallest linearly independent
vectors of the lattice ~a1;~a2;~a3f g which translate the lattice into itself as well as the
periodic medium into itself (see the schematic drawing in Fig. 2.2).

From these vectors any lattice translation taking the lattice into itself is of the
form [4–11]

~Ti ¼ ni;1~a1þ ni;2~a2þ ni;3~a3 ð2:60Þ

for integers, ni;1; ni;2; ni;3
� �

, and the set of lattice translation vectors f~Tig describe
the translational symmetry group of the lattice. The chosen vectors ~a1;~a2;~a3f g are
known as basis vectors, and in general the position vector of an arbitrary point in
space is written in terms of them as

~r ¼ x1~a1þ x2~a2þ x3~a3 ð2:61Þ

for x1; x2; x3ð Þ real.
In particular, for a function f ~rð Þ with the periodicity of the medium it follows

that

Fig. 2.2 Schematic of: a the x-y plane of a cubic lattice indicating a set of smallest translation
vectors~a1,~a2, and b the corresponding k-space lattice showing the x-y plane with smallest k-space
translation vectors ~b1 ¼ 2p

a1
î, ~b2 ¼ 2p

a2
ĵ
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f ~rþ~Ti
� � ¼ f ~rð Þ: ð2:62Þ

The restriction in (2.62) applies to all spatially dependent physical properties of the
medium and places a set of constraints on the form of the Fourier series of f ~rð Þ.
Specifically, considering the standard form of Fourier series

f ~rð Þ ¼
X
i

f ~ki
 �

ei k
*

i�~r; ð2:63Þ

the translational symmetry requirement in (2.63) restricts f~kig to satisfy

~ki �~Tl ¼ 2pn ð2:64Þ

for some integer, n. In the absence of (2.64) the function given by the Fourier series
is no longer periodic in the lattice.

For a three dimensional system (2.64) has solutions [4–11]

~ki ¼ mi;1~b1þmi;2~b2þmi;3~b3 ð2:65Þ

where

~b1 ¼ 2p
~a2 �~a3

~a1 �~a2 �~a3
ð2:66aÞ

~b2 ¼ 2p
~a3 �~a1

~a1 �~a2 �~a3
ð2:66bÞ

~b3 ¼ 2p
~a1 �~a2

~a1 �~a2 �~a3
ð2:66cÞ

for integers mi;1;mi;2;mi;3
� �

with n ¼ mi;1nl;1þmi;2nl;2þmi;3nl;3 an integer (see
Fig. 2.2 for a schematic of these vectors for the cubic lattice).

In the case of a two dimensional lattice system with basis vectors ~a1;~a2f g, (2.63)
and (2.64) give solutions [4–11]

~ki ¼ mi;1~b1þmi;2~b2 ð2:67Þ

~b1 ¼ 2p
~a2 � n̂?

~a1 �~a2 � n̂?
ð2:68aÞ

~b2 ¼ 2p
n̂? �~a1

~a1 �~a2 � n̂?
ð2:68bÞ
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for n ¼ mi;1nl;1þmi;2nl;2 an integer and where the unit vector n̂? is perpendicular to

both ~b1 and ~b2. With the representations of the f~kig in (2.65) and (2.66) or (2.67)
and (2.68), (2.63) yields a three or two-dimensional periodic function which has the
periodicity of the, respective, media.

In the case of the electrodynamics of periodic media the field equations are given
by [4–11]

r r �~E� ��r2~E ¼ � e ~rð Þ
c2

@2~E
@t2

ð2:69aÞ

and

r� 1

eðr*Þr �
~B

 !
¼ � 1

c2
@2~B
@t2

: ð2:69bÞ

Equation (2.69a) is interesting as the differential form r r�ð Þ � r2 exhibits
complete translational symmetry in space so that the restriction of the operators to
the translational symmetry of the periodic medium enters through the dielectric
constant, e ~rð Þ. Similarly, (2.69b) for the magnetic induction is periodic in the
medium. The magnetic induction can also be obtained from the electric fields by an
application of Faraday’s law so that its symmetry properties are intimately related to
those of the electric fields.

For electromagnetic fields of the form ~E ¼ ~Eae�ixt, ~B ¼ ~Bae�ixt (2.69) become

r r�ð Þ � r2 � e ~rð Þx2

c2

� �
~E ¼ 0 ð2:70aÞ

and

r� 1
eð~rÞr�

 �

� x2

c2

� �
~B ¼ 0 ð2:70bÞ

and the operators in the fg are seen to exhibit the translational symmetry of the
periodic lattice and medium. It is important to note, however, that even though the
operators in (2.70) are invariant under the translational symmetry, this does not
mean that the solutions ~Ea, ~Ba are necessarily invariant under the translational
symmetry.

Due to the translational invariance of the operator in the fg, it follows that the
translated fields ~Ea ~rþ~Tl

� �
,~Ba ~rþ~Tl
� �

for any given translation vector ~Tl must also
be solutions of the operators in (2.70). These solutions generally are not the
same as the original untranslated solutions ~Ea ~rð Þ, ~Ba ~rð Þ, but they are new solutions
with the same frequency x. From the conditions of translational symmetry, along

46 2 Mathematical Preliminaries



with the boundary conditions for (2.70), an important statement about the general
form of ~Ea ~rð Þ, ~Ba ~rð Þ can be inferred. These conditions are now discussed.

To define the ~Ea, ~Ba solutions of (2.70) in infinite space, periodic boundary
conditions over a parallelepiped of edge L!1 are applied. This is done to obtain
a set of solutions of the operators in (2.70) which are useful in discussing transport
properties of electromagnetic waves within the periodic dielectric system. If all of
space is partitioned into parallelepipeds of edge L!1 the periodic boundary
conditions require [4–11]

~Ea ~rþ~TL
� � ¼ ~Ea ~rð Þ; ð2:71aÞ

~Ba ~rþ~TL
� � ¼ ~Ba ~rð Þ ð2:71bÞ

for ~TL a translation taking one of the covering parallelepipeds of space into any of
the others in the spatial partition.

A general form for solutions satisfying these conditions is given by

~Ea ~rð Þ ¼ ei
~k�~r~U~k;n;a ~rð Þ; ð2:72aÞ

~Ba ~rð Þ ¼ ei
~k�~r~V~k;n;a ~rð Þ ð2:72bÞ

where ~U~k;n;a ~rð Þ and ~V~k;n;a ~rð Þ are periodic functions of the lattice, and in which the

f~kg satisfy

~k �~TL ¼ 2pn; ð2:72cÞ

for some integer, n, where ~TL is a translation vector of the parallelepiped spatial
partition. It should be noted that the periodic functions ~U~k;n;a ~rð Þ and ~V~k;n;a ~rð Þ may

be different for different ~k, and the subscript n is a band index as there may be
multiple solutions for a given~k corresponding to different eigenvalue solutions, x2.

A simple example of solutions for periodic boundary conditions is the case in
which e ~rð Þ ¼ e0 is a constant independent of position in space, i.e., the case of
complete translational symmetry. Equations (2.70) and (2.71) become

r r�ð Þ � r2 � e0x2

c2

� �
~E ¼ 0 ð2:73aÞ

and
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r r�ð Þ � r2 � e0x2

c2

� �
~B ¼ 0: ð2:73bÞ

where now the operators have complete translational symmetry. Under these
symmetry conditions the general from of (2.72) for the solutions becomes

~Ea ~rð Þ ¼ ei
~k�~r~E0; ð2:74aÞ

~Ba ~rð Þ ¼ ei
~k�~r~B0 ð2:74bÞ

where ~U~k;n;a ~rð Þ ¼ ~E0 and ~V~k;n;a ~rð Þ ¼ ~B0 are constant due the invariance of the
operators to translations of any length scale. Consequently, translating (2.74)
through ~T gives

~Ea ~rð Þ ¼ ei
~k�~Tei~k�~r~E0; ð2:75aÞ

~Ba ~rð Þ ¼ ei
~k�~Tei~k�~r~B0: ð2:75bÞ

Upon substituting either (2.74) or (2.75) into (2.73) gives

�~k ~k�
 �

þ k2 � e0x2

c2

� �
~Ea ¼ 0 ð2:76aÞ

and

�~k ~k�
 �

þ k2 � e0x2

c2

� �
~Ba ¼ 0: ð2:76bÞ

These equations generate the dispersion relations of the electromagnetic waves in
the uniform medium. Note that the first terms on the left side of the equation, from
the divergence Maxwell equations, are required to be zero in a uniform homoge-
neous medium.

This example gives an illustration of the general forms expected in the theory
due to translational symmetry. It will now be shown that spatially periodic systems
also exhibit periodicity properties of their dispersion relations in ~k-space.

As a consequence of the translational symmetry of the lattice and the periodic
boundary conditions the electromagnetic fields are of the general forms in (2.72).
From (2.72) it is now shown that the dispersion relations xð~kÞ has periodicity
properties in ~k-space. Specifically, consider substituting (2.72) into (2.70). This
gives
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r r�ð Þ � r2� �
~U~k;n;a

þ i ~k r�ð Þþr ~k�
 �

� 2~k � r
n o

~U
k
*
;n;a

þ �~k ~k�
 �

þ k2
n o

~U~k;n;a �
e ~rð Þx2 ~k

 �
c2

~U~k;n;a ¼ 0

ð2:77aÞ

where the forms for the magnetic induction can be obtained from Faraday’s Law

~B ¼ �ic
x
r�~E: ð2:77bÞ

The solution of these equations yields the periodic envelops ~U~k;n;a ~rð Þ and ~V~k;n;a ~rð Þ
of the forms in (2.72) for a specified ~k.

Now consider obtaining solutions for the case [4–11]

~Ea ~rð Þ ¼ ei
~kþ~kið Þ�~r~U~kþ~ki;n;a ~rð Þ; ð2:78aÞ

~Ba ~rð Þ ¼ eik
~kþ~kið Þ�~r~V~kþ ki;n;a

~rð Þ ð2:78bÞ

where ~ki ¼ mi;1~b1þmi;2~b2þmi;3~b3 are defined in (2.65) and (2.66) for a
three-dimensional system or for the case of a two-dimensional system are spe-
cialized in (2.67) and (2.68). If (2.72) is rewritten as

~Ea ~rð Þ ¼ ei
~k�~r~U~kþ~ki;n;a ~rð Þei

~ki�~r ¼ ei
~k�~r~U0~k;n;a ~rð Þ; ð2:79aÞ

~Ba ~rð Þ ¼ ei
~k�~r~V~kþ~ki;n;a ~rð Þei

~ki�~r ¼ ei
~k�~r~V 0~k;n;a ~rð Þ; ð2:79bÞ

it is seen that ~U0~k;n;a ~rð Þ and ~V 0~k;n;a ~rð Þ are again periodic functions of the lattice and as

such must also satisfy (2.77). It then follows that the solution set of eigenvalues

x2ð~kÞ
n o

and x2ð~kþ~kiÞ
n o

are the same. The eigenvalues are periodic in~k -space

with the periodicity of the lattice defined by the ~k -space translation vectors f~kig.
As an example of the translational symmetry of the dispersion problem, consider

the one-dimensional problem of a wave moving in a direction perpendicular to the
layers of a one-dimensional periodic dielectric medium. For a wave traveling along
the z-direction, the form of the wave equation for the electric field polarized per-
pendicular to the direction of propagation is given by [4–9, 11]
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@2~E
@z2
� eðzÞ 1

c2
@2~E
@t2
¼ 0: ð2:80Þ

Here eðzÞ is the position dependent dielectric constant of the periodic layered
medium.

Substituting

~E z; tð Þ ¼ ~EaðzÞe�ixt ¼ eikz~Uk;n;aðzÞe�ixt ð2:81Þ

yields

�k2þ 2ik
d
dz
þ d2

dz2
þ eðzÞx

2

c2

� �
~Uk;n;aðzÞ ¼ 0: ð2:82Þ

For the periodic permittivity let a be the smallest distance such that

e zþ að Þ ¼ eðzÞ ð2:83Þ

then from (2.63) the Fourier series of the eðzÞ is

eðzÞ ¼
X
m

emeikmz ð2:84Þ

where km ¼ 2p
a m for integers, m. Likewise, ~Uk;n;a ~rð Þ is periodic in z with the Fourier

series

~Uk;n;aðzÞ ¼
X
m

~U k; n; að Þmeikmz ð2:85Þ

Substituting (2.84) and (2.85) in (2.82) reduces the eigenvalue problem to an
algebraic form

kþ kmð Þ2~U k; n; að Þm�
x2

c2
X
p

ep~U k; n; að Þp�m ¼ 0: ð2:86Þ

Applying the same considerations to [4–11]

~E z; tð Þ ¼ ei kþ kið Þz~Ukþ ki;n;aðzÞe�ixt ¼ eikz~Ukþ ki;n;aðzÞei kiz�xtð Þ ð2:87Þ

where

~Ukþ ki;n;aðzÞeikiz ¼
X
m

~U0 kþ ki; n; að Þmeikmz ð2:88Þ

reduces to the eigenvalue problem
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kþ kmð Þ2~U0 kþ ki; n; að Þm�
x2

c2
X
p

ep~U
0 kþ ki; n; að Þp�m ¼ 0: ð2:89Þ

This is algebraically the same as that in (2.86) so the two problems have the same
solution sets.

A simple example of (2.86) is the case of a constant dielectric eðzÞ ¼ e. For this
dielectric, it follows that ep ¼ edp;0 so that

kþ kmð Þ2~U k; n; að Þm�
x2

c2
e0~U k; n; að Þm¼ 0 ð2:90Þ

where ~U is an even function of the subscript m. This has the standard solution of a
plane wave solution in a uniform homogeneous medium.

To summarize: the spatial periodicity of the dielectric function gives rise to
frequency modes of the form

~Ea ~rð Þ ¼ ei
~k�~r~U~k;n;a ~rð Þ; ð2:91aÞ

~Ba ~rð Þ ¼ ei
~k�~r~V~k;n;a ~rð Þ ð2:91bÞ

where ~U~k;n;a ~rð Þ and ~V~k;n;a ~rð Þ are periodic functions with the same periodicity as the
dielectric. Due to the translational symmetry of the operator eigenvalue problem,
the eigenvalue solution sets are invariant under a translation in ~k-space by
~ki ¼ mi;1~b1þmi;2~b2þmi;3~b3. Consequently, x2ð~kÞ

n o
and x2 ~kþ~ki

 �n o
are the

same.

Example of a One-Dimensional Photonic Crystal
A simple example of the properties of photonic crystals is given by the treatment of
a periodically layered medium. This problem is solved exactly for all of the earlier
derived formal properties arising in periodic systems. As will be discussed later, it
has many practical applications in designs of laser mirrors, optical coatings, optical
transistors, and other types of devices.

Consider a periodic system of slabs of thickness d with the interfaces between
the slabs taken to be perpendicular to the z-axis. The layering consists of slabs of
dielectric constants e and vacuum alternating in their layering along the z-axis (see
Fig. 2.3 for a schematic drawing of the layered system).

Specifically, the periodic dielectric, eðzÞ, of the layering is defined by [10, 11]

eðzÞ ¼ e for 2nd
 z
 2nþ 1ð Þd ð2:92aÞ

eðzÞ ¼ 1 for 2nþ 1ð Þd
 z
 2nþ 2ð Þd ð2:92bÞ
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where n is an integer. As a simple illustration of the periodic properties of the
medium, the system is studied for light propagating along z-axis, obtaining the band
structure, the form of the wave functions, and the periodicity properties mentioned
in the earlier discussions.

To begin, it is helpful to consider a single slab of dielectric constant e surrounded
by vacuum and to determine the solutions of the waves propagating along the z-
axis. Again, the interfaces of the slab are perpendicular to the z-axis. For generality,
the surfaces of the slab are taken at z ¼ z0 and z ¼ z1 where z0\z1.

With this geometry, the electric field in the vacuum satisfies [10, 11]

d2

dz2
þ x2

c2

� �
E ¼ 0 ð2:93aÞ

and within the dielectric satisfies

d2

dz2
þ e

x2

c2

� �
E ¼ 0: ð2:93bÞ

From (2.93) the frequency dependent solutions of the fields outside and within
the slab have the following forms: To the left of the slab the fields are [10]

ELðz; tÞ ¼ Aeik0zþBe�ik0z
� 	

e�ixt; ð2:94aÞ

within the slab the fields are

Fig. 2.3 Schematic drawing of the one-dimensional layered media of slabs of thickness
d periodically layered with vacuum and dielectric of dielectric constant n. The horizontal line is the
z-axis and the slabs are infinite in the x�y plane [10]
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ESðz; tÞ ¼ CeikzþDe�ikz
� 	

e�ixt; ð2:94bÞ

and to the right of the slabs the fields are

ERðz; tÞ ¼ Eeik0zþFe�ik0z
� 	

e�ixt: ð2:94cÞ

In (2.94)

k0 ¼ x
c
; ð2:95aÞ

and

k ¼ ffiffi
e
p x

c
: ð2:95bÞ

The boundary conditions at the interfaces between the vacuum and slab are the
continuity of the electric fields,

Evac ¼ Eslab; ð2:96aÞ

and of the field derivatives,

@Evac

@z
¼ @Eslab

@z
: ð2:96bÞ

Applying the boundary conditions in (2.96) at the right interface of the slab gives
the matrix equation

eikz1 e�ikz1
eikz1 �e�ikz1
����

���� C
D

����
���� ¼ eik0z1 e�ik0z1

k0
k e

ik0z1 � k0
k e
�ik0z1

����
���� EF
����
����; ð2:97aÞ

and at the left interface of the slab gives the matrix equation

eik0z0 e�ik0z0
eik0z0 �e�ik0z0
����

���� AB
����
���� ¼ eikz0 e�ikz0

k
k0
eikz0 � k

k0
e�ikz0

����
���� C
D

����
���� ð2:97bÞ

After some algebra, it follows from these two matrix equations that the field
coefficients in the vacuum at the left and right of the slab are related by [10]

Aeik0z0

Be�ik0z0

����
���� ¼ M11 M12

M21 M22

����
���� Eeik0z1

Fe�ik0z1

����
����: ð2:98Þ
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Here

M11 z0 � z1ð Þ ¼ cos k z0 � z1ð Þ½ � þ i
2

k0
k
þ k

k0


 �
sin k z0 � z1ð Þ½ � ð2:99aÞ

M12 z0 � z1ð Þ ¼ i
2

k
k0
� k0

k


 �
sin k z0 � z1ð Þ½ � ð2:99bÞ

M21 z0 � z1ð Þ ¼ � i
2

k
k0
� k0

k


 �
sin k z0 � z1ð Þ½ � ð2:99cÞ

and

M22 z0 � z1ð Þ ¼ cos k z0 � z1ð Þ½ � � i
2

k0
k
þ k

k0


 �
sin k z0 � z1ð Þ½ � ð2:99dÞ

From (2.99) it is seen that any two of the field coefficient A, B, E, F determine the
other two. These relations can now be applied to obtain the solution of the periodic
layering of the photonic crystal [10].

Equations (2.98) and (2.99) can be applied to the periodic layering in (2.92),
treating the fields outputted by one slab of the layering as the fields inputted at its
nearest neighbor slabs. In this way, the fields across a repeat segment of the periodic
layering are used to generate the solutions of the entire periodic system. The repeat
units of the periodic layering in (2.92) are defined such that the nth
vacuum-dielectric repeat unit is taken as the slabs between the z1 ¼ 2nþ 1ð Þd
interface and the z01 ¼ z1 � 2d ¼ 2n� 1ð Þd interface. It is a repeat unit containing
two slabs, a vacuum slab on the left of the unit and a dielectric slab on the right of
the unit. This forms the basic vacuum-dielectric unit from which the entire periodic
photonic crystal layering is generated.

Applying (2.98) between the two points z1 and z01, and introducing some nota-
tional changes meant to facilitate the study of the periodic system, gives the relation
[10]

An;0eik0 2n�1ð Þd

Bn;0e�ik0 2n�1ð Þd

�����
����� ¼ e�ik0d 0

0 eik0d

����
���� M11 �dð Þ M12 �dð Þ
M21 �dð Þ M22 �dð Þ
����

���� Anþ 1;0eik0 2nþ 1ð Þd

Bnþ 1;0e�ik0 2nþ 1ð Þd

����
����;

ð2:100Þ

Here the fields in the left vacuum slab of the nth dielectric-vacuum repeat unit have
been, from (2.94a), written in the form [10]

EL;nðz; tÞ ¼ An;0eik0zþBn;0e�ik0z
� 	

e�ixt; ð2:101aÞ

where the subscripted n indicates that the fields and coefficients are those of the
vacuum slab in the nth repeat unit. The field in the vacuum slab to the right of the
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dielectric slab in the nth vacuum-dielectric repeat unit, ER;nðz; tÞ, is just the field in
the right vacuum slab of the ðnþ 1Þth vacuum-dielectric repeat unit, i.e.,
EL;nþ 1ðz; tÞ. Consequently, in our new notation, from (2.94) it follows that

ER;nðz; tÞ ¼ EL;nþ 1ðz; tÞ ¼ Anþ 1;0eik0zþBnþ 1;0e�ik0z
� 	

e�ixt; ð2:101bÞ

where the Anþ 1;0, and Bnþ 1;0 coefficient notation used here has been applied in
(2.101a). The new notation developed here is found to aid in treating the periodic
nature of the layering.

In terms of (2.101a) the right and left propagating fields at z ¼ ð2n� 1Þd are,
respectively,

An;0eik0ð2n�1Þd ¼ Ane�ik0d ð2:102aÞ

Bn;0e�ik0ð2n�1Þd ¼ Bneik0d ð2:102bÞ

and from (2.101b) the right and left propagating fields at z ¼ ð2nþ 1Þd are,
respectively,

Anþ 1;0eik0 2nþ 1ð Þd ¼ Anþ 1e�ik0d ð2:103aÞ

Anþ 1;0e�ik0ð2nþ 1Þd ¼ Bnþ 1eik0d : ð2:103bÞ

In (2.102) and (2.103) the notation An ¼ An;0ei2nk0d , Bn ¼ Bn;0e�i2nk0d ,
Anþ 1 ¼ Anþ 1;0ei2 nþ 1ð Þk0d , and Bnþ 1 ¼ Bnþ 1;0e�i2 nþ 1ð Þk0d is introduced.

Applying this notation and using (2.100) it follows that

An

Bn

����
���� ¼ e�ik0dM11ð�dÞ eik0dM12ð�dÞ

e�ik0dM21ð�dÞ eik0dM22ð�dÞ
����

���� Anþ 1

Bnþ 1

����
���� ð2:104Þ

The resulting (2.104) relates the right and left propagating electric field components
at the right and left interfaces of the nth dielectric-vacuum repeat unit. In terms of
the newly defined coefficients An, Bn, Anþ 1, and Bnþ 1 the fields in the vacuum
adjacent to the left of the nth dielectric slab are [10]

EL;nðz; tÞ ¼ Aneik0½z�2nd� þBne�ik0½z�2nd�
h i

e�ixt; ð2:105aÞ

and the fields in the vacuum adjacent to the right of the nth dielectric slab are

ER;nðz; tÞ ¼ EL;nþ 1ðz; tÞ ¼ Anþ 1eik0 z�2ðnþ 1Þd½ � þBnþ 1e�ik0 z�2ðnþ 1Þ½ �d
h i

e�ixt:

ð2:105bÞ
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From the relation between the field coefficients on the right and left of the repeat
unit of the periodic layering a transfer matrix can be defined. This is a matrix that
can be used by its successive applications to generate the entire set of coefficients
fAng fBng along the periodic layering. It is seen from (2.104) that the transfer
matrix is

T
$ ¼ e�ik0dM11ð�dÞ eik0dM12ð�dÞ

e�ik0dM21ð�dÞ eik0dM22ð�dÞ
����

���� ¼ a b
b� a�

����
����; ð2:106aÞ

where

a ¼ e�ik0d cos kd � i
2

k0
k
þ k

k0


 �
sin kd

� �
ð2:106bÞ

and

b ¼ �eik0d i
2

k
k0
� k0

k


 �
sin kd: ð2:106cÞ

Applying the transfer matrix, for example, the field between the 0th and nth
repeat units are given by [10]

A0

B0

�����
����� ¼ T

 n An

Bn

�����
�����: ð2:107Þ

Consequently, all of the fAng, fBng coefficients of the infinite system are gen-
erated through the repeated application of (2.107).

From (2.107) it is seen that the matrix T
$
must generate sets of coefficients which

are bounded over the extent of the layering. If this is not the case, the wave function
solutions will blow up at some point along the periodic layering. Solutions which
approach infinite limits along the layering exhibit unacceptable physical properties
as they do not represent either propagating or bound states within the layering.
The requirement set upon T

$
for it to generate bound solutions are now addressed.

In the course of this discussion the dispersion relation of the propagating modes in
the layering is obtained.

Since T
$
is diagonalizable the general properties of the fAng, fBng solutions,

generated through the application of (2.107), can be deduced in terms of the
eigenvalue and eigenvectors of T

$
. The eigenvalue problem of T

$
and how its

solution affects the physics of the periodic layering is now addressed. From (2.106)

the eigenvalue problem involving T
$
has the form [10]
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a� k b
b� a� � k

����
���� AB
����
���� ¼ 0 ð2:108Þ

This is solved applying standard methods of linear algebra to find that the eigen-
values and eigenvector of (2.108). The eigenvalues are shown to be given by

k� ¼ R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 4
p

2
; ð2:109aÞ

where

R ¼ 2 cos k0d cos kd � k0
k
þ k

k0


 �
sin k0d sin kd: ð2:109bÞ

The eigenvectors associated with these k� are from (2.108) of the form

A� ¼ �b
a� k�

B�: ð2:109cÞ

Here B� can be chosen arbitrarily or to meet some form of normalization condi-
tions, and the coefficients Aþ ;Bþð Þ (corresponding to kþ ) and A�;B�ð Þ (corre-
sponding to k�) are a complete set in the space of possible An;Bnð Þ field
coefficients. In addition, for the following discussions, it should be noted from
(2.106) and (2.109) that A� and B� only depend on the variables k0, k, and d so that
they are independent of position along the photonic crystal layering.

Since the eigenvectors of (2.108) are a complete set, the behavior of the transfer

matrix relation in (2.106) is set by the properties of the eigenvalues of T
$
. In the

coefficient generating (2.106), if An;Bnð Þ ¼ Aþ ;Bþð Þ it is found that the transfer
matrix is of the form

T
$ ¼ kþ 0

0 kþ

����
���� ð2:110aÞ

Similarly taking An;Bnð Þ ¼ A�;B�ð Þ in (2.107) implies that

T
$ ¼ k� 0

0 k�

����
���� ð2:110bÞ

Consequently, the properties of the coefficients in the layered system of slabs are
determined by the integer powers of kþ and k�. The eigenvectors corresponding to
these eigenvalues, in fact, are the modes of the layered system, corresponding to
modal solutions of distinct frequency and wave vector. As noted later, the dis-
persion relations of the modes are obtained by studying the eigenvalues in (2.108).
It is necessary to turn to the discussion of eigenvalue properties to see how these
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affect the behavior of the system, determine the dispersion relation of the modes,
and how the eigenvalues are related to the modes of the periodic layering.

For the generation of a nonzero and bounded sets of fAng, fBng coefficients
along the layering, a set of highly restrictive conditions are required on kþ and k�.
For bounded solutions of (2.107), the k� need to be of the form

k� ¼ e�i2Kd : ð2:111Þ

for real K. The form of kþ and k� in (2.109) means that the coefficients and their
integral powers will maintain themselves at unit modulus all along the layering.
This keeps the coefficient sets fAng, fBng to bound solutions along the layering.
The consequences of this are seen from (2.107).

In addition, the trace of T
$
is the sum of its eigenvalues so that from (2.109) it is

found that K must satisfy [10]

2 cos 2Kd ¼ aþ a� ¼ 2 cos k0d cos kd � k0
k
þ k

k0


 �
sin k0d sin kd: ð2:112Þ

This equation is seen to relate K to the general physical parameters of the system.
To examine (2.112) for the general layering, it is found from (2.95) that k ¼ffiffi
e
p

k0 so that (2.112) relates either k0 or k to the phase argument K in an expression
that also depends on d and e. In later discussions it is shown that, for fixed d and e,
there are values of k0 or k for which K has no real solutions.

In these cases the system does not have propagating solutions. This causes the
solution to exhibit an energy band structure similar to that observed in the dis-
persion relation of electrons in semiconductors. Consequently, propagating solu-
tions of light only exist for real solutions of K. This has a great consequence for the
dispersion of light in the layered medium. Before some numerical results are pre-
sented, demonstrating the band structure of the system, a discussion of the prop-
erties of the wave functions is now given.

To complete the solution for the modes and the modal dispersion relation of the
infinite photonic crystal it is necessary to take into account the boundary conditions
on the solutions of the differential equations in (2.93) at the ends of the infinite
photonic crystal. The boundary conditions that are usually applied are periodic
boundary conditions between the ends at the left and right z! �1 infinite edges
of the layering. These boundary conditions give traveling waves type of solutions
that are found to be most effective in treating the transport properties of the system.
The boundary conditions also place restrictions on the form of K entering into the
dispersion relation in (2.112).

If there are N !1 repeat units in the photonic crystal layering, the length of the
photonic crystal layering is L ¼ 2Nd where 2d is the length of a repeat unit of the
periodic layering. For N layerings in the photonic crystal, periodic boundary con-
ditions on the system can be viewed as taking the N þ 1 layer of the photonic

58 2 Mathematical Preliminaries



crystal to be equivalent to the first layering of the photonic crystal. Considering the
form of the fields in (2.101), this means that

EL;1 z ¼ d; tð Þ ¼ EL;Nþ 1 z ¼ 2Nþ 1ð Þd; tð Þ ð2:113aÞ

so that from (2.105a) and the definitions of An and Bn in (2.102) and (2.103) it
follows that

A1e�ik0d þB1eik0d ¼ ANþ 1e�ik0d þBNþ 1eik0d: ð2:113bÞ

Examining this relationship for each of the two complete set of eigenvector
states, i.e., for each of the choices

An;Bnð Þ ¼ A�;B�ð Þ; ð2:113cÞ

it follows from (2.107), (2.110), and (2.113b) that

kN� ¼ 1 ð2:113dÞ

is required. From (2.113d) K must be of the form

K ¼ 2pn
2Nd

; ð2:114Þ

where n is an integer. This condition fixes the allowed values of K and consequently
of the k0 and k consistent with the periodic boundary conditions.

Next, consider the wave functions corresponding to the dispersion relations. The
vacuum fields in the nth repeat unit can now be written in terms of the eigenvector
solutions of (2.108). This shall be done for the kþ solutions of (2.108). For the
eigenvalue kþ ¼ ei2Kd the eigenvectors can be denoted Aþ ðKÞ;Bþ ðKÞð Þ, and
from (2.105a)

EL;nðz; tÞ ¼ Aneik0½z�2nd� þBne�ik0½z�2nd�
h i

e�ixt

¼ ei2nKd Aþ ðKÞeik0½z�2nd� þBþ ðKÞe�ik0½z�2nd�
h i

e�ixt
ð2:115Þ

represents the field within the region ð2n� 1Þd
 z
ð2ndÞ. Equation (2.115) can
be rewritten as

EL;nðz; tÞ ¼ eiKzUK;nðzÞe�ixt ð2:116aÞ

where
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UK;nðzÞ ¼ e�ikK½z�2nd� Aþ ðKÞeik0½z�2nd� þBþ ðKÞe�k0½z�2nd�
n o

ð2:116bÞ

defined over the region ð2n� 1Þd
 z
ð2ndÞ. The general expression for the fields
within all of the vacuum slabs in then given by

Evacðz; tÞ ¼ eiKzUKðzÞe�ixt ð2:117aÞ

for

UKðzÞ ¼ e�ikK½z�2nd� Aþ ðKÞeik0½z�2nd� þBþ ðKÞe�k0½z�2nd�
n o

ð2:117bÞ

where n is the smallest integer for which z
2d 
 n.

The wave function in (2.117) is of the form given in (2.72) needed to satisfy the
symmetry restrictions on the system. Similar calculations can be done for the k�,
A�ðKÞ;B�ðKÞð Þ eigenvalue-eigenvector results. The same can be done for the
fields within the dielectric slabs for a complete solution of the fields throughout the
entire layering.

Once the model solutions of the layered systems are obtained. Expansions of the
general non-modal solutions for the electromagnetic fields can be written in terms
of them. This is done using the orthogonality properties of the eigensolutions given
by

Z1
�1

dzeðzÞE�KðzÞEK 0 ðzÞ ¼ 2pd K � K 0ð Þ ð2:118Þ

where the eigenmodes are of the form discussed earlier

EKðz; tÞ ¼ EKðzÞe�ixt ¼ eiKzUK;layersðzÞe�ixt: ð2:119Þ

Here UK;layersðzÞ is defined over the entire z-axis as the periodic function part of the
K modal solution of the one-dimensional photonic crystal.

To illustrate some of the properties of the one-dimensional photonic crystals, the
dispersion relation of a layering is now discussed, with a presentation of numerical
data evaluated for a specific set of parameters. The results are found to exhibit a
series of pass and stop bands and to display periodicity of the dispersion relation in
wave vector space. In the previous section, these properties were of a type noted to
be common to all periodic systems.

The dispersion relation of the system defined in (2.92) is obtained from (2.109)
and (2.112) as
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cos 2Kd ¼ cos
x
c
d cos

ffiffi
e
p x

c
d � 1

2
1ffiffi
e
p þ ffiffi

e
p
 �

sin
x
c
d sin

ffiffi
e
p x

c
d; ð2:120Þ

where (2.95) relating k0 and k to x
c have been applied. Equation (2.120) is a tran-

scendental equation with solutions yielding x
c as a function of K for the modal

solutions of the layered media. It can be solved numerically for specific examples.
In Fig. 2.4a, a plot from (2.120) of the dispersion relation is generated for a

systems with dielectric slabs of refractive index n ¼ ffiffi
e
p ¼ 10. The plot shows x

c d
determined as a function of Kd and is observed to consist of a series of stop and
pass bands. Only modes at pass band frequencies are allowed in the system, and
modes at stop band frequencies can be shown to decay exponentially in the system.
Consequently, solutions at stop band frequencies are not stable solutions. Notice
that in Fig. 2.4a only the plot of positive Kd are shown as (2.120) is invariant under
the change of sign Kd ! �Kd.

Fig. 2.4 Plots of the
properties of the
one-dimensional photonic
crystal showing: a the
dispersion relation, x

c d as a
function of Kd from (2.120)
for dielectric slabs of
refractive index n ¼ 10, and b
the transmission coefficient
versus slab index of refraction
for a wave with k0d ¼ 1:5
incident on a layering of five
dielectric-vacuum slabs. The
plots are present for dielectric
and vacuum slabs each of
width d [10]
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In accordance with the discussions in the earlier section on the properties of
periodic systems, the dispersion is periodic in Kd with a periodicity of DKd ¼ p.
The periodicity extends over the entire range of �1\Kd\1 and shall be seen as
a limit on the general properties of the solutions of the system.

From the discussions in (2.115) through (2.119), the form of the fields in (2.119)
are found to also obey the symmetry

EK z; tð Þ ¼ EKþ nDK z; tð Þ ð2:121Þ

for n an integer. Consequently, both the dispersion relation and the wave functions
of the modes exhibit the same periodicity in Kd. The solutions found in a length DK
of the K axis represent a set of unique solution of the modal problem of the layer
system. Solutions outside this interval are replicas of those within the length DK.

Coatings on Interfaces and Mirrors
An interesting variation of the one-dimensional photonic crystal problem which is
relevant to the study of surface coatings is a treatment of the transmission properties
of a barrier composed as a finite layering of photonic crystal [10]. It is surprising
that a finite layering of even a small number of dielectric slabs exhibits many of the
properties of the infinite layered system. In the following such a comparison of
finite and infinite systems is discussed.

Consider the system defined in (2.92), but now restrict to a finite number of
layers. For a system of five layers [10]

eðzÞ ¼ e for 2nd
 z
ð2nþ 1Þd ð2:122aÞ

eðzÞ ¼ 1 for ð2n� 1Þd
 z
 2nd ð2:122bÞ

for n ¼ 0; 1; 2; 3; 4 and

eðzÞ ¼ 1 for z\� d an 9d\z: ð2:122cÞ

A schematic of this system can be represented by the five slabs shown in Fig. 2.3.
The fields within the vacuum layers defined in (2.122) are of the form given in

(2.105a) and their coefficient are again related by (2.104). Outside the layering the
fields for transmission boundary conditions are given by

Einc;refl z; tð Þ ¼ Ueik0zþVe�ik0z
� 	

e�ixt ð2:123aÞ

for z\� d and

Etrans z; tð Þ ¼ Teik0ze�ixt ð2:123bÞ
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for 9d\z. Equations (2.123a) and (2.123b), respectively, represent the incident and
reflected waves on the left of the barrier and the transmitted wave to the right of the
barrier.

The solutions of (2.122) and (2.123) are matched up using the boundary con-
ditions in (2.96). This follows from the theory presented in (2.97). Using these
matrix relations in combination with the relations in (2.104) the coefficient U, V are
expressed in terms of T.

Once the amplitude of the incident, reflected, and transmitted waves are found
the energy flow in the system can be studied. The Poynting vectors of the incident,
reflected, and transmitted waves are, respectively,

~SU ¼ c
8p

~EU � ~H�U ð2:124aÞ

~SV ¼ c
8p

~EV � ~H�V ð2:124bÞ

~ST ¼ c
8p

~ET � ~H�T ð2:124cÞ

where ~EU z; tð Þ ¼ ~Ueik0ze�ixt, ~EV z; tð Þ ¼ ~Ve�ik0ze�ixt, ~ET z; tð Þ ¼ ~Teik0ze�ixt have
been rewritten to make their vector nature manifest and ~HUðz; tÞ, ~HV ðz; tÞ, ~HTðz; tÞ
are the associated magnetic fields. In terms of these Poynting vectors the refection
and transmission coefficients of the incident wave are

Rrefl ¼
~SV
�� ��
~SU
�� �� ð2:125aÞ

TTrans ¼
~ST
�� ��
~SU
�� �� ð2:125bÞ

respectively.
For normal incidence the reflection and transmission coefficients are independent

of the polarization of the electromagnetic waves. Once the polarization of the
electric field is chosen, however, the polarization is of magnetic field in the elec-
tromagnetic wave is determined relative to that of the electric field. This determines
the flow of energy in the system.

Numerical results for the transmission of the system of five dielectric layers
plotted as a function of the dielectric constant are presented in Fig. 2.4b. The plot is
made for a wave with k0d ¼ 1:5 incident on the array of dielectric-vacuum slabs
each of which is of width d. Even for this small number of layers the regions of high
and low transmission in the plot compare well with the results for the stop and pass
bands in the dispersion relation of the infinite layered system [10].

As the dielectric constant of the dielectric slabs in the array is varied the trans-
mission is seen to go through a series of regions of near zero transmission. These
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regions of near zero transmission for incident waves with k0d ¼ 1:5 correspond
fairly well with the stop bands of the k0d ¼ 1:5 waves in the associated infinite array
of dielectric-vacuum slabs at that particular slab dielectric constant [10].

For example, in the infinite system the stop bands for the k0d ¼ 1:5 system are
obtained (2.120) to be located in the regions 1:054\ n\ 1:234,
2:611\ n\ 3:876, and 4:497\ n\ 6:081. The lowest stop band shows the
poorest correlation, with a rather incomplete transmission minimum in the region
1:054\ n\ 1:234. In this case the dielectric slabs in the region have dielectric
constants which contrast poorly with the vacuum layers. The higher bands, how-
ever, offer greater contrasts between the dielectric slabs and the vacuum and the
correlation is very good.

In general, the array of five slabs already displays many of the filtering properties
of the infinite system, refusing to transmit or propagate modes through the systems in
the stop bands. Likewise, the pass band modes of the associated infinite array are
generally allowed to pass through the finite array with high transmission coefficients.

The types of one-dimensional photonic crystal layerings treated above find many
applications in confining or filtering radiation. Examples are fiber Bragg gratings
and distributed Bragg reflectors. These types of systems are used as filters in fiber
optics having applications in telecommunications, optical sensors, and in the design
of lasers [10].

Another type of application of periodic layerings is in the design of coatings for
mirrors [10]. Here the coatings are applied to modulate the reflection of light or the
fields excited near the surface of mirror. The last application usually involves
mirrors composed with surface features that break the translational symmetry of the
otherwise planar surface of the mirror. This allows for the excitation of surface
plasmon-polaritons at the mirror surface.

As an example of such an application, consider a finite layering of
dielectric-vacuum slabs on the surface of a mirror formed as a planar surface of
perfect conductor. The fields in the layering are computed. The focus is on deter-
mining the field properties within the layering.

Consider the system defined in (2.92) restricted to a finite number of layers. For
a system of five layers on a perfect conducting mirror, the layering will be described
by [10]

eðzÞ ¼ e for 2nd
 z
ð2nþ 1Þd ð2:126aÞ

eðzÞ ¼ 1 for 2n� 1ð Þd
 z
 2nd ð2:126bÞ

for n ¼ 0, 1, 2, 3, with

e zð Þ ¼ 1 for 7d
 z
 8d ð2:126cÞ

eðzÞ ¼ e for 8d
 z
 17
2
d ð2:126dÞ
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and

eðzÞ ¼ 1 for z\� d an
17
2
d\z: ð2:126eÞ

The surface of the perfect conducting mirror is located on the right side of the
layering at z ¼ 17

2 d. Here the width of the slab adjacent to the mirror has been taken
to have a width d

2 so that the resulting layering and its image within the mirror
maintain the periodic layering of the earlier discussed barrier. This assures that the
coating on the perfect conducting surfaces retains the pass and stop band structure
of the barrier and its related infinite array (see Fig. 2.5 for a schematic figure which
gives an example of the system).

The fields within the vacuum layers defined in (2.126) are again of the form
given in (2.105a) and their coefficient are related by (2.104). Outside the layering
the fields for incident and reflected waves from the mirror are given by

Einc;reflðz; tÞ ¼ Ueik0zþVe�ik0z
� 	

e�ixt ð2:127aÞ

for z\� d and at the perfection conducting mirror

Emir z ¼ 17
2
d; t


 �
¼ 0 ð2:127bÞ

Fig. 2.5 Schematic figure of a layered coating on a perfect reflecting mirror. The mirror is
represented in black on the far right side of the figure
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This is essentially the statement that the transmission amplitude at the right edge of
the layering is zero while leaving the derivative of the field at the perfect conducting
surface unspecified.

Equations (2.127a) represents the incident and reflected waves on the left of the
barrier, and the reflection amplitude for the mirror can be obtained by applying
(2.125a). In the absence of dielectric losses, the refection coefficient is one. The
incident and reflected wave amplitude in (2.127a), however, experience a phase
shift from the layered media and this phase shift shows up in the distribution of the
electromagnetic fields within the coating.

The properties of the coating on the perfect conductor mirror are illustrated with
a numerical example based on the same parameters as those used in generating the
results in Fig. 2.4b. To illustrate the behavior of the fields within the coating, the
field amplitudes are determined at the left hand vacuum-dielectric interface of each
slab.

Numerical results are presented in Fig. 2.6 for the amplitude of the waves at
some of the interfaces of the array as a function of the dielectric constant. The plot
shows result for the field intensity at the left surfaces of three different dielectric
slabs of the array.

The plots are made for a wave with k0d ¼ 1:5 incident on the array of
dielectric-vacuum slabs described by (2.126). As the dielectric constant of the
dielectric slabs in the array is varied the amplitudes of the waves are seen to go
through a series of regions of large and small amplitudes corresponding with the
stop (low, near zero, transmissions) and pass (high, significantly greater than zero
transmissions) band regions of the system in Fig. 2.4b.

For layerings made from dielectric slabs with index of refraction n within pass
bands of Fig. 2.4b, the fields within the layered coating are found to be of the same
order of magnitude as the incident and reflected fields in the vacuum to the left of
the coating. This is due to the coating allowing the fields incident from the outside
to pass to the perfect conducting surface, be reflected by the perfect conducting
mirror, and pass back through the coating to return to the vacuum to the left of the
coating.

For layerings made from dielectric slabs with index of refraction n within stop
bands of Fig. 2.4b, the fields within the layered coating are found to be much less
than the order of magnitude of the incident and reflected fields in the vacuum to the
left of the coating. This is due to the coating not allowing the fields incident upon it
from the outside to pass to the perfect conducting surface. Instead, the fields of the
incident waves decay as it enters the coating, while being reflected back into the
vacuum to the left of the coating.
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Fig. 2.6 Plots of the field
intensity at the interfaces of a
five dielectric layer coating on
a mirror as a function of
n. Results are shown at the
left surfaces of: a the left most
dielectric slab, b the middle
dielectric slab, and c the right
most dielectric slab
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2.3 Finite Difference Time Domain Simulations, Method
of Moments, and Finite Element Simulation

In this section an outline will be given of some of the important points of the
techniques of the finite difference time domain method [11–15], the method of
moments [15–17] and the finite element method [18]. These are numerical methods
which are commonly used to solve problems involving the propagation of elec-
tromagnetic waves through interactive media. The finite difference time domain
method focuses on the motion of the fields through space and time while the
method of moments and the finite element methods are focused on the frequency
modes of the system. These three simulation techniques will be successively out-
lined in the following.

2.3.1 Computer Simulation Methods

Computer simulation methods are approaches that are commonly employed to
obtain the solutions of problems in electrodynamics and have, in particular, formed
a standard basis for the study of many of the diverse systems encountered in the
fields of nanophotonics. All of the simulation methods are based on discretizing the
four Maxwell equations in space, time, or frequency to form sets of algebraic
difference equations. The resulting algebraic equations are then treated by computer
to generate what is often an essentially exact solutions to the electrodynamics
problems being considered.

As shall be seen the computer treatment, though a simplification over the dif-
ficulties involved in obtaining an exact solution to the set of differential equations,
introduces new sets of obstacles which must be overcome in order to obtain an
accurate representation of solutions. These include difficulties associated with the
finite memory available to the computer, the finite computational time available,
and the speed at which the computer operates. A balance must be struck in com-
puter methods between the accuracy of the generated solution and the efficient
management of the computer resources.

For the study of nanophotonics the most commonly employed computer
methods are Finite Difference Time Domain methods [11–15], the Method of
Moments [15–17], and Finite Element methods [15, 18]. These three different
methodologies of computer simulation will be the focus of the following discus-
sions. In the development of the simulation techniques, some of the basic advan-
tages and disadvantages in their application to different types of problems in
electrodynamics will be noted.

The basics of each of the three techniques will be discussed in the context of the
study of the propagation and scattering of electromagnetic waves. In these treat-
ments, systems will be considered in the absence of net electric and magnetic
charges for problems involving regions containing dielectric and magnetic
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materials. This requires the introduction into the simulation program of the spatial
organization of the various dielectric and magnetic materials and the definition of
the regions in which the incident radiation is scattered and in which it leaves the
scattering media.

Once the geometry and dielectric and magnetic nature of the scattering problem
are defined, the next important aspect of the problem is the development of the
Maxwell equations representing the scattering system. This includes a determina-
tion of the appropriate boundary conditions at the interfaces between the different
regions composing the scattering volume acted upon by the computer simulation.

Following these considerations, the specified differential equations must be
effectively discretized in order to reduce the problem to a manageable algebraic
form. In handling the discretization a number of important considerations are, then,
needed for writing an effective computer algorithm to efficiently process a set of
inputted data so as to output a solution.

To begin these programing considerations, an important point to note is that the
form of the Maxwell equations used in computer simulation studies is often
modified from the standard set of Maxwell equations encountered in classical
electrodynamics. The reason for this modification is to aid in the correct treatment
of scattering boundary conditions at large separations from the scattering structures
being studied. The boundary conditions in these regions, for example, must account
for the need to solve a scattering problem in infinite space as it is approximated by a
finite space represented within a computer memory.

In particular, the standard form of Maxwell’s equations relates the electrical
charges and currents and the electrical polarization and the magnetizations to the
four fields of electrodynamics. The generalization of these used in computer sim-
ulation studies is often made by introducing a set of fictitious magnetic charges and
magnetic currents into the standard form of the Maxwell equations. As shall be seen
later, the fictitious magnetic charges and currents are useful in devising scattering
boundary conditions.

Consequently, for many of the following discussions, it is convenient to take
Maxwell’s equations in the form [11, 14]:

@~B
@t
¼ �r�~E �~Jm; ð2:128aÞ

@~D
@t
¼ r� ~H �~Je; ð2:128bÞ

r � ~D ¼ 0; ð2:128cÞ

r �~B ¼ 0; ð2:128dÞ

with constituent relations
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~B ¼ l~H; ð2:129aÞ
~D ¼ e~E; ð2:129bÞ

~Jm ¼ rm~H; ð2:129cÞ
~Je ¼ re~E: ð2:129dÞ

As per the earlier remarks, these equations include the possibility of both a fictitious
magnetic current, ~Jm, as well as a real electric current, ~Je. In addition, for a linear
medium the electric and magnetic currents are both related to the magnetic and
electric fields through the magnetic conductivity, rm, and the electrical conduc-
tivity, re. Written in this form, the above equations will be seen later to lead to
successful treatment of computer simulation studies of scattering from structures
within linear electrical and magnetic media.

The formulation in (2.128) and (2.129) involving both electric and magnetic
currents is useful in simulations meant to study the generation and propagation of
scattered waves by linear scattering media. In the later discussions of boundary
conditions it will be found that by effectively arranging the electrical and magnetic
conductivities of an outer boundary layer of the finite scattering region, a perfectly
absorbing region which does not reflect radiation incident upon it can be arranged.
This makes the finite scattering region look infinite in extent. In this way, the
modified form of Maxwell equations used in computer studies are made to allow for
the approximation of the scattering in an infinite region of space by that in a finite
sub-region of space. Away from the perfectly absorbing boundary layer and within
the finite scattering region of the simulation, the magnetic charge and current are
zero and the simulation reverts to the standard forms of the Maxwell equations.

The arrangement of the absorbing region at the outer boundary layer of the
simulation is known as Perfectly Match Layer (PML) type of Absorbing Boundary
Conditions (ABC) [11, 14]. It is useful at the outer edges of the necessarily bounded
spatial region of a computer simulation, keeping radiation that arrives at the outer
spatial edges of a simulation from being reflected back into the interior of the
simulation. Such reflected components would give rise to spurious results in the
scattering generated by the simulation. This would limit the effectiveness of the
computer results as an approximation of the scattering in an infinite system.

Finite Difference Time Domain Method in a Two-Dimensional Medium
To develop the finite difference time domain method the basic ideas involved in its
formulation as a technique of computer simulation are illustrated by some simple
applications. Particularly useful illustrations of the method are applications to the
study of the electrodynamics of the scattering of an incident wave in a
two-dimensional electromagnetic medium. These provide important examples
which can be easily extended to the study of higher and lower dimensional systems
and to more general electrodynamics problems than those focused on simple
scattering.
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In this regard, two-dimensional problems are complicated enough that they
illustrate many of the basic difficulties to be overcome in developing finite differ-
ence time domain programs. However, they are still easier to express mathemati-
cally than is the theory for a fully three-dimensional system. This is not an essential
difficulty as many problems in the electrodynamics of nanophotonic materials are
essentially two-dimensional in nature and benefit to a considerable extent from
two-dimensional studies.

In the case of a two-dimensional system, the dielectric and magnetic properties
are functions of the coordinates defined in a plane but do not vary in the direction
perpendicular to that plane. For the following mathematical discussions, the
dielectric and magnetic properties of the scattering media will be taken to vary in
the x-y plane, but, otherwise, they will not depend on the coordinates along the
z-axis. In addition, the electromagnetic waves propagating in the system will only
travel in the x-y plane. These conditions then specify the standard formulation for
studying electrodynamics in general two-dimensional systems.

For these type of problems, the equations in (2.128) and (2.129) reduce to the set
of coupled partial differential equations [11, 14] given by

@Hx
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¼ � 1

l
@Ez

@y
þ rmHx
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In turn, due to the two-dimensional nature of the problem, these sets of equations
can be decoupled into systems of equations describing two different types of modes,
existing independent of one another in the electromagnetic system.

In this separation of modes, one set of modes are the TM modes. TM modes
have their magnetic field polarized perpendicular to the z-axis. Another set of
modes, which are separate from the TM modes, are the TE modes. These have their
electric field polarized perpendicular to the z-axis.
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The decoupled set of equations describing the TM modes are given by
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and their solutions provide half of the modes needed to characterize the general
behavior of the electrodynamic solutions of the system. From the same decoupling,
the remaining equations describing the TE modes are given by
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with modal solutions representing the remaining half of the modes needed to
characterize a general electrodynamic solution of the system.

For a general study of the two-dimensional problem both the TM and TE modal
equations need to be discretized into the form of algebraic equations which are then
separately studied by simulation methods. Here the purpose of the discussions is on
obtaining a basic understanding of the ideas of the finite difference time domain
techniques. Consequently, in the following a focus will be on how the difference
equations for the TM modes are obtained and on a discussion of their solutions.
This will serve as a means to develop in the reader a general understanding of the
method of finite difference time domain techniques. Subsequently, the TE mode
results are obtained in a similar manner to those of the TM, and it is left as an
exercise for the reader to work them out.

The set of difference equations for the evolution in space and time of the TM
modes are generated from the differential form of the Maxwell equations. This is
accomplished by discretizing the space and time derivatives and other general
functional forms encountered in the Maxwell differential equations on a space-time
lattice composed of a fine mesh of isolated points [11, 14]. The continuum variables
of the problem are then replaced by a discrete mesh which must be fine enough in
space and time so that the algebraic solutions accurately represent the electrody-
namic properties of the system treated. If the mesh is not fine enough the solutions
of the simulation will not effectively approximate the behavior of the system.
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To begin the discretization process, first focus on the transformation of the
differential equation in (2.131c) into algebraic difference equations. To discretize
the equation the discrete space-time lattice over which the electric field is defined
can be taken to be of the form iDx; jDy; nDtð Þ for i; j; n integers.

To simplify the notation, in the following these space-time coordinates will be
abbreviated by just listing the integers of the lattice sites, i.e., i; j; nð Þ. Consequently,
with these conventions the continuum electric field Ez x; y; tð Þ in (2.131) is trans-
formed into the electric field defined on the discrete lattice and is given as

En
z i;j ¼ Ez iDx; jDy; nDtð Þ ð2:133Þ

for the set of discrete space-time coordinates denoted by ði; j; nÞ.
Writing the definition of the derivative in the format of the trapezoidal rule, it

follows that the continuum time derivative in (2.131c), in discretized form, becomes

@Ez

@t

����
x¼iDx;y¼jDy;t¼ nþ 1

2ð ÞDt
� Enþ 1

z i;j � En
z i;j

Dt
: ð2:134aÞ

It should be noted here that, due to the nature of the discretization of the electric
field along the time axis and the form of the trapezoidal rule, it is necessarily found
that the time derivative obtained is at t ¼ nþ 1

2

� �
Dt, i.e., at the nþ 1

2 coordinate on
the time lattice.

Considering (2.131c) it is found that a consequence of this is that, while the
planes of constant time for the discretized ~E field are at t ¼ nDt, the planes of
constant time for discretized ~H are at t ¼ nþ 1

2

� �
Dt. As a result, the electric and

magnetic fields in the space-time lattice are not defined at the same time points of
the lattice. Rather they are seen to alternate in their time updates as the simulation
proceeds forward in time. The electric fields at integer time lattice sites are used to
find the magnetic fields at half-integer time lattice sites which in turn are used to
determine the electric fields at integer time lattice sites.

The need to define integer and half-integer lattice sites on the time lattice in the
discretization of (2.131c) and (2.134a) arose because of the nature of the trapezoidal
rule. Similar considerations must also be extended in the treatment of the space
derivatives in (2.131c). In particular, the electric and magnetic fields must be
defined, respectively, on integer and half-integer space lattice points to obtain a
successful set of difference equations. The discretization of the fields on the space
lattice will now be discussed.

Next consider the space derivatives in (2.131c) for the case in which the electric
fields are defined on the integer space lattice coordinates. Defining the electric field
in this manner again is found to set the nature of the representation of the magnetic
fields on the space lattice, requiring the magnetic field to be defined on half-integer
space lattice sites. In this way, adopting the notation of half-integer space lattice
points, it follows that
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and similarly
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The forms in (2.134b) and (2.134c) are the derivatives defined at
ðx; yÞ ¼ iDx; jDyð Þ. They occur on the right of (2.131c) and are seen to be written in
terms of the magnetic fields at the sites ðx; yÞ ¼ iþ 1

2

� �
Dx; jDy
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and

ðx; yÞ ¼ iDx; jþ 1
2

� �
Dy

� �
:

Consequently, it is follows from (2.131c) that under these consideration it is
most natural to discretize the Hx and Hy as

H
nþ 1

2
xi;jþ 1

2
¼ Hx iDx; jþ 1

2


 �
Dy; nþ 1

2


 �
Dt


 �
ð2:135aÞ

and

H
nþ 1

2
yiþ 1

2;j
¼ Hx iþ 1

2


 �
Dx; jDy; nþ 1

2


 �
Dt


 �
: ð2:135bÞ

In this discretization the magnetic fields on space-time lattices are shifted by
half-integers relative to the discretization of the electric fields which are defined to
be on the lattice at coordinates that are integer triplets.

The remaining spatial derivatives in (2.131) are handle in a similar manner.
Applying the same discretization convention to these equations, the time derivatives
of the magnetic fields in (2.131) are represented by
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As a further note in the discretization process, it is found that in order to assure
the consistency of the various discretization of the fields, the last term on the right
in (2.131c) must take the form

Enþ 1
z i;j þEn

z i;j

2
: ð2:137aÞ

In doing this it is assumed that there is an absence of free charges in the system and
that the electric field is continuous.

Under similar considerations to those for the introduction of the term in (2.137a)
into (2.131), it is found that in the last term on the right of (2.131a) the magnetic
field can be discretized into the replacement form
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2
; ð2:137bÞ

and in the last term on the right of (2.131b) the magnetic field there can be
discretized into the replacement form
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Added to the earlier considerations in (2.133) through (2.136) for the dis-
cretization of the various terms in (2.131), (2.133) through (2.137) form the
complete the set of relationship needed for a discretization procedure of the total set
of TM equations in (2.131). The application of these relationships is found to
provide a discretization of the entire set of differential equations in a consistent and
satisfactory manner.

The difference equations for the advancement in time of the magnetic and
electric fields of the TM modes on the space-time lattice are obtained by substi-
tuting (2.133) through (2.137) into (2.131) and applying a little algebra. In this way
the magnetic fields are developed in time by the equations [11, 14]
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and

2.3 Finite Difference Time Domain Simulations … 75



H
nþ 1

2
yiþ 1

2;j
¼ 1

1þ Dt
2

rm
iþ 1

2;j

liþ 1
2;j

1� Dt
2

rmiþ 1
2;j

liþ 1
2;j

 !
H

n�1
2

yiþ 1
2;j
þ Dt

Dx
1

liþ 1
2;j

En
z iþ 1;j � En

z i;j

 �" #

¼ A1 i; jð ÞHn�1
2

yiþ 1
2;j
þB1 i; jð Þ En

z iþ 1:j � En
z i;j

 �
;

ð2:138bÞ

which provide for the advancement of the magnetic fields to time t ¼ nþ 1
2

� �
Dt in

terms of the magnetic and electric fields in the two earlier time steps, t ¼ n� 1
2
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and t ¼ nDt, respectively.
Similarly the electric fields are developed in time by the equations [11, 14]
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which provide for the advancement of the electric fields to time t ¼ nþ 1ð ÞDt in
terms of the magnetic and electric fields in the two earlier time steps, t ¼ nþ 1

2

� �
Dt

and t ¼ nDt, respectively.
The equations in (2.138) are sequential applied in order to successively advance

the electric and magnetic fields in time. Applying (2.138a) and (2.138b) advances
the magnetic fields by one time step on the lattice so that (2.138c) can then be
applied to advance the electric fields by one time step on the lattice. Following this
the magnetic fields are again advanced a time step by (2.138a) and (2.138b), etc.
The cycle is repeated over and over again to develop the entire fields in space and
time.

In the formulation of the computer algorithm for the simulation, an important
point to note about the coefficients Alði; jÞ and Blði; jÞ for l ¼ 0; 1; 2 and C2ði; jÞ in
(2.138) is that they do not depend on the update time. Consequently, they only need
to be calculated once in the simulation program and may be stored for further
applications throughout the time stepping process. In addition, the fields determined
at any given time step are calculated from the fields of the two previous time steps,
and, as a result of this, at any time during the simulation process the fields needed to
be retained in storage are also limited. This facilitates the implementation of the
finite difference time domain method in terms of the requirements on the computer
memory needed for a computation.

It should also be noted in computing the field coefficients for (2.138) that care
must be exercised in choosing the values of Dt, Dx, and Dy under which the
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simulation operates. For an accurate time integration, the time step must be much
less than the period of the maximum frequency mode to be simulated. This,
however, must be balanced with the finite time available to execute the simulation.
enough to accurately represent the spatial variations of the modes being modeled by
the simulation. In this regard, the finite time available to execute the simulation is
again a factor.

A final important consideration in the design of a simulation program is the
boundary conditions. This is a very important consideration as the boundary con-
ditions select out solutions with the correct physics of the system being studied. The
boundary conditions can also be used to effectively model an approximation of the
physics of an infinite system with solutions obtained for a finite system. This
facilitates the application of the restricted resources available on a computer.

There are two general considerations in setting the simulation boundary condi-
tions [11, 14]. Initially it is necessary to specify the nature of the source of elec-
tromagnetic radiation entering or generated within the spatial region of the
simulation. In the later discussions, for an illustration, the initial fields will be taken
to be in the form of an incident plane wave. This is a common consideration for the
study of scattering problems.

The next point to deal with in formulating the boundary conditions involves the
finite spatial extent of the simulation region. Computer resources are limited to treat
scattering within a finite region of space, but most scattering problems of interest
occur within an infinite space. For the scattering from a localized target in infinite
space the scattered waves propagate off to infinity. In the scattering from a localized
target contained within a finite region of space, eventually the scattered radiation
will reach the outer boundary of the finite spatial region of the simulation where it
will be reflected back towards the target. For the finite spatial region of the sim-
ulation to represent a good approximation of the scattering of the localized system
in infinite space, the radiation that reaches the outer boundary of the simulation
must be absorbed rather than reflected back to the target. Some type of effective
absorbing boundary conditions at the outer edges of the finite simulation region are
required or the simulation will contain many boundary reflections as well as the
target scattering it is meant to simulate.

For the simulation of a two-dimensional system the finite spatial region of the
computer simulation can be thought of as a rectangular region with the scattering
target located near the center of the rectangle (a schematic of the set up in the x-
y plane is given in Fig. 2.7). In order to develop an approximation of the scattering
in infinite space, along the outer edges of the rectangular region of the simulation is
a thin strip that frames the region all along its outer perimeter. The frame can be
used to apply both the boundary conditions of the incident plane wave fields and the
absorbing boundary conditions used to remove the scattered fields that reach the
framed region at the outer edges of the simulation rectangle. The incident waves are
introduced in the region of the frame and move towards the center of the simulation
region where they scatter from the target. In addition, the absorption feature in the
frame region keeps the scattered fields from reflecting back into the target region of
the simulation.
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First consider how to simulate a plane wave incident on the inner rectangular
region that is surrounded by the frame. This is the region containing the target
media. The incident plane wave is introduced into the inner rectangle at the
interface between the inner rectangle and the region of the frame. This is done by an
application of appropriate boundary conditions at this interface. In the inner rect-
angular region containing the target, the total fields are composed of the incident
wave and the scattered wave. In this inner region the total fields evolve in time by
(2.138).

Within the surrounding framing region, which is outside the inner region con-
taining the target, only the scattered wave exists. The reason for this is because the
incident wave traveling to the target is introduced at the boundary between the
framing region and the inner region containing the target. In the framing region,
however, the scattered fields are allowed to enter, and in this region they again
evolve in time by (2.138).

Boundary conditions are required at the interface between the framing region
and the inner rectangle region containing the scattering media in order to match the
conditions on the electromagnetic fields just described. To match the two different

Fig. 2.7 Simulation inner region and framing regions and the outermost boundary of the
simulation. The incident plane wave is introduced on the edge between the inner region and the
framing region. The framing region contains only a scattered wave which must not be allowed to
reflect back into the center of the simulation from the outer edge of the framing region (i.e., the
outer most rectangle). Within the inner region the electric field is composed of the incident and
scattered fields and the target
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types of solutions in the framing region and in the inner rectangle it is necessary to
make it appear that the incident plane waves in the inner region arise at the interface
between the framing region and the inner region containing the target.

As an illustration of how the incident wave boundary conditions are formulated,
consider the treatment at the lower edge interface between the frame and inner
rectangle in Fig. 2.7. The lower edge is parallel to and below the x-axis in the
figure. Its location can be identified by giving its y-coordinate which is of the form
y ¼ jlDy for the integer coordinate jl.

As discussed earlier, the fields on and above the edge are total fields while those
below the edge are only scattered fields. Applying (2.138c) on the edge, taking to
account the form of the electric fields in the regions separated by the edge, gives the
time evolution equation at the edge [11, 14]

ETnþ 1

z i;jl ¼ A2 i; jlð ÞETn

z i;jl þB2 i; jlð Þ HTnþ 1
2

yiþ 1
2;jl

� HTnþ 1
2

yi�12;jl


 �
þC2 i; jlð Þ HSnþ

1
2

xi;jl�12
� HTnþ 1

2

xi;jl þ 1
2


 �

þC2 i; jlð ÞHInþ
1
2

xi;jl�12
:

ð2:139aÞ

Here superscripts have been introduced on the fields to indicate the total, scattered,
and incident fields.

In (2.139) the incident fields have been separated out so that they can be fed into
(2.139a) as inputs into the boundary conditions. In addition, (2.139a) contains the
scattered and total fields which are generated from the simulation upon introduction
of the incident fields. In this form, (2.139a) represents a boundary condition which
introduces the incident wave into the system and propagates it into the inner region.
At the same time the boundary conditions only allow scattered waves to propagate
into the framing region. On the two sides of the lower edge the scattered and total
fields in the equation are portrayed as evolving in time from the incident wave.

Additional equations for the magnetic fields at the lower edge of the inner
rectangle are also required to input the incident plane wave. For these fields, at the
same lower edge of the rectangle, (2.138a) becomes

HSnþ
1
2

xi;jl�12
¼ A0 i; jl � 1ð ÞHSn�

1
2

xi;jl�12
þB0 i; jl � 1ð Þ ESn

z i;jl�1 � ETn

z i;jl

 �
þB0 i; jl � 1ð ÞEIn

z i;jl :
ð2:139bÞ

As with (2.139a) the incident fields are again introduced into the simulation by the
last term on the right hand side of the equation. The remaining (2.138b) does not
changed its form at the lower edge, however, as it only couples terms along the
x-axis, i.e.,
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HTnþ 1
2

yiþ 1
2; jl

¼ A1 i; jlð ÞHTn�12
yiþ 1

2; jl

þB1 i; jlð Þ ETn

z i:þ 1; jl � ETn

z i; jl

 �
: ð2:139cÞ

The scattered fields below and the total fields at and above the lower edge are
coupled to one another and related to the incident wave source terms located on the
edge by (2.139a) and (2.139b). Similar considerations to those in (2.139) are
needed along the other three sides of the rectangular inner region.

In addition to the considerations of the boundary conditions on the four edges,
some special considerations at the vertices of the inner rectangular region are also
required. These all involve basically the same reasoning as applied in (2.139) and
will not be treated here. Further details of the considerations of these addition
boundary condition and the equations arising from them can be found in [11, 14].

The next set of boundary conditions that need to be addressed are the absorption
boundary conditions for the scattered waves. These boundary conditions keep the
scattered waves generated at the target from being reflected back at the target upon
their encounter with the outer edges of the simulation region. Two basic approached
have been developed to handle the removal of the scattered waves at the outer
boundary of the simulation.

The first type of approach is based on placing a dissipative medium at the outer
edges of the simulation in the framing region. In formulating the dissipative
medium it is useful to include both electrical and magnetic dissipation by intro-
ducing a medium with an electrical conductivity, re, and a magnetic conductivity,
rm. This is where the form of the equations involving magnetic charges and
magnetic currents enters into consideration. The other dielectric and magnetic
properties of the dissipative medium match those of the medium containing the
scattering target. Consequently, for the boundary conditions developed along these
line, the theory in known as the perfect matching layer (PML) approach.

In the following, as an illustration of the technique, the development of the
theory will be made for the TM system of equations in (2.131). The object of the
theory is to generate an approximation of a non-reflective medium. To do this, in
particular, start by finding the conditions required on re and rm so that a reflected
wave is not generated by TM waves at normal incidence to a planar interface
composed of the dissipative medium.

Remember that only the conductivities of the dissipative medium differ from the
medium with which it interfaces. Under these condition on the conductivities, the
resulting dissipative medium is taken as the PML for the problem being studied.
The conditions will now be worked out for a general planar interface between the
two media.

Consider the planar interface to be the y-z plane with the nonconductive medium
in the region x\0 and the conductive medium in the region x� 0. A TM wave
solution of (2.131) propagating along the x-axis in the nonconductive medium is
then given by
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Enc
z ¼ Enc

z0e
i kx�xtð Þ; ð2:140aÞ

Hnc
y ¼ Hnc

y0e
iðkx�xtÞ: ð2:140bÞ

where

x
k
¼ 1ffiffiffiffiffi

el
p ; ð2:141aÞ

and

Hnc
y0 ¼ �

effiffiffiffiffi
el
p Enc

z0 ; ð2:141bÞ

for the dispersion relation and the relationship between the electric and magnetic
field amplitudes, respectively.

Similarly, a TM wave propagating along the x-axis in the conductive medium is
given by

Ec
z ¼ Ec

z0e
iðkx�xtÞ; ð2:142aÞ

and

Hc
y ¼ Hc

y0e
iðkx�xtÞ: ð2:142bÞ

Substituting (2.142) into (2.131) for the conductive medium then yields

k2 ¼ el xþ i
re

e


 �
xþ i

rm

l


 �
; ð2:143aÞ

Hc
y0 ¼ �e

xþ i r
e

e

k
Ec
z0; ð2:143bÞ

for the dispersion relation and relation between the electric and magnetic field
amplitudes, respectively.

Under the condition that

re

e
¼ rm

l
; ð2:144Þ

it is found that the solutions at the x ¼ 0 interface between the nonconductive media
in (2.140) and (2.141) and the conductive media in (2.142) and (2.143) reduce to
one another. In particular, under these condition both Enc

z0 ¼ Ec
z0 and Hnc

y0 ¼ Hc
y0.

The conductive and nonconductive media, consequently, are perfectly matched at
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their interface so that at normal incidence reflected waves are not radiated from the
interface.

From (2.143a), however, the wave vector of the wave in the conductive medium
is seen to be complex. As a result of this the wave is found to decay in the absorbing
medium during it propagation along the x-axis. Consequently, it is effectively
removed from the system.

While the above calculation only treats normal incidence and the conditions
derived from it are only valid at normal incidence, in simulation work it is taken as
an approximation for the absorption condition at general incident angles. For dis-
cussions regarding the accuracy of this method and generalizations and perturba-
tions on it that can be made to improve its accuracy, the reader is referred to the
literature [14, 15].

Another way of handling the problem of the reflection of the scattered waves
from the outer boundary of the simulation region is to surround the simulation
region with a layer of medium that only allows waves to propagate away from the
inner scattering region. The layer is then a mathematically constructed type of one
way medium for wave propagation, with the direction of one way propagation
being away from the simulation region containing the target.

The one way boundary layer is chosen to have dielectric and magnetic properties
matching those of the medium in which the scattered wave propagates towards the
simulation boundary. A consequence of this choice is that no wave is reflected from
the interface of the one way medium and the medium in the simulation region
containing the target media. Notice that the one way medium is a directional
medium and otherwise differs from the PML as it does not employ a dissipative
electric and magnetic conductivity.

To develop the mathematics for the operation of the layer of one way medium,
the TM system in (2.131) will be discussed. (A similar development for the TE
equations is left to the reader to work through.) The equations for the propagation of
the TM waves in a general medium can be rewritten in the form of second order
partial differential equations [11, 14] given by

@2

@x2
þ @2

@y2
� el

@2

@t2


 � Hx

Hy

Ez

8<
:

9=
; ¼ 0: ð2:145Þ

This equation describes the propagation of the plane wave solutions in the inner
scattering region which contains the target material. In particular, it describes the
scattered waves as they propagate away from the target media and towards the outer
boundary of the simulation region. The idea now is to construct a layer of one way
medium at the outer perimeter of the simulation region which will only allow the
waves to propagate away from the target media. At the same time the layer of one
way medium must generate no reflected wave propagating back towards the target
media in the scattering region of the simulation.

To see how this is accomplished we will look at the right hand the edge of the
outer boundary of the simulation (the treatment of the top, bottom, and left hand
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edges of the simulation region can all be worked out by the reader in a similar
fashion to that presented here for the right hand edge). The goal is to create an
absorbing layer at the right hand boundary of the simulation with the same
dielectric and magnetic properties as the medium of the simulation region which
contains the target media. After scattering from the target the scattered waves now
approach the simulation boundary and the absorbing media placed on it.

Considering the differential Helmholtz operator in (2.145), a formal solution for
the operator which gives the x-component of the wave vector of the waves moving
in the scattering region is

�i @
@x
¼ � @2

@y2
� el

@2

@t2

� �1
2

: ð2:146Þ

The x-component of the wave vector operator in (2.146) has two types of
eigenvalue solutions corresponding to the choice of sign made on the right hand
side of (2.146).

In particular, the positive sign gives the solution for a wave moving towards the
right hand boundary of the simulation and the solution for the negative sign gives
the solution for a wave moving away from the right hand boundary of the simu-
lation. Combining the solutions for both signs reproduces the entire plane wave
solution set of (2.145). The choice of sign in (2.146) is the basis for defining the one
way medium needed for the design of the outer boundary layer of the scattering
medium.

To describe a wave that can move only to the right in the proposed boundary
layer at the outer right hand edge of the simulation, the correct choice of operators
in (2.146) is given by

i
@

@x
¼ � @2

@y2
� 1
el

@2

@t2

� �1
2

: ð2:147Þ

This should be used to determine the solutions in the boundary layer rather than
(2.145) or the plus sign version of (2.146). Representing the wave as a solution of
this equation only allows for motion of the scattered waves out of the system.
Notice that in this treatment the medium in (2.147) has the same dielectric and
magnetic properties as the medium described by (2.145) and (2.146). Consequently,
there is no reflection at the interface between the layer and the scattering medium.

Placing the boundary layer within the framing region, it is seen that only waves
of positive x-component of wave vector reach the one way boundary layer. Waves
of negative x-component cannot reach the one way boundary layer as only the
scattered wave solutions are present in the framing region. In addition, waves
traveling towards the target media cannot originate in the one way layer, which
does not support them, or at the interface between the framing medium and the one
way layer. These considerations were applied at the right hand side of the
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simulation, but they can easily be generalized to considerations of the remaining
edges and the corners at the outer boundary of the simulation.

A difficulty with the implementation of the proposed method is how to deal with
the square root in (2.147). In the development of a program which handles the
nonlinearity of the square root in the wave vector operator, a number of numerical
problems are encounter. In particular, directly treating the nonlinear form leads to
program complexities and inefficiencies which greatly slow the simulation process
and requires too many computer resources to accommodate. In this regard, it is in
general found that to develop an efficient simulation it is helpful if the operator in
(2.147) could be approximated by a linear operator.

To overcome these difficulties a number of approximation methods have been
which replace the square root by a power law expansion. In the following a basic
approach will be developed as an illustration.

Consider applying the one way boundary layer method to treat radiation at the
frequency, x. For this particular frequency (2.147) becomes [11, 14]

i
@

@x
¼ � elx2þ @2

@y2

� �1
2

: ð2:148Þ

Next consider the Taylor series expansion of the square root in (2.148), and retain
the first two terms of the series to obtain

i
@

@x
¼ � ffiffiffiffiffi

el
p

x 1þ 1
2

1
elx2

@2

@y2

� �
: ð2:149Þ

The resulting differential form is now a linear form in the first and second order
partial differential operations.

Consequently, (2.149) can be rewritten into the form

�ix @

@x
¼ ffiffiffiffiffi

el
p

x2þ 1
2

1ffiffiffiffiffi
el
p @2

@y2
: ð2:150Þ

For the constant frequency problem, the frequency in (2.150) can now be rewritten
as a time derivative, and (2.150) becomes

@2

@x@t
¼ � ffiffiffiffiffi

el
p @2

@t2
þ 1

2
1ffiffiffiffiffi
el
p @2

@y2
: ð2:151Þ

The result in (2.151) can now by take as the operator of the one way wave
propagation in the directional medium, approximating the wave equation in the
directional medium by the form [11, 14]
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The wave equation in (2.152) describes waves with positive x-components of the
wave vectors. In addition it has the advantage in its implementation in a computer
algorithm that it is a linear equation, ready for application in one way boundary
layer of the finite difference time domain method.

For details of the accuracy and implementation of the method based on a di-
rectional layer, the reader is referred to the literature [11, 14, 15].

Method of Moments
The method of moments is used to treat the spatial dependence of the constant
frequency modes of an electrodynamic system [11, 15–17]. Since the frequencies of
the modes are assumed to be already known, the discretization of the continuum
limit of the electrodynamic equations only involves a treatment of the spatial
coordinates of the field equations. Nevertheless, the ideas and problems in the
discretization process are somewhat similar to those involved in the finite difference
time domain method. In particular, for the method of moments treatment the same
considerations must be extended to the space variables of the system as in that
approach.

A difference in the method of moments approach, however, is that the focus of
the study is now on an integral equation formulation of the problem. In this for-
mulation the relevant integral equations are obtained directly from the differential
forms of the Maxwell equations. This is facilitated in the constant frequency study
because the frequency and consequently the time dependence of the solutions are
already known.

The method of moments allows for the determination of the excitations of the
system by discretizing the integral equations into the form of matrix equations, and
the solutions of the matrix equations are subsequently studied using the techniques
of linear algebra. As a result, instead of a time integration of a set of difference
equations the problem is replaced by a matrix inversion.

As an example of the method of moments consider a two-dimensional scattering
problem in which TM waves propagating in free space scatter from perfect con-
ductor targets [11, 16]. The waves are considered to travel in the x-y plane and are
polarized with their electric fields along the z-axis. They are incident on perfect
conductor structures which are translational invariant along the z-axis.

In the region outside of the perfect conductors, the fields are of frequency, x, and
are obtained as solutions of the set of Helmholtz equations of the forms
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@x2
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þ e0l0x
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Due to the structure of the scattering problem, the fields in (2.153) can be separated
into incident and scattered field components. For example, the electric field is
written in the form

Ez x; y;xð Þ ¼ EI
z x; y;xð ÞþES

z x; y;xð Þ: ð2:154Þ

where the superscripts I and S, respectively, refer to the incident and scattered field
contributions to the total field.

Considering the case of the electric field, the total electric field is zero insider the
perfect conductors. Consequently, at the surface of the perfect conductors the
derived surface condition

EI
z x; y;xð ÞSurface¼ �ES

z x; y;xð ÞSurface ð2:155Þ

is a restriction on the incident and scattered field components. This restriction is a
very important condition on the fields at the surface of the conductors, and it is
essential in the following development of the integral equation formulation for the
method of moments.

The method of moments is developed from (2.153) through (2.155) by replacing
the above posed scattering problem involving the perfect conducting system by an
equivalent antenna radiation problem. In this replacement, the geometry of the
perfect conductors is used to design antennas which radiate fields that are the same
as those of the scattered waves in the original scattering problem. The idea is to
determine a set of surface currents on the geometry of the scattering surfaces to
replicate the fields of the scattered waves in the scattering problem. In this approach
the antennas are no longer perfect conductors, but rather they are surfaces sup-
porting surfaces currents.

Before considering how to obtain the necessary surface currents, consider for the
moment that the surface currents are known and are of the form, JSurface x; y;xð Þ.
A discussion will first be given as to how the radiated fields from these current
distributions are expressed in terms of the electrodynamics of the radiating system.
This will be followed by a treatment of the determination of the surface currents
appropriate for generating the scattered fields within the context of the equivalent
antenna problem.

The waves radiated by Js x; yð Þ can be written in terms of the Green’s function of
the operator in (2.153). In particular, the conversion of the Helmholtz equations in
(2.153) to treat the radiation from the current sources of the replacement antenna
problem is made by introducing a source term on the right hand side of (2.153).

The appropriate Green’s function for the standard solution of this antenna source
problem is given as a solution of the Green’s equation

@2

@x2
þ @2

@y2
þ e0l0x

2
� �

G x; y; x0; y0;xð Þ ¼ �d x� x0ð Þd y� y0ð Þ: ð2:156Þ
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Here the solution is made for radiation boundary conditions in infinite space
yielding a Green’s function which can be written in terms of Hankel functions.

Once the Green’s function is determined, the formal solutions for the scattered
wave is expressed in terms of the retarded Green’s function and surface current as

ES
z x; y:xð Þ ¼ il0x

Z
Surfaces

dx0dy0G x; y; x0; y0;xð ÞJSurface x0; y0;xð Þ: ð2:157Þ

This represents the scattered field in terms of the surface current which will be
obtained in the later discussions. It is a valid solution both outside and at the surface
of the antenna array.

If the fields in (2.157) are evaluated at the scattering surface, taking account of
(2.155), the following useful relationship is obtained

ES
z x; y:xð ÞSurface¼ �EI

z x; y;xð ÞSurface
¼ il0x

Z
Surfaces

dx0dy0G x; y; x0; y0;xð ÞJSurface x0; y0;xð Þ; ð2:158Þ

Here the first equality in (2.158) is due to the zero of the total electric field at the
perfect conducting surface and the fact that the total electric field is composed as a
sum of the incident and scattered waves.

The incident wave is then often taken to be of the form of a plane wave so that
from the second equation in (2.158)

EI
z x; y;xð ÞSurface¼ �il0x

Z
Surfaces

dx0dy0G x; y; x0; y0;xð ÞJSurface x0; y0;xð Þ: ð2:159Þ

This equation relates the known incident field to the unknown surface current.
Equation (2.159) is a very important relationship for determining the surface

current. The antenna current of the equivalent antenna problem is obtained from
(2.159) by inverting the equation to express the surface current in terms of the
known electric field of incident wave. Once the surface current is obtained as a
solution of (2.159) it can then be used in (2.157) to determine the scattered wave
everywhere in space.

The inversion of (2.159) to find the surface current can be handled numerically
by converting it into a matrix equation which is then solved for the surface currents
by methods of linear algebra. A common approach to the discretization of the
integral equations is to cover the conducting surfaces with a finite array of points.

In this formulation, for such an array of points on the surface, each point of the
array, ~ri ¼ xîiþ yîj, has a weight function, fiðx; yÞ, associated with it. The weight
function is defined to be one at the array point, ~ri ¼ xîiþ yîj, and to be non-zero
over a small region of space which approaches the nearest neighbor points of~ri on
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the surface. Otherwise, outside the small region about~ri the function remains zero.
Consequently, the weight functions is characterized in part by

fi ~rj
� � ¼ di;j: ð2:160Þ

The object is to choose the covering array of points on the surface so that the
surface current can be approximated in terms of these functions by the form

JSurface x; y;xð Þ ¼
X
i

aifi ~rð Þ: ð2:161Þ

This requires that the number of points,~ri ¼ xîiþ yîj, contained in the array must be
large so as to accurately represent the surface current. In addition, the weight
functions, fiðx; yÞ, must also be such as to adequately represent the surface currents.

Upon substituting the surface current form in (2.161) into (2.159) gives [11, 16]

EI x; y;xð ÞSurface¼ �il0x
Z

Surfaces

dx0dy0G x; y; x0; y0;xð Þ
X
j

ajfj x
0; y0ð Þ ð2:162Þ

as the form of the scattered wave in terms of surface current form. A matrix
equation can be generated from (2.162) by multiplying both sides of (2.162) by
fiðx; yÞ and integrating over x and y.

In this way, a matrix equation is generated having the form

bi ¼
X
j

Mi;jaj: ð2:163Þ

where

Mi;j ¼ �il0x
Z

Surface

dxdydx0dy0fi x; yð ÞG xi; yi; x
0; y0;xð Þfj x0; y0ð Þ: ð2:164Þ

and

bi ¼
Z

Surface

dxdyfi x; yð ÞEI x; y;xð ÞSurface: ð2:165Þ

The unknown aj’s, needed to represent the surface currents, are then obtained in
terms of the known bi’s from a straightforward solution of the matrix equation in
(2.163). In terms of the solutions for the aj’s, the surface currents are obtained from
(2.161) and the associated scattered fields are determined everywhere from (2.157).

In this method the determination of the solutions for the scattered fields relies on
the ability to invert the matrix equation in (2.163). Most problems of interest
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involve the treatment of systems represented by large matrices. This is a compli-
cation, but many simplification have been developed for the study of problems in
which the matrices involved can be written in the form of a positive symmetric
matrix.

In particular, for these cases solutions are greatly facilitated using the conjugate
gradient method [11, 16]. It shall now be briefly shown how the problem in (2.163)
can be rewritten in the context of a symmetric matrix. For the conjugate gradient
approach to the solution of symmetric matrix systems, however, the reader is
referred to the literature [11, 16].

Writing (2.163) in operator form, the two vectors a and b are related to one
another through the matrix M by the matrix equation

b ¼ Ma: ð2:166Þ

The resulting matrix equation in (2.166) can be converted to the form of a sym-
metric matrix problem by using the matrix transpose. Multiplying on the left of both
sides of the equation by the transpose of the matrix M, (2.166) becomes

MTb ¼ MTMa ð2:167Þ

where MTM is a positive symmetric matrix.
The equation in (2.167) can then be rewritten as

c ¼ Aa ð2:168Þ

where A ¼ MTM is a known matrix and c ¼ MTb is a known vector. The problem
now reduces to the inversion of the symmetric matrix in (2.168) to find the vector a.

Once a solution for a is obtained the currents and scattered fields are generated
by (2.161) and (2.157).

Finite Element Method
The last of the three major simulation approaches to be described is the finite
element method [11, 18]. This is a very general methodology which usually is
associated with problems that are primarily focused on the spatial variables of the
electromagnetic systems being treated. These types of problems often include either
time-independent problems or problems associated with the determination of the
properties of frequency dependent solutions.

As an illustration of the basic ideas involved in the application of the method,
consider the use of the finite element method for the determination of the modal
solutions of the two-dimensional Helmholtz equation. In this treatment the differ-
ential form of the Helmholtz equation is replaced by a variational problem
expressed in terms of a functional integral.

In the finite element method the solutions of the differential equations are shown
to be given as the solutions which are extrema of the functional integral. This is an
advantage as often the search for an extrema of the functional integral is easier to
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deal with numerically than the direct numerical simulation of the differential
equation.

The basic form of the two-dimensional Helmholtz equation is represented by

@2

@x2
þ @2

@y2


 �
/þ k2/ ¼ 0: ð2:169Þ

Here, for simplicity, the case in which /ðx; yÞ is a scalar field is studied as a
function of the propagation parameter k, and the problem is defined over a finite
region of space with boundary conditions on the edges of the spatial region.

Problems represented by (2.169) are often encountered in the electrodynamics of
dielectric or metallic waveguides and in the study of photonic crystals. In the case
that k ¼ 0, the Helmholtz problem in (2.169), in addition, reduces to the study of
the two-dimensional Laplace equation. Again Laplace equation problems are often
encountered in electrostatics and in fluid mechanic systems undergoing potential
flow.

The differential form in (2.169) can be obtained by finding the scalar field /ðx; yÞ
which is an extrema of the functional [11, 18]

Cð/Þ ¼ 1
2

ZZ
dxdy

@/
@x


 �2

þ @/
@y


 �2

�k2/2

" #
; ð2:170Þ

In particular, the solution of /ðx; yÞ from (2.169) can be shown to be an extrema of
the functional in (2.170), and, conversely, the /ðx; yÞ which is an extrema of
(2.170) is the solution of (2.169). Here, of course, it is assumed that appropriate
boundary conditions are applied in determining these solutions.

As noted earlier, the idea of the finite element method is to numerically find an
extrema of the functional in (2.170) as an easier approach to the numerical study of
the solutions of (2.169). This is accomplished, applying a discretization process to
the functional integral, by converting (2.170) into an algebraic form for which the
extrema are determined algebraically.

The discretization of (2.170) is done by breaking the two-dimensional x-y space
up into little non-overlapping triangles which nonetheless cover the region over
which the two-dimensional problem is defined. In this division of the
two-dimensional area into a set of covering triangles, the vertices of each triangle
are labeled by i = 1, 2, 3 and the triangles are in turn numbered t = 1, 2,…, N. Here
N is the total number of triangles in the covering set, and the set of triangles is very
large so that the area cover by any triangle of the covering set is very small.

In the small region covered by the tth triangle the scalar field can be approxi-
mated by the linear form

/t x; yð Þ ¼ at þ btxþ cty: ð2:171Þ

90 2 Mathematical Preliminaries



The ability to represent the scalar field within the triangle by this linear form is, in
fact, one of the criterion used in the choice of the triangle covering for the system.

Given the general form in (2.171) it is then necessary to determine the coeffi-
cients at, bt, ct as these are unknowns which are used to determine the unknown
scalar fields. This is accomplished by evaluating (2.171) at the three vertices,
ðxi; yiÞ, of the tth triangle. The evaluation at the three vertices generates a system of
three linear equations for the coefficients at, bt, ct.

From these three equations, solutions are obtained in the forms

at ¼
X3
i¼1

ati/t xi; yið Þ; ð2:172aÞ

bt ¼
X3
i¼1

bti/t xi; yið Þ; ð2:172bÞ

ct ¼
X3
i¼1

cti/t xi; yið Þ: ð2:172cÞ

The coefficients are seen to be written in terms of the potentials at the vertices of the
tth triangle.

Substituting the solutions in (2.172) into (2.171) it is found that the scalar field at
a general point within the triangle is given by [11, 18]

/t x; yð Þ ¼
X3
i¼1

atiþ btixþ ctiyð Þ/t xi; yið Þ: ð2:173Þ

This formal solution gives an approximation for the scalar function within the tth
triangle in terms of the potentials at the corners of the triangle. These potentials are
unknown and are now to be determined algebraically.

The forms for each of the triangles in the covering, given by the set of /tðx; yÞ in
(2.173), can now be substituted in (2.170). Upon integrating (2.170) over x and y,
the functional integral then reduces to an algebraic form involving the unknown
/t xi; yið Þ. Following this the set of /t xi; yið Þ can be used as variables in the process
of determining the extrema of (2.170) for the resulting algebraic form and are
subsequently determined from this process of extrema determination.

In this conversion of the functional integral into an algebraic form, the space
integrals are easily done because they only involve polynomials of the x and
y coordinates over the entire two-dimensional region of the solution space.
Performing the space integrals then yields directly an algebraic form in the /t xi; yið Þ
which is then searched for extrema. The resulting set of /t xi; yið Þ’s obtained from
this search can then be used in (2.173) for each triangle to generated the scalar
function /ðx; yÞ throughout the entire solution space.
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Chapter 3
Photonic Crystals

In this chapter, the basic properties of photonic crystals are reviewed, along with
some of the points of technological application of photonic crystals. New devel-
opments of photonic crystal technology are constantly being made and new tech-
nological applications for the design of photonic crystal based devices are
frequently discovered. Due to this the present chapter is not meant to be a com-
prehensive review but is an introduction for students. Only an outline of the basic
points needed to understand the principles of photonic crystal technology is made
with some indications of where to pick up in the rather large literature on the
subject.

Photonic crystals have important optical applications as they allow for the
control of the propagation of light through space [1–5]. They do this using tech-
nology that affords for low losses in the transportation or confinement of optical
energy. In their basic concept photonic crystals are periodic arrays of dielectric
materials and they function in their interactions with light in a similar manner to
how semiconductors interact with their conduction and valence band electrons. As
with semiconductors the importance of the periodicity of the photonic crystal is in
the development of a band structure for the dispersion relation of light [4, 5]. The
band structure is a series of stop and pass frequency bands. Light at stop band
frequencies cannot propagate within the system only light at pass band frequencies
can move through the system. Depending on the applications, the periodicity can be
one-, two-, or three- dimensional [1–5].

One-Dimensional Photonic Crystals
One-dimensional photonic crystals are periodic layerings. These can be of used in
various mirror and optical coating applications, i.e., laser mirrors and mirrors for the
generation of second harmonics being examples. Since the periodicity is the source
of the reflection, low loss materials can be used in the design of such devices to
offer an enhanced technology for mirror and mirror coating designs. The use of
dielectric layerings is also found in nature where an example is seen in the cuticle of
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insects that exhibit a metallic appearance in spite of the absence of metals in their
design. This also is a feature observed in the feathers of some species of birds.

Two-Dimensional Photonic Crystals
Two-dimensional photonic crystals have applications in laser designs and in optical
circuits [1–5]. Examples are surface emitting lasers, general resonance cavities,
sensors, and antennas. For these applications, the system is formed as a periodic
patterning written into a dielectric slab. The pattern is introduced in the plane of the
surfaces of the slab as a periodicity of the dielectric properties. For such slabs light
is confined within the slab by the dielectric mismatch at the slab surfaces. This is a
slab waveguide effect. In addition, light with a component of motion parallel to the
slab surfaces experiences a band structure in its propagation characteristics arising
from the periodicity of the slab dielectric. This is the photonic crystal component in
the interaction of the slab with light.

Both two-dimensional photonic crystals, with translational symmetry along one
axis of space, and photonic crystal slabs are found to have electromagnetic modes
that exhibit polarization dependent properties [1–5]. The electromagnetic solutions
of these systems separate into modes with electric fields parallel to the plane of the
periodic patterning and modes with magnetic fields parallel to the plane of the
periodic patterning. Each of these polarizations exhibits its own distinct series of
pass and stop bands in its electromagnetic dispersion relations, and the band
structure is sensitive to the nature of the patterning. A patterning that supports
regions of large stop bands for one polarization may be found to be significantly
less effective in stop band formation for the other polarizations. Factors such as
whether a photonic crystal slab is composed as a dielectric waveguide slab con-
taining a periodic array of vacuum holes or a vacuum background containing
dielectric disks are important in determining the band gaps found for the two
different polarizations of electromagnetic waves.

An early problem in the study of two-dimensional and slab photonic crystals was
to find dielectric patterns exhibiting overlapping stop bands for the modes of the
two different polarizations [1–5]. This provides for a complete absence of propa-
gation of electromagnetic modes at frequencies in the regions of the common stop
bands. The first solutions of this problem were found in systems based on the
triangle lattice dielectric pattern [1–5]. Since then, throughout many investigations,
the triangle lattice has remained a commonly used pattern in the design of
two-dimensional photonic crystal devices. Designs employing this lattice type have
been developed to exhibit strong stop band gaps for all polarizations of light
transported in the system. In addition to the triangle lattice, other types of patterning
have found important applications that will be discussed later.

Three-Dimensional Photonic Crystals
Three dimensional systems have been of interests for circuits and for the design of
materials with controlled emission characteristics as well as in antenna design
[1–5]. These types of photonic crystals, however, are the most difficult to make for
laboratory studies. For such structures to exhibit useful design characteristics it is
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often needed for them to exhibit periodicity on a mesoscopic scale. This requires the
user of a variety of highly developed and precision techniques which operate at the
level of nanoscales.

In three dimensional photonic crystals the periodicity is experienced by the light
in all three directions of space [1–5]. This can lead to the possibility of a
three-dimensional band structure in which a single frequency of light exhibits a stop
band for propagation in all directions of space. A variety of such three-dimensional
photonic crystals have been studied, exhibiting complete stop bands in all directions
space. The earliest system found with a complete stop band was based on a dia-
mond lattice of dielectric spheres and since then lattices with complete stop bands
have been found in most three-dimensional Bravais lattice types.

The presence of a three-dimensional stop band offers the opportunity for the
complete confinement of light by the photonic crystal. One application of this
involves the Purcell effect [1–5]. An atom in an excited state can be suspended in
that excited state if the photon emitted during its decay has a frequency within the
stop band of the photonic crystal. In this situation the photon cannot propagate
away from the atom. Seen in the context of the Fermi golden rule for transitions,
there is no density of states to receive the light emission. Similarly, as another
Fermi golden rule effect, the photonic crystal can have enhancements of photonic
densities of states that will increase the rate of atomic decay. A number of inter-
esting device applications can be achieved based on increases or decreases of the
photonic densities of states in the band structure of the three-dimensional photonic
crystal [1–5].

Photonic Crystal Fiber Waveguides and Lasers
Additional important systems for consideration are photonic crystal fibers [6, 7].
These are optical fibers with enhanced properties developed through the application
of photonic crystal technology in their designs. In particular, the focus of the
photonic crystal technology is on the improvement of the ability of fiber optical
systems to confine and guide the transmission of light along the fiber. This results is
an increase of energy efficiency of these systems from their standards in the absence
of photonic crystal based designs.

Photonic crystal technology is introduced into optical fibers in the form of a
cladding with designed properties developed through and tailored by the application
of photonic crystal concepts [6, 7]. In this regard, claddings as confining mecha-
nisms of light are developed for two different types of fiber based technologies.
These include fibers designed to transfer signals and fibers designed to operate as
laser amplifiers. Each of these two applications involves different types of photonic
crystal cladding designs.

The cladding of an optical fiber is an outer shell on the fiber that exhibits
different dielectric properties from the inner fiber core. In its simplest form the
cladding aids in confining light transported by the fiber to propagate along the fiber
without radiative losses. It does this through the change developed by the cladding
in the dielectric properties of the fiber, going from the center of the fiber to its outer
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radius. The idea of cladding and cladding technology was developed in the design
of optical fiber long before the introduction of the ideas of photonic crystals as a
design element of cladding technology.

With the introduction of photonic crystal technology into cladding design,
however, the combined technologies offer both novel design features of claddings
and enhancement of some of the designs based on pre-photonic crystal ideas.
Cladding technology as enhanced by photonic crystals forms the basis of two
general technological applications that are of importance to telecommunications [6,
7]. In fibers designed for signal transmission the photonic crystal technology is used
to create a cladding with effective dielectric properties that reduce radiative losses.
This is a traditional cladding technique and the photonic crystal only acts to create a
cladding medium with a desired dielectric.

In fiber lasers the photonic crystal stop band technology is employed to intro-
duce a cladding with a stop band structure for light propagating near the perpen-
dicular plane to the fiber axis. The presence of a stop band at the lasing frequency
aids in the confinement of the light, keeping it subject to the lasing action within the
fiber cavity [6, 7].

In this chapter, a discussion of the band structure and basic properties of a
photonic crystal obtained within the context of the plane wave expansion methods
and other analytical approaches will be made. Only brief mentions of results from
computer simulation techniques [1–7] are given as these do not as readily reveal the
physics of photonic crystals. Computer simulation techniques have already been
treated in the Chapter on mathematical preliminaries and will not be gone over here.
In this regard, some of the analytical techniques of Wannier functions Wannier
functions and difference equation techniques will be discussed. These offer an
interesting treatment of impurity modes in photonic crystals and give insights into
methods for the treatment and understanding of band structure effects. They will be
developed in the following as they apply to discussions of impurities, photonic
crystal slab lasers, and photonic crystal waveguides [1–7].

3.1 Plane Wave Expansion Methods for the Determination
of Photonic Crystal Band Structures

In this section a discussion is given of the plane wave method applied for the
determination of the electromagnetic modes and dispersion relation of a photonic
crystal [1–5]. The plane wave expansion is a commonly used method for deter-
mining the electromagnetic solutions of photonic crystals and has been used in the
study of a variety of one-, two-, and three-dimensional photonic crystals [1–7]. In
its application the electromagnetic fields and functional form of the periodic
dielectric are expressed in terms of a Fourier expansion in plane waves. These
expansions are then used to reduce the differential forms of the wave equations,
generated from the Maxwell equations, to matrix eigenvalue problems. The matrix
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eigenvalue problems determine the Fourier coefficients of the plane wave expansion
of the electromagnetic modes, relating them to the eigen-frequencies making up the
dispersion relation of the system.

Discussions of a Truncated Two-Dimensional Photonic Crystal
As an interesting case that is related to an experimentally studied system the photonic
band structure of a truncated two-dimensional periodic dielectric medium is discussed
[8, 9]. This consists of an array of parallel axis dielectric cylinders forming a
two-dimensional periodic array. The array of cylinders is located between two perfect
conducting parallel plates that are perpendicular to the cylinder axes. A schematic of
the configuration is provided in Fig. 3.1. As defined in the figure, the system is
periodic in the x1 � x2 plane and the cylinder axes are parallel to the x3-axis.

In the following discussions, the band structure calculations for the electro-
magnetic modes propagating between the two perfect conducting plates of the
system in Fig. 3.1 are presented for dielectric cylinders arrayed in a square lattice
[8, 9]. The square lattice of the array is defined so that the locations of the dielectric
cylinder axes are at the lattice sites of the square lattice, and between the parallel
plates and surrounding the dielectric cylinders is a vacuum background. The
electromagnetic modes are confined in the region between the parallel plates where
they exhibit a series of pass and stop bands due to the periodicity of the array of
dielectric cylinders.

Fig. 3.1 Schematic figure of the photonic crystal square lattice array of dielectric cylinders
located between two parallel perfect conducting plates [8]. Reproduced with permission from [8].
Copyright 1993 Optical Society of America
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In these considerations the positions of the lattice sites of the square lattice in the
x1 � x2 plane are given by two-dimensional position vectors of the form

~r l1; l2ð Þ ¼ l1ax̂1 þ l2ax̂2: ð3:1Þ

Here a is the nearest neighbor separation between lattice points, l1 and l2 are
integers, and x̂1 and x̂2 are unit vectors along x1 and x2 axes in the plane of the lattice.
The dielectric cylinders within the x1 � x2 plane do not overlap one another so that
the radii of the cylinders, R, satisfy the condition 2R\a. Along the x3 direction the
separation between the perfect conducting plates is d. The perfect conductivity of the
plates sets restrictive boundary conditions on the propagation of the solutions along
the x3 axis. As a result of the conditions arising from the geometry the modal
solutions of the Maxwell equations are functions of x1; x2, and x3.

Fourier Representation of the System Properties
In the plane wave method the dielectric properties of the system and the solutions
obtained from the Maxwell equations are expressed as Fourier series sums of plane
waves. As a consequence, it is necessary to consider the plane wave expansion of
functions of the general form

f x1; x2; x3ð Þ ð3:2Þ

subject to the conditions set by the slab geometry of the problem outlined above. In
the following, discussions are given of the plane wave expansions of (3.2).

First a treatment is made of the function considered as a general function of x1
and x2 in the x1 � x2 plane of the periodic lattice. This is followed by a specification
to periodic functions of x1 and x2 in the x1 � x2 plane having the same periodicity as
the lattice of cylinders. After these, considerations are given of the restrictions set
on the Fourier series of the function due to the finite extent of the problem along the
x3 axis and of the resulting Fourier expansion including the x3 variable. These
results allow for the re-expression of the modal solution problems of the truncated
system from the differential forms of the Maxwell equations to sets of matrix
eigenvalue problems which are easily accessible to numerical methods.

As a first point the Fourier expansion of general functions defined in the x1 � x2
plane is given. In these discussions the x3 variable is suppressed or ignored. For
functions in the x1 � x2 plane, the notation in (3.1) extends to treat a general
position in the x1 � x2 plane by writing the position vector

~rjj ¼ x1x̂1 þ x2x̂2 ð3:3Þ

for the point x1; x2ð Þ.
In terms of the position variable of (3.3) there are two types of functions that

need to be treated. These included general functions of ~rjj such as those in (3.2),
rewritten in the form f ~rjj; x3

� �
, and functions which are periodic functions of ~rjj
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having the periodicity of the lattice. As an example of the last case, the general form
of the two-dimensional periodic dielectric function for the cylinder array between
the plates is a function

e ~rjj
� � ð3:4aÞ

with the periodicity property that

e ~rjj
� � ¼ e ~rjj þ~r l1; l2ð Þ� �

: ð3:4bÞ

In order to write the Fourier series of general functions of~rjj ¼ x1x̂1 þ x2x̂2 found
in the treatment of the photonic crystal, the wave vectors of the form

~kjj ¼ k1x̂1 þ k2x̂2 ð3:5Þ

for the Fourier plane wave expansion have specific restrictions set on their coeffi-
cients k1 and k2. These arise by applying periodic boundary conditions over an
Na� Na region of the x1 � x2 plane and taking the limit N ! 1. This is a standard
type of boundary condition applied in the treatment of the transport properties of
many different physical systems.

Applying periodic boundary conditions on the parallel plate system so that it is
periodic over an Na� Na region of the x1 � x2 plane reduces the wave vector
continuum in (3.5) to the discrete set given by

~kjj ¼ 2p
Na

nx̂1 þ 2p
Na

mx̂2: ð3:6Þ

where n and m are integers. The general form of a plane wave which satisfies
periodic boundary conditions over the Na� Na region of the parallel plate photonic
crystal in the x1 � x2 plane is, consequently, written as

exp i
2p
Na

nx̂1 þ 2p
Na

mx̂2

� �
� x1x̂1 þ x2x̂2ð Þ

� �
: ð3:7Þ

From the plane wave form in (3.7) a basis set is generated for the expansion of
the electromagnetic modes with periodic boundary conditions over the x1 � x2
plane of the photonic crystal. It follows that a general function has the plane wave
expansion [8, 9]

f ~rjj
� � ¼X

n;m

Fn;m exp i
2p
Na

nx̂1 þ 2p
Na

mx̂2

� �
� x1x̂1 þ x2x̂2ð Þ

� �
: ð3:8Þ
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Here Fn;m are a set of expansion coefficients, and it is seen directly from (3.8)
that

f ~rjj
� � ¼ f ~rjj þ~r l1N; l2Nð Þ� � ð3:9Þ

where l1 and l2 are integers. Equation (3.9) demonstrates the periodicity over an
Na� Na region of the x1 � x2 plane.

In the case that the function in the x1 � x2 plane is periodic in the lattice it
follows that

f ~rjj
� � ¼ f ~rjj þ~r l1; l2ð Þ� � ð3:10Þ

where l1 and l2 are integers. This provides a further restriction on the Fourier series
sum over wave vector space so that

f ~rjj
� � ¼X

n;m

FP
n;m exp i

2p
a
nx̂1 þ 2p

a
mx̂2

� �
� x1x̂1 þ x2x̂2ð Þ

� �
: ð3:11Þ

Here FP
n;m are a set of expansion coefficients for the case in which f ~rjj

� �
is a

periodic function in the x1 � x2 plane with the periodicity of the lattice. Now it is
obtained directly from (3.11) that [8, 9]

f ~rjj
� � ¼ f ~rjj þ~r l1; l2ð Þ� � ð3:12Þ

where l1 and l2 are integers. Equation (3.12) demonstrates the periodicity of f ~rjj
� �

over the lattice over the region of the x1 � x2 plane.
From the discussions given above it follows that general functions in the x1 � x2

plane are expressed in a plane wave basis with wave vectors of the form

~kjj ¼ 2p
Na

nx̂1 þ 2p
Na

mx̂2: ð3:13Þ

for n and m integers. On the other hand, functions that are periodic over the lattice
defined in the x1 � x2 plane are expressed in a plane wave basis with wave vectors
given by

~Gjj ¼
2p
a
nx̂1 þ 2p

a
mx̂2 ð3:14Þ

for n and m integers.
From these results, it is found that the set of wave vectors in (3.14) is a subset of

the set of wave vectors defined in (3.13). In this regard, it is further interesting to
note that a general wave vector of the form ~kjj ¼ k1x

_

1 þ k2x̂2 given in (3.13) is
related to a wave vector in the first Brillouin zone of wave vector space, defined by
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~k0jj ¼ k01x
_

1 þ k02x̂2 with k01
�� ��; k02

�� ��\ p
a. For these two wave vectors, ~k and~k0, there is

always a vector ~Gjj ¼ G1x
_

1 þG2x̂2 of the form given in (3.14) such that

~kjj ¼~k0jj þ~Gjj: ð3:15Þ

Consequently, all wave vectors of the system are ultimately related to those
within the first Brillouin zone.

This difference in the nature of the plane wave expansions of the two different
types of functions in (3.8) and (3.11) becomes important in representing the solu-
tions of the electromagnetic modes in wave vector space. Specifically, it will be
seen later that the two types of wave vectors in (3.13) and (3.14) enter into giving a
representation of the unique modal solutions and the dispersion relation of the
modal solutions of the photonic crystal slab.

Next a consideration is given of the Fourier expansion including the x3 variable.
The x3 variable has a complication in that the system is bounded by the two perfect
conducting planes that have a separation of d along the x3 axis. The boundary
conditions related to the two perfect conducting plates are that the components of
the electric field parallel to the plates are zero. Consequently, these components of
the electric field have Fourier series in the x3 variable which is based on a complete
set of sine functions. These are defined between the two plates and are subject to the
boundary conditions that the sine functions are zero at the location of the two
perfect conducting planes positioned at x3 ¼ 0 and x3 ¼ d, respectively [8, 9].

The standard form of such a Fourier series for a function g x3ð Þ defined between
x3 ¼ 0 and x3 ¼ d is

g x3ð Þ ¼
X1
n¼1

bn sin
pn
d
x3

	 

: ð3:16Þ

The form in (3.16) is appropriate to represent functions between the plates which
are zero at x3 ¼ 0 and x3 ¼ d.

Combining the result in (3.16) with those in (3.8) and (3.14) gives an expansion
for a general function in x1; x2, and x3 which is zero at x3 ¼ 0 and x3 ¼ d. The form
of the function must be given by [7, 8]

F ~rjj; x3
� � ¼X

~Gjj

X
~kjj

X1
n¼1

~Fn
~kjj þ~Gjj
	 


exp i ~kjj þ~Gjj
	 


�~rjj
h i

sin
np
d
x3

	 

: ð3:17Þ

Here ~Fn ~kjj þ~Gjj
	 


are the Fourier coefficients, the sum on~kjj is restricted to the

first Brillouin zone, and the sum on ~Gjj is over all ~Gjj defined in (3.14).

Electrodynamic Equations
The wave equation for the propagation of the electromagnetic modes between the
plates is obtained from the Maxwell equations. In the considerations of a system
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composed of a non-conducting dielectric media and in the absence of currents and
net charges, these are given by

r � ~D ¼ 0 ð3:18aÞ

r �~B ¼ 0 ð3:18bÞ

r � ~H ¼ 1
c
@~D
@t

ð3:18cÞ

r � E
* ¼ � 1

c
@~B
@t

ð3:18dÞ

For linear optical media, in (3.18) the magnetic field and magnetic induction are
related by ~B ¼ l~H � ~H and the electric field and displacement field are related by
~D ¼ e~E through the periodic dielectric function in (3.4a). The periodicity of the
photonic crystal is seen to enter only through the dielectric function, and the
magnetic induction fields are not significantly affect by the permeability of the
media.

By taking the electric and magnetic fields of the photonic crystal modes to be
harmonic waves represented by the forms [8, 9]

~E ~rjj; x3 tj
� � ¼ ~E ~rjj; x3 xj

� �
exp �ixtð Þ ð3:19aÞ

and

~H ~rjj; x3 tj
� � ¼ ~H ~rjj; x3 xj

� �
exp �ixtð Þ; ð3:19bÞ

the time derivatives in (3.18c) and (3.18d) are replaced by @
@t ! �ix . It then

follows, from taking the curl of Faraday’s law and eliminating the magnetic
induction by using Ampere’s law, that the wave equation for a system with the
periodic dielectric function given in (3.4a) is [8, 9]

r�r�~E ~rjj; x3 xj
� � ¼ e ~rjj

� �x2

c2
~E ~rjj; x3 xj
� �

: ð3:20Þ

A similar equation for the magnetic induction is obtained by replacing the
electric field in (3.20) by the magnetic induction. The focus in the following,
however, is given to the electric field equations in (3.20). This is due to the fact that
the boundary conditions at the parallel plates are for the electric fields.

Equations for the Modes of the Truncated Photonic Crystal
Equation (3.20) decomposes into a set of three differential equations which when
written out are
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1
e ~rjj
� � � @2E1

@x22
� @2E1

@x23
þ @2E2

@x1@x2
þ @2E3

@x1@x3

� �
¼ x2

c2
E1: ð3:21aÞ

1
e ~rjj
� � @2E1

@x2@x1
� @2E2

@x23
� @2E2

@x21
þ @2E3

@x2@x3

� �
¼ x2

c2
E2: ð3:21bÞ

1
e ~rjj
� � @2E1

@x3@x1
þ @2E2

@x3@x2
� @2E3

@x21
� @2E3

@x32

� �
¼ x2

c2
E2: ð3:21cÞ

These are solved by converting them into matrix equations through the substi-
tution of plane wave forms based on the discussions given earlier. The electric field
components E1 and E2 are both zero at the upper and lower plates.

From (3.17) the general solutions the E1 and E2 components of the electric field
are of the form

E1 ~rjj; x3
� � ¼X

~Gjj

X1
n¼1

a nð Þ
1

~kjj þ~Gjj
	 


� exp i ~kjj þ~Gjj
	 


�~rjj
h i

sin
np
d
x3

	 


¼ ei
~kjj �~rjj

X
~Gjj

X1
n¼1

a nð Þ
1

~kjj þ~Gjj
	 


� exp i~Gjj �~rjj
� �

sin
np
d
x3

	 

ð3:22aÞ

and

E2 ~rjj; x3
� � ¼X

~Gjj

X1
n¼1

a nð Þ
2

~kjj þ~Gjj
	 


� exp i ~kjj þ~Gjj
	 


�~rjj
h i

sin
np
d
x3

	 


¼ ei
~kjj �~rjj

X
~Gjj

X1
n¼1

a nð Þ
2

~kjj þ~Gjj
	 


� exp i~Gjj �~rjj
� �

sin
np
d
x3

	 

:

ð3:22bÞ

Due to the sin np
d x3
� �

factors these fields are zero on the perfect conducting plates
located at x3 ¼ 0 and x3 ¼ d. In addition, the plane wave forms

exp i ~kjj þ~Gjj
	 


�~rjj
h i

reduce the derivatives @
@x1

! i k1 þG1ð Þ and @
@x2

! i k2 þG2ð Þ
to algebraic operators. This assists in the conversion of the differential wave
equation to a matrix eigenvalue problem.
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Substituting (3.22) into (3.21a) and (3.21b) it is found that the E3 component
must be of the form

E3 ~rjj; x3
� � ¼ i

X
~Gjj

X1
n¼0

cna
nð Þ
3

~kjj þ~Gjj
	 


� exp i ~kjj þ~Gjj
	 


�~rjj
h i

cos
np
d
x3

	 


¼ ei
~kjj �~rjj i

X
~Gjj

X1
n¼0

cna
nð Þ
3

~kjj þ~Gjj
	 


� exp i~Gjj �~rjj
� �

cos
np
d
x3

	 

:

ð3:23aÞ

where

cn ¼ 1=2 n ¼ 0
1 n� 1


: ð3:23bÞ

Notice in (3.23) that the x3 dependence of E3 introduces a cos np
d x3
� �

factor into

(3.23). It arises from the need to match the x3 dependence of the
@E3
@x3

derivatives in
(3.22a) and (3.22b) with that in (3.22a) and (3.22b) arising from the terms involving
the E1 and E2 components. It also is needed in (3.21c) to match the x3 dependence
of the @E1

@x3
and @E2

@x3
derivatives with that in (3.23) arising from the E3 terms.

An addition point to notice about the fields in (3.22) and (3.23) is that they are all
of the general form [8, 9]

ei
~kjj �~rjjU~kjj;n

~rjj; x3
� � ð3:24Þ

involving a plane wave propagating within the x1 � x2 plane multiplying a function
which is periodic in the photonic crystal lattice in the x1 � x2 plane. The periodic
part of (3.24) is seen to depend both on the wave vector,~kjj, of the plane wave and
the band index n associated with the eigenfrequency of the particular solution under
consideration. In the x3 direction there is no periodicity in the system but the fields
satisfies the correct electromagnetic boundary conditions at the perfect conducting
plates.

In an earlier chapter it was noted that wave functions in a periodic lattice are of
the general form of a plane wave times a function which has the periodicity of the
lattice. The results in (3.22) through (3.24) are consistent with this. They account
for the periodicity of the system in the x1 � x2 plane and also take into account
the absence of periodicity along the x3-axis. Now some of the specific details of the
solutions are studied for a number of case of interest for applications.
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Example Solutions
The n = 0 term in the (3.23) expansion for E3 is a constant independent of the x3
variable. This term represents the case in which E1 ¼ 0 and E2 ¼ 0, i.e., only the E3

component of the field is nonzero. For this limit the boundary conditions at the
parallel perfect conducting plates are trivially satisfied, and the resulting solution of
the system considering this mode is identical with that of a photonic crystal
composed of infinite parallel dielectric cylinders. Substituting (3.22) and (3.23) into
(3.21) and collecting the n = 0 results in the matrix eigenvalue problem [8, 9].

X
~G0

jj

ĵ ~Gjj � ~G0
jj

	 

~kjj þ~G0

jj
	 
2

a 0ð Þ
3

~kjj þ~G0
jj

	 

¼ x2

c2
a 0ð Þ
3

~kjj þ~Gjj
	 


; ð3:25Þ

where

1
e ~rjj
� � ¼X

~Gjj

ĵ ~Gjj
� �

exp i~Gjj �~rjj
� �

: ð3:26Þ

From (3.25) and (3.26) it is seen that only a 0ð Þ
3

~kjj þ~Gjj
	 


coefficients are

involved in the matrix equation. This is due to the fact that none of the @E1
@x3

and @E2
@x3

derivatives of the sin np
d x3
� �

factors are constants, independent of x3. As a conse-
quence only the n = 0 terms are coupled together by the differential equations in
(3.21) and the fields of the modal solutions depend only on x1 and x2.

The matrix in (3.25) is not symmetric but can be made to be symmetric. Defining
[8, 9]

a 0ð Þ
3

~kjj þ~Gjj
	 


¼
b 0ð Þ
3

~kjj þ~Gjj
	 

~kjj þ~Gjj
��� ��� ; ð3:27Þ

and substituting into (3.25) gives

X
~G0

jj

~kjj þ~Gjj
��� ���ĵ ~Gjj � ~G0

jj
	 


~k0jj þ~G0
jj

��� ���b 0ð Þ
3

~kjj þ~G0
jj

	 

¼ x2

c2
b 0ð Þ
3

~kjj þ~Gjj
	 


: ð3:28Þ

This is an eigenvalue problem involving a symmetric matrix, for the eigenvalues
x2

c2

n o
and their corresponding eigenvector sets b 0ð Þ

3
~kjj þ~Gjj
	 
n o

, that determines

the electromagnetic modes of the photonic crystal. The solutions of (3.28) are
obtained applying standard numerical methods, and from (3.22), (3.23), and (3.27)
yield the wave functions of the electromagnetic modes in position space.
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For the numerical treatment of the problem in (3.28) ĵ G
*

jj
	 


as defined in (3.26)

must be determined for the array of cylinders. From (3.26) it follows that [8, 9]

ĵ ~Gjj
� � ¼ 1

A

Z
d~rjj

1
e ~rjj
� � exp �i~Gjj �~rjj

� �

¼ 1
A

Z
d~rjj

1
e ~rjj
� �� 1

" #
exp �i~Gjj �~rjj
� �þ d~Gjj;0

ð3:29Þ

where the integral in (3.29) is over the entire photonic crystal and A is the area of
the photonic crystal in the x1 � x2 plane. The area of the x1 � x2 plane can be
broken into a set of identical smallest area units, ac, containing a single lattice site
of the photonic crystal lattice. (An example of such a division is to break the plane
up into little squares centered about each cylinder so that the area A is obtained as a
sum of the little squares.) For this division of the plane it then follows that A ¼ Nac,
for N the number of lattice sites, relates A and ac. With this notation (3.29) becomes

ĵ ~Gjj
� � ¼ 1

ac

Z
ac

d~rjj
1

e ~rjj
� �� 1

" #
exp �i~Gjj �~rjj
� �þ d~Gjj;0

ð3:30Þ

where the integral is over a single ac centered at the origin of the x1 � x2 plane, and
the periodicity of the integrand has been used.

The integral in (3.30) is evaluated with the help of the identity [8, 9]

exp �iGjjrjj cos h
� � ¼ X1

m¼�1
�ið ÞmJm Gjjrjj

� �
e�imh ð3:31Þ

where ~Gjj �~rjj ¼ Gjjrjj cos hð Þ. Substituting into (3.30) and doing the h integral, it
follows that

ĵ ~Gjj
� � ¼ 1

ac

Z
ac

d~rjj
1

e rjj
� �� 1

" # X1
m¼�1

�ið ÞmJm Gjjrjj
� �

e�imh þ dGjj;0

¼ 1
ec
� 1

� �
1
ac

ZR
0

rjjdrjjJ0 Gjjrjj
� �þ dGjj;0

ð3:32Þ

where ec is the dielectric constant of the cylinders of the photonic crystal. In
evaluating (3.32), use has been made of the fact that cylinders of the photonic
crystal have circular cross sections of radii R and that e rjj

� � ¼ 1 outside of the
cylinders.
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Applying the Bessel function identity[8, 9]

d
dx

xJ1 xð Þ½ � ¼ xJ0 xð Þ ð3:33Þ

on the far right of (3.32) gives the result

ĵ ~Gjj ¼ 0
� � ¼ 1

ec
f þ 1� fð Þ; ð3:34aÞ

ĵ ~Gjj 6¼ 0
� � ¼ 1

ec
� 1

� �
f
2J1 GjjR
� �
GjjR

ð3:34bÞ

Here in (3.34) f ¼ pR2=ac is the filling fraction of the cylinders in the plane of
the photonic crystal plates. The result in (3.34), known as the form factor, is made
for a square lattice but it is easily generalized to handle any two-dimensional
photonic crystal array. Following a similar method, the form factor of
three-dimensional photonic crystal of dielectric sphere is obtained in a closed form
involving spherical Bessel functions.

Applying the form factor in (3.34) in (3.28) the photonic band structure of the
n = 0 modes of the photonic crystal are evaluated. As mentioned earlier, these are
not only modes of the truncated photonic crystal but they are modes of an array of
non-truncated infinite cylinders on a two-dimensional lattice. The results for this
system will now be discussed for a realization of the model that has been of
experimental interest.

Experimental System for n = 0
In Fig. 3.2 the dispersion relation of the square lattice photonic crystal array is

presented. The plot is made for xa
2pc versus k

*

jj where a is the nearest neighbor
separation of the lattice sites of the square lattice and c is the speed of light. In the
plot n = 0 so there is no dependence on the plate separation d, and the filling
fraction was taken as f = 0.4488 in order to match experimental data published in
[10]. The dielectric constant of the dielectric cylinders is ec ¼ 9.

The inset in the figure shows the smallest square area in ~kjj wave vector space
which contains all of the unique eigenvalue-eigenvector solutions for the photonic
crystal of cylinders in a square lattice array. Outside of this area in wave vector
space are only repeats of the solutions contained within the square inset.

At the center of the square in wave vector space is the point labeled �C. This is the
origin of wave vector space, corresponding to~kjj ¼ 0; 0ð Þ. The other labeled points
at �M and �X are at the boundaries of the square inset. These points are a standard
Group theory representation and are used to reference the dispersion relation plots
presented below the inset. The dispersion relation is then presented along the lines
�C�X; �X �M, and �M�C in wave vector space. This is represented as a triangular path
within the inset.
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Results for n > 0
For general n� 1 the matrix eigenvalue problem is obtained from (3.21), (3.22),
and (3.34). Upon substituting these various forms, the infinite dimensional problem

for the set of eigenvalues x2

c2

n o
and their corresponding sets of eigenvectors

a nð Þ
1

~kjj þ~Gjj
	 


; a nð Þ
2

~kjj þ~Gjj
	 


; a nð Þ
3

~kjj þ~Gjj
	 
n o

takes the form [8, 9]

X
~G0

jj

j ~Gjj � ~G0
jj

	 

A11a

nð Þ
1

~kjj þ~G0
jj

	 

þA12a

nð Þ
2

~kjj þ~G0
jj

	 

þA13a

nð Þ
3

~kjj þ~G0
jj

	 
n o

¼ x2

c2
a nð Þ
1

~kjj þ~Gjj
	 


;

ð3:35aÞ
X
~G0

jj

j ~Gjj � ~G0
jj

	 

A21a

nð Þ
1

~kjj þ~G0
jj

	 

þA22a

nð Þ
2

~kjj þ~G0
jj

	 

þA23a

nð Þ
3

~kjj þ~G0
jj

	 
n o

¼ x2

c2
a nð Þ
2

~kjj þ~Gjj
	 


;

ð3:35bÞ

Fig. 3.2 Dispersion relation of the square lattice photonic crystal array [8]. The plot is of xa
2pc

versus k
*

jj where a is the nearest neighbor separation of the lattice sites of the square lattice and c is
the speed of light. In the plot n = 0, and the filling fraction taken as f = 0.4488 matches
experimental data published in [10]. The dielectric constant of the dielectric cylinders is ec ¼ 9.
Reproduced with permission from [8]. Copyright 1993 Optical Society of America
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X
~G0

jj

j ~Gjj � ~G0
jj

	 

A31a

nð Þ
1

~kjj þ~G0
jj

	 

þA32a

nð Þ
2

~kjj þ~G0
jj

	 

þA33a

nð Þ
3

~kjj þ~G0
jj

	 
n o

¼ x2

c2
a nð Þ
3

~kjj þ~Gjj
	 


;

ð3:35cÞ

where

A11 ¼ k2 þG0
2

� �2 þ np
d

	 
2
; ð3:36aÞ

A12 ¼ A21 ¼ � k1 þG0
1

� �
k2 þG0

2

� �
; ð3:36bÞ

A13 ¼ A31 ¼ k1 þG0
1

� � np
d

	 

; ð3:36cÞ

A22 ¼ k1 þG0
1

� �2 þ np
d

	 
2
; ð3:36dÞ

A23 ¼ A32 ¼ k2 þG0
2

� � np
d

	 

; ð3:36eÞ

and

A33 ¼ ~kjj þ~G0
jj

	 
2
: ð3:36fÞ

The matrix problem in (3.35) and (3.36) now involves all three components

a nð Þ
1

~kjj þ~Gjj
	 


; a nð Þ
2

~kjj þ~Gjj
	 


, and a nð Þ
3

~kjj þ~Gjj
	 


of the electromagnetic fields in

(3.22) and (3.23). As a consequence, the modes have non-zero electric fields with
components in the x1 � x2 plane between the two perfect conducting plates. At the
plates, however, E1 ¼ 0 and E2 ¼ 0, accounting for the dependence on d of all of
the fields.

Large d Limit
Some further simplification of (3.35) and (3.36) can be made in the limit that
d becomes large. For d approaching infinity these equations reduce to [8, 9]

X
~G0

jj

j ~Gjj � ~G0
jj

	 

k2 þG0

2

� �2
a nð Þ
1

~kjj þ~G0
jj

	 

� k1 þG0

1

� �
k2 þG0

2

� �
a nð Þ
2

~kjj þ~G0
jj

	 
n o

¼ x2

c2
a nð Þ
1

~kjj þ~Gjj
	 


;

ð3:37aÞ
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X
~G0

jj

j ~Gjj �~G0
jj

	 

� k1þG0

2

� �
k2þG0

2

� �
a nð Þ
1

~kjj þ~G0
jj

	 

þ k1þG0

1

� �2
a nð Þ
2

~kjj þ~G0
1

	 
n o

¼ x2

c2
a nð Þ
2

~kjj þ~Gjj
	 


;

ð3:37bÞ

and

X
~G0

jj

j ~Gjj � ~G0
jj

	 

~kjj þ~G0

jj
	 
2

a nð Þ
3

~kjj þ~G0
jj

	 

¼ x2

c2
a nð Þ
3

~kjj þ~Gjj
	 


ð3:37cÞ

For this system it is found that while (3.37a) and (3.37b) only involve the E1 and
E2 field components, the third E3 component is determined solely by (3.37c). The
problem reduces to two coupled equations and one single equation. Looking further
at (3.37) it is noted that these equations for the E1;E2, and E3 field components are
independent of n so that all of the solutions are degenerate in n.

The solutions of (3.37) have an interesting relationship to the modal solutions of
a two-dimensional photonic crystal composed as an array of parallel axis infinite
dielectric cylinders. The complete solutions of the electromagnetic modes of a
two-dimensional photonic crystal composed as an array of parallel axis infinite
dielectric cylinders separate into distinct polarizations of the fields parallel to the
cylinder axes. These are modes with the electric fields parallel to the cylinder axes
and modes with magnetic fields parallel to the cylinder axes. It can be shown that
the equations in (3.37a) and (3.37b) are the same as those describing the E1 and E2

field components for a photonic crystal composed of infinite parallel dielectric
cylinders with the magnetic field polarized along the axes of the dielectric cylinders.
In addition the matrix equation in (3.37c) is seen to be the same as that in (3.25) for
the n = 0 mode. Earlier it was also shown that (3.25) and its subsequently modified
form in (3.27) and (3.28) described modes which are identical with those of a
photonic crystal composed of infinite parallel dielectric cylinders with the electric
field polarized along the axes of the cylinders. Consequently, the modal solutions of
(3.37a) and (3.37b) along with those from (3.25), (3.27), and (3.28) constitute a
complete set of solutions for a two-dimensional photonic crystal composed as an
array of parallel axis infinite dielectric cylinders. This makes good sense as in the
d ! 1 limit the perfect conducting plate model becomes a two-dimensional
photonic crystal composed as an array of parallel axis infinite dielectric cylinders
[8, 9].

The d ! 1 solutions and their relation to the two dimensional photonic crystal
of infinite cylinders is very interesting [8, 9]. Many of the ideas and discussions of
properties of photonic crystal are initially presented in the context of such
two-dimensional photonic crystal models. It appears as a basis of discussion in
many publications [8, 9].

110 3 Photonic Crystals



Slab Solutions
Systems encountered experimentally, however, are generally of the form of pho-
tonic crystal slabs. Within the plane of the slab the light propagation is subject to a
periodic patterning, but at the slab surfaces the dielectric mismatches between the
slab and the regions outside the slab act to confine the light to the body of the slab.
In this sense the truncated model studied here is instructive as it illustrates the
greater complexity of experimental systems. These contain modes related to the
two-dimensional systems of infinite cylinders as well as modes related to the higher
order n� 1 solutions which are now to be discussed with a numerical example.

Continuing with the treatment of the dispersion relations of the truncated solu-
tions of the photonic crystal, the discussions now turn to the n� 1 solutions of the
system considered in Fig. 3.2 in which its n = 0 modes were presented. In
Fig. 3.3a–c results are shown for the dispersion relations of the n = 1 modal
solutions. These are plotted presenting the lowest ten bands of the dispersion
relations of the truncated photonic crystal, respectively, for the cases
d=a ¼ 0:5; d=a ¼ 1:0, and d=a ¼ 5:0.

In Fig. 3.3 it is seen that the lines of the dispersion relation of the system are
flatter and have larger frequency stop bands regions as the ratio d=a is decreased.
This is in contrast to the n = 0 solutions in Fig. 3.2 which are independent of the
ratio d=a. It is a general property of photonic crystal slab systems that the sets of
higher n� 1 modes in the photonic crystal slab display a strong dependence on the
slab thickness.

Limit that d/a Goes to Zero
In the extreme limit that d=a ! 0, it follows from (3.35) that [8, 9]

np
d

	 
2X
~G0

jj

j ~Gjj � ~G0
jj

	 

a nð Þ
1

~kjj þ~G0
jj

	 

¼ x2

c2
a nð Þ
1

~kjj þ~Gjj
	 


; ð3:38aÞ

np
d

	 
2X
~G0

jj

j ~Gjj � ~G0
jj

	 

a nð Þ
2

~kjj þ~G0
jj

	 

¼ x2

c2
a nð Þ
2

~kjj þ~Gjj
	 


; ð3:38bÞ

and a nð Þ
3

~kjj þ~Gjj
	 


¼ 0. The eigenfunctions of the matrix problem in (3.38) are

shown to be of the form of plane waves used to describe periodic functions of the
lattice. Specifically, it is found that in term of the set of wave vectors ~Gjj

� �
,

a nð Þ
i

~kjj þ~Gjj
	 


¼ exp �i~Gjj �~rjj
� �

; ð3:39Þ

where i = 1, 2 generates a solution of the eigenvalue problem. These eigenfunctions
are seen not to depend on the wave vectors ~kjj so that the eigenvalue problem is
highly degenerate.
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Fig. 3.3 Dispersion relation
of the n = 1 modes of the
truncated square lattice
photonic crystal in Fig. 3.2.
The filling fraction is
f = 0.4488 and the dielectric
constant of the dielectric
cylinders is ec ¼ 9. Results
are shown for a d

a ¼ 0:5,
b d

a ¼ 1:0, and c d
a ¼ 5:0 [8].

Reproduced with permission
from [8]. Copyright 1993
Optical Society of America
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Upon substituting (3.39) into (3.38) the corresponding eigenvalues of (3.38) are
found to be given by [8, 9]

xd
pnc

� �2

¼ 1
e ~rjj
� � ; ð3:40Þ

which for the present problem has two values. This strong dependence of the
eigenvalues on the position dependent dielectric function of the photonic crystal is
an indication that the eigenfunctions of the photonic crystal corresponding to these
eigenvalues are localized in space either within the dielectric cylinders or to the
regions outside of the cylinders. For the specific model that is treated in Fig. 3.3,
the two eigenvalues are [8, 9].

xa
2pc

¼ n
2
ffiffiffiffi
ec

p a
d
;
n
2
a
d
: ð3:41Þ

These eigenvalues are observed numerical in the discussions of the square lattice
system.

Solutions for n = 2
In Fig. 3.4a–c results for xa

2pc versus wave vector are presented for n ¼ 2 with,
respectively, da ¼ 0:5; 1:0, and 5:0. The figures show the ten lowest frequency bands
of the system. As the separation of the plates is increased from d

a ¼ 0:5 the band
structure changes from an array of flat, well separated pass bands, to a dispersion
relation in the d

a ¼ 5:0 plot that contains no stop bands. Comparing the d
a ¼ 1:0 band

structure of the n ¼ 1 and n ¼ 2 plots in Figs. 3.3b and 3.4b, it is seen that the
n ¼ 2 system has flatter bands with more well defined regions of stop band.

In general it is found for an increasing n that the dispersion relations for a given
plate separation tend to have flatter dispersion relations with larger stop band
regions, and the dispersion relation becomes more compressed in frequency.

Triangle Lattice Truncated Slab
As a final band structure consideration some results for the triangle lattice are
presented. As mentioned earlier, the triangle lattice was the first two-dimensional
lattice shown to have a complete band gap for all polarizations of the solutions of
the infinite cylinder photonic crystal.

In Fig. 3.5 the solutions of the triangle lattice photonic crystal for the case of the
system of infinite cylinders is shown. The case with the electric field polarized
parallel to the cylinder axes is presented in Fig. 3.5a. This corresponds to the n ¼ 0
modes of the truncated triangle lattice photonic crystal. The case with the magnetic
field polarized parallel to the cylinder axes is shown in Fig. 3.5b. As mentioned
earlier the results in Fig. 3.5b are obtained as the modes of the d

a ! 1 limit of the
triangle lattice version of the truncated systems discussed earlier.

For these results, the dielectric constant of the cylinders was taken as ecylinder ¼ 1
in a background medium of dielectric constant ebackground ¼ 13, and the filling
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Fig. 3.4 Photonic band
structure of the truncated
square lattice photonic crystal
in Figs. 3.2 and 3.3 with
n = 2 and for: a d

a ¼ 0:5,
b d

a ¼ 1:0, and c d
a ¼ 5:0 [8–

10]. Reproduced with
permission from [8].
Copyright 1993 Optical
Society of America
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fraction of the cylinders in the lattice was taken as f ¼ 0:8358. In both plots the
cylinders are vacuum and are surrounded by a dielectric medium. This requires a
small adjustment in the formulas given earlier.

As with the discussions of the square lattice system, an inset of the smallest area
in wave vector space presenting the complete unique solutions of the system is
shown in Fig. 3.5a. For the triangle lattice photonic crystal the smallest area is
found to be a hexagon. Points of reference are indicated on the inset and these are
used in the plots of the dispersion relations in wave vector space. The dispersion
relations shown in Fig. 3.5 are plotted along lines between these inset points in
wave vector space.

Notice in the plots of Fig. 3.5 that both polarization share a common stop band
near xa

2pc � 0:5. In particular, the common stop band for the two modes is found in
the region 0:450\ xa

2pc\0:536. For each of the two different modes the common

Fig. 3.5 Triangle lattice
photonic crystal results:
a band structure for the
electric field parallel to the
cylinder axes, corresponding
to the n = 0 modes of the
truncated triangle lattice
photonic crystal, and b band
structure for the magnetic
field parallel to the cylinder
axes [8]. Reproduced with
permission from [8].
Copyright 1993 Optical
Society of America
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stop band corresponds to their lowest frequency stop band. This is very convenient
as the lowest frequency stop bands tend to be the largest stop bands and large stop
bands are useful in many types of technological applications.

n = 1 Modes of Triangle Lattice Truncated Slab
Continuing with the triangle lattice photonic crystal, results are presented in
Fig. 3.6 for the lowest ten n ¼ 1 modes of the truncated triangle lattice photonic
crystal. These are the first set of modes that exhibit a dependence on d

a . The modes
presented in Fig. 3.6 are computed for the cylinders of dielectric constants
ecylinder ¼ 1 in a background medium with a dielectric constant ebackground ¼ 13 and
the filling fraction of the cylinders f ¼ 0:8358 used in Fig. 3.5. In addition, the
results in Fig. 3.6 are computed for d

a ¼ 1:0.
In the limit d

a ! 1 the truncated triangle lattice photonic crystal again is found
to have a simple flat band structure. For the system in Fig. 3.6 two limiting values
of the frequency are given as [8, 9].

xd
2p2nc

! 0:04414 and 0:15915: ð3:42Þ

Fig. 3.6 Photonic band
structure for the n = 1 modes
of the truncated triangle lattice
photonic crystal of vacuum
cylinders with ecylinder ¼ 1
surrounded by a dielectric
background with
ebackground ¼ 13. The cylinders
have a filling fraction
f = 0.8358. The vacuum
cylinders are surrounded by
the dielectric background and
the plate separation is d

a ¼ 1:0
[8]. Reproduced with
permission from [8].
Copyright 1993 Optical
Society of America
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3.2 Green’s Function Method for Impurity Modes
in Photonic Crystals

In this section the methods of Green’s functions is developed for the investigation
of single site impurities in two-dimensional photonic crystals [9, 12–14]. The
Green’s function method is a direct extension of the plane wave expansion method
for finding the wave functions and the dispersion relation of photonic crystals. It is a
flexible formulation which can be modified to handle a variety of problems
involving clusters and finite or infinite ordered patterns of impurity features in
photonic crystals.

An advantage of the method is in its generation of closed form expressions for
the electromagnetic properties of the various impurity systems. For clusters of
impurities, the Green’s function method allows, through the applications of Group
theory techniques, for the development of the modal solutions of the impurities to
be classified in terms of the various irreducible represents of the symmetry groups
of the impurities. This provides for a qualitative understanding of the modal fre-
quency spectrum associated with the impurities which is not as directly evident
from, for example, computer simulation studies.

Single site impurity problems have a long history in theoretical physics where
they have been focused upon in the study of many different types of physical
systems [13, 14]. Some of the more prominent of these include the treatment of
electrons, magnon, and phonon scattering and bound states in impure crystalline
materials. Both temperature independent and temperature dependent treatments
have been given for these various physical systems.

Photonic crystal impurities are generally much easier to treat than impurities in
the general many-body systems mentioned earlier [13, 14]. In photonic crystals the
dielectric properties of the photonic crystal and the arrangement of the impurity
materials within the photonic crystal is engineered into its basic design [9]. This is
not the case with electron, magnon, and phonon systems [13, 14]. In these naturally
occurring materials the impurity potentials that the electrons, magnon, and phonon
modes encounter within the materials are generally poorly known or are part of the
focus for determination in obtaining the solution of the impurity problem. This is
not the case in photonic crystals where all the dielectric constants and the geometry
of the photonic crystal pattern are known. For these systems the nature of the
excitations are the focus of the problem. In addition, the focus of most of the
impurity calculations in photonic crystals generally ignores the insignificant tem-
perature dependence of the modal solutions of the system.

Computer simulation methods applied to photonic crystal impurity systems are an
alternative to Green’s functions approaches [1–5]. These have been described sep-
arately elsewhere in this text, and only require a direct implementation of the
methodology of the simulations for the study of impurity problems. The methods
available generally fall into two classifications as those based on the finite-difference
time-domain techniques or the method of moments. Both approached require
extensive computer algorithm designing techniques for the accuracy and efficiency
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of computations, and they have often been taken as the preferred approaches in the
study of photonic crystal systems. In the following, the focus will be on the Green’s
function method, and the reader is referred to the literature for details of the
implementation of the simulation approaches to impurities in photonic crystals.

Green’s Function Formulation: Two-Dimensional Systems
In the following the Green’s function treatment of the impurity problem will be
formulated for a two-dimensional photonic crystal. The single site impurity prob-
lem will be the focus of the treatment followed by suggestions and literature ref-
erences for applications to clusters. Some numerical results for the single site
impurity in the two-dimensional photonic crystal will be presented and discussed.

This will be followed by discussions of the single impurity problem in a
one-dimensional photonic crystal array of dielectric slabs. In this problem a single
slab impurity is introduced into a finite array of a one-dimensional photonic crystal.
A study will be made of the transmission of the array with a focus on the modi-
fication of the transmission properties, from those of the array in the absence of
impurities, introduced into the system by the single impurity slab.

For the consideration of the impurity problem a two-dimensional photonic
crystal of infinite parallel axes dielectric cylinders in vacuum is treated. The
cylinders are ordered on a two-dimensional lattice, and an impurity is created in the
photonic crystal by replacing one of the dielectric cylinders of the photonic crystal
with an impurity cylinder. The impurity cylinder is of identical geometry to that of
the cylinders forming the photonic crystal array, but it is of a different dielectric
medium from that of the cylinders of the pure photonic crystal array.

The dielectric function describing the photonic crystal with an impurity has the
general form [5, 9]

e ~rjj
� � ¼ e0 ~rjj

� �þ de ~rjj
� � ð3:43Þ

where ~rjj ¼ x1x̂1 þ x2x̂2 is a vector in the x1 � x2 plane of the periodicity of the
photonic crystal, and the dielectric function of the system is translationally invariant
along the x3-axis. The total dielectric function is composed of a periodic part from
the pure photonic crystal and a part from the impurity material that has been
introduced into the system.

The periodic dielectric function of the pure photonic crystal in (3.43) is the part.

e0 ~rjj
� � ¼ e0 ~rjj þ~Tjj

� �
: ð3:44Þ

In (3.44) ~Tjj is a translation vector in the plane of the two-dimensional lattice
which translates the lattice into itself. Equation (3.44) then displays the periodicity
of the photonic crystal in the absence of the impurity. The contribution to the
dielectric function in (3.43) represented by
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de ~rjj
� � ð3:45Þ

is the deviation from e0 ~rjj
� �

due to the presence of impurity media. It is transla-
tionally invariant along the x3-direction but is localized within the x1 � x2 plane.

As in the treatment of the pure photonic crystal the impurity mode solutions
separate into modes with polarization of the electric and magnetic fields parallel to
the cylinder axes of the system. For simplicity only modes of the impurity problem
that are polarized with their electric fields parallel to the x3-axis are considered in
the following. The modes with magnetic fields parallel to the x3-axis have a similar
but mathematically more involved treatment to that given in the following con-
siderations of the electric field polarization problem.

For modes with the electric field polarized along the x3-axis, the fields have the
general form

~E ~rjj; t
� � ¼ 0; 0;E3 ~rjjjx

� �� �
e�ixt: ð3:46Þ

The magnetic components of these modes are then shown from the Maxwell
equations to be in the x1 � x2 plane. Working from the forms of Maxwell equations
in the absence of currents and net charge densities, the field amplitude E3 ~rjjjx

� �
is

obtained as a solution of a Helmholtz equation given by [5, 9]

@2

@x21
þ @2

@x22
þ e ~rjj
� �x2

c2

� �
E3 ~rjjjx
� �

¼ @2

@x21
þ @2

@x22
þ e0 ~rjj

� �þ de r*jj
	 
h ix2

c2

� �
E3 ~rjjjx
� � ¼ 0:

ð3:47Þ

Equation (3.47) can be rewritten into a format resembling an inhomogeneous
differential equation with the following form [5, 9]

1
e0 ~rjj
� � @2

@x21
þ @2

@x22

� �
þ x2

c2

" #
E3 ~rjj xj
� �

¼ �x2

c2
de ~rjj
� �

e0 ~rjj
� � E3 ~rjj xj

� � ð3:48Þ

This is a standard type of differential equation problem encountered in the study
of bound states and scattering problems in electrodynamics and quantum
mechanics. It has a standard methodology for its solution in terms of a Green’s
functions approach. This will now be outlined.

In discussing the Green’s function approach to the solutions of (3.48). It is nec-
essary to develop the idea of Green’s functions of the operator on the left of (3.48).
This requires a discussion of the expansions of the fields and the delta function
operators in terms of the eigenvalues and eignvectors of the operator on the left of
(3.48). This is now presented followed by the formulation of the solution of (3.48).
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Solving the Green’s Function and Inhomogeneous Equations
In terms of the left side of (3.48), the differential equation eigenvalue problem for
the eigenvalues of the two dimensional photonic crystal in the absence of an
impurity is [5, 8, 9].

1
e0 ~rjj
� � @2

@x21
þ @2

@x22

� �
þ x2

c2

" #
E3 ~rjjjx
� � ¼ 0: ð3:49Þ

This can be rewritten into the standard general form

1
e0 ~rjj
� � @2

@x21
þ @2

@x22

� �
wn~kjj

~rjj
� � ¼ �kn ~kjj

	 

wn~kjj

~rjj
� � ð3:50Þ

for the set of eigenvalues kn ~kjj
	 
n o

giving the modal eigenfrequencies x2

c2 and the

set of eigenvectors wn;~kjj
~rjj
� �n o

for the corresponding modal wave functions for

E3 ~rjjjx
� �

.
The problem in (3.49) was treated earlier in (3.25), (3.27), and (3.28). Specifically,

it was shown there that the n ¼ 0 modes of the truncated two-dimensional lattice
problemwhere identical to the modes of the non-truncated two-dimensional photonic
crystal composed of infinite parallel axes dielectric cylinders. The matrix eigenvalue
problem obtained from (3.49) and (3.50) is given by [5, 8, 9]

X
~G0

jj

M ~kjj þ~Gjj;~kjj þ~G0
jj

	 

Cn

~kjj þ~G0
jj

	 

¼ kn ~kjj

	 

Cn

~kjj þ~Gjj
	 


ð3:51Þ

where

M ~kjj þ~Gjj;~kjj þ~G0
jj

	 

¼ ~kjj þ~Gjj
��� ���ĵ ~Gjj � ~G0

jj
	 


~kjj þ~G0
jj

��� ���: ð3:52Þ

(Note that the problem in (3.51) an (3.52) is essentially the same as that con-
sidered in (3.27) and (3.28).) In terms of the solutions of (3.51) and (3.52) it then
follows that the eigenvectors of the differential equations in (3.50) are [5, 8, 9].

w
n;k

*

jj
~rjj
� � ¼ 1

2p

X
~Gjj

Cn
~kjj þ~Gjj
	 

k
*

jj þ~Gjj
��� ��� ei

~kjj þ~Gjjð Þ�~rjj : ð3:53Þ

The numerical solution of (3.51) and (3.52) generate kn ~kjj
	 
n o

and the corre-

sponding set Cn
~kjj þ~Gjj
	 
n o

of Fourier coefficients for their respective modal wave

functions. From these the spatial wave functions are generate using (3.53). Once this
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has been accomplished and the orthogonality relations of the spatial modes deter-
mined, general wave functions of the system and expressions for the spatial delta
function can be written in terms of the modal solutions and their eigenvalues.

To obtain the solution of the single impurity problem in the photonic crystal it is
necessary to have available a complete set of orthonormal modes of the photonic
crystal. These are used to expand and investigate the general electromagnetic
solutions of the photonic crystal and to obtain an expression for the Green’s
functions of the operator on the left of (3.48). In particular, the Green’s function of

the problem in (3.48), G ~rjj;~r0jj xj
	 


, is defined as the solution of [5, 8, 9]

1
e0 ~rjj
� � @2

@x21
þ @2

@x22

� �
þ x2

c2

" #
G ~rjj;~r0jj xj
	 


¼ � 1
e0 ~rjj
� � d ~rjj �~r0jj

	 

ð3:54Þ

and is expressed in terms of the complete orthonormal solutions of (3.50).
The orthogonality properties of the eigenfunction solutions of the differential

equations in (3.50) can be obtained, starting with a consideration of the orthogo-
nality properties of the solutions of the matrix eignenvalue problem in (3.51) and
(3.52). From (3.51) and (3.52) it is found that the sets of coefficients

C ~kjj þ~Gjj
	 
n o

that are solutions for the matrix eigenvectors in (3.51) can be

chosen to be real and normalized so that they satisfy the two conditions [5, 8, 9]

X
~Gjj

Cn ~kjj þ~Gjj
	 


Cn0 ~kjj þ~Gjj
	 


¼ dn;n0 ð3:55Þ

and

X
n

Cn
~kjj þ~Gjj
	 


Cn
~kjj þ~G0

jj
	 


¼ d~Gjj;~G0
jj
: ð3:56Þ

These two relations are expressions defining the properties of the modal solu-
tions for a fixed ~kjj in the first Brillouin zone. In particular, for fixed ~kjj there are
multiple eigenvector solutions, each corresponding to one of the set of eigenvalues

kn ~kjj
	 
n o

, such that solutions for different nf g are orthonormal to one another.

This follows from (3.55). In addition, the conditions obtained in (3.56) are a
statement that the set of solutions for nf g are complete and through linear com-
binations accurately represent general solutions of ~kjj.

From (3.53) it is seen that the orthogonality relations of the set wn~kjj

n o
, for a

given ~kjj in the first Brillouin zone, are intimately connect to those of the

C ~kjj þ~Gjj
	 
n o

given in (3.55) and (3.56). To obtain these properties consider

(3.50) rewritten in the form [5, 8, 9]
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@2

@x21
þ @2

@x22

� �
wn~kjj

~rjj
� � ¼ �kn ~kjj

	 

e0 r*jj
	 


wn~kjj
~rjj
� �

: ð3:57Þ

From (3.57) it then follows that [5, 8, 9]

Z
d2rjjw

�
m~qjj ~rjj
� � @2

@x21
þ @2

@x22

� �
wn~kjj

~rjj
� �

¼ �kn ~kjj
	 
Z

d2rjje0 ~rjj
� �

w�
m~qjj ~rjj
� �

wn~kjj
~rjj
� �

: ð3:58Þ

where the integration is over the entire x1 � x2 plane of the photonic crystal. Both
~kjj and ~qjj in (3.58) are fixed to be in the first Brillouin zone. This contains the
complete array of unique solutions of the eigenfunctions of (3.53) and (3.57). The
integral on the right side of (3.58) is of the classic form of an orthogonality, inner
product, relationship. It only remains to evaluate the left side of the equation to
completely determine the nature of the orthogonality.

Applying (3.53) in the left side of (3.58) and using the orthogonality relation in

(3.55) it is seen that wn~kjj

n o
and wm~qjj

n o
satisfy the following relationships

Z
d2rjje0 ~rjj

� �
w�
m~qjj ~rjj
� �

wn~kjj
~rjj
� � ¼ 1

kn k
*

jj
	 
 d ~qjj �~kjj

	 

dm;n; ð3:59Þ

and

X
n

Z
BZ

d2kjjkn ~kjj
	 


w�
n~kjj

~rjj
� �

wn~kjj
~r0jj
	 


¼ 1
e0 ~xjj
� � d ~rjj �~r0jj

	 

ð3:60Þ

The first relationship in (3.59) describes the nature of the orthogonality between
spatial modes that are states of different~kjj and~qjj and different n and m. The second
relationship in (3.60) describes the completeness properties of modes of~kjj and n as
they are used to represent spatially dependent solutions of the photonic crystal

system. The set wn~kjj

n o
is seen to give an accurate representation of general spatial

solutions for the electromagnetic fields of the system, considering all wave vectors
and dispersive bands of the modal solutions.

As a consequence of (3.59) and (3.60), the general form of the photonic crystal

electric field polarized parallel to the x3-axis is expressed in term of the set wn~kjj

n o
by [5, 8, 9]

122 3 Photonic Crystals



E3 ~rjj xj
� � ¼X

n

Z
BZ

d2kjj
2pð Þ2 an~kjjwn~kjj

~rjj
� �

: ð3:61Þ

Here the integral involves wave vectors for the complete set of modal solutions
in the first Brillouin zone, the sum runs over the various dispersive bands of the

photonic crystal band structure, and an~kjj

n o
are a set of expansion coefficients

expressing the linear combination of the modal solutions. This gives a general form
of the solutions for the fields in the photonic crystal.

In the following discussions the general expression in (3.61) will be used to
obtain a solution of the impurity problem defined in (3.48). For these considera-

tions, the focus of the impurity problem is now to determine the an~kjj

n o
so as to

generate the solution of the inhomogeneous differential equation in (3.48). This is

possible due to the completeness of the set of modal solutions wn~kjj

n o
in their

representation of general spatial functions of the system.
Substituting the form in (3.61) into (3.48) and applying (3.57) it is obtained that

[8, 9].

X
n00

Z
BZ

d2k0jj
2pð Þ2 �kn0 ~k0jj

	 

þ x2

c2

 �
an0~k0jj

wn0~k0jj
~rjj
� �¼ �x2

c2
de ~rjj
� �

e0 ~rjj
� � E3 ~rjj xj

� �
: ð3:62Þ

Multiplying (3.62) by e ~rjj
� �

w�
n~kjj

~rjj
� �

and integrating over~rjj, it follows from the

orthogonality relation in (3.59) that the solutions for an~kjj

n o
for the electromagnetic

modal bound state on the impurity are obtained as

an~kjj ¼ 2pð Þ2x
2

c2

kn ~kjj
	 


kn ~kjj
	 


� x2

c2

Z
d2rjjw

�
n~kjj

de ~rjj
� �

E3 ~rjj xj
� �

: ð3:63Þ

Upon applying these results for an~kjj

n o
in (3.61) a homogeneous integral

equation is generated for the single site impurity problem. In this manner, the bound
state solutions are given as the solutions of

E3 ~rjj xj
� � ¼ x2

c2

Z
d2r0jjG ~rjj;~r0jj xj

	 

de ~r0jj
	 


E3 ~r0jj xj
	 


ð3:64Þ
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where

G ~rjj;~r0jj xj
	 


¼
X
n

Z
BZ

d2kjj
wn~kjj

~rjj
� �

kn ~kjj
	 


w�
n~kjj

~r0jj
	 


kn ~kjj
	 


� x2

c2

: ð3:65Þ

It is seen upon substitution that (3.65) is the solution of the Green’s function
problem in (3.54) and further that applying the Green’s function to the inhomo-
geneous problem in (3.48) reproduces the result in (3.64) and (3.65).

Bound State Modes
The bound state solutions of (3.64) and (3.65) are the impurity modes of the single
site problem. These have frequencies that are outside of the pass band of the pure
photonic crystals and have wave functions that are localized about the impurity
materials introduced into the photonic crystal. There are a number of methods for
obtaining the solutions of (3.64) and a number of simplifications that can be made
in the treatment of the integral equations. These are essentially based on the nature
of the photonic crystal system which offers some fundamental simplifications in its
treatment that are not present in the treatment of electronic and vibrational impu-
rities in crystalline, chemical, media. To conclude the single impurity discussions,
these are now addressed.

If a function f ~rjjjx
� �

is defined such that [8, 9]

f ~rjj xj
� � ¼ E3 ~rjj xj

� �
in the region of non-zero de ~rjj

� � ð3:66aÞ

¼ 0 outside the region of non-zero de ~rjj
� �

; ð3:66bÞ

then it follows from (3.64) that

f ~rjj xj
� � ¼ x2

c2

Z
d2r0jjG ~rjj;~r0jj xj

	 

de ~r0jj
	 


f ~r0jj xj
	 


: ð3:67Þ

Equation (3.67) is seen to relate the electric fields inside the region of non-zero
de ~rjj
� �

back into themselves. It represents a well defined Fredholm integral equation
of the first kind which is solved for the fields, f ~rjjjx

� �
.

Once the f ~rjjjx
� �

fields are obtained, the general E3 ~rjjjx
� �

fields throughout all
of space are obtained in terms of the f ~rjjjx

� �
solutions. In this way it follows from

(3.64) and (3.66) that for all~rjj [8, 9]

E3 ~rjj xj
� � ¼ x2

c2

Z
d2r0jjG ~rjj;~r0jj xj

	 

de ~r0jj
	 


f ~r0jj xj
	 


: ð3:68Þ
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The difference between (3.67) and (3.68) is seen in the need in (3.68) to evaluate
the Green’s function in (3.65) for all~rjj rather than to the restricted region in which
de ~rjj
� �

is non-zero.

Numerical Evaluation of Impurity Equation
The numerical solutions of (3.67) can be obtained using two different approaches.
In the first approach the integral equation is rewritten in terms of a matrix problem
and the solvability conditions of the matrix equation are investigated. Within an
application of Gauss-Legendre quadrature in two-dimensions the integral equation
in (3.67) takes the matrix form

f ~rjj i; jð Þ xj� �� g
x2

c2
X
n;m

wnwmG ~rjj i; jð Þ;~rjj n;mð Þ xj� �
de ~rjj n;mð Þjj
	 


f ~rjj n;mð Þ xj� �
¼ 0:

ð3:69Þ

Here wnf g are the weights for the Gauss-Legendre quadrature,~rjj n;mð Þ are the
points in the x1 � x2 plane that are used in forming the sums of the Gauss-Legendre
quadrature in two-dimensions, and g is a constant related to the Gauss-Legendre
quadrature through the measure of the region of integration.

Equation (3.69) is a linear homogeneous matrix equation for the field variables
f ~rjj i; jð Þjx� �� �

. Its solvability condition is that the determinate of the matrix on the
left of (3.69) is zero. Evaluating the determinate of the matrix in (3.69) generates a

nonlinear equation for the set of frequencies x2

c2

n o
corresponding to the modal

solutions of (3.67) and (3.69). For bound states of the system these must occur
outside the pass band regions of the pure photonic crystal. Otherwise, the solutions
represent resonant scattering modes that occur within the pass band of the photonic
crystal.

As an example, consider the case of an impurity introduced into the photonic
crystal by the replacement of a cylinder centered at the origin of the photonic crystal
lattice by an impurity cylinder. The cylinders of the photonic crystal are formed of a
medium with dielectric constant ec, and the replacement cylinder has the same
geometry as the photonic crystal cylinders but is made of a dielectric medium of
dielectric constant e0c.

In this case the points of the Gauss-Legendre quadrature are

~rjj i; jð Þ ¼ ri cos hj; ri sin hj
� � ð3:70Þ

where

ri ¼ R qi þ 1ð Þ
2

ð3:71aÞ
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and

hj ¼ p qj þ 1
� �

: ð3:71bÞ

In (3.71a) R is the radius of the dielectric cylinders of the photonic crystal so that
ri involves an integration on the impurity along the radian variable and in (3.71b) hj
represents an integration over the angular variables on the impurity. In both (3.71),
�1	 qi 	 1 for i ¼ 1; 2; 3; . . .; P are Gauss-Legendre position points corre-
sponding to the quadrature weights wif g.

For the single cylinder replacement integration proposed here, g ¼ pR2

4 in (3.69),
and

de ~rjj
� � ¼ e0c � ec ð3:72Þ

over the region ~rjj
�� ��	R of the cylinder of the photonic crystal that is being

replaced. With these specifications, the formulae in (3.69) through (3.72) combine
to provide a complete treatment of the single cylinder replacement problem.

As an additional side point, it should be noted here that the introduction of more
general types of impurities is obtained through a straightforward generalization of
the earlier formulae and of the numerical treatments of the single impurity problem
discussed in the following. In particular, many types of dielectric changes, de ~rjj

� �
,

in the system can be inscribed within a cylinder of radius R. Such changes require
only a simple modification of the above generated formulation.

The formulation for the replacement cylinder impurity is now applied for
comparison with experimental results from an impurity system involving the
removal of a single dielectric cylinder from the photonic crystal. Recent experi-
ments on this system are found to be in reasonably good agreement with the results
from (3.69) through (3.72).

Experimental Study
The square lattice photonic crystal composed of cylinders of dielectric constant
ec ¼ 9 surrounded by vacuum has been studied experimentally for the case of the
system with filling fraction f ¼ 0:4488. Both the band structure of the pure pho-
tonic crystal and the impurity modes for an impurity created in the photonic crystal
through the removal of a single cylinder have been treated experimentally as well as
in the theory present here.

Earlier, in Fig. 3.2 theoretical results for the band structure of the pure system
have been presented. They are in good agreement qualitatively and reasonable
quantitative agreement with the experimentally measured band structure for which
the reader is referred to [9]. Upon the removal of a cylinder from the photonic
crystal, it is found experimentally that an impurity mode appears in the system with
a frequency in the second lowest stop band of the dispersion relation in Fig. 3.2.

From the band structure theory of the pure photonic crystal the second lowest
stop band has an upper edge at xa

2pc ¼ 0:470 (11.1 GHz) and a lower edge at
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xa
2pc ¼ 0:413 (9.76 GHz). From the determinant theory in (3.69) through (3.72) an
impurity mode is found in the second lowest stop band at xa

2pc ¼ 0:45
(10.63 GHz). In the experimental treatment, upon removal of a cylinder from the
system a bound mode occurs in the experimental system at 11.2 GHz. This is
within the second stop band of the measured results. The discrepancies between
the theory and experiment may be due to the fact that the experiments were done
on a system with finite length cylinders and on a finite array of the cylinders.
Variations in the geometry and uniformity of the composite medium forming the
cylinders may also enter into a more accurate comparison of the two approaches.

Second Approach to Impurity Problem
A second approach to finding the impurity mode frequencies from (3.67) and their
fields from (3.68) can be made by reducing the integral equation in (3.67) to an
eigenvalue problem. In particular, such a reduction occurs for impurities of the form

de ~rjj
� � ¼ de0 for some region S in the x1 � x2plane ð3:73Þ

¼ 0 otherwise;

where de0 a constant. For this case the integral equation in (3.67) can be rewritten
into the form [5, 9]

f ~rjj xj
� � ¼ de0

Z
S

d2~r0jj
x2

c2
G ~rjj;~r0jj xj
	 


f ~r0jj xj
	 


ð3:74Þ

where S indicates an integration over the region in (3.73) for which de0 is non-zero.
For a fixed value of x (3.74) represents an integral equation eigenvalue problem

for the set of eigenvalues de0f g, giving the changes in the dielectric function needed
to support a bound impurity mode about the region S. The corresponding wave
functions of the bound state modes in S are given by the set f ~rjj xj

� �� �
associated

with each of the de0f g eigenvalues for the wave functions of the impurity modes
with frequency x. The general fields in all of space are then obtained from (3.68)
which relates them to the set f ~rjj xj

� �� �
through the integral transform

E3 ~rjj xj
� � ¼ de0

Z
S

d2~r0jj
x2

c2
G ~rjj;~r0jj xj
	 


f ~r0jj xj
	 


ð3:75Þ

where~rjj is no longer restricted to the region S.

General Systems
The two methods in the preceding discussions are easily generalized to treat im-
purity geometries that are more involved than that of the single impurity problem.
These include finite clusters of impurities, infinite sets of impurities introduced into
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the system to form waveguides, and infinite set of impurities to create two- and
three-dimensional super-arrays.

A nice feature of the two treatments is that Group theory techniques, which have
found standard applications in the study of impurity clusters in magnon, phonon,
and electron systems, are directly extended to photonic crystal problems [13, 14].
These allow for the classification of the impurity frequency and wave functions by
the irreducible representations of the symmetry Group of the impurity geometries
[12]. This type of classification is not as nicely and quickly made in treatments
based on alternative numerical simulation studies.

The application of Group theory methods also can be made to the theory pho-
tonic crystal waveguides and infinite two- and three- dimensional replacement
arrays [5, 12]. These type of infinite arrays of site changes of the pure photonic
crystal can exhibit resonant modes within the pass bands of the photonic crystal as
well as modes bound to the infinite array with frequencies in the stop bands of the
pure photonic crystal. The bound stop band modes are the modes of interest in
many applications.

For a waveguide the bound stop band modes exhibit fields that are concentrated
within and localized to the waveguide channel formed by the infinite array of site
changes from the pure photonic crystal. The guided wave solutions are extended
along the length of the waveguide channel and only propagate parallel to the
channel. For such modes the translational symmetries of the systems are easily
related to the band structure of the guided waves that propagate along the wave
guide channel. This allows for a classification of the solutions in terms of the wave
vectors of the irreducible translation group of the material forming the channel.

Two- and three-dimensional arrays of replacements in pure photonic crystals
also have resonant and bound state modes depending on whether or not the modal
solutions are within pass or stop band of the pure system, respectively. The stop
band modes of the impurity propagate along the array of impurities and are similar
to impurity bands observed in some types of impurity semiconductors. They are
classified by the irreducible representations of the symmetry groups of the impurity
array and may be of interest for the frequency transitions that they allow in the
arrayed systems [5, 12].

To conclude the treatment of impurity modes it is of interest to consider a simple
model which illustrates many of the features of the single site impurity problem in
complex two- and three-dimensional photonic crystals. This is the problem of a
one-dimensional layered photonic crystal into which an impurity layer is intro-
duced. It is now discussed in the remainder of this section.

Impurity in One-Dimensional Layered Media
The one-dimensional photonic crystal with a single slab impurity not only illus-
trates many of the general properties of single site impurity modes introduced in
two- and three-dimensional photonic crystals arrays, but it can be also used as a
simple example of an approach to the impurity problem known as the super-cell
approach. The super-cell method is a calculational approach for studying the
properties of impurities in photonic crystals. In the approach, a pure photonic
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crystal is considered as being composed as a collection of identical large units or
cells, i.e., these are the so-call super-cell units. An impurity is introduced into each
of the super-cell units of the pure photonic crystal. The result is a new type of
photonic crystal with a new periodicity.

The periodicity of the new photonic crystal is that of the impurities added to each
super-cell. As the super-cells are made larger, the band structure of the new type of
photonic crystal develops narrow frequency bands arising from the impurities
added to each super-cell. As the separations between the impurities increases the
bands arising from them flatten and give approximations for the impurity frequency
of the original pure photonic crystal with an added single site impurity. The
determination of the impurity mode frequency of the single site impurity in this
manner is a consequence of the weakening in the super-cell system of the inter-
action of the impurity modes between neighboring super-cells of the photonic
crystal as their separations increase.

The lattice of the photonic crystal can be considered as formed by the periodic
repetition in space of a smallest spatial unit. In one-dimensions the unit is a segment
of the line perpendicular to the interfaces of the layers forming the array. In two-
and three-dimensional lattices the unit is a smallest repeat area or volume,
respectively. In each of the one-, two-, and three-dimensional photonic crystals the
super-cell is based on the same idea as the smallest repeat units in these respective
systems. The super-cell units, however, are much larger that the smallest repeat unit
of the system. As with the smallest repeat units, the super-cells again generate the
entire photonic crystal lattice when they are repeated throughout space.

One-Dimensional Model
For the model of a one-dimensional photonic crystal, a photonic crystal composed
as a periodic array of slabs of dielectric constant ea and vacuum are considered. The
slabs are taken to be of width a and light of frequency x is taken to travel in the
system moving perpendicular to the slab interfaces.

Two impurity models based on this photonic crystal are considered [15]. In a
first model, one of the slabs of dielectric constant ea is replace by a slab of dielectric
constant eb. This is a model treating the impurity system as formed by slab
replacement. In a second model one of the slabs of dielectric ea and width a has its
width changed to xa where 0	 x	 3 and the widths of its two surrounding vacuum
slabs are changed to 3�x

2 a. This is a model which treats the change in the widths of a
dielectric slab and its two vacuum neighbors. It does this in such a manner that
going from the pure photonic crystal to the impurity model the total width of the
three changed slabs remains 3a.

The first model treated is the analogy in, for example, a two-dimensional pho-
tonic crystal of an impurity introduced into the system by replacing a dielectric
cylinder with one of the same geometry but of a different dielectric material [15].
The second model is the analogy in a two-dimension photonic crystal array of
dielectric cylinders of introducing an impurity by replacing a cylinder of the pho-
tonic crystal by a cylinder with a large or smaller radius than that of the cylinders of
the original photonic crystal.
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In the one-dimensional photonic crystal the super-cell solution is obtained as a
product of transfer matrices [15]. These matrices relate the fields at one surface of a
dielectric slab of the photonic crystal array to those at the other surface of the slab.
If xl is the position of the left surface of the dielectric slab and xl is the position of
the right surface of the dielectric slab, then the fields in the vacuum to the left of the
slab are of the form

El xð Þ ¼ E2Re
ix x=c�tð Þ þE2Le

�ix x=cþ tð Þ ð3:76aÞ

and those to the right of the slab are of the form

Er xð Þ ¼ E1Re
ix x=c�tð Þ þE1Le

�ix x=cþ tð Þ: ð3:76bÞ

In (3.76a) and (3.76b) the total fields within the vacuum are both seen to be
composed of components propagating to the right and to the left. The coefficient of
the right and left propagating components in (3.76a) and (3.76b) are shown to be

related to one another through a transfer matrix T
$
xl; xrð Þ. This matrix is obtained

from matching the boundary conditions at the slab surfaces on the fields in (3.76)
and those within the dielectric slab. In this way it is found that [15].

E2R

E2L

�����
����� ¼ T

$
xl; xrð Þ E1R

E1L

�����
�����: ð3:77Þ

Through the successive application of the transfer matrix the properties of the
super-cell system can be investigated. To obtain the transmission properties of a
large system composed of many super-cells, the finite but large portion of photonic
crystal is surrounded by vacuum with incident and reflected wave boundary con-
ditions applied on one side and transmitted wave boundary conditions applied on
the opposite side of the finite portion. The impurities within the super-cells are
introduced into the model by applying, in the course of the transfer process, an

appropriate transfer matrix, T
$
i xl; xrð Þ, relating the fields to the left and right of the

impurity dielectric slab.
In this way the pass band structure of the impurity system is studied by deter-

mining the frequency characteristics of the light transmitted through the impurity
photonic crystal. Light is transmitted through the system, composed of multiple
super-cells containing single impurities, at the slightly renormalized pass band
frequencies of the pure photonic crystal. The renormalization of the pass band
frequencies comes from the introduction of impurities into the super-cells and the
interactions of the impurities with the pass band modes that are present in the
system in the absence of impurities. In addition, some new narrow frequency pass
bands are observed arising from the weak interaction between impurity modes in
each of the super-cells of the system in the presence of the impurities. These narrow
frequency transmission bands are at the frequencies of the bound state modes of the
single impurity problem of the photonic crystal [15].
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Some Results in One-Dimension
In Fig. 3.7 results are shown from a transmission study of the slab replacement
problem in photonic crystals with ea ¼ 4 and ea ¼ 6. (This is the first type of
replacement in which the medium of one of the dielectric slabs of the photonic
crystal is changed from ea to eb.) Plots are presented for the bound state impurity
mode frequencies in the stop band of the pure photonic crystal. The figures plot the
results for the bound state frequency, x, of the impurity modes within the stop
bands of the photonic crystals versus the dielectric constant, eb, of the impurity
replacement slab. The impurity slab is of the same thickness as the ea slabs of the
photonic crystal and is only different in its dielectric constant.

In the figure the horizontal lines denote the frequency edges of the stop and pass
bands of the photonic crystal. The stop bands are the frequency regions containing
the plots of lines of x versus eb, while the pass band frequency regions have
nothing plotted within them. In this way for ea ¼ 4 the stop bands are located

Fig. 3.7 Plot of impurity
mode frequency, x, as a
function of the dielectric eb of
the impurity. The horizontal
lines indicate the edges of the
stop bands and the impurity
frequencies are plotted only
within the stop bands. Results
are presented for ea ¼ 4 (top
figure) and ea ¼ 6 (bottom
figure) [15]. Reproduced with
permission from [15].
Copyright 1995 Elsiever
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between 0:843	 xa
c 	 1:239 and 1:903	 xa

c 	 2:306, and for ea ¼ 6 the stop
bands are located between 0:696	 xa

c 	 1:094 and 1:591	 xa
c 	 2:075. The plots

presented within these regions are the bound state modes that are localized about
the impurity medium.

As functions of increasing eb the impurity modes are found to enter the stop band
at its upper edge and to decrease in frequency until they pass out of the stop band at
its lower edge. This occurs a number of times in each of the two stop bands studied
as eb is increased. In this way a series of periodically recurring impurity levels with
increasing eb is created within the system. In addition, in both ea ¼ 4 and ea ¼ 6
systems there are regions of eb in which impurity modes are absent from one or both
of the stop bands.

Modifications that occur within the pass band regions are scattering resonances
of the impurity system. They have not been shown in the figure as they are of less
technological interest than the impurity bound states. The resonant modes are
dynamical processes which can favor the localization of the wave function in the
vicinity of the impurity. Such modes, however, eventually move away from the
impurity and travel off to infinity. These modes are never completely localized to
the region of the impurity medium and are not further discussed in the following.

In Fig. 3.8 results are shown from a transmission study of the second type of
slab replacement problem in photonic crystals with ea ¼ 4 and ea ¼ 6. (This is the
second type of replacement in which the dielectric slab replacement is of the same
dielectric medium as that of the photonic crystal slabs but the replacement slab is of
a different width. In addition, the replacement is done in such a way that the
replaced dielectric slab and it two nearest neighbor slabs retain their total length
3a in the photonic crystal.) Plots are presented for the bound state impurity mode
frequencies in the stop band of the pure photonic crystal.

The figures plot the results for the bound state frequency, x, of the impurity
modes within the stop bands of the photonic crystals versus the width parameter, x,
of the impurity replacement slab. Here the width of the replacement dielectric slab
is xa and its two neighboring vacuum slabs are of length 3� xð Þa=2. As in Fig. 3.7,
the pass bands only contain modified resonant scattering states. These are of little
technological interest and will not be discussed further [15].

In the figure the horizontal lines denote the frequency edges of the stop and pass
bands of the photonic crystal and are at the same frequencies as those plotted in
Fig. 3.7. The stop bands are the frequency regions containing the plots of lines of x
versus x, while the pass band frequency regions have nothing plotted within them.
Plots presented within the stop band regions are the bound state modes that are
localized about the impurity medium. They are the true bound and localized modes
of the impurity photonic crystal.

As functions of increasing x the impurity mode frequencies are found to enter the
stop band at its upper edge and to decrease in frequency until they pass out of the
stop band at its lower edge. This occurs a number of times in each of the two stop
bands studied as x is increased. In this way, a series of periodically recurring
impurity levels with increasing x is created within the system. The shapes of some
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of the bound mode curves in Fig. 3.8 as functions of x are seen to be convex, while
the shape of the bound mode curves in Fig. 3.7 as functions of eb are concave. In
addition, in both ea ¼ 4 and ea ¼ 6 system there are regions of x in which impurity
modes are absent from one of both of the stop bands.

3.3 Method of Wannier Functions

An important analytical method for the treatment of localized impurities and
waveguides in photonic crystals is the techniques of Wannier functions [5, 11, 16].
It is a method that was originally developed in the study of electron orbitals in
metals and semiconductors. In those considerations, it has found many applications
for the determination of electronic band structures and for the treatment of impurity

Fig. 3.8 Plot of impurity
mode frequency, x, as a
function of the x of the
impurity where the width of
the dielectric slab is xa. The
horizontal lines indicate the
edges of the stop bands and
the impurity frequencies are
plotted only within the stop
bands. Results are presented
for ea ¼ 4 (top figure) and
ea ¼ 6 (bottom figure) [15].
Reproduced with permission
from [15]. Copyright 1995
Elsiever
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modes in conductive materials. As with the earlier considered methods, introduced
for the study of photonic crystals, a generalization of the Wannier function methods
is often found to be useful in the treatment of photonic systems.

In the method of Wannier functions, the Block plane wave states of the elec-
tromagnetic modes in photonic crystals are used to create an alternative basis set of
localized orthogonal functions. These localized functions, known as Wannier
functions, can be used to represent the general solutions of the electrodynamics in
the photonic crystal. The Wannier functions are particularly well suited in dis-
cussion of the properties of fields that are localized about impurities and within
waveguides.

As has been seen in the earlier discussions, the periodic dielectric constant of the
photonic crystal is formed by a repetition of a single dielectric unit throughout
space. Consequently, these repeated units are related to one another by a translation
vector, ~T ¼ m1~a1 þm2~a2, of the periodic lattice. (Here the reader is remained that
the lattice translation vectors are linear combinations of the primitive lattice basis
vectors with integer coefficients.) Similarly, the Wannier functions form a basis in
which to describe the local behavior of the electromagnetic solutions within a basic
repeat unit of the periodic dielectric and are designed so that the Block functions are
expressed as a sum over the crystal lattice of localized Wannier functions. In this
sum each Wannier function contribution is multiplied by a phase [5, 11, 16].

Whereas the Wannier functions emphasize the local behavior of the electro-
magnetic modes, the Block waves are modal solutions that emphasize the trans-
lational symmetry within the periodic lattice of the entire photonic crystal. In the
following, the relationship between the Wannier and Block functions are discussed
in terms of an analogy with the relationship between free space plane wave solu-
tions and a delta function pulse of localized free space electromagnetic radiation
fields.

Localized Wannier Functions
To this end, in the following, first the relationship in free space between plane
waves and delta function pulses will be developed. Arguing by analogy, this will be
used as a motivation for obtaining localized pulse-like Wannier functions from the
Block wave modes of the periodic photonic crystal. All four of these types of
functions can be used to represent general solutions in space.

The discussions begin by considering the plane wave forms of the electro-
magnetic modes in free space. In unbounded free space the modes of the electric
field are plane waves given by [5].

E ¼ 1
2p

ei
~k�~r�xtð Þ: ð3:78Þ

Here for convenience the polarization of the field amplitude is ignored, i.e., only
waves of unit amplitude and a single polarization are considered.

The plane waves in (3.78) are a complete orthogonal basis so that a general
electromagnetic field can be written in terms of them as a Fourier transform. In this
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way the modes in (3.78) can be combined to express a highly localized electric
pulse.

An extreme example of such a localized pulse is a delta-function pulse of
radiation defined at t ¼ 0 . This is written in the form [5]

2pd ~rð Þ ¼ 1
2p

Z
d~kei

~k�~r ð3:79Þ

and represents a highly localized pulse about the origin of coordinates in space.
These ideas can be developed further to generate a set of delta function pulses

covering all of space. For example, the position of the pulse in (3.79) can be shifted
to any location in the x–y plane by adding a phase to the integrand in (3.79) so that

the integrand ei~k�~r is replace by ei
~k� ~r�~Rð Þ. With this new integrand, the position of the

pulse in (3.79) is relocated to a position about ~R.
An important idea arises from the relationship between extended modes in (3.78)

and the highly localized modes in (3.79). The extended modes in (3.78) are a
complete basis for studying the solutions of the system. The delta function modes of
(3.79) that are generated from them by the Fourier transform are also a basis that
can represent solutions of the system. Both can be used as a basis for expressing
general solutions of the electrodynamics in free space. One is a set of functions that
are extended throughout all space and the other is a set of functions that are highly
localized in space.

A similar set of relationships to those in (3.78) and (3.79) are now developed
between the Block wave basis of a periodic lattice and the localized Wannier
function basis. The relationship between these two bases is developed similarly to
the earlier development of the plane wave and delta function modes in free space.
These are now discussed.

As with (3.79), a localized pulse of radiation in the periodic system can be
generated as a Fourier transform of the extended Block modes in the periodic lattice
of the photonic crystal. To understand this transformation, consider the Block wave
modes of the photonic crystal to be of the form [5, 11, 16]

E x; yð Þ ¼ bn;~k ~rð Þe�ixt ¼ ei
~k�~r�xt½ �un;~k x; yð Þ ð3:80Þ

where un;~k x; yð Þ is the periodic function of the Block form,~k is a wave vector in the
first Brillouin zone, and n is a band index labeling the different frequency eigen-
modes at fixed ~k. Remember here that the band index is important in the periodic
system and is used to distinguish the modal solutions of different frequencies
corresponding to the same ~k.

A localized function at each of the sites of the periodic lattice of the photonic
crystal can now be created from (3.80). This is done employing the same techniques
as those used to generate the delta function pulse in (3.79) from (3.78). In this way,
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localized functions of position are obtained from the Fourier transform of the Block
wave basis and are given by [5, 16]

an; m1;m2ð Þ ~rð Þ ¼ 1ffiffiffiffi
N

p
X
~k

e�i~k�~Rbn;~k ~rð Þ; ð3:81Þ

where~R ¼ m1~a1 þm2~a2 is a lattice translation vector and N is the number of lattice
sites. The functions defined in (3.81) form a set of bases functions that are localized
about the lattice sites,~r ¼ m1~a1 þm2~a2. Notice that, because of the band structure
of the dispersion relation, the bases functions are now associated with discrete sites
of the lattice for modes of a particular band index n.

As an example of (3.81), consider bn;~k ~rð Þ / ei~k�~r. This has a uniform amplitude
over the lattice so that the an; m1;m2ð Þ ~rð Þ generated from (3.81) is a pulse localized in

the vicinity of ~r �~R
� � � 0. It is seen that the localization of the an; m1;m2ð Þ ~rð Þ as with

(3.79) again arises from the constructive and destructive interference of the plane
wave Block forms.

Properties of the Wannier Function Basis
Now consider some of the other properties of the Wannier basis functions defined in
(3.81). These are important in their application to represent localized functions
defined on the lattice.

The Wannier functions defined about different lattice sites are related to one
another by a translation vector of the lattice, ~T ¼ m1~a1 þm2~a2. This follows from
considering the function obtained from (3.80) and (3.81) which is given by [5, 16].

an; m1;m2ð Þ ~rð Þ ¼ 1ffiffiffiffi
N

p
X
~k

ei
~k� ~r�~Tð Þun;~k ~rð Þ ¼ an; 0;0ð Þ ~r �~T

� �
: ð3:82Þ

Here the second equality is obtained by applying the translational invariance of
u~k x; yð Þ within the periodic lattice. A consequence of (3.82) is that all of the
Wannier functions on the lattice are related to an; 0;0ð Þ ~rð Þ by a translation and, hence,
are related to one another.

The set of all Wannier functions an; m1;m2ð Þ ~rð Þ� �
generated in (3.81) then form a

localized orthogonal basis of functions which are related to one another by trans-
lation vectors of the crystal lattice. This property will now be formally demon-
strated using the definitions in (3.80) and (3.81).

The orthogonality of an; m1;m2ð Þ ~rð Þ� �
arises from the symmetry and orthogonality

properties of the Block waves in (3.80). To understand this consider the integral
[5, 11, 16]
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Z
e ~rð Þa�n; m1;m2ð Þð~rÞan0; m0

1;m
0
2ð Þ ~rð Þd~r ¼

Z
e ~rð Þa�n; 0;0ð Þ ~r �~R

� �
an0; 0;0ð Þ ~r �~R0� �

d~r

¼ 1
N

X
~k;~k0

ei
~k�~R�~k0 �~R0½ �

Z
e ~rð Þ u�

n;~k
~rð Þe�i~k�~r

	 

un0;~k0 ~rð Þei~k�~r
	 


d~r

¼ d m1;m2ð Þ; m0
i;m

0
2ð Þdn;n0

ð3:83Þ

where~R ¼ m1~a1 þm2~a2;~R0 ¼ m0
1~a1 þm0

2~a2. Here in reducing the series of integrals
in (3.83) to the product of Kronecker deltas on the far right of the equation, the
translation and orthogonality properties of the Block waves are used.

Equation (3.83) is seen to be a statement of the orthogonality of the Wannier
functions. As such it provides a basis for expanding the properties of the periodic
system in states which are localized about the individual sites in the direct crystal
lattice. Based on (3.83) an expansion of a general function, w ~rð Þ, of the system can
be expressed in the form [5].

w ~rð Þ ¼ 1ffiffiffiffi
N

p
XN
j¼1

F ~Rj
� �

an; 0;0ð Þ ~r � Rj
� �

: ð3:84Þ

Here ~Rj ¼ m1;j~a1 þm2;j~a2 where m1;j;m2;j
� �

are the integers labeling the jth
lattice site of the two-dimensional lattice, the sum is over all of the lattice sites, and
F ~Rj
� �

are expansion coefficients.
Examples of the expansion in (3.84) are the Block waves of the system them-

selves. They are written in terms of the Wannier basis functions as

bn;~k ~rð Þ ¼ 1ffiffiffiffi
N

p
XN
j¼1

ei
~k�~Rjan; 0;0ð Þ ~r � Rj

� �
: ð3:85Þ

In (3.85), the Wannier functions an; 0;0ð Þ ~rð Þ provide the localized variation of the
Block wave about each lattice site. In addition, this local variation is multiplied at
each site by a phase that changes from site to site along the lattice. As a results the
overall translational symmetry of the Block wave solutions is maintained.

As shall be seen in the following considerations (3.84) and (3.85) are particularly
useful results in the treatment of impurity problems. These problems are now
undertaken in the following.

Impurity Problems
Consider the problem of a two-dimensional photonic crystal containing an impurity
[11]. In the absence of an impurity the photonic crystal has modes that are the
solutions of the Helmholtz equation of motion [5, 16]
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H0 þVp ~rð Þ� �
w ~rð Þ ¼ 0: ð3:86aÞ

where H0 ¼ � @2

@x2 � @2

@y2 describes the propagation of the waves in free space,

Vp ~rð Þ ¼ �n2 x; yð Þ x2

c2 is the periodic potential of the photonic crystal, w ~rð Þ is the
electric field polarized perpendicular to the plane of propagation, x is the fre-
quency, and n x; yð Þ is the periodic index of refraction of the system. Upon intro-
ducing a change in the periodic dielectric so that the n2 ~rð Þ ! n2 ~rð Þþ de ~rð Þ
replacement is made in (3.86a) one obtains the impurity equation [5, 16]

H0 þV ~rð Þ½ �w ~rð Þ ¼ e ~rð Þx
2

c2
w ~rð Þ: ð3:86bÞ

where V ~rð Þ ¼ �de ~rð Þ x2

c2 is the position dependent impurity potential arising from a
change de ~rð Þ of the dielectric constant from that of the pure photonic crystal, and
the periodic potential has been written in terms of the permittivity and frequency.

To generate the solution of (3.86b), (3.84) is substituted into (3.86). Multiplying
the resulting expression by a�n; 0;0ð Þ ~r �~Ri

� �
, and integrating over ~r changes the

differential equation problem into a set of difference equations. These difference
equations relate the envelope functions F ~Rj

� �
defined at each lattice site to one

another and are given by [5, 11, 16]

X
j0

h0 ~Rj0
� �

F ~Rj �~Rj0
� �þVj;j0F ~Rj0

� �� � ¼ x2

c2
F ~Rj
� �

; ð3:87Þ

where

h0 ~Rj �~Rj0
� � ¼ Z d~ra�n; 0;0ð Þ ~r �~Rj

� �
H0an; 0;0ð Þ ~r �~Rj0

� �
; ð3:88Þ

and

Vj;j0 ¼
Z

d~ra�n; 0;0ð Þ ~r �~Rj
� �

V ~rð Þan; 0;0ð Þ ~r �~Rj0
� �

: ð3:89Þ

The solutions of (3.87) for the envelope function F ~Rj
� �

of the Wannier function
expansion in (3.84) offer an advantage over the study of the full impurity wave
function solutions of (3.86). Equation (3.84) allows for the rapid changes in the full
wave functions of the impurity modes to be accounted for by the localized Wannier
functions. Consequently, the spatial dependence of the envelope functions in (3.84)
tend to be slowly varying in space.

An important property of the envelope functions that will be useful in the
following discussion is to note that for the case in which V ~rð Þ ¼ 0 the pure system
limit is obtained. In this limit, (3.87) reduces to the form of a tight binding
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Hamiltonian, and the envelope functions are plane waves. While the envelope
functions involve a phase, the amplitude of the envelope functions are constant in
space.

In the presence of an impurity, a treatment based on (3.84), written in term of the
Wannier functions of the pure photonic crystal, greatly facilitates the problem. In
particular, the localized nature of the Wannier functions and the localized nature of
the impurity potential often combine, lead to Vj;j0 terms which quickly go to zero
with increasing separation between the j; j0 site. This limits the range of coupling
between envelope sites in (3.87) and simplifies the process of obtaining the solution
of the envelope function.

Reformulation as a Schrodinger Equation
A difficulty with (3.87), however, is that it is an algebraic equation that can still
couple together many of the F ~Rj

� �
at different sites. In some cases that are of great

interest, the algebraic difference equation can be further simplified by making an
additional approximation. This reduces the problem of determining the envelope
function defined in (3.84) to a standard type of Schrodinger differential equation
problem [10, 15]. As a result, the slowly varying envelope function in (3.84) is
obtained as a solution of the newly developed Schrodinger equations.

To see how the continuum limit is taken, noted that a simplification can be made
to (3.87) by considering the first term on the left side of the equation. This term is
given by

P
j0 h0 ~Rj0
� �

F ~r �~Rj0
� �

. Applying a Taylor series expansion in ~r to

F ~r �~Rj0
� �

in this expression, it is found that [5, 11]

X
j0

h0 ~Rj0
� �

F ~r �~Rj0
� � ¼X

j0
e�~Rj0 �rh0 ~Rj0

� �
F ~rð Þ ð3:90Þ

where r is the gradient operator operating on the variables x; yð Þ.
Equation (3.90) can now be used to develop the continuum limit for the first

term on the left hand side of (3.87). In this limit, the difference sum between sites in
(3.87) is to be replaced by a differential operator applied to F ~rð Þ. Consider this limit
first for the simplified case in which V ~rð Þ ¼ 0.

To understand the replacement of the difference operator on the left hand side
(3.87) by a differential operator, consider the case in which V ~rð Þ ¼ 0. In this limit

(3.87) is solved by the F ~Rj
� � / e�i~k�~Rj plane wave form, yielding an eigenvalue

solution

X
j0

h0 ~Rj0
� �

e�i~k�~Rj0 ¼
x2

0
~k
	 

c2

; ð3:91Þ

where x0 ~k
	 


is a frequency in the pure system.
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In the continuum limit it is assumed that F ~Rj
� � / e�i~k�~Rj becomes a general

function of space F ~rð Þ / e�i~k�~r. (It is also assumed that even in the presence of
V ~rð Þ, the F ’s are slowly varying functions over the periodic lattice.) In addition, in
taking the continuum limit, the expression on the right side of (3.91) can be
replaced by an operator so that the eigenvalue problem, rewritten in terms of (3.90),
is expressed as [5]

X
j0

h0 ~Rj0
� �

e�~Rj0 �rF ~rð Þ ¼
x2

0
~k
	 

c2

F ~rð Þ ð3:92aÞ

where F ~rð Þ / e�i~k�~r is the plane wave eigenmode. Consequently, under the sum of
these processes, the eigenvalues of the two problems are the same, and the con-
tinuum wave function correctly reduces to the discrete envelope function at the
lattice sites.

These ideas can be taken one step further. The wave vectors in k-space can be
approximately replaced with spatial differential operators by applying the quantum
mechanical ~k $ �ir correspondence. Under this replacement (3.92a) becomes.

X
j0

h0 ~Rj0
� �

e�r�~Rj0F ~rð Þ ¼ x2
0 �irð Þ
c2

F ~rð Þ: ð3:92bÞ

Though (3.92b) is valid for the system in the absence of the impurity potential, it
is also a reasonably good approximation in the case that the amplitude of F ~rð Þ has a
slow spatial variation.

Consequently, it follows from (3.90) that in the continuum limit

X
j0

h0 ~Rj0
� �

F ~r �~Rj0
� � ¼ x2

0 �irð Þ
c2

F ~rð Þ: ð3:93Þ

From this result it is seen that, as a reasonable approximation for short range
potentials, (3.87) and (3.93) then yield an equation for the envelope function of the
form [5, 16].

x2
0 �irð Þ
c2

þV ~rð Þ
� �

F ~rð Þ ¼ x2

c2
F ~rð Þ: ð3:94Þ

A condition on the approximations leading to (3.94) is that the continuous
function V ~rð Þ is an approximation for discrete couplings Vj;j0 . Underlying this
assumption is the ideas that Vj;j0 is a short ranged potential compared to the spatial
variation of F ~rð Þ. In other words, Vj;j0 � V ~Rj

� �
dj;j0 is a basic consideration in

determining the continuum form of the impurity potential.
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For impurity systems studied in nanophotonics, the modes of interest are bound
states having frequencies located within the stop bands of the photonic crystals. The

frequency terms in such systems,
x2

0
~kð Þ

c2 , can often be well represented as extrema of
the upper or lower bound of the pass band of the pure system. Consequently, a
parabolic approximation of the band by the form [5, 11, 16].

x2
0
~k
	 

c2

¼ E0 þ �h2

2m
k2 ð3:95aÞ

is useful for purposes of illustrating the stop band bound states. (Here E0 and �h2

2m are
to be treated as parameters of the parabolic fit to the band extrema. These are
written in the notation of studies of the Schrodinger equations to make the impurity
problem in (3.94) resemble the impurity problem for electron levels in semicon-
ductors. In photonic crystal systems, however, the units of these two parameters are
different from those of the electron problem.)

Applying this notation in (3.95a) it follows that �h2

2m [ 0 for an impurity state

below the bottom of a pass band and �h2

2m\0 for an impurity state above the top of a
pass band. In the parabolic approximation in (3.95a) applied to (3.92), the impurity
equation (3.94) can be rewritten in the form [5, 16].

� �h2

2m
r2 þV ~rð ÞþE0 � x2

c2

� �
F ~rð Þ ¼ 0: ð3:95bÞ

This is in the standard form found in the treatment of impurity problems in
semiconductor physics so that standard methods from the study of the impurity
conductivity problem can be applied to its treatment.

An Example
A frequent choice of impurity potential is one of the form V ~rð Þ ¼ �de ~rð Þ x2

c2 where
de ~rð Þ represents the change in the photonic crystal dielectric constant arising from
the presence of impurity media [5, 11]. Applying this potential in (3.95b) it is then
found that the form of a Schrodinger equation impurity problem for the optical
system becomes [5, 16].

� �h2

2m
r2 þE0 � x2

c2

� �
F ~rð Þ ¼ de ~rð Þx

2

c2
F ~rð Þ: ð3:96Þ

The solution of (3.96) gives the envelope function, F ~rð Þ corresponding to the
modes at frequency, x. If the modal frequency x is located within the stop band of
the pure photonic crystal system, the solutions are the bound states modes which are
localized about the impurity media. In the following the focus will be on studying
the bound state impurity modes with frequencies inside a stop band. Modes with
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frequencies within the pass bands of the photonic crystal are resonant modes. These
are not of interest here.

The solution of (3.96) is obtained using standard Green function methods [5, 11–
14]. In the Green’s function approach, the Green’s function, G ~r;xð Þ, for (3.96) is
determined as a solution of [17].

� �h2

2m
r2 þE0 � x2

c2

� �
G ~r;xð Þ ¼ d ~rð Þ: ð3:97Þ

In the determination of the bound state Green’s function, the boundary condi-
tions on the solutions are that the Green’s function must vanish at infinite separation
from the localized impurity media. Applying these conditions for the Green’s
function of the two-dimensional photonic crystal, it is found that [5, 17]

G ~r;xð Þ ¼ 1
2p

2m

�h2
K0

2m

�h2
E0 � x2

c2

� �� �1=2
r

 !
; ð3:98Þ

where K0 xð Þ is a modified Bessel function of the second kind.
Applying the Green’s function in (3.98) to write the solution of (3.96), it follows

that the formal the solution of (3.96) is given as a solution of the integral equation
[5].

F ~rð Þ ¼ x2

c2

Z
d~r0G ~r �~r0;xð Þde ~r0ð ÞF ~r0ð Þ: ð3:99Þ

That F ~rð Þ obtained from (3.99) is a formal solution of (3.96) can be seen upon a
direct substitution of (3.99) into (3.96) and with the application of the relationship
in (3.97). The original problem of solving the differential equation in (3.96) is now
transformed to a treatment of the solution of the integral equation in (3.99).

For a frequency x2

c2 chosen within the stop band of the photonic crystal, the
solutions of the integral equation in (3.99) then yield the envelope functions of the
bound state modes. This is very useful as the solution of the integral equation in
(3.99) is often easier to generate than the direct solution of the original differential
equation problem of (3.96). As an illustration of such a solution of (3.99) a dis-
cussion will now be given for the special case of a single site impurity formed in a
photonic crystal by cylinder replacement.

Numerical Illustration
As an example, a single site impurity is treated for the case in which the impurity is
formed by replacing one of the cylinders of the photonic crystal. This amounts to
changing the dielectric constant of a single cylinder within the photonic crystal. The
system considered will be a two-dimensional photonic crystal formed as an array of
infinite dielectric cylinders, and the radii of the cylinders of the photonic crystal and
impurity cylinder will be taken as R.
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If the change in the dielectric constant of the replaced photonic crystal cylinder is
denoted by de00, then (3.99) for the impurity modes takes the form [5, 11, 16].

F ~sð Þ ¼ e
Z
S

d~s0K0 �s�~s0j jð ÞF ~s0ð Þ: ð3:100Þ

In this equations the following notation has been adopted: ~s ¼ 2m=�h2
� ��

E0 � x2=c2ð Þð Þ�1=2~r, the eigenvalues are of the form e ¼ 1
2p

x2=c2ð Þde00
E0� x2=c2ð Þ, and S is a

circular region of integration which is of radius s0 ¼ 2m=�h2
� �

E0 � x2=c2ð Þð Þ� �1=2
R

and which is centered about the origin of the photonic crystal lattice.
The bound state solutions are obtained from (3.100) in terms of the eigenvalue

solutions for e as a function of E0; �h2=2m, and x2=c2. Following the determination
of the eigenvalue e and eigenvector F ~sð Þ, the relation [5, 11]

de00 ¼ 2p
E0

x2=c2
� 1

� �
e ð3:101Þ

then gives the values of de00 which are necessary to support an impurity mode of
frequency x. In order to have a true bound state at the impurity site, the frequency
must be chosen to be within the stop band of the photonic crystal. Otherwise, the
solution represents a resonance of the system.

Results for e plotted versus s0 are presented in Fig. 3.9. These are obtained from
the numerical solution of (3.100) [5, 11]. The curves labeled i and ii are, respec-
tively, the lowest and next to lowest eigenvalues of a series of eigenvalue solutions
obtained from (3.100).

Fig. 3.9 Plot of e versus So
taken from [11]. Reproduced
with permission from [11].
Copyright 2005 IOP
Publishing
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The figure is taken from [11] and contains addition plots related to other con-
siderations of the single site problem, For additional discussions of these other
labeled curves, that are not related to the discussions presented here, the reader is
referred to [11].

As an important point, however, it should be noted that the figure shows, for a
fixed s0, that there are a series of different e solutions to the integral equations.
Consequently, there is a series of different de00 solutions, each of which support
their own bound impurity modes. These modes are each described by a related
envelope function solutions, F ~R

� �
.

3.4 Photonic Crystal Waveguides: Analytical Models

In this section, a simple analytical model will be used to illustrate some of the basic
features found in photonic crystal waveguides, waveguides with impurities, and
networks of waveguides [18]. These systems can be studied by means of computer
simulations [1–5], and this is the approach taken for many engineering applications.
However, the approach presented in this section is an analytical method that can be
quickly and easily solved to demonstrate general properties of the photonic crystal
waveguides. This provides a certain amount of pedagogical insight that is not
always made available from a computer simulation study.

The approach presented here is based on a set of algebraic difference equations
that can be generated applying the methods used in the formulation of (3.64). For
the discussions, the difference equations are developed for a two-dimensional
photonic crystal formed as a periodic array of infinite dielectric cylinders with axes
parallel to the x3-axis and which are arrayed periodically in the x1 � x2 plane. To
simplify the consideration, the modes of interest in the system are restricted to those
with components of the electric field polarized along the x3-axis.

The Integral Equation Model
If a position dependent dielectric impurity of the form de ~rjj

� �
is added to the

periodic dielectric function of the two-dimensional photonic crystal, it can be
shown using the techniques leading to (3.64) that the electric field of the photonic
crystal modes are solutions of the integral equation [18, 19].

E3 ~rjj xj
� � ¼ x2

c2

Z
d2r0jjG ~rjj;~r0jj xj

	 

de ~r0jj
	 


E3 ~r0jj xj
	 


ð3:102Þ

Here x is the mode frequency and G ~rjj;~r0jj xj
	 


is the electromagnetic Green’s

function of the two-dimensional photonic crystal in the absence of impurity
materials.
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For de ~rjj
� � ¼ de0 a constant over its spatial region of definition and zero

otherwise, the integral equation in (3.102) becomes an eigenvalue problem for the
eigenvector fields E ~rjj xj

� �
and eigenvalues proportional to de0.

In the case that x is within a pass band of the photonic crystal the Green’s
function is that of a propagating mode, but for the case in which the frequency is
within a stop band of the photonic crystal the Green’s function represents that of an
exponential decaying mode. Consequently, solutions of (3.102) within a stop band
are found to be localized states bound in the vicinity of the impurity media. States
within the pass band are resonant scattering states and are not of interest here.

Single Impurity Bound States: A Difference Equation Approach
A simple problem that can be treated using (3.102) is that of a single site impurity
with [18]

de ~rjj
� � ¼ de0 for ~rjj

�� ��\Re; de ~rjj
� � ¼ 0 otherwise ð3:103Þ

where de0 is a constant and Re is the radius of a region over which E3 ~rjj xj
� �

is
slowly varying in space. For this case (3.102) can be written as

E3 ¼ csaE3 ð3:104Þ

where c ¼ de0Ae for the impurity cross sectional area Ae; a is proportional to the
Green’s function integral over Ae, and E3 is the average field in Ae.

If the mode frequency x is chosen in the stop band of the pure photonic crystal
the solutions will be a site impurity bound states, localized about the position of the
impurity. On the other hand, if the mode frequency is in a pass band of the photonic
crystal it will represent a scattering resonance which is extended throughout the
photonic crystal.

The method outlined above is essentially the same as that used to study localized
bound state impurity modes and scattering resonances in impurity semiconductors.
In the photonic crystal, the impurity modes then must satisfy the algebraic equation

1� ca½ �E3 ¼ 0 ð3:105Þ

so that the values of c / de0 which support impurity modes are determined by

cs ¼
1
a
: ð3:106Þ

For bound states, the Green’s function G ~rjj0;~rjj0 xj
� �

is determined at a given stop
band frequency x and used to evaluate a for the particular pure photonic crystal
being studied.

The treatment in (3.103) through (3.106) is the simplest type of photonic crystal
impurity that can be treated. More complex impurities involve a number of impurity
sites. In the following a generalization of these equations will be made to treat a
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waveguide formed as a linear array of impurities along the x1-axis. The waveguide
is formed by placing impurity media identically at each dielectric cylinder in a line
of cylinders along the x1-axis. For the treatment, a simple square lattice photonic
crystal of lattice constant a and dielectric cylinders of radii R\ a

2 will be taken as
the pure photonic crystal.

Photonic Crystal Waveguides: Difference Equation Approach
The impurity media array representing the waveguide channel in the system is
written in the form [18, 19]

de ~rjj
� � ¼ de0 for ~rjj � nax̂1

�� ��\Re;

de ~rjj
� � ¼ 0 otherwise ð3:107Þ

where n runs over the integers. This then represents an addition of impurity de0 to
the pure photonic crystal in a region of radius Re centered at each lattice site na on
the x1-axis. The result is an infinite array of impurities along the x1 -axis with
symmetry under translation by nax̂1. This is the form of a one-dimensional
waveguide formed by making a linear array of single site impurities of the type in
(3.103).

For the impurity array in (3.107), the integral eigenvalue problem in (3.102) can
be treated in the same approximation used in going from (3.102) to (3.104) for the
single site impurity [18, 19]. In this way, the integral equation in (3.102) becomes a
set of difference equations of the form

E3 nð Þ ¼ c aE3 nð Þþ b E3 nþ 1ð ÞþE3 n� 1ð Þð Þ½ � ð3:108Þ

where n runs over the integers.
Here E3 nð Þ is the electric field in the impurity media at the nth lattice site along

the x1-axis, c ¼ de0Ae for the impurity cross sectional area Ae; a is proportional to
the Green’s function integral over Ae of the impurity medium in the nth site, b is
proportional to the Green’s function integral over Ae of the impurity medium in the
(n + 1)th or in the (n − 1)th site, and Ae is the cross sectional area of a single
impurity site. Notice, that the coefficients in (3.108) are evaluated at the modal
frequency x which is taken to be in a stop band of the pure photonic crystal and that
in the limit of a single site impurity (3.108) reduces to (3.104). In addition, the
decay in the fields of the waveguide modes with separation from the waveguide
channel is mediated by the exponential decay of the Green’s function in (3.102) in
the bulk of the photonic crystal.

As a simplification of the mathematics, it is assumed in (3.108) that the expo-
nential spatial decay of the coupling between neighboring sites is quick enough that
only nearest neighbor couplings are needed in the difference equation. This can
always be arranged in a photonic crystal. Specifically, if the separation of the
neighboring impurity sites forming the waveguide channel is sufficiently great the
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higher order couplings can be made very small. This may require nearest neighbor
impurity sites to be separated by na where n[ 1 is the nearest neighbor separation.

The difference equations in (3.108) can be solved by assuming an electric field of
the form

E3 nð Þ ¼ E0e
inka: ð3:109Þ

Upon substitution of (3.109) into (3.108) the difference equation eigenvalue
problem reduces to

E0 ¼ c aþ 2b cos kað Þ½ �E0 ð3:110Þ

so that the values of c / de0 which support guided modes bound to and traveling
along the waveguide channel are determined by

c ¼ 1
aþ 2b cos kað Þ : ð3:111Þ

For a given guided mode frequency x located within the stop band of the pure

photonic crystal, the Green’s function G ~rjj;~r0jj xj
	 


is determined and used to

evaluate a and b for the particular pure photonic crystal being studied. The value of
c / de0 which supports a guided mode of stop band frequency x is then obtained
from (3.111).

The waveguide problem treated in (3.108) through (3.111) is found to be closely
related to the tight binding model in condensed matter physics [20]. This has been
used to study electron systems in which the conduction is by electron hopping
between atomic sites of the lattice. In this case the excitations are fermion. It has
also been applied to boson system such as those found in the study of lattice
vibrations. Both of these systems require a full quantum mechanical approach. The
model in (3.108), however, is being treated strictly as a model of classical
electrodynamics.

Photonic Crystal Waveguide Containing a Single Site Impurity
A generalization of the waveguide problem to one containing a single site impurity
within the wave guide channel can be made by adjusting the set of difference
equations in (3.108). The problem proposed is shown schematically in Fig. 3.10.
For the treatment, a generalized model of the site impurity problem will now be
solved which allows the waveguide channel to differ in the regions above and
below the site impurity. This allows for a variety of configurations that could be of
technological interest.

Consider then a problem in which c / de in the waveguide above the impurity
site, c0 / de0 in the waveguide below the impurity site, and at the impurity site
c1 / de1. The difference equations for the system are
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E3 nð Þ ¼ cn aE3 nð Þþ b E3 nþ 1ð ÞþE3 n� 1ð Þð Þ½ � ð3:112aÞ

for nj j � 2 where cn ¼ c / de for n� 2; cn ¼ c0 / de0 for n	 � 2,

E3 
1ð Þ ¼ c
 aE3 
1ð Þþ bE3 
2ð Þ½ � þ c1E3 0ð Þ ð3:112bÞ

where cþ ¼ c; c� ¼ c0, and

E3 0ð Þ ¼ c1aE3 0ð Þþ cbE3 1ð Þþ c0bE3 �1ð Þ: ð3:112cÞ

Bound state solutions of the difference equations in (3.112) can exist. These are
localized about the waveguide site at the origin and are of the form

E3 nð Þ ¼ E0e
�nqa ð3:113aÞ

for n� 1,

E3 0ð Þ ¼ E0
0; ð3:113bÞ

Fig. 3.10 The waveguide with a single site impurity. Only the sites of the waveguide channel are
shown and the waveguide channel is formed by cylinder replacement. The system considered is a
square lattice photonic crystal and the waveguide and impurity are formed by replacement of the
photonic crystal cylinders in the row along the x-axis of the photonic crystal. Reproduced with
permission from [18]. Copyright 1967 American Physical Society. Copyright 2002 American
Physical Society
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and

E3 nð Þ ¼ E00
0e

nka ð3:113cÞ

for n	 � 1.
Upon substitution of (3.113) into (3.112) it follows for x within a stop band of

the pure photonic crystal that

c ¼ 1
aþ 2b cosh qa

; ð3:114aÞ

c0 ¼
1

aþ 2b cosh ka
; ð3:114bÞ

and

c1 ¼
1

aþ b e�qa þ e�kað Þ : ð3:114cÞ

Here c and c0 are fixed parameters of the waveguide channel and (3.114a) and
(3.114b) are used to determine the values of q and k describing the spatial expo-
nential decay of the waveguide fields in the channel. Once these decay parameters
are determined, (3.114c) then determines the value of c1 / de1 required in order to
bind the impurity mode to be localized about the origin site in the waveguide
channel.

Some interesting limits of the bound state problem can be obtained from a
consideration of (3.114). In the limit that q; k ! 1 it is found from (3.114a) and
(3.114b) that

c ¼ c0 ¼ 0 ð3:115aÞ

and from (3.114c) that

c1 ¼ cs ¼
1
a
: ð3:115bÞ

This is the limit of a single site impurity in the pure photonic crystal given in
(3.103) through (3.106) and discussed earlier.

On the other hand, if only k ! 1 then the problem reduces to an impurity site
located at the end of a semi-infinite waveguide. In this case,

c ¼ 1
aþ 2b cosh qa

; ð3:116aÞ

c0 ¼ 0; ð3:116bÞ
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and

c1 ¼
1

aþ be�qa
: ð3:116cÞ

For a frequency in the stop band of the photonic crystal, (3.116a) then gives q in
terms of the waveguide parameter c, and (3.116c) determines the value of the
impurity parameter c1 / de1 needed for a bound state localized on the waveguide
impurity site.

If the waveguide channel on both sides of the channel impurity have the same
dielectric constants then (3.114) become

c ¼ c0 ¼
1

aþ 2b cosh qa
; ð3:117aÞ

and

c1 ¼
1

aþ 2be�qa
: ð3:117bÞ

For a weakly localized mode in which q � 0 these reduce to

c ¼ c0 ¼
1

aþ 2b
; ð3:118aÞ

and

c1 ¼
1

aþ 2b 1� qað Þ : ð3:118bÞ

The solutions of the set of (3.117) for an example of a waveguide impurity are
presented in Fig. 3.11. The pure system photonic crystal is the square lattice
photonic crystal used for the band structure studies presented earlier in Figs. 3.2,
3.3, and 3.4 [18]. The plots are for: a) exp qð Þ versus frequency and b) g ¼ c

cs
versus

frequency. Here cs is defined in (3.106) and c1 has been fixed at the value of cs
evaluated at xa

2pc ¼ 0:440. For the cases studied in the plots the media added to the
cylinders of the waveguide channel had a square cross section [18]. The lengths of
the square sides are indicated in the figure captions.

It is seen in the figures that as the frequency of the bound mode approaches that
of a single site impurity of the photonic crystal at xa

2pc ¼ 0:440, the channel dielectric
parameters rapidly decay to zero. The divergence of the channel decay parameters
is also approached as the waveguides are no longer present in this limit. Away from
xa
2pc ¼ 0:440 the channel dielectric needed to support the mode increases rapidly and
the spatial decay of the impurity mode within the channel decreases.
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The difference equation theory developed in the preceding impurity and
waveguide problems also lends itself to the treatment of photonic crystal circuits.
These are more complex arrays of interconnecting waveguide networks which offer
a wider variety of signal processing. As an example of these type of circuits, a
waveguide coupler circuit will now be studied.

Waveguide Coupler
An example of a pair of coupled waveguides is shown in Fig. 3.12 [18]. Each of the
two waveguided channels are formed into the shape of a U, one an upper upright U
and the second a lower inverted U. Both waveguides are infinite in length, with the
bottoms of the two U’s coming into closest proximity in the horizontal region at the

Fig. 3.11 Plots of: a) exp qð Þ
versus frequency, xa

2pc, and b)
g ¼ c

cs
versus frequency, xa

2pc,

for the q ¼ k system in
(3.117). Here cs is defined in
(3.106) and c1 has been fixed
at the value of cs evaluated at
xa
2pc ¼ 0:440. The sides of the
added media are 0.1a (lower
curves) and 0.01a (upper
curves). Reproduced with
permission from [18].
Copyright 2002 American
Physical Society
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bottom of the two U. Here there is a weak interaction between the two channels
which allows for the modes in each of the waveguide channels to interact with one
another.

The system composing the two waveguide channels is described by the fol-
lowing set of difference equations, representing a generalization of the waveguide
equation in (3.108) to the case of the two weakly coupled waveguides in Fig. 3.12:
The vertical sides of the two U’s are described by difference equations of the form

E3 j; lð Þ ¼ c aE3 j; lð Þþ b E3 j; lþ 1ð ÞþE3 j; l� 1ð Þð Þ½ �: ð3:119aÞ

Here in the case of the upper U j ¼ 0 or N and l ¼ dþ 1; dþ 2; dþ 3; . . .
where d is a positive integer giving the separation of the waveguide channels at
their closest approach. In the case of the inverted lower U j ¼ 0 or N for
l ¼ �1; �2; �3; . . .. At the bottom, horizontal, region of the two U’s the difference
equations take the form

E3 l; jð Þ ¼ c aE3 l; jð Þþ b E3 lþ 1; jð ÞþE3 l� 1; jð Þð Þþ dE3 l; j0ð Þ½ � ð3:119bÞ

where j; j0ð Þ ¼ d; 0ð Þ or 0; dð Þ are the y-coordinates of the two different horizontal
waveguide channels and l ¼ 1; 2; 3; . . .; N � 2; N � 1 marks off the x-coordinate
along both horizontal channels. The joining conditions of the horizontal and vertical
segments of the waveguides are provided by the four relations

E3 0; dð Þ ¼ c aE3 0; dð Þþ b E3 1; dð ÞþE3 0; dþ 1ð Þð Þþ dE3 0; 0ð Þ½ �; ð3:119cÞ

E3 0; 0ð Þ ¼ c aE3 0; 0ð Þþ b E3 1; 0ð ÞþE3 0;�1ð Þð Þþ dE3 0; dð Þ½ �; ð3:119dÞ

E3 N; dð Þ ¼ c aE3 N; dð Þþ b E3 N; dþ 1ð ÞþE3 N � 1; dð Þð Þþ dE3 N; 0ð Þ½ �;
ð3:119eÞ

Fig. 3.12 Two coupled waveguides in the form of an upright U and an inverted U. A weak
interaction between the two waveguides occurs along the length of the horizontal region of closes
approach of the two waveguides. As with Fig. 3.10, only the sites of the waveguide channel are
shown and the waveguide channel is formed by cylinder replacement. Reproduced with
permission from [18]. Copyright 2002 American Physical Society
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and

E3 N; 0ð Þ ¼ c aE3 N; 0ð Þþ b E3 N;�1ð ÞþE3 N � 1; 0ð Þð Þþ dE3 N; dð Þ½ �: ð3:119fÞ

In (3.119a–3.119f) the weak interaction between the two different waveguide
channels is given by d. In the limit that d ¼ 0 the two channels have no interactions
between them and the two U’s cease to interact with one another. The c in (3.119)
represent the waveguide parameter in (3.108) which characterizes the channels of
each of the two waveguides.

The solution to (3.119) is obtained in the form

E3 0; lð Þ ¼ a0e
ipla þ b0e

�pla; ð3:120aÞ

where l ¼ dþ 1; dþ 2; dþ 3; . . .;

E3 0; lð Þ ¼ c0e
ipla þ d0e

�ipla; ð3:120bÞ

where l ¼ �1;�2;�3; . . .;

E3 N; lð Þ ¼ reip lj ja; ð3:120cÞ

where l ¼ dþ 1; dþ 2; dþ 3; . . .;

E3 N; lð Þ ¼ ueip lj ja; ð3:120dÞ

where l ¼ �1;�2;�3; . . .;

E3 l:; dð Þ ¼ i sin qlað Þxþ cos qlað Þx1½ �eikla
þ �i sin qlað Þyþ cos qlað Þy1½ �e�ikla;

ð3:120eÞ

where l ¼ 0; 1; 2; 3; . . .; N; and

E3 l:; 0ð Þ ¼ cos qlað Þxþ i sin qlað Þx1½ �eikla
þ cos qlað Þy� i sin qlað Þy1½ �e�ikla;

ð3:120fÞ

where l ¼ 0; 1; 2; 3; . . .; N. In this solution b0 and c0 are, respectively, the
amplitudes of the incident waves in the upper and lower waveguide channels, and
the amplitudes r and u are, respectively, those of the transmitted waves in the upper
and lower channels.

Upon substitution of (3.120) into (3.119) three conditions are found relating
k; p; qf g to the variables characterizing the waveguides and their interactions with

one another. These are
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c ¼ 1
aþ 2b cos pað Þ ; ð3:121aÞ

c ¼ 1
aþ 2b cos qað Þ cos kað Þ ; ð3:121bÞ

2a sin qað Þ sin kað Þ ¼ d; ð3:121cÞ

In addition, four equations are obtained which allow for the solution of reflected
wave amplitudes a0; d0f g and the transmitted wave amplitudes r; uf g in terms of
the incident wave amplitudes b0; c0f g.

For an illustration in Fig. 3.13 is plotted the transmission amplitudes in the low
channel (solid line) and the upper channel (dashed line) for an incident wave
incident on the coupler from the upper channel, i.e., b0 ¼ 1:0 and c0 ¼ 0:0. The
plot is presented as a function of the coupler length N. For the further details of the
study the reader is referred to the original paper.

The point of the results in Fig. 3.13 is that, due to the weak coupling between the
channels, a mode sent into the coupler in one waveguide can emerge from the
coupler in either of the waveguide channels or as partially transmitted in both
channels. The type of transmission observed depends on the coupling strength
between the waveguides and the length of the waveguide coupling region.

The preceding results have all been for systems composed of linear media. The
theory can also be modified to treat Kerr nonlinear media [18, 21]. The presence of
optical nonlinearity in the model greatly increases the types of excitations generated
within the system.

Fig. 3.13 Plot of the
Transmission coefficients
versus N for the waveguide
coupler. Reproduced with
permission from [18].
Copyright 2002 American
Physical Society
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Kerr Nonlinear Optical Media
In the case of Kerr nonlinear media, the electrical permittivity is dependent on the
intensity of the applied electric field. This allows for the excitations of the system to
become dependent on their field intensities. In addition, it allows new type of
excitations to appear in the nonlinear system. These include bight, dark, and grey
solitons [21, 22]. In discrete systems, these are often termed intrinsic localized
modes.

Intrinsic localized modes can only exist in systems formed of nonlinear media.
The localized modes are generated in these systems because the intrinsic localized
mode field amplitudes induce changes in the system dielectric properties which in
turn support the field amplitudes of the intrinsic localized modes. The development
of the modes is then a completely self-consistent arrangement between the modes
and the media supporting them. In the following it will be shown that photonic
crystals composed of Kerr media support these new types of excitations.

An example of a single site Kerr impurity is straightaway developed from the
form of the single site impurity introduced in (3.103). The Kerr impurity can be
introduced into the problem by taking the change in dielectric due to the single site
impurity represented in (3.103) to be given by the field dependent form

de ~rjj
� � ¼ de0 1þ k E3j j2

h i
for ~rjj
�� ��\Re; de ~rjj

� � ¼ 0 otherwise ð3:122Þ

where de0 is a constant and Re is the radius of a region over which E3 ~rjj xj
� �

is

slowly varying in space. In (3.122) the term k E3j j2 represents the change in the
dielectric due to the field E3 ~rjj xj

� �
at the impurity site. The form in (3.112) has

been used to study various single impurity problems and, in a modification for
multiple sites, various waveguide problems.

For the waveguide problem, the difference equation in (3.108) for the waveguide
of linear optical media becomes, for the Kerr nonlinear system, a nonlinear dif-
ference equation of the form

E3 nð Þ ¼ c

a 1þ k E3 nð Þj j2
h i

E3 nð Þ
þ b 1þ k E3 nþ 1ð Þj j2
h i

E3 nþ 1ð Þ
þ b 1þ k E3 n� 1ð Þj j2
h i

E3 n� 1ð Þ

8>>><
>>>:

9>>>=
>>>;
: ð3:123Þ

(Note that in the linear limit that k ! 0, (3.123) is seen to reduce to (3.108). It
can be shown that (3.123) for an infinite waveguide exhibits various bright, dark,
and grey soliton-like intrinsic localized modes [21, 22] as new important excitations
of the nonlinear system. For the conditions governing the existence of these modes
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and their detailed properties the reader is referred to the literature [21–23]. Here
only a brief illustration of some of their basic properties is given by treating an
interesting transmission problem involving intrinsic localized modes.

In the following an example of a barrier transmission problem for a Kerr media
barrier contained within an otherwise linear media waveguide will be treated. This
illustrates many of the interesting features of the renormalization of modes in the
system due to the introduction of nonlinearity and of the existence of new intrinsic
localized modes due to the introduction of nonlinearity into the system.

Waveguide Barrier of Kerr Optical Media
One of the problems treated using (3.108) and (3.123) is that of the scattering from
a barrier of seven Kerr sites in and otherwise linear media waveguide [24]. The
barrier is formed by replacing seven consecutive waveguide channel sites with Kerr
media sites. An incident plane wave form is reflected and transmitted from the
barrier.

The problem is solved by using the difference equations and the form of the
transmitted wave to generate a recursive solution. In this way, the transmitted wave
is traced back recursively through the barrier media and eventually emerges as an
incident and reflected wave on the opposite side of the barrier media. Having related
the incident, reflected and transmitted amplitudes to one another, the transmission
and reflection coefficients are obtained from these.

In [24] the transmission and reflection coefficients were obtained and evaluated
for a specific model. These results will now be presented and the interested reader
referred to [24] for the details of the system. The results shown below illustrate a
typical behavior of these type of barrier problems.

Figure 3.14 presents results for the barrier transmission coefficient versus
g ¼ ca, comparing linear and nonlinear limits of the Kerr barrier media. In each of
the two plots reproduced here, the linear and nonlinear results are slightly shifted
except in the region 0.75 < g < 0.8. In the region 0.75 < g < 0.8 a sharp peak of
near perfect transmission is observed. These are the result of barrier transmission
assisted by the excitation of an intrinsic localized mode. In these cases, the modes
look like bright solitons. For further details of these studies the reader is referred to
the original papers.

Aside from the intrinsic localized mode, the other barrier modes are present in
both the linear and Kerr media systems. Only a renormalization is observed
between the two systems.
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Chapter 4
Plasmonics

Plasmonics is the study of surface electromagnetic waves at interfaces between two
different media [1–7]. It is involved with how surface electromagnetic waves can be
generated on an interface, how bulk electromagnetic modes interact with surface
waves to couple in or out of the them, and how surface electromagnetic waves
interaction with other types of excitations related to the surface. As shall be seen,
surface electromagnetic waves are important as they can be used to study the
structure and properties of a surface or to enhance some of the physical processes
that take place on the surface. In this chapter, the basic properties of these exci-
tations will be presented along with some discussions of possible technological
applications that are proposed for them.

The focus will be on surface waves on planar surfaces [1–7], planar surfaces
with localized structures on them [8], planar gratings [1–8], and randomly rough
surfaces which are planar on average [1–7, 9, 10]. More exotic surfaces such as
those on spheres, cylinders, etc. will not be a treated here though these can be very
important in the explanation of interesting phenomena such as, for example, the
optical glory and rainbow effects [10]. The focus will be on analytical methods as
these tend to offer an insight into the physics of the basic surface wave mechanism
more than computer simulation methods. Some references to simulations and
experiments, however, will be provided but it is not meant to give a detailed review
of these nor should the discussions of the analytical work be considered as an
attempt at a detailed review of these methods [1–7].

In the discussions of the Maxwell equations at a planar interface between two
media, a treatment is commonly given of the reflection and refraction of a wave
incident on the interface. In most texts, however, it is often left out that there are
other solutions of the Maxwell equations related to the interface. These are the
surface electromagnetic waves known as surfaces plasmons or surface polaritons or
surface plasmon-polaritons [1–11]. The surface electromagnetic waves are solutions
that are bound to the interface and propagate parallel to the plane of the interface
between the two different media. The waves are bound to the interface in the sense
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that their field intensities decrease to zero at increasing perpendicular separation
form the interface and their energy flow is parallel to the surface [1–11].

Because of the translation symmetry of the interface the surface wave solutions
are completely distinct from the modes interacting with the interface form the bulk
[1–7]. These two different types of solutions only mix when the translational
symmetry of the surface is destroyed. When this occurs the existence of surface
electromagnetic waves on the interface gives rise to many interesting effects in the
diffuse scattering of radiation from the interface and are an essential element in
understanding the scattering properties of the surface. In turn, interesting effects are
also seen in the properties of the propagations of surface modes related to their
interaction with bulk electromagnetic modes and these effects are also an essential
element in the understanding of the surface electromagnetic waves on the interface.

Surface polaritons are the general form of surface wave solutions at the interface
[1–7]. Often to simplify discussions the quasi-static limit of the surface polaritons
are discussed. These are known as surface plasmons and their solutions are obtained
by taking the speed of light to be infinite in the surface polariton solutions. Not all
surfaces support surface plasmon-polariton excitations and there are specific sets of
requirements on the dielectric properties of the two materials forming the interface
for solutions of these types of modes to exist. In addition, surface imperfection and
roughness couple the surface modes to bulk modes and along with dielectric losses
from the media can lead to a finite lifetime or finite propagation distance along the
interface for these modes. The topography of the surface also has interesting effects
on the structure of the dispersion relation of plasmon-polaritons along the interface.
Bulk and surface electromagnetic waves can also be coupled together through the
use of prisms in the so-called Otto and Kretschmann couplings [1–7]. These are
common methods for the experimental study of these excitations in many types of
systems.

In the following the solutions for plasmon-polaritons on planar surfaces and thin
films with planar surfaces will be treated. These will focus on the basic properties of
cases involving simple examples of these systems. After this, discussions of effects
on the plasmon-polariton from surface structure features on otherwise planar sur-
faces and from periodic surfaces are given. A focus will be on the band structures,
frequencies of the bound modes at imperfections, and scattering into bulk modes.
Next, effects in the scattering of light from rough surfaces and thin films with rough
surfaces will be related to weak localization effects of the surface electromagnetic
waves in these systems. Discussions of the nature of strong and weak localization in
the disordered systems will be give so as to develop an understanding of the
mechanisms contributing to Anderson localization effects [9, 10]. This is followed
by a review of some of the technological applications of surface electromagnetic
waves including: surface enhanced Raman scattering, enhanced transmission from
plasmonic films, plasmonics of metamaterial surfaces, etc.
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4.1 Surface Plasmon-Polaritons on a Planar Interface

In this section the wave function solutions of surface plasmon-polaritons propa-
gating at the planar interface between two different media are discussed [1–7].
A general treatment is given, determining the form of the fields at and in the
neighborhood of the surface between the media and the dispersion relations of the
plasmon-polariton waves. These results are calculated and presented as functions of
the dielectric properties of the two media supporting the surface wave. In addition,
some numerical studies related to systems of technological interest are presented
and discussed.

Not all planar surfaces support surface plasmon-polaritons because of restric-
tions from the electrodynamics [1–7]. As shall be seen later, there are a very
specific set of conditions on the dielectric properties that the two media forming the
interfaces must have in order for surface plasmon-polariton solutions to exist. These
conditions also limit the form of the dispersion relations of the plasmon-polariton
modes. Generally, however, surface plasmons-polaritons may exist along a great
variety of interfaces between metals and dielectrics and between two different
dielectrics. Both of these general types of surfaces (between metal-dielectric and
dielectric-dielectric media) which support surface plasmon-polaritons exhibit
qualitatively different forms of solutions [1–7]. These will now be studied.

Consider a planar interface between two media which is located at x ¼ 0: One
medium has dielectric constant e[ ðxÞ in the region x[ 0 and the second medium
has dielectric constant e\ðxÞ in the region x\0 (see Fig. 4.1 for a schematic of the
interface and the two media). A solution will be given for surface plasmon-polariton
waves propagating along the interface in the z-direction. The solution is obtained
from the Maxwell equations by applying surface wave boundary conditions at the
interface to yield a modal wave having fields localized near the surface between the
two media and vanishing at infinity [1–7].

The form of the Maxwell equations in the following considerations are written as

r �~E ¼ 0; ð4:1aÞ

r �~B ¼ 0; ð4:1bÞ

r �~Eþ 1
c
@~B
@t

¼ 0; ð4:1cÞ

and

r�~B� le
c

@~E
@t

¼ 0: ð4:1dÞ

These are for the case in which there is no free charge in the system, and it is
assumed in the calculation that no net free charge is treated within the problem. In
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addition, the current has been left off from Amperes law. This can be done by taking
advantage of the ambiguity between the dielectric and current responses in a fre-
quency dependent system. In the calculations presented later, the dielectric func-
tions used are those which treat the total response of the system to frequency
dependent fields as a dielectric response. Other formulations are available which
treat the total response of the system as a current response or as a combination of
dielectric and current responses. These last cases are not of interest here.

Under these conditions, from the two curl equations and Gauss’s law the wave
equation for the electric fields follows and is given by

r�r�~Eþ le
c2

@2~E
@t2

¼ �r2~Eþ le
c2

@2~E
@t2

¼ 0 ð4:2Þ

with a similar wave equation obtained from (4.1b), (4.1c), and (4.1d) for the
magnetic induction. These equations determine all of the bulk and surface waves in
the system once the appropriate boundary conditions are applied for their solution.

The form of the solution of (4.2) for surface waves moving in the z-direction
along the planar surface [1–7] between the two media are: for x[ 0 and a[ [ 0

~E[ r*; t
� �

¼ ~E0
[ exp �a[ xð Þ exp i kz� xtð Þ½ �; ð4:3aÞ

and for x\0 and a\ [ 0

Fig. 4.1 Schematic of the planar interface between two semi-infinite bulk media that supports
surface electromagnetic waves
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~E\ r*; t
� �

¼ ~E0
\ exp a\xð Þ exp i kz� xtð Þ½ �: ð4:3bÞ

Here from the wave equation in (4.2) applied in the regions above and below the
interface

a2[ ¼ k2 � le[
c2

x2 ð4:4aÞ

and

a2\ ¼ k2 � le\
c2

x2; ð4:4bÞ

and the vector amplitudes of the waves are given by

~E0
[ ¼ E0

[;x;E
0
[;y;E

0
[;z

� �
ð4:5aÞ

and

~E0
\ ¼ E0

\;x;E
0
\;y;E

0
\;z

� �
: ð4:5bÞ

In (4.3) the continuity of the electric field at the interface requires that the wave
vector component parallel to the surface, k, is the same for the field solutions both
above and below the interface [1–7]. In addition, for a wave solution to be bound to
and localized on the interface, the electric field intensities must decay in directions
perpendicularly away from the surface. The a’s in (4.3) have been chosen
accordingly for solutions localized about the interface.

Substituting (4.3) into Gauss’s law it follows that the x and z components of the
electric field are related to one another by

E0
[;x ¼

ik
a[

E0
[;z: ð4:6aÞ

E0
\;x ¼ � ik

a\
E0
\;z: ð4:6bÞ

Consequently, the general form of the surface plasmon-polarition along the inter-
face for the fields above and below the surface are, respectively, given by

~E[ r*; t
� �

¼ ik
a[

E0
[;z;E

0
[;y;E

0
[;z

� �
exp �a[ xð Þ exp i kz� xtð Þ½ � ð4:7aÞ
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and

~E\ r*; t
� �

¼ � ik
a\

E0
\;z;E

0
\;y;E

0
\;z

� �
exp a\xð Þ exp i kz� xtð Þ½ � ð4:7bÞ

From Faraday’s law the magnetic inductance corresponding to the electric fields in
(4.7a) and (4.7b) are, respectively,

~B[ r*; t
� �

¼ c
x

�kE0
[;y; i

le[
c2

x2

a[
E0

[;z; ia[E0
[;y

� �
exp �a[ xð Þ exp i kz� xtð Þ½ �

ð4:8aÞ

and

~B\ r*; t
� �

¼ c
x

�kE0
\;y;�i

le\
c2

x2

a\
E0
\;z;�ia\E0

\;y

� �
exp a\xð Þ exp i kz� xtð Þ½ �:

ð4:8bÞ

The fields in (4.7) and (4.8) are the general form of the surface wave modal
solutions above and below the interface which now must be match with boundary
conditions at the interface. This completes the determination of the fields and the
dispersion relations of the modes.

The boundary conditions at the surface relate the fields of the solutions above
and below the interface to one another. The conditions that hold at the interface are
that the tangential components of the electric fields and the normal components of
the electric displacement vectors are continuous. From the continuity of the electric
fields parallel to the surface it follows that [5]

E0
[;y ¼ E0

\;y ð4:9aÞ

and

E0
[;z ¼ E0

\;z: ð4:9bÞ

From the continuity of the normal component of the displacement vector at the
surface it follows that

e[ xð Þ
e\ xð Þ ¼ � a[ xð Þ

a\ xð Þ : ð4:10Þ

Equation (4.9) completes the field solutions for both the electric fields and
magnetic induction. Equation (4.10) provides a fundamental limitation on the
system, yielding the conditions need for solutions to exist and the dispersion
relation of the waves. It is interesting to note in (4.10) that surface waves only exist
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along the interface when e[ xð Þ and e\ xð Þ have opposite signs. The medium with
the negative dielectric constant is, consequently, a reflective medium.

The continuity of the z component of the magnetic induction requires that [5]

a[ þ a\ð ÞE0
[;y ¼ 0: ð4:11Þ

This along with (4.9a) requires that the y component of the electric field is zero so
that the electric fields of the surface waves are in the x-z plane. The magnetic
induction, on the other hand, is along the y-axis. The resulting surface
plasmon-polariton, unlike waves in the bulk of the medium, is not a transverse
wave.

The general solution for the wave functions and dispersion relations of surface
plasmon-polaritons given in (4.1)–(4.11) above will now be studied for specific
types of interface media. In one example an interface between a dielectric and a
metal is treated. This is followed by a treatment of an interface between two
different dielectric media. These two different types of media interfaces will be seen
to exhibit distinctly different behaviors arising from differences in the frequency
dependent dielectric functions of metals and insulators.

4.1.1 Example of a Dielectric-Metal or Semiconductor
Interface

As an example of an important class of structures supporting surface
plasmon-polaritons, considerations are given to the surface waves on a planar
dielectric-metal or semiconductor interface [5]. For these interfaces, the dielectric of
the metal and semiconductor systems will be treated within the context of the Drude
model approximation. This gives a rough modeling of some of the general prop-
erties of these types of conductors. Consequently, both the metals and semicon-
ductors studied here will be described by this same form of the dielectric response.

For these considerations a simple model is treated of an x ¼ 0 interface sepa-
rating a semi-infinite dielectric from a semi-infinite metal. The model consists of a
non-conducting dielectric medium described by a frequency independent dielectric
constant e[ 0 in the region x[ 0. In the region x\0 the medium is a metal with a
frequency dependent dielectric constant.

In the following discussions, first the nature and origins of em xð Þ are explained.
This is followed by a solution of the surface wave problem on the x ¼ 0 interface.

The Nature of the Dielectric Response, em xð Þ
The dielectric constant of the bulk metal is taken to be of a standard form given by
[5, 7, 12, 13]
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em xð Þ ¼ e1 1� x2
p

x2

 !
: ð4:12Þ

Here e1 is the dielectric response at infinite frequency and xp is the bulk plasma
frequency. The bulk plasma frequency is the frequency at which collective modes
of the conduction electrons (known as plasmons) occur in the bulk of the metal. The
plasmons exist when em xð Þ ¼ 0 and are seen later to be closely related to the
surface plasmon-polaritons.

The form of the metal dielectric constant in (4.12) is obtained from a simple
model. In its most elementary form the model treats the conduction electrons of the
metal as a gas of non-interacting freely moving classical particles. This is a very
simplistic model but gives a functional form for the dielectric response that is the
same as that found in more advanced treatments.

For an electric field applied in the z direction of an infinite bulk electron gas the
equation of motion of the electrons in the free particle gas is [7, 12, 13]

m
d2z
dt2

¼ �eE ð4:13Þ

where E tð Þ ¼ E0e�ixt is the time-dependent applied electric field. From the solution
of (4.13) for z tð Þ a time-dependent polarization of the electron gas is obtained,
having the form

P ¼ �nez ¼ � ne2

mx2 E ð4:14Þ

where n is the electron carrier density and e is the positive fundamental unit of
charge. The dielectric function resulting from (4.14) then follows as [13]

em xð Þ ¼ 1þ 4p
P xð Þ
E xð Þ ¼ 1�

x0
p

� �2
x2 ; ð4:15Þ

where x0
p ¼

ffiffiffiffiffiffiffiffiffi
4pne2
m

q
is the plasma frequency of the conduction electron gas.

In the result in (4.15) only the response of the gas of conduction electrons are
accounted for, and other contributions need to be taken into account for a complete
picture of the dielectric response of the metal. These additional contributions to the
response of the metal arise from the positive ions forming the metal. Not only do
the bound electrons of the positive ion background give a dielectric response in
addition to that of the conduction electrons, but they also modulate the response of
the condition electrons. The bound charge response of the positive ions is expected
to be similar to the response of the dielectric media above the x ¼ 0 interface, i.e., it
gives a frequency independent contribution to the dielectric of the system. In
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addition, the contribution of the positive ions to the dielectric response modifies the
plasma frequency of the electron gas in its response to the applied field.

The positive ion background in which the electrons move also contributes a
dielectric response to the metal. The background response of the ions shall be
denoted eP and approximated as frequency independent. It adds to the response of
the conduction electrons in (4.15) to give the complete dielectric function of the
metal. Making this addition to (4.15), after a little algebra the dielectric constant in
(4.12) is obtained.

In (4.12) the combined frequency independent part of the dielectric response is
given by [5, 7, 12, 13]

e1 ¼ eP þ 1: ð4:16aÞ

In addition, the plasma frequency of the entire system is renormalized to have the
form

x2
P ¼ x0

P

� �2
e1

: ð4:16bÞ

This gives the frequency of the bulk plasma waves of the metal.
The resulting (4.12) provides a successful description of many of the features of

the response of metals to frequency dependent applied electric fields. The
description can be made to yield both qualitative and quantitative forms for the
dielectric behavior of experimentally encountered systems or to serve as a curve
fitting form for the dielectric constant data of metallic systems.

Some experimental data of typical values of the plasma frequency in metals,
described by (4.16b), are listed in Table 4.1. These present a representative range of
values found in metal systems and give an ideas of the energies associated with the
dielectric response in (4.12) [5, 7, 12, 13].

The dielectric responses of the metal and dielectric are now used to obtain the
surface plasmon-polariton modes along the x ¼ 0 interface.

Surface Wave Dispersion Relation
The dispersion relation of the surface waves follows from substituting the dielectric

constants for the dielectric, e, and the metal, em xð Þ ¼ e1 1� x2
p

x2

� �
; into (4.10).

Table 4.1 Data for plasma
frequencies in metals

Metal Plasmon energy in eV

Li 7.12

Na 5.71

K 3.72

Mg 10.6

Al 15.3
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Equation (4.10) then generates all of the modes at the interface studied as a function
of frequency [5, 7, 12, 13].

Squaring both sides of (4.10) and using the relations in (4.4), it is found that [5,
7, 12–14]

e2

e21 1� x2
p

x2

� �2 ¼ k2 � le
c2 x

2

k2 � le1
c2 1� x2

p

x2

� �
x2

; ð4:17Þ

relating k2 to x2 in terms of parameters characterizing the material forming the
surface. Upon collecting the terms in k2 to one side of the equation, it follows that

e1 1� x2
p

x2

 !
þ e

" #
k2 ¼ lee1

c2
x2 � x2

p

� �
: ð4:18Þ

Equation (4.18) is then rewritten as a quadratic equation in x2 which is solved for
the dispersion relation of the surface waves. After a little algebra, two solutions for
x2 in terms of k2 are obtained in the form

x2
� ¼ 1

2e1
e1x2

p þ
eþ e1
le

c2k2 � e1x2
p þ

eþ e1
le

c2k2
� �2

�4
e21
le

x2
pc

2k2
" #1=28<

:
9=
;;

ð4:19Þ

exhibiting a dispersion for the surface electromagnetic modes at the interface for all
values of positive and negative wave vector k.

To understand the nature of the modes described by (4.19) begin by looking at
the limiting form of the dispersion relation as k2 ! 1 and as k2 ! 0. In the limit
that k2 ! 1; (4.19) gives [5, 7, 12–14]

x2
þ ! eþ e1

lee1
c2k2 ð4:20aÞ

and

x2
� ! x2

p

1þ e
e1

: ð4:20bÞ

In the limit that k2 ! 0; (4.19) gives

x2
þ ! x2

p ð4:21aÞ
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and

x2
� ! 0: ð4:21bÞ

As is seen from these limits and is confirmed by the numerical results presented
later, the x2

� branch of the dispersion is the branch associated with the surface
plasmon-polaritons waves propagating along the interface. It is bounded above by
the limit in (4.20b) and approaches zero at zero wave vector, representing the
greatest departure from the dispersion relations of the bulk modes. In addition, from
(4.7) and (4.8) the wave functions are strongly localized around the interface
between the two media, and the localization increases with increasing wave vector.

The other x2
þ branch is bounded from below by the limit in (4.21a) and as the

wave vector becomes infinite x2
þ approached infinity, merging with the light line

of the bulk modes. The x2
þ modes are, generally, light like and eventually merge

with the bulk modes. In addition, because em xð Þ
e [ 0 over the frequency range of the

x2
þ modes they do not satisfy the condition in (4.10) required of surface waves to

exist [5, 7, 12–14].
The plasmon-polariton branch of the dispersion relation is evaluated for a

vacuum-InSb interface and presented in Fig. 4.2 as a plot of x� versus wave vector
k [14]. [Here 14 is followed in approximating the response of n doped InSb by the
Drude form in (4.12).] It is seen from the plot that all along the dispersion relation
the plasmon-polariton branch falls below the x kð Þ ¼ ck light line of the bulk modes
of light. As the wave vector k increases the frequency of the plasmon-polariton is
found to rise quickly from zero and approach the x� ¼ xpffiffiffiffiffiffiffiffiffi

1þ e
e1

p limit at k ! �1:

For small wave vectors near k � 0 the dispersion relation is a linear form [5, 7,
12–14]

Fig. 4.2 The dispersion
relation of the surface
plasmon-polarition
propagating along a planar
vacuum-InSb n-doped
semiconductor interface [5,
13]. Plotted is x�

xp
versus ck

xp
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x� � 1ffiffiffiffiffi
le

p ck ð4:22Þ

which is just below the light line x kð Þ ¼ ck of the dielectric. The modal wave
functions in this limit look like perturbed bulk modes of light, but all of the surface
waves along the surface plasmon-polartion branch have fields localized about the
interface. In addition, the degree of field localization of the surface waves increases
as k increases along the dispersion relation plot.

For all values of k, the surface wave dispersion relation is distinctly different
from the dispersion of the bulk light modes. Consequently, the plasmon-polariton
modes do not interact with the light modes, and are distinctly different excitations
from the bulk light modes in the system.

This is no longer true if the translational symmetry of the interface is broken so
that the excitations at the surface are not characterized as states of wave vector
k. With the loss of translational symmetry the surface and bulk modes mix with one
another and the surface plasmon-polaritons scatter from the surface and into bulk
modes of the vacuum. This causes the surface waves to develop a finite life time in
their propagation along the interface. The lifetime of the surfaces waves decreases
with the increase of surface disorder and with the consequent larger mixing of
surface and bulk excitations.

As the wave vector is increased from zero in Fig. 4.2, the surface
plasmon-polariton branch of modes quickly approaches the x� ¼ xpffiffiffiffiffiffiffiffiffi

1þ 1
e1

p limit. As

a result, the frequencies of the plasmon-polariton modes are seen to be closely
related to the frequency of the bulk plasmon excitations of the metal which occur at
the plasma frequency xp.

Traveling along the branch of surface waves with increasing wave vector, the
surface modes in the flat branch of excitations approaching the x� ¼ xpffiffiffiffiffiffiffiffiffi

1þ 1
e1

p limit

differ a great deal from the bulk propagating light modes. They look more like
plasmon excitations and less like light modes as the dispersion bends farther and
farther away from the light line and the modal fields are increasingly localized on
the interface. The modes in this part of the surface plasmon-polariton dispersion
relation are farther from the light line than the modes near k � 0: Consequently,
they are more stable against scattering into bulk light modes which radiate away
from the interface. These are the modes of most interest in the development of
surface plasmon-polariton effects [5, 7, 12–14].

4.1.2 Example of a Dielectric-Dielectric Interface

Another example of an important class of surface plasmon-polaritons are those
surface electromagnetic waves supported on a planar interface between two dif-
ferent semi-infinite dielectrics [5, 14]. These type of surface plasmon-polaritons are

170 4 Plasmonics



associated with dielectric resonances arising from the interaction of the electric
fields with phonon excitations in one of the dielectric media. They are commonly
found in systems in which one of the media (i.e., the resonant medium) is an ionic
material.

In a simple treatment of the dielectric-dielectric planar interface, a
non-conducting dielectric medium described by a frequency independent dielectric
constant e[ 0 is in the region x[ 0: In the region x\0; however, the medium is
taken to be a non-conducting dielectric with a frequency dependent dielectric
function ep xð Þ displaying frequency resonances. In the following, a discussion is
given of the nature of dielectric systems with resonances and the nature of their
dielectric functions. This is followed by a treatment of the plasmon-polaritons at the
interface described earlier.

The Nature of the Frequency Dependent Response, ep xð Þ
The resonances are associated with the strong coupling of the electromagnetic fields
to the phonon modes of the lattice that are commonly found in some types of
dielectric materials. An example of such a material is an ionic crystal. In these
systems the transverse optical phonon modes of the material represent polarization
waves of counter vibrating positive and negative ions. The counter vibrating ions
give rise to a time dependent polarization which couples with applied electric fields.

The standard form of the dielectric function in systems with strong coupling to
the vibrational polarization modes is given by [7, 13]

ep xð Þ ¼ e1 1� x2
LO � x2

TO

x2
TO � x2

� �
: ð4:23Þ

Here e1 is the dielectric response at infinite frequency, xTO is the frequency of the
transverse phonon modes of the material, and xLO is the frequency of the longi-
tudinal phonon modes of the material. The transverse optical phonons are modes
involving counter moving positive and negative ions which travel in directions
perpendicular to the wave vector of the transverse optical phonon. In the longitu-
dinal optical modes the counter moving positive and negative ions travel in the
direction parallel to the wave vector of the longitudinal optical phonon.

The form of the dielectric constant in (4.23) is obtained from a simple model
considering an infrared electromagnetic wave interacting with an ionic crystal. An
infrared electromagnetic wave applied to an ionic medium is a transverse wave with
a wavelength that is slowly varying over typical inter-ionic separations in the
crystal. The transverse nature of the electromagnetic wave means that it will most
strongly couple to transverse polarization waves of the medium, and its long
wavelength favors strong interactions only with the long wavelength polarization
waves of the medium.

As a simplistic consideration, the essential features of the system can be
described as a harmonically varying applied electric field interacting with the
polarization of an ionic crystal. In this interaction the electric field is taken to couple
only with the long wavelength transverse optical modes of the crystal, and the
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shorter wavelength modes of the ionic polarization are ignored. The coupling is
through the electromagnetic interaction of the field with the counter propagating
ions which form the time varying polarization of the optical mode.

A simple model for this interaction is a driven harmonic oscillator equation for
the ionic polarization given by [7]

d2P
dt2

þx2
TOP ¼ ne2

l
E ð4:24Þ

where E tð Þ ¼ E0e�ixt is the time-dependent applied electric field, and the ionic
polarization vector of the transverse optical modes of the crystal is

P ¼ �nez ð4:25Þ

Here n is the electron carrier density, e is the positive fundamental unit of charge, l
is the reduced mass of the two counter-propagating ions, and z is the relative
displacement from equilibrium of the ions in the polarization. Notice that in this
model the modes of all the counter moving ions in the system move in
synchronization.

Using the definition of the polarization in (4.25), (4.24) can be rewritten in the
form of an harmonic oscillator equation for z (the separation of the ions from
equilibrium) subject to a forcing term from the applied electric field. This equation
is [7, 13]

l
d2z
dt2

þ lx2
TOz ¼ �eE: ð4:26Þ

It is essentially the equation studied for the dielectric response of a metal but with
an added harmonic oscillator term. The charge in the ionic dielectric is bound ionic
charge subject to harmonic motion and not free charge as that found in the metallic
dielectric function.

In addition, the polarization interacts with the electric field through the elec-
tromagnetic wave equations. To see the nature of the interaction, consider the wave
equation for a wave in a general bulk dielectric medium of dielectric constant e. It
has the form

r2~E � 1
c2

@2e~E
@t2

¼ 0: ð4:27aÞ

By applying the standard relations ~D ¼ e~E ¼ Eþ 4p~P to (4.27a) it is rewritten into
the form

r2~E � 1
c2

@2~E
@t2

¼ 4p
c2

@2~P
@t2

: ð4:27bÞ
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This equations describes the field arising from the dynamics of the polarization and
the polarization arising from the field. The nature of the dynamics of the coupled
electric and polarization fields can now be determined from (4.24) and (4.27).

Upon substituting plane wave forms proportional to ei
~k�~r�xtð Þ for the field and

polarization, from (4.27) it follows that

k2~E ¼ x2 ~Eþ 4p~P
� �

: ð4:28Þ

In the long wavelength, k ! 0; limit (4.24) and (4.27) yield solutions for the

electric field and polarization that are proportional to ei
~k�~r�xtð Þ:

Substituting these plane wave forms in (4.24) and (4.28) results in the matrix
equation for E xð Þ and P xð Þ given by [7, 14]

x2 4px2

ne2=l x2 � x2
TO

				
				 EP
					
					 ¼ 0 ð4:29Þ

where E and P are the plane wave amplitudes of the parallel or antiparallel electric
field and polarization responses of the material.

The matrix equation is solved for E xð Þ and P xð Þ which are the amplitudes of
the field and polarization, respectively. Setting the determinant of (4.29) equal to
zero gives two eigenvalues. The first is

x2 ¼ 0 ð4:30aÞ

which represents a k ¼ 0 bulk light mode of the general material with
E x ¼ 0ð Þ ¼ l

ne2 x
2
TOP x ¼ 0ð Þ. A second eigenvalue

x2 ¼ x2
TO þ 4pne2

l
ð4:30bÞ

represents a bulk plasmon-polariton mode with E xð Þ ¼ �4pP xð Þ. Notice that the
renomalized bulk mode of light in (4.30a) has parallel electric field and polarization
vectors while the plasmon-polariton mode in (4.30b) has anti-parallel electric field
and polarization vectors.

The solutions in (4.30) represent the k ¼ 0 modes in the bulk dielectric medium.
Later, as was the case with the bulk plasma waves in the problem of the
dielectric-metal interface, these modes will be seen to be important in understanding
the surface plasmon-polarition arising on the dielectric-dielectric interface. The next
consideration is the determination of the general frequency dependent dielectric
response of the bulk system.

From the (4.24) the dielectric response of the ionic medium to electromagnetic
waves of frequency x are obtained. Using standard expressions for the linear
dielectric response, it follows that the dielectric function of the relative motion of
the ions is given by [7, 12, 13]

4.1 Surface Plasmon-Polaritons on a Planar Interface 173



epo xð Þ ¼ 1þ 4p
P xð Þ
E xð Þ ¼ 1þ 4pne2

l x2
TO � x2

� � : ð4:31Þ

This represents the resonant response of the ionic medium due to the movement of
the positive and negative ions relative to one another. It is not, however, the only
feature to the response of the ionic medium to an externally applied field. The ionic
crystal contains additional dynamics processes than those related to the relative
motion of the ions composing it.

Equation (4.31) only represents the response of the ions of the material in their
harmonic motion relative to one another. This is not the complete response of the
ionic crystal. Just as in the electron gas model, there are additional contributions
from the bound electrons in the ions themselves. As in the problem of the dielectric
function of the metal, the bound charge of each ion gives a constant frequency
independent contribution to the dielectric of the material. This additional response
adds to the dielectric in (4.31). Consequently, the dielectric function for the total
response of the ionic crystal can be written in the form [7, 12, 13]

ep xð Þ ¼ e1 þ 4pne2

l x2
TO � x2

� � : ð4:32Þ

Here e1 is the frequency independent dielectric of the total ionic material. It also is
the x ! 1 limit of the dielectric function.

A further simplification of (4.32) can be made, putting it into a more illuminating
form. At zero frequency (4.32) becomes

ep 0ð Þ ¼ e1 þ 4pne2

lx2
TO

ð4:33Þ

so that (4.32) is rewritten as [7, 12, 13]

ep xð Þ ¼ e1 þ e 0ð Þ � e1½ � x2
TO

x2
TO � x2

: ð4:34Þ

From (4.34) and Gauss’s law it follow that the longitudinal electromagnetic modes
of the ionic crystal are obtained as the solution of [7, 12, 13]

ep xTOð Þ ¼ 0: ð4:35Þ

Solving (4.35) for x2
TO and applying it to rewrite (4.34) gives the form of the

dielectric function of the ionic material in (4.23). Equation (4.23) for the total
response of the ionic crystal response is used in the later discussions describing the
dielectric response of the medium below the x ¼ 0 interface. The medium above the
surface is assumed either to have no dielectric resonances or to have resonances at
frequency other than those considered later.
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The resulting dielectric function for the ionic material in (4.23) provides a
successful description of many of the features of the response of ionic media to
frequency dependent applied electric fields. The description can be made to yield
both qualitative and quantitative forms for the dielectric behavior of experimentally
encounter systems or to serve as a curve fitting form for the dielectric constant data
of ionic systems.

Experimental data of typical values of the parameters in (4.23) for representative
ionic materials are listed in Table 4.2 [7]. Some of these are used in the following
discussions of the surface waves on the dielectric-dielectric interfaces.

Surface Wave Dispersion
The dielectric response in (4.23) is now used to obtain the surface
plasmon-polariton modes along the x ¼ 0 interface.

In the following example the dispersion relation of the surface plasmon-polariton
at the interface is computed and the wave functions of the plasmon-polariton are
discussed. A model is studied in which the dielectric medium in the region x[ 0 is
described by a frequency independent dielectric constant, while the medium in the
region x\ 0 is described by the resonant dielectric functional form of (4.23).

The dispersion relation of the surface waves follows from substituting the
dielectric constants for the dielectric above the interface (described by e, a fre-
quency independent constant) and the dielectric below the interface (described by

the resonant form ed xð Þ ¼ e1 1� x2
LO�x2

TO
x2

TO�x2

� �
) into (4.10). Equation (4.10) then

generates all of the modes at the interface studied as a function of their frequency.
Squaring both sides of (4.10) and using the relations in (4.4), it is found that [13]

e2

e21 1þ x2
LO�x2

TO
x2

TO�x2

� �2 ¼ k2 � le
c2 x

2

k2 � le1
c2 1þ x2

LO�x2
TO

x2
TO�x2

� �
x2

; ð4:36Þ

relating k2 to x2 in terms of parameters characterizing the material forming the
surface. Upon collecting the terms in k2 to one side of the equation, it follows that
[13]

e1 1þ x2
LO � x2

TO

x2
TO � x2

� �
þ e


 �
k2 ¼ lee1

c2
x2 1þ x2

LO � x2
TO

x2
TO � x2

� �
ð4:37Þ

Table 4.2 Some values of
parameters in Equation 4.23

Material e1 xTO in 1013 s−1 xLO in 1013 s−1

NaCl 2.25 3.1 5.0

GaAs 10.9 5.1 5.5

Si 11.7 9.9 9.9

GaSb 14.4 4.3 4.6

LiF 1.9 5.8 12.0
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Equation (4.37) is then rewritten as a quadratic equation in x2 which is solved
for the dispersion relation of the surface waves. After a little algebra, two solution
for x2 in terms of k2 are obtained in the form

x2
� ¼ 1

2e1
e1x2

LO þ eþ e1
le

c2k2 � e1x2
LO þ eþ e1

le
c2k2

� �2

�4
e1
le

e1x2
LO þ ex2

TO

� �
c2k2

" #1=28<
:

9=
;;

ð4:38Þ

exhibiting a dispersion for the electromagnetic modes at the interface for values of
positive and negative wave vector k.

The x2
� solution in (4.38) is the branch of interest in the study of surface

plasmon-polaritons on the dielectric-dielectric interface. From (4.7) and (4.8), it is
seen to correspond to wave functions having fields localized at the interface. It also
satisfies the condition in (4.10) which requires a negative ionic dielectric constant
for there to be surface waves on the interface. With increasing wave vectors, the
fields of the surface waves in these solutions become increasingly localized at the
interface.

The x2
þ solution in (4.38) is not of interest in the discussion of

plasmon-politons. It does not satisfy the conditions in (4.10) for the modes to exist
as surface waves. As with the metal-vacuum x2

þ solutions, it will not be treated
further.

In Fig. 4.3 a plot of x� versus k is made for a vacuum-InSb interface. (In this
case the system is pure, undoped, InSb.) The modal dispersion relation looks
similar to the surface plasmon-polariton dispersion relation at the vacuum metal
interface except that there is a region of k over which the surface waves do not exist
[13].

Fig. 4.3 Plot of x�
xTO

versus
ck
xTO

for surface
plasmon-polaritons on a
vacuum-InSb interface [14].
In this case the InSb is not
doped [13]
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Real solutions of (4.38) only can exist over the region of frequency
xTO �x�xLO: This is the region over which the frequency dependent dielectric
function is negative. In these considerations, it should be noted that the
Lyddane-Sach-Teller relation [7],

x2
LO

x2
TO

¼ e 0ð Þ
e 1ð Þ ; ð4:39Þ

relates the longitudinal and transverse mode frequencies of a general ionic material
to the frequency dependent dielectric function of the material at zero and infinite
frequencies. The dielectric ratio on the left of (4.39) is, consequently, greater than 1.

The asymptotic value of the dispersion relation as k ! 1 is [7, 13]

x� k ! 1ð Þ ¼ x2
TO þ x2

LO � x2
TO

1þ e
e1

" #1=2
; ð4:40Þ

which is bounded above by xLO: In the ionic system, a lower bound on the wave
vector arises from the condition that x� 	xTO in order that the dielectric function
in (4.23) be negative. This lower limit on the wave vector is a new feature of the
system arising from the dielectric form in (4.23). In the case of the metallic
interface, the metallic dielectric function is negative for all frequencies less than xp:

Consequently, in the metal-vacuum system solutions for surface waves exist at all
wave vectors while the ionic-vacuum system there are gaps in the wave vector
space which support surface waves.

4.1.3 Example of a Metallic Slab in Vacuum

As shall be seen later, many of the technologies of plasmonics involve systems
which are based on thin film geometries [13–15]. Consequently, it is a useful
example to consider the nature of the plasmon-polaritons on a slab of material in
vacuum. This geometry exhibits a complexity of plasmon-polariton modes arising
from the interaction of the surface electromagnetic modes on the two surfaces of the
slab. As a simple example, illustrating many features found in the general variety of
slab systems, a metallic slab in vacuum is treated.

The geometry of the slab is shown in the schematic drawing in Fig. 4.4. For the
slab of thickness d, the slab surfaces are taken at x ¼ d

2 and � d
2 so that the slab has

reflection symmetry in the y-z plane. This is a facilitation in generating the modes
propagating along the slab and which are found to have symmetric and
anti-symmetric wave functions under reflection through the y-z plane. In the region
d
2 	 x	 � d

2 the metallic medium forming the slab has a dielectric constant
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em xð Þ ð4:41Þ

given by (4.12). Outside of the slab is vacuum.
Within the slab the electric field solutions can be classified into solutions which

have z-components that are symmetric about the y-z plane and solutions which have
z-components that are anti-symmetric about the y-z-plane. This separation comes
from the reflection symmetry of the slab about the x ¼ 0 plane. Each of these modes
are now separately treated starting with the symmetric modes [13].

Symmetric Solutions
For the symmetric modes propagating along the z-axis the wave function in the
vacuum above the slab are from (4.7a) given by [13]

~E[ r*; t
� �

¼ ik
a
E0

[;z; 0;E
0
[;z

� �
exp �axð Þ exp i kz� xtð Þ½ � ð4:42aÞ

Here the condition in (4.11) has been used to set the y-component of the electric
field to zero. Below the slab, upon applying the same condition in (4.11) to set the
y-component of the electric field to zero, the electric field is from (4.7b) given by

Fig. 4.4 Schematic of a metal slab surrounded by vacuum
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~E\ r*; t
� �

¼ � ik
a
E0
\;z; 0;E

0
\;z

� �
exp axð Þ exp i kz� xtð Þ½ �: ð4:42bÞ

In both (4.42) for the vacuum above and below the slab

a2 ¼ k2 � 1
c2

x2: ð4:43Þ
The symmetric solutions within the slab are of the form

~Esym
in r*; t
� �

¼ � ik
p
E0
in;z sin px; 0;E0

in;z cos px
� �

exp i kz� xtð Þ½ �; ð4:44aÞ

where

k2 þ p2 ¼ em xð Þx
2

c2
ð4:44bÞ

for the consideration of propagating modes within the slab. The forms in (4.42)–
(4.44) are now matched at the upper and lower surfaces of the slab.

At the upper and lower surfaces the continuity of the component of electric field
parallel to the slab surfaces requires that [13]

E0
in;z cos

pd
2

¼ E0
[;ze

�ad2; ð4:45aÞ

and

E0
in;z cos

pd
2

¼ E0
\;ze

�ad2; ð4:45bÞ

respectively. At the upper and lower surfaces the continuity of the component of
electric displacement field normal to the slab surfaces sets the conditions

� em xð Þ
p

E0
in;z sin

pd
2

¼ 1
a
E0

[;ze
�ad2; ð4:46aÞ

and

em xð Þ
p

E0
in;z sin

pd
2

¼ � 1
a
E0
\;ze

�ad2; ð4:46bÞ

respectively.
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Dividing (4.45a) by (4.46a) and (4.45b) by (4.46b) it follows that [13]

em xð Þ ¼ � p
a
cot p

d
2
: ð4:47Þ

Equation (4.47) is the dispersion relation relating x to k for the modes propagating
along the slab.

Antisymmetric Solutions
For the antisymmetric modes propagating along the z-axis the wave function in the
vacuum above the slab is from (4.7a) given by [13]

~E[ r*; t
� �

¼ � ik
a
E0

[;z; 0;�E0
[;z

� �
exp �axð Þ exp i kz� xtð Þ½ � ð4:48aÞ

In (4.48a) the condition in (4.11) has, again, been used to set the y-component of the
electric field to zero. Below the slab, upon applying the same condition in (4.11) to
set the y-component of the electric field to zero, the electric field form in (4.7b)
gives [13]

~E\ r*; t
� �

¼ � ik
a
E0
\;z; 0;E

0
\;z

� �
exp axð Þ exp i kz� xtð Þ½ �: ð4:48bÞ

In both (4.48)

a2 ¼ k2 � x2

c2
: ð4:49Þ

The antisymmetric solutions within the slab are of the form

~Eanti
in r*; t
� �

¼ � k
p
E0
in;z cos px; 0; iE

0
in;z sin px

� �
exp i kz� xtð Þ½ � ð4:50aÞ

where

k2 þ p2 ¼ em xð Þx
2

c2
ð4:50bÞ

for propagating modes within the slab. The forms in (4.48)–(4.50) are now matched
through the boundary conditions at the upper and lower surfaces of the slab.

At the upper and lower surfaces of the slab the continuity of the component of
electric field parallel to the slab surfaces gives the conditions [13]

iE0
in;z sin

pd
2

¼ �E0
[;ze

�ad2; ð4:51aÞ
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and

iE0
in;z sin

pd
2

¼ �E0
\;ze

�ad2; ð4:51bÞ

respectively. At the upper and lower surfaces of the slab the continuity of the
component of electric displacement field normal to the slab surfaces requires that
[13]

em xð Þ
p

E0
in;z cos

pd
2

¼ i
a
E0

[;ze
�ad2; ð4:52aÞ

and

em xð Þ
p

E0
in;z cos

pd
2

¼ i
a
E0
\;ze

�ad2; ð4:52bÞ

respectively.
Dividing (4.51a) by (4.52a) and (4.51b) by (4.52b) it follows that [13]

em xð Þ ¼ p
a
tan p

d
2
: ð4:53Þ

The solutions of (4.53) set the dispersion relation (x as a function of k) of the
antisymmetric modes.

Exponential Solutions within the Slab
The solutions presented earlier for the symmetric and antisymmetric modes rep-
resent one of two possible cases in the study of the slab modes. The solutions
presented are based on forms for the fields within the slab involving sine and
cosines in the x coordinate. In addition to these solutions, there are also solutions for
the slab modes based on fields within the slab described by exponential forms in the
x coordinate. The solutions for this case follow the same steps as the solutions
presented above and will not be considered in detail here. The results for these
modes, however, are summarized in the following.

The solutions of the slab modes involving exponents of the x coordinate have
fields within the slab that for symmetric modes are given by

~Esym
in r*; t
� �

¼ � ik
p1

E0
in;z sinh p1x; 0;E0

in;z cosh p1x

� �
exp i kz� xtð Þ½ �: ð4:54aÞ

Matching the boundary conditions at the slab surfaces with the vacuum fields in
(4.42) gives an equation for the dispersion relations of the symmetric modes that is
of the form [13]
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em xð Þ ¼ � p1
a
coth p1

d
2

ð4:54bÞ

where p21 ¼ k2 � em xð Þ x2

c2 :

The solutions of the slab modes involving exponents of the x coordinate have
fields within the slab that for antisymmetric modes are given by [13]

~Easym
in r*; t
� �

¼ � ik
p1

E0
in;z cosh p1x; 0;E0

in;z sinh p1x

� �
exp i kz� xtð Þ½ �: ð4:55aÞ

Matching the boundary conditions at the slab surfaces with the vacuum fields in
(4.48) gives an equation for the dispersion relations of the antisymmetric modes that
is of the form [13]

em xð Þ ¼ � p1
a
tanh p1

d
2

ð4:55bÞ

where p21 ¼ k2 � em xð Þ x2

c2 :

Fig. 4.5 A plot of the frequency, x
xp
, as a function of the wavenumber, kc

xp
, is presented for a slab

with a dielectric constant given by em xð Þ ¼ 1� x2
p

x2 and which is surrounded by vacuum [15]. In
the plot the upper curve is a solution from (4.55b) and the lower curve is a solution for (4.54b).
Both curves are plotted for xpd

c ¼ 1:0
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Numerical Example
As an example of the modes of the slab, in Fig. 4.5 a plot of x as a function of k is

presented for a slab with a dielectric function of the form em xð Þ ¼ 1� x2
p

x2 [15]. The
results are for the modes in (4.54)–(4.55) characterized by exponential behavior
within the slabs.

In the plot the modes are set by the parameters x
xp
; ckxp

; and xpd
c and are seen to

occur in pairs at a given ck
xp
: For the curves presented in the plots the thickness of

the slab was chosen such that xpd
c ¼ 1:0: For these solutions, the modes in (4.54) are

the low frequency solutions and those in (4.55) are the high frequency modes. It is

found that as the slab thickness increases the frequencies of the two xpd
c solutions

approach one another.

4.2 Surface Plasmon-Polariton Modes for Shape
Resonances, Gratings, and Light Scattering
from Rough Surfaces

Another important class of interfaces in the consideration of electromagnetic sur-
face waves includes interfaces with surface bumps, surface gratings, and surface
roughness [13, 14]. The presence of a bump on an otherwise planar interface gives
rise to the scattering of plasmon-polaritons from the bump and to the possibility of
bound states becoming localized in the region of the bump. These two phenomena
show up in the optics of both the light scattered from the surface and in the light
propagating on the surface. Bumps on interfaces enter into a number of important
technological considerations based on optical surface properties of the surface
shape resonances associated with the surface features.

Surface roughness also has important effects on the optical properties exhibited
at interfaces, and these include effects on both bulk and surface electromagnetic
waves. Surface roughness is a type of imperfection to perfectly planar surfaces that
is always present to some degree in experimental systems. Nevertheless, it is also
responsible for important physical effects that in themselves can be of significant
importance in technology.

Rough interfaces are divided into two categories: surface gratings and random
surface roughness. Gratings are interfaces that exhibit periodicity in their spatial
properties. This periodicity leads to diffractive effects in the light scattered from the
surface and to a band structure associated with the surface electromagnetic waves
that are supported along the interface.

Random rough surfaces, on the other hand, have surface profiles which exhibit
random disorder. This type of disorder leads to a general diffuse scattering of light
form the surface and to lifetime effects in the propagation of surfaces waves along
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the interface. In both random rough and grating systems bulk light and surface
electromagnetic waves can couple to one another.

In the following surfaces supporting bumps, gratings, and random surface
roughness will be considered.

4.2.1 Shape Resonances

In the following the electromagnetic modes bound to features on an otherwise
planar interface between two media are considered for surfaces supporting
plasmon-polaritons [14]. Specifically, a localized imperfection on an otherwise
planar surface can be found to bind electromagnetic modes in its neighborhood on
the surface. The surface electromagnetic modes are attached to the imperfection site
and require specific conditions in the shape of the surface features and dielectric
properties of the media forming the interface for their existence on the surface. They
are termed surface shape resonances and in their conception are similar to electronic
p- or n-bound impurity modes that are found in impurity doped semiconductors.
The excitation of surface shape resonance are observed in the surface scattering of
light and particles from the supporting surfaces.

The treatment given here focuses on plasmon surface shape resonances bound at
an impurity on an otherwise planar vacuum-metal interface. This provides the
simplification of involving calculations made for the quasi-static modes of the
system in which the retardation effects are not taken into account. The solutions are
obtained from the Laplace equations, but nonetheless illustrate many of the prop-
erties of the system treated outside the quasi-static limit and in the context of the full
wave equation. For the treatment of the polariton surface shape resonances,
obtained as solutions of the full electromagnetic wave equations, aside from some
brief comments made later, the reader is referred to the literature.

As an additional simplification of the presentation, the surface will be treated as
a one-dimensional surface described by a surface profile function of the form [14]

z ¼ n xð Þ: ð4:56Þ

Here (4.56) relates the z-coordinate of the surface to the position x on the x-axis, and
the surface is considered to be translationally invariant along the y-direction. The
function n xð Þ describes a localized feature on the surface which is centered on x = 0
and vanishes quickly away from x = 0.

In the following a treatment will be made for the modal solutions bound to the
localized surface feature and having wave functions that depend only on x and
z. Solutions for wave functions with y dependence exist, but these are for modes
bound to the localized feature and propagating along the y direction. These modes
are interesting but will not be considered here.

The surface shape resonance modes are obtained for the surface defined in (4.56)
in terms of the solutions of the Laplace equations for the interface between vacuum
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and a dielectric medium described by the frequency dependent dielectric constant
e(x). Though the considerations are based on the x

c ! 0 approximation, the
dynamics of the system still enters the problem through e(x) in the region about this
limit. For the considerations presented in the following the region z[ n xð Þ contains
vacuum and the region z\ n xð Þ contains the e(x) dielectric.

Consider a surface between the regions of vacuum and metal of dielectric
constant e(x) that has a localized ridge upon it described by (4.56). The solutions of
the electromagnetic potential in these two regions are determined in the quasi-static
limit from the Laplace equations [14]

r2/[ x; z xjð Þ ¼ 0 for z[ n xð Þ ð4:57aÞ

and

r2/\ x; z xjð Þ ¼ 0 for z[ n xð Þ: ð4:57bÞ

The solutions of (4.57) that are of interest describe potentials which are localized
on the interface and decrease to zero at z ! �1: In addition to being localized on
the interface, the potentials must also be localized on the surface feature to which
they are bound.

Solutions with these properties have the general form given by the Fourier
transforms involving plane waves on the interface which decay exponentially in
amplitude as z ! �1: In particular,

/[ x; z xjð Þ ¼
Z

dk
2p

A kxð Þei kx� kj jzð Þ ð4:58aÞ

describes the potential above the surface, and

/\ x; z xjð Þ ¼
Z

dk
2p

A\ kxð Þei kx� kj jzð Þ ð4:58bÞ

describes the potential below the surface [14].
At the interface the forms in (4.58) are matched by the boundary conditions [14]

/[ x; z xjð Þz¼n xð Þ¼ /\ x; z xjð Þz¼n xð Þ ð4:59aÞ

and

n̂ � r/[ x; zjxð Þz¼n xð Þ¼ e xð Þn̂ � /\ x; zjxð Þz¼n xð Þ: ð4:59bÞ

Applying these boundary conditions to (4.58) yields, after some algebra, an
homogeneous integral equation for the amplitude A(qx) in the Fourier transform in
(4.58a). The integral equation has the form [15]
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e xð Þþ 1
e xð Þ � 1

A qxð Þ ¼
Z

dp
2p

J qj j � pj j q� pjð Þ 1� q
qj j

p
pj j


 �
pj jA pxð Þ ð4:60Þ

where the Kernel involves the surface roughness

J a bjð Þ ¼
Z

dxeibx
ean xð Þ�1

a
: ð4:61Þ

For the case in which the surface profile function n xð Þ is an even function of x, it
follows from symmetry considerations that

/[ �x; z xjð Þ ¼ �/[ x; z xjð Þ ð4:62Þ

i.e., /[ or\ xð Þ is an even or odd function of x. Consequently, in (4.58) these
symmetry considerations carry over to the coefficients of the Fourier transform for
/[ xð Þ so that

A �qxð Þ ¼ �A qxð Þ: ð4:63Þ

Following some algebra and the use of these symmetries (4.60) becomes [14]

e xð Þþ 1
e xð Þ � 1

A qxð Þ ¼ � 1
p

Z1
0

dpJ q� p qþ pjð ÞpA pxð Þ ð4:64Þ

The homogeneous integral equation in (4.64) can be solved by treating it as an
eigenvalue problem. The eigenvalue problem of interest has the form [14]

1
p

Z1
0

dpJ q� pjqþ pð ÞpAs pxð Þ ¼ ksAs qxð Þ ð4:65Þ

and determines the set of eigenvalues ksf g and the corresponding eigenvectors
As qxð Þf g for a fixed frequency x and surface profile function n xð Þ: In terms of the

eigenvalues the surface shape resonances occur at frequencies determined by the
conditions [14]

e xð Þþ 1
e xð Þ � 1

¼ �ks: ð4:66Þ

In the case of a metal with a dielectric constant of the form

e xð Þ ¼ e1 1� x2
p

x2

 !
; ð4:67Þ
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the condition in (4.66) gives surface shape resonances with frequencies

x ¼ e1 1
 ksð Þ
1þ e1 � ks 1� e1ð Þ

 �1=2

xp: ð4:68Þ

For an insulator with a dielectric constant given by [14]

e xð Þ ¼ e1 1þ x2
LO � x2

TO

x2
TO � x2

� �
; ð4:69Þ

the condition in (4.66) gives surface shape resonances with frequencies

x2 ¼ x2
TO þ 1
 ksð Þe1 x2

LO � x2
TO

� �
1� ks þ e1 1
 ksð Þ : ð4:70Þ

The surface shape resonances correspond to the real values of x obtained from
either (4.68) or (4.70) in terms of the eigenvalues of the (4.65), and the expressions
for the A(qx) related to these x are computed as the solutions of the integral
equation in (4.65). For the numerical solution of (4.65) the integral in (4.65) can be
converted from an integral equation eigenvalue problem into a matrix eigenvalue
problem using quadrature methods. These results then constitute the complete
solution of the surface shape resonance problem, giving both the frequencies and
the wave functions of the system.

For real dielectric functions, the surface shape resonance problem computed in
the quasi-static limit generally yields real values of x. These are stable modes
which do not decay in time. This is not the case with the solutions obtained by
including retardation effects. Upon the reintroduction of retardation effects into the
considerations for the full unrestricted solutions of the Maxwell equations,
the surface shape resonance modes exhibit decay due to surface scattering and the
radiation of electromagnetic fields from the surfaces. These effects contribute to
give surface shape resonance solutions with finite lifetimes and are a manifestation
of the loss of translational symmetry on the surface.

Illustrative Example
As an example of the quasi-static surface shape resonances, consider the surface
shape resonances of a small perturbation on the planar interface with a Lorentzian
profile given by [14]

n xð Þ ¼ AR2

x2 þR2 : ð4:71Þ

In the case that A is positive (4.71) represents a surface with a ridge, and in the case
that A is negative (4.71) represents a surface groove. For the limit of a small
perturbation from the planar interface, A in the Lorentzian form is the small
parameter characterizing the amplitude of the ridge or groove on the surface.
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Under these conditions of the small amplitude limit, (4.61) becomes [14]

J q� pjqþ pð Þ ¼
Z

dxe�i qþ pð Þx e
q�pð Þn xð Þ � 1
q� p

�
Z

dxe�i qþ pð Þxf xð Þ
ð4:72Þ

and for the particular profile function form in (4.71)

J q� p qþ pjð Þ ¼
Z

dxe�i qþ pð Þx AR2

x2 þR2 :

¼ pARe�R qþ pð Þ
ð4:73Þ

The integral equation eigenvalue problem for the surface shape resonances given in
(4.65) then becomes in the approximation for J q� p qþ pjð Þ in (4.73)

ARe�Rq
Z1
0

dpe�RppAs pxð Þ ¼ ksAs qxð Þ ð4:74Þ

Multiplying both sides of (4.74) by qe�Rq and integrating over q reduces (4.74)
to the algebraic eigenvalue problem [14]

ks � 1
4
A
R


 � Z1
0

dpe�RppAs pð Þ ¼ 0 ð4:75Þ

so that the eigenvalue is

ks ¼ 1
4
A
R
: ð4:76Þ

From (4.76) it should be noted that positive ks are found for surface ridges (i.e.,
A
R [ 0) and negative ks are found for surface grooves (i.e., A

R\0). This is then a
distinguishing characteristic between these two types of surface features. Both types
of feature will be seen to support bound surface shape resonances [14].

In terms of the vacuum-metal interface (4.76) and (4.68) give solutions for
surface shape modes with frequencies obtained from the form [14]

x ¼ e1 1
 A
4R

� �
1þ e1 � A

4R 1� e1ð Þ

" #1=2
xp: ð4:77Þ

The frequencies of the surface shape resonances in (4.77) depend not only on the
even or odd parity of the potentials of the modes bound to the ridge or groove. The
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nature of the frequencies found also depend on whether or not the feature is a ridge
or a groove on the surface.

For the case that e1 ¼ 1 and the surface feature is a ridge (i.e., AR [ 0) it is seen
that the surface shape resonance potentials having even parity in x are at lower
frequencies than the flat surface plasmon modes. For the case that e1 ¼ 1 and the
surface feature is a groove (i.e., A

R\0) it is seen that the surface shape resonance
potentials having even parity in x are at higher frequencies than the flat surface
plasmon modes [14]. The situation is reversed in the cases of the surface shape
resonant potentials having odd parity in x [14].

4.2.2 Scattering from Gratings

In the following the electromagnetic modes bound to a periodic interface between
two media are considered for surfaces supporting surface electromagnetic waves
[14, 15]. As in the case of the solutions of the dynamics of the surface shape
resonances, the treatment focuses on plasmon modes on a vacuum-metal interface.
This provides the simplification of involving calculations made in the quasi-static
limit, which are based on solutions of the Laplace equation and ignores the retar-
dation effects from the full Maxwell equation treatment of the polariton problem. At
the end of the presentation of the quasi-static treatment, however, some qualitative
discussions of the more general problem of surface polariton solutions on a periodic
surfaces will be given. Nevertheless, for a detailed study of the surface polariton
limit, the reader is again referred to the literature [1–6, 14, 15].

To simplify the presentation, the surface will be treated as one-dimensional in
the sense that it is described by a surface profile function of the form [14]

z ¼ n xð Þ; ð4:78aÞ

and it is translationally invariant along the y-direction. The surface profile function
in (4.78a) then relates the z-coordinate of the surface to the position x on the x- axis.
It is taken to be a periodic function n xð Þ such that [14]

n xð Þ ¼ n xþ nað Þ ð4:78bÞ

for n an integer, and in (4.78b) a represents the smallest repeat distance of the
surface along the x-axis. The periodic surface profile function is chosen such that
the average of the surface profile over the x-y plane gives [14]

n xð Þh i ¼ 0: ð4:78cÞ

The plasmon modes are obtained for the surface defined in (4.78) in terms of the
solutions of the Laplace equations for the interface between vacuum above the
surface and a metallic medium described by the frequency dependent dielectric
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constant e(x) below the surface. Since the considerations are based on the
quasi-static, xc ! 0; approximation, the dynamics of the system enters the problem
through the frequency dependence of e(x). This is an essential point as only at
nonzero frequencies can metals exhibit the wider range of dielectric properties
needed in the discussions to follow. Specifically, in the later considerations e(x) is
required to be negative for surface wave solutions to exist on the interface.

Consider a surface of the form of a periodic grating described by (4.78) which is
the interface between a semi-infinite region of vacuum and a semi-infinite region of
metal of dielectric constant e(x). In the regions above and below the surface, the
solutions of the electromagnetic potentials will be determined in the quasi-static
limit from the Laplace equations [14]

r2/[ x; z xjð Þ ¼ 0 for z[ n xð Þ above the surface ð4:79aÞ

and

r2/\ x; z xjð Þ ¼ 0 for z\n xð Þ below the surface, ð4:79bÞ

respectively. For a simplification in the treatment of the surface modes, (4.79) have
been written for potentials which are only functions of x and z Consequently, here
and in the following only surface modes propagating along the interface in the x-
direction are treated and all y-motion is suppressed. The solutions obtained under
these conditions exhibit the largest effects from the periodic interface, displaying
the essential interesting features of surface waves on a periodic interface.

Modes that propagate along the y-direction are also of interest for technological
applications and their development is a straightforward generalization of the pre-
sentation given here for x-propagating modes. The development of these modes will
be left to the reader to work out.

The surface wave solutions of (4.79) that are of interest here describe potentials
which are localized on the interface and decrease to zero at z ! �1: Solutions
with these properties have the general form of a Fourier transforms involving plane
waves on the interface which decay exponentially in amplitude as z ! �1: In
particular, the appropriate Fourier transforms are [14]

/[ x; z xjð Þ
Z

dk
2p

A kxð Þei kx� kj jzð Þ ð4:80aÞ

describing the potential above the surface, and

/\ x; z xjð Þ
Z

dk
2p

A\ðkxÞei kxþ kj jzð Þ ð4:80bÞ

describing the potential below the surface.
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From matching the boundary conditions on the Fourier transforms at the inter-
face, it is found that A(kx) in (4.80a) is determined by the integral equation [14]

e xð Þþ 1
e xð Þ � 1

A qxð Þ ¼
Z

dp
2p

J qj j � pj j q� pjð Þ 1� q
qj j

p
pj j


 �
pj jA pxð Þ ð4:81Þ

where the Kernel of the integral equation involves the function

J ajbð Þ ¼
Z

dxe�ibx e
an xð Þ � 1

a
: ð4:82aÞ

From (4.81) and (4.82a) it is seen that the information about the surface profile is
introduced into (4.81) on the right of the equation through the function J ajbð Þ while
the dielectric properties of the surface materials enter only on the left of the
equation. This has an interesting consequence in the limit of a weakly rough surface
profile. In the limit of a weakly rough grating profile function

J ajbð Þ �
Z

dxe�ibxn xð Þ; ð4:82bÞ

so that for this limit of a rough surface it is then found that e xð Þ � �1 for (4.81) to
have a solution. This condition is a restriction on the range of frequencies of the
solutions in this limit.

The periodic symmetry of the surface profile function requires that the solutions
of (4.79) and (4.80) be of the form [14]

/[ x; z xjð Þ ¼ eikxU[
k x; z xjð Þ ð4:83aÞ

and

/\ x; z xjð Þ ¼ eikxU\
k x; z xjð Þ ð4:83bÞ

where U[
k xþ na; z xjð Þ ¼ U[

k x; z xjð Þ and U\
k xþ na; z xjð Þ ¼ U\

k x; z xjð Þ for
n an integer. This is a fundamental restriction which was discussed earlier in the
treatments of the wave functions of periodic systems. The details presented at that
time were for quite general systems with periodic equations so that the reader is
referred to the Chapter on Photonic crystals for more details about the functional
forms in (4.80). In the following the forms in (4.83b) will be used to obtain
solutions for the wave functions of the surface waves.

The solution of (4.83a) from (4.81) will be the focus of considerations in the
following considerations. The wave function form in (4.83a) contains the essential
elements needed for the determination of the dispersion relation of the surface
plasmons on the periodic interface. For (4.80a) to have the form in (4.83a), A(qx)
must be given by
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A qxð Þ ¼ 2p
X1

m¼�1
Am kxð Þd q� kmð Þ ð4:84Þ

where

km ¼ kþ 2pm
a

: ð4:85Þ

This can be seen from a simple substitution of the form in (4.84) into the integral for
/[ x; z xjð Þ:

Upon substituting (4.84) into (4.80a) it follows that [14]

/[ x; z xjð Þ ¼ eikx
X1

m¼�1
Am kxð Þei2pma xe� kþ 2pm

aj jz ð4:86aÞ

where

U[
k x; z xjð Þ ¼

X1
m¼�1

Am kxð Þei2pma xe� kþ 2pm
aj jz ð4:86bÞ

has the required periodicity

U[
k x; z xjð Þ ¼ U[

k xþ na; z xjð Þ ð4:87Þ

for n and integer.
To obtain the solutions for Am kwð Þf g; (4.84) is substituted into (4.81). This gives

an homogeneous integral equations for the required Am kwð Þf g; in terms of the
surface profile function and the dielectric properties of the materials forming the
interface. The substitution gives, [14]

e xð Þþ 1
e xð Þ � 1

2p
X1

m¼�1
Am kxð Þd q� kmð Þ ¼

Z
dpJ qj j � pj jjq� pð Þ 1� q

qj j
p
pj j


 �
pj j

�
X1

m¼�1
Am kxð Þd p� kmð Þ ¼

X1
m¼�1

Z
dxe�i q�kmð Þx e

qj j� kmj jð Þn xð Þ � 1
qj j � kmj j kmj j � q

qj j km
� �

Am kxð Þ

ð4:88Þ

where on the far right the definition of J ajbð Þ in (4.82) has been used. The integral
on the far right of (4.88) can be rewritten through the application of the identity

Z1
�1

dxf xð Þ ¼
X1
l¼�1

Za
0

dxf xþ lað Þ; ð4:89Þ

so that (4.88) becomes [14]
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e xð Þþ 1
e xð Þ � 1

2p
X1

m¼�1
Am kxð Þd q� kmð Þ ¼

X1
m¼�1

X1
l¼�1

Za
0

dxe�i q�kmð Þla

e�i q�kmð Þx e
qj j� kmj jð Þn xð Þ � 1
qj j � kmj j knj j � q

qj j km
� �

Am kxð Þ ð4:90Þ

where the periodicity of the surface profile function, n xþ lað Þ ¼ n xð Þ; has been
used.

The integral equation in (4.90) can be further reduced by applying the Fourier
identity

X1
l¼�1

e�i q�kmð Þla ¼ 2p
a

X1
n¼�1

d q� kmþ nð Þ: ð4:91Þ

Applying the identity and after some algebra gives.

e xð Þþ 1
e xð Þ � 1

2p
X1

m¼�1
Am kxð Þd q� kmð Þ

¼
X1

m¼�1

X1
n¼�1

2p
a
d q� knþmð Þ

Za
0

dxe�i q�kmð Þx e
qj j� kmj jð Þn xð Þ � 1
qj j � kmj j kmj j � q

qj j km
� �

Am kxð Þ:

ð4:92Þ

This, in turn, is rewritten into the form

e xð Þþ 1
e xð Þ � 1

2p
X1

m¼�1
Am kxð Þd q� kmð Þ

¼
X1

m¼�1
2pd q� kmð Þ

X1
n¼�1

Za
0

dxe�i q�knð Þx e
qj j� knj jð Þn xð Þ � 1
qj j � knj j knj j � q

qj j kn
� �

An kxð Þ:

ð4:93Þ

Equating the delta function coefficients on both sides of (4.93) gives a matrix
equation for the fields above the surface. In particular, the coefficients Am kxð Þf g
are found to satisfy [14]

e xð Þþ 1
e xð Þ � 1

Am kxð Þ ¼
X
n

Mm;n kð ÞAn kxð Þ: ð4:94Þ
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for the matrix

Mm;n kð Þ ¼ kmj j knj j � kmkn
kmj j kmj j � knj jð Þ

1
a

Za
0

dxe�i2pa m�nð Þx ei kmj j� knj jð Þn xð Þ � 1
h i

: ð4:95Þ

From (4.95) it is seen that the diagonal components of the matrix are zero. This has
consequences in the form of the solution of (4.94). In addition, other restrictions on
the form of the matrix arise from symmetry considerations. These shall now be
addressed and followed by the solution of (4.94) obtained by reducing the problem
to an eigenvalue problem.

The matrix equation in (4.94) is seen to exhibit symmetries which are an aid in
computing its solutions. These arise from the periodicity of the grating profile
function contributing to the properties observed in the nature of the electromagnetic
modes in both position and wave vector space. The symmetries in position space
have already been discussed so that the focus in the following will be on the
symmetries in wave vector space. While the symmetry of the system in position
space set the form of the wave functions of the electromagnetic modes, in wave
vector space the symmetry of the system sets the nature of the dispersion relation of
the modes.

From (4.84) it is seen that for a fixed integer l,

A qxð Þ ¼ 2p
X1

m¼�1
Amþ l kxð Þd q� kmþ lð Þ

¼ 2p
X1

m¼�1
Am kþ 2pl

a

� �
x

� �
d q� kmð Þ: ð4:96Þ

This sets the requirement that the Am kxð Þf g satisfy the identity

Am kþ 2pl
a

� �
x

� �
¼ Amþ l kxð Þ: ð4:97Þ

In a similar manner by taking k ! kþ 2pl
a the matrix in (4.93) is found to have the

property that

Mm;n kþ 2pl
a

� �
¼ Mmþ l;nþ l kð Þ: ð4:98Þ

Consequently, using these relations in (4.96) it follows that [14]

e xð Þþ 1
e xð Þ � 1

Am kþ 2pl
a

� �
x

� �
¼
X
n

Mm;n kþ 2pl
a

� �
An kþ 2pl

a

� �
x

� �
; ð4:99aÞ
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or

e xð Þþ 1
e xð Þ � 1

Amþ l kxð Þ ¼
X
n

Mmþ l;nþ l kð ÞAnþ 1 kxð Þ: ð4:99bÞ

Equation (4.99b) again reduces to the original matrix problem in (4.94). As a result
of this reduction it follows that all of the solutions for Am kxð Þf g are distinct within
a region of wave vector space that is of length 2p

a in wave vector space. Outside such
an interval the Am kxð Þf g solutions just repeat themselves.

The solutions of (4.94) are now obtained by solving the matrix eigenvalue
problem defined by [14]X

n

Mm;n kð ÞAs
n kxð Þ ¼ ksA

s
m kxð Þ: ð4:100Þ

This gives the set of distinct eigenvectors As
m kxð Þ� 

corresponding to the set of
eigenvalues ksf g: In treating these solutions the symmetry properties of Mm;n kð Þ in
wave vector space as well as in the matrix form offer a great simplification.

From the earlier discussions, it is seen from the periodic properties that the
problem in (4.100) need only be solved within an interval of wave vector space that
is of length 2p

a : Consequently, the focus is usually set for obtaining solutions on the
interval 0\k\ 2p

a or p
a\k\ p

a : The last form is usually referred to as the first
Brillouin zone of the system and is a common choice for the presentation of results.
From the symmetry of the matrix with its transpose it also follows that the
eigenvalues occur in ±ks pairs. Once these eigenvalue pairs are determined the
dispersion of the system is given by [14]

e xð Þþ 1
e xð Þ � 1

¼ �ks: ð4:101Þ

Illustrative Example
As an example of the formulation, consider the limit of a weakly rough grating.
A simple yet interesting case to treat is a periodic profile given by

n xð Þ ¼ A cos
2p
a
x

� �
ð4:102Þ

where A is the small grating amplitude parameter. This illustrates the basic prop-
erties of periodic profiles while simplifying the Fourier integrals involved in the
matrix in (4.95) and, consequently, the form of the matrix in the eigenvalue
problem.

From (4.95), in the weak grating limit, it is found that the Mn;m kð Þ matrix
function of the eigenvalue problem for the sinusoidal profile takes the form [14]
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Mm;n kð Þ ¼ kmj j knj j � kmkn
kmj j kmj j � knj jð Þ

1
a

Za
0

dxe�i2pa m�nð Þx ei kmj j� knj jð Þn zð Þ � 1
		 		

� kmj j knj j � kmkn
kmj j kmj j � knj jð Þ

1
a

Za
0

dex�i2pa m�nð Þx kmj j � knj jð ÞA cos
2p
a
x

� �
 �
:

ð4:103Þ

Upon evaluating the integral in (4.103) the Mn;m kð Þ matrix becomes a tri-diagonal
matrix given by

Mm;m¼0; ð4:104aÞ

Mm;mþ 1 ¼ kmj j kmþ 1j j � kmkmþ 1

kmj j A; ð4:104bÞ

and

Mm;m�1 ¼ kmj j km�1j j � kmkm�1

kmj j A: ð4:104cÞ

This is a sparse matrix which offers a great simplification from the original general
form of the matrix. The resulting tri-diagonal matrix eigenvalue problem is an
extensively studied problem with many existent routines available for its treatment.

In a crude approximation of the tri-diagonal matrix eigenvalue problem in
(4.104) consider the truncated 3 � 3 eigenvalue problem obtained from Mm;m

by taking n ¼ �1; 0; 1 and m ¼ �1; 0; 1: The solutions of the eigenvalues are given
by [14]

ks ¼ �A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

k0j j k1j j þ
b2

k0j j k�1j j

s
ð4:105Þ

where

a ¼ k0j j k1j j � k0k1 ð4:106aÞ

and

b ¼ k0j j k�1j j � k0k�1: ð4:106bÞ

The resulting eigenvalues are again restricted to the region � p
a\k\ p

a and are seen
to occur in �ks pairs.
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As an example, in Fig. 4.6 a plot is presented for ks
A ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

jk0jjk1j þ b2
jk0jjk�1j

q
versus

wave vector over a unit cell of the reciprocal lattice. The ks kð Þ are seen to be
periodic in k with the property that ks kð Þ ¼ ks �kð Þ: Introducing the values of �ks
into (4.101) provides an approximation to the dispersion relation of some of the
modes within the quasi-static limit. The results following from Fig. 4.6 are quali-
tative similar to the results for the largest eigenvalues obtained in [14] from an
evaluation of the matrix eigenvalue problem using a 38 � 38 matrix. The reader is
referred to the literature for the details of a more precise numerical evaluation of the
matrix eigenvalue problem and for the resulting surface shape resonance
frequencies.

Remarks on General System: Retardation Effects
The above discussions were for the quasi-static, c ! 1; limit of the grating prob-
lem. For modes in this limit there are no radiative losses from the grating surface, and
the solutions of the system separate distinctly into surface and bulk modes. Upon the
reintroduction of the retarded limit into the study of the electromagnetic modes of
the grating, the possibility arises of radiation of the surface waves away from the
interface by scattering into bulk modes of the system. These new surface solutions,
which radiate away from the interface, are known as leaky waves [14].

In the following, discussions will be presented to develop a qualitative under-
standing of the nature of the bound and leaky surface waves of the grating. Bound
modes are surface waves that propagate along the interface without scattering into
bulk modes of the system, and due to the grating periodicity they exhibit a fre-
quency band structure. For lossy dielectric media bound modes may decay due to
Joule heating, but they do not radiate away from the interface. Leaky modes are
modes that can decay due to dielectric losses, but they definitely decay through
scattering transitions into bulk radiative states propagating away from the surface.
The conditions leading to these two different types of solutions on the grating will
now be discussed in terms of the frequency band structure of the surface waves and
its relationship to the dispersion relation for light in the bulk [14].

Fig. 4.6 Plot of ks
A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
k0j j k1j j þ b2

k0j j k�1j j
q

versus wave

vector, ka, for wave vectors in
a unit cell of the reciprocal
lattice [14]. In the special case
presented here only a single
eigenvalue is obtained for the
perturbation limit of a small
amplitude grating
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To qualitatively understand the existence of leaky waves, the example of
plasmon-polaritons at a vaccum-metal interface is considered. This offers a simple
illustration of how the difference between bound and leaky surface wave solutions
arises upon the reintroduction of retardation effects. In addition, the treatment given
here can be easily extended to surface waves on other vacuum-dielectric gratings.

A focus in the discussions is on the presentation of the dispersion relation of the
grating surface waves in the first Brillouin zone. As mentioned earlier this region of
wave vector space contains all of the unique solutions of the periodic system, and
the solutions with wave vectors outside this region of k-space are duplicates of
those in the first Brillouin zone. The restriction of the unique solutions of the
problem to the first Brillouin zone arises solely due to the periodic symmetry of the
grating and is present for both the quasi-static modes obtained from the Laplace
equations and for the full solutions of the Maxwell equations.

In addition, for the discussion presented in the following, the material parameters
typical of the planar surface solutions presented in Fig. 4.2 will be used to char-
acterize the materials separated by the grating interfaces. This provides for a simple
illustration of the principles involved in defining the deference between and exis-
tence of surface waves and leaky waves at grating interfaces [14].

Consider a vacuum-metal grating with a surface profile function of period
a along the x-direction and which is translationally invariant along the y-direction.
Specifically,

z ¼ n xð Þ ¼ n xþ nað Þ; ð4:107Þ

for an integer n, gives the z-coordinate of the interface in terms of the position along
the x-axis. Due to the periodicity of (4.107) the solutions for the electromagnetic
waves of the system propagating along the x-direction are uniquely represented by
their positions in the first Brillouin zone. This restricts the modes propagating in the
x-direction with wave vector k to wave vectors within the region

� p
a
� k� p

a
: ð4:108Þ

In addition to the important condition in (4.108) on the modes in k-space there are
restrictions on the stability of the solutions found in the first Brillouin zone. These
restrictions arise from the introduction into the system of retardation effects and are
now addressed.

An additional important restriction on the modes in the first Brillouin zone
comes from examining a plot in the first Brillouin zone of the so-called light line.
The light line for the vacuum-metal interface is defined by the condition that

x ¼ ck: ð4:109Þ

For the quasi-static limit in which c ! ∞ it is seen that the light line vanishes as a
boundary of the dispersion relations in the first Brillouin zone. For this case the
classification of k-solutions into those with frequencies above and those with
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frequencies below the light line does not exist as all solutions in the quasi-static
limit are below the light line. This, however, is not the case with the full Maxwell
equation solutions that include retardation effects. As shall be seen the k-solutions
with retardation effects are divided into distinct sets of solutions with frequencies
above and below the light line.

The classification of surface wave solutions into those with frequencies above
the light line and those with frequencies below the light line is very important as it
provides a fundamental restriction on the forms of the surface waves. If a surface
wave solution has a frequency above the light line, it can decay into linear com-
binations of electromagnetic modes on the light line. These light line modes are the
bulk vacuum electromagnetic solutions of the vacuum-metal system. During the
breakup process the frequency and wave vector of the surface wave solution must
be conserved as it breaks up into combinations of the lower frequency bulk modes.
This is facilitated by the linear dispersion in (4.109) of frequency to wave vector
which allows for sums of bulk modes with the same frequency and wave vectors as
those of the surface solutions in the region above the light line [14].

A similar reasoning for the surface modes with frequencies below the light line
can be given. For surface wave solutions with frequencies below the light line, no
combinations of light line modes are available to accommodate the decay of the
surface waves. As with the polariton modes on the planar vacuum-metal surface,
the surface waves at frequencies below the light line are stable. In the case of the
periodic profile, however, a series of stop and pass band arise as well as the
presentation of all of the surface wave solutions within the first Brillouin zone. This
acts as a complication in the treatment of the system [14].

In the limit that the periodic profile function in (4.107) vanishes the system
approaches a flat surface and the surface waves of the grating reduce to the surface
waves on the flat surface. It is illustrative of the point to consider the first Brillouin
zone representation of the surface wave solution of the periodic system as they
approach their flat surface limit of the periodic system. This involves essentially
folding up the flat surface dispersion relation into the first Brillouin zone.
Specifically, the surface wave dispersion relation on the flat surface given in
Fig. 4.2 by x(k) is replaced in this presentation by the dispersion relation xBZ kBZð Þ
in the first Brillouin zone defined by [14]

xB kBZð Þ ¼ x k � n
2p
a

� �
: ð4:110Þ

Here n is an integer chosen such that kBZ ¼ k � n 2p
a is a wave vector in the first

Brillouin zone for the system of smallest repetition distance a.
In Fig. 4.7 results are shown for the flat surface dispersion relation represented

as in (4.110) within the first Brillouin zone of a system with smallest repetition
distance a. For a comparison the light line has been shown for the separation of
modes into surface waves below the light line and leaky modes above the light line.
As a weak periodicity of smallest repeat distance a is introduced into the modes of
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the plot small gaps are introduced at the edges of the Brillouin zone and at the edges
of the light line. These gaps increase with increasing amplitude of the grating profile
function and further leaky modes develop as the modal solutions pass through the
light line limit.

4.2.3 Scattering from Rough Surfaces

Surface plasmons are often found to provide an important mechanism in the
scattering of light from randomly rough surfaces [5, 9–11]. This is generally true for
interfaces satisfying the conditions to support surface waves. In particular, at such
surfaces the components of the diffuse scattering of light from the randomly rough
surface are to a certain degree mediated through the virtual excitation of surfaces
electromagnetic waves. These observations can be continued to the treatment of the

Fig. 4.7 Plot of the folded flat surface dispersion relation into the first Brillouin zone of an
imaginary periodic surface lattice with smallest repeat distance a [14]. In a the flat-surface
dispersion relation is drawn in the extended-zone scheme. In b the non-radiating portions of the flat
surface dispersion have been translated into the first Brillouin zone. This gives the reduced zone
representation of the dispersion relation upon introducing the periodic grating. The cross-hatched
regions become unstable with respect to radiation into the vacuum upon the introduction of the
periodic grating. Reproduced with permission from [14]. Copyright 1981 American Physical
Society
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scattering and transmission of light at and through a slab of materials supporting
surface electromagnetic waves along its randomly rough interfaces [5, 9–11].

Light incident on a randomly rough surface is coupled by the roughness to the
surface electromagnetic waves on the interface. In the absence of surface roughness
the translational invariance of a planar interface requires that the bulk modes
refracted and reflected by the interface are separate, distinct, modes from the surface
waves. These distinct solutions are modes of fixed wave vector component parallel
to the interface. Upon the introduction of surface roughness, however, the states of
the system are no longer states of fixed wave vector components in the interface.
The wave vector states are mixed by the loss of translational symmetry and this
allows the incident wave to excite surface waves along the interface.

In this scheme the diffuse scattering from the rough surface proceeds as follows:
Light is incident on the interface and part of it is directly reflected or transmitted
through the interface. An additional part of the incident light is coupled through the
rough interface and scattered into surface electromagnetic waves. These surface
electromagnetic waves propagate along the interface, but, because of the roughness
of the interface, they are eventually scattered into bulk modes that are reflected or
transmitted through the surface. The higher order scattering processes in this sce-
nario are all mediated by the surface electromagnetic waves.

This process has some interesting consequences as it allows the incident light to
probe the nature of the surface waves on the rough interface. The wave function
probe relates the wave functions of the surface waves to prominent features in the
diffusely scattered light considered as a function of the scattering angle.

It is known that surface waves traveling on a randomly rough interface are
Anderson localized by the disorder. The phase coherent scattering as the surface
wave travels along the rough interface causes scattering from different parts of the
surface to add not only in amplitude but in a phase interference sum. As a result, the
waves in one- or two dimensional motion through a random medium can be shown
to be localized, bound, states within the medium [6]. They are not modes extended
throughout the entire system and they do not propagate through the system.

These considerations are for an infinite one- or two-dimensional medium. If a
finite one- or two-dimensional piece of material is treated, it is possible that the
length of the one- or two-dimensional medium over which the wave functions are
localized could exceed the lengths of the finite media. In this case the localization
effects would be less evident in the properties related to the wave functions of the
excitations in one- or two-dimension.

In the case of scattering from a randomly rough interface, an anomaly associated
with the Anderson localization of the surfaces waves is observed in the diffuse
scattering of radiation from the interface. Scattered light moving in directions
opposite to the light incident on the interface exhibits an enhancement peak in the
intensity of diffusely scattered radiation considered as a function of the scattering
angle. This is an enhanced retroreflectance and the height and width of the intensity
peak of diffusely scattered light as a function of the scattering angle are directly
related to the length scale of the region over which the localized wave functions of
the surface waves are bound and confined on the interface [9].
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Technically, in most cases the retroreflectance enhancement is the result of weak
Anderson localization [9]. Weak Anderson localization is a phase coherence in the
interaction of the surface excitations with the surface roughness as they propagate
along the interface. This interaction leads to an enhanced cross section for the
surface waves to be scattered in directions along the interface that are opposite to
that in which they originally traveled before the scattering. The enhancement in the
scattering cross section of the surface waves for directions opposite that in which
the wave is originally moving is due to the phase interference of the scattered wave
with itself. It is not found in the scattering of classical mechanical particles that do
not carry phase information [9].

As the surface wave scattering increases and the dielectric losses of the system
decrease to zero, weak Anderson localization drives the surface wave system to a
phase transition resulting in strong Anderson localization of the surface waves.
Strong Anderson localization is the case in which the intensity of the backscattering
of the surface waves transforms the system into completely localized surface wave
functions bound and confined to finite regions of the rough interface. Both weak
and strong localizations of surface waves lead to the enhanced retroreflectance in
the light scattered from the interface and into the bulk [9].

The transformation from weak to strong localization is a true second order phase
transition, exhibiting the common properties of second order transitions observed in
many systems, e.g., phase transitions in magnetic, ferroelectrics, liquid helium,
superconductors, etc. The ordering in systems that undergo second order transitions
begins to appear in the system before the transition to the fully ordered state
actually occurs. It develops as long range fluctuations contained within finite
regions in which the system locally adopts the appearance of the ordered system.
Outside of the region of the correlated fluctuation the system ordering breaks down
so that there is a typical correlation length past which the system appears more
disordered than ordered. Weak Anderson localization is the exhibition of localized
fluctuations in the system before the transition to the fully strong Anderson
localized state [9].

In three dimensional systems, the Anderson localization transition, with
increasing system disorder, is present as a second order transition. In these systems
as the disorder in the media is increased the transition from weak to strong
Anderson localization occurs when a particular degree of disorder is achieved
within the system [9, 10].

In a famous result, it has been shown that in one- and two-dimensional disor-
dered systems an arbitrarily small disorder leads the wave functions of the system to
be strongly localized [6]. This, however, is true in the absence of losses in the media
of the system or in the absence of thermal effects which can cause hopping between
localized states of the system. In the optical systems considered later it is the
dielectric losses of the media and the scattering of surface modes into bulk modes
due to the surface disorder that causes the system to exhibit weak rather than strong
localization [9, 10].

The effects of weak localization on rough surfaces is best studied for weakly
rough surfaces in which the wavelength of the scattered light is much larger than the
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heights and depths of the surface profile and is of order of the typical distance
between neighboring peaks and depths along the rough surface. This is the region in
which the enhanced retroreflectance of the interfaces arises solely from weak
localization effects [9].

For surfaces with larger height distributions and close neighboring peaks and
valleys other physical effects contribute to the creation of an enhanced retro-
reflectance peak in the diffuse scattering from the surfaces and these effects can
contribute to or overwhelm the enhancement effects that may be present due to
weak localization. These other effects are commonly known as shadowing effects
[9]. On strongly rough surfaces the light incident on the surface can cast shadows
on the surface just as trees cast shadows on the ground in the daytime. Away from
the retroreflection direction an observer of the surface sees a dimed landscape which
is a mixture of bright patches of reflected sunlight and dark shadow patches. In the
retroreflection direction, however the shadows are covered up behind the peaks
along the rough surface and the observer sees only a full bright surface with no
shadows. In this way the diffusely scattered light from the surface exhibits a
retroreflection peak in the plot of the diffuse scattering as a function of angle above
the surface.

Shadowing is an important effect in astronomy where it is referred to as the
opposition effect [9]. When the Earth is between the Sun and a reflecting astro-
nomical object a maximum is observed in the intensity of the light reflected from
the object to an observer on Earth. This enhancement is even observed in the light
scattered from interplanetary dust [9].

The important application of shadow casting effects is not limited only to
astronomy. It is also significant in the scattering of light from many systems of
application in engineering and condensed matter physics. It enters into the design of
paints and coating, applications to radar, and to the study scattering in surface
studies [9].

In the following an outline of analytical calculations of the retroreflectance due
to the weak Anderson localization of plasmons on a metal-vacuum interface is
given. The calculation shows many of the theoretical features that are found in
systems exhibiting retroreflection and weak Anderson localization. In the treatment
the surfaces will be weakly rough so that shadowing effects are excluded from
consideration [9].

To make things simple, the disorder of the system is taken as a one-dimensional
disorder. This provides the basis for an analytical approach revealing in a
straightforward way much of the physics involved in the scattering process. As an
additional point, experimental studies have been made on the one-dimensionally
rough surfaces treated here [9]. Using photoresist methods and the generation of
speckled light with the appropriate statistical properties, the one-dimensional ran-
dom surfaces treated theoretically here have been made and are found to validate
the calculations presented later.
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Weak Localization in Diffuse Scattering: The Model
The one-dimensional rough surface is described by a continuous surface profile
which on average is the x-z plane, with the z-axis normal to the average plane of the
surface. For the case of one-dimensional disorder, the surface is taken to be
translationally invariant parallel to the y-axis but is described by as statistical
random continuous function along the x-axis.

A schematic of the surface and the scattering geometry is shown in Fig. 4.8. The
vacuum-metal interface is described by a surface profile function of the form [9]

zsurf ¼ n xð Þ ð4:111Þ

relating the z-coordinate of the surface to the coordinate on the x-axis. In the region
above the surface (i.e., for z > n(x)) contains vacuum and the region below the
surface (i.e., for z < n(x)) is filled with metal.

For this scattering geometry, an electromagnetic plane wave propagating in the
x-z plane is incident from the vacuum onto the rough metal surface. It is reflected by
the disordered interface, exhibiting both specular and diffuse components of
reflection. The focus in the following is to relate the diffusely reflected light to the
nature of the surface plasmons supported at the interface.

The semi-finite region of metal and the scattering surface are described by a
complex dielectric function em xð Þ ¼ em;1 xð Þþ iem;2 xð Þ: For the scattering of vis-
ible light a silver surface is studied with the properties jem;2 xð Þj � jem;1 xð Þj: This
assures that the scattering from the surface reflects features of weak Anderson

Fig. 4.8 Schematic of the scattering of an incident plane wave of light incident from vacuum on a
randomly rough vaccum-metal surface [9]

204 4 Plasmonics



localization rather than those of strong Anderson localization. In addition, it is seen
later that em;1 xð Þ\� 1 is required for surface polaritons to exist on the
vacuum-metal interface [9].

For the treatment presented later, the function n(x) is a continuous random
function. In calculations, typically, n(x) is chosen as one of a set of Gaussian
random function, {n(x)}, with well defined statistical properties. This facilitates the
formulation of the problem in an analytic Green’s function approach which can be
developed in terms of Feynman diagrammatics.

Once the set {n(x)} is chosen, the physical properties of the system are formally
determined in terms of a selected n(x) surface from the set. At the end of the
calculation an average is performed over the entire set {n(x)}. This is taken to give
the average response of the random surface in terms of the statistical characteri-
zation of the set of surfaces. The procedure of obtaining the physical properties of
the system by averaging over the set {n(x)} can be shown to give the same result as
averaging the physical properties over the entire length of one realization, n(x), of
the surface [9].

Statistical Properties of the Surface: Gaussian Random Surfaces
For the following discussions the set of surface profiles {n(x)} is statistically
characterized by [9]

n xð Þh i ¼ 0 ð4:112aÞ

and

n xð Þn x0ð Þh i ¼ r2 exp � x� x0j j
a2

2
 !

: ð4:112bÞ

In (4.112) hi indicates an average over the set of random profile functions, r2 ¼
n2 xð Þ� �

and a is the correlation length of the surface roughness. The correlation
length gives an indication of the length along the surface over which a point on the
surface profile is dependent on the values of its neighboring profile points.

The system is Gaussian random which means that the higher order correlation
functions of n xð Þ are written in terms of all possible pairing of the pair correlations
in (4.112b). Due to (4.112a), products of odd numbers of n xð Þ are zero and only
even products are nonzero. As an example, the correlation function for a product of
four surface profile functions is expressed as three term giving all of the possible
pairings of the surface profile functions in the system. It is expressed as [9]

n x1ð Þn x2ð Þn x3ð Þn x4ð Þh i ¼ n x1ð Þn x2ð Þh i n x3ð Þn x4ð Þh i
þ n x1ð Þn x3ð Þh i n x2ð Þn x4ð Þh i
þ n x1ð Þn x4ð Þh i n x2ð Þn x3ð Þh i: ð4:113Þ
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The importance of the Gaussian random statistics is that it allows from the
development of a Wick’s theorem for the scattering in the system. This is helpful as
the resulting treatment of the scattering solutions can be written as an expansion in
Feynman diagrams.

Scattering Calculation: A Green’s Function Approach
A treatment of the scattering from the earlier described one-dimensionally rough
surface is given, taking the x-z plane to be the plane of incidence of the incident
light. The translational symmetry of the surface in the y-direction requires that both
the incident and scattered waves propagate in the plane of incidence. In addition, for
this scattering geometry the light can be treated as being composed of two different
polarization components, a p-polarized component and/or an s-polarized compo-
nent. The p-polarization component of light has its magnetic field polarized per-
pendicular to the plane of incident, while the s-polarization component of light has
its electric field polarized perpendicular to the plane of incidence.

Due to the translational symmetry of the surface parallel to the y-axis the scat-
tered light retains the polarization of the incident wave. The scattering of the two
different polarization components do not mix, but the scattering of the incident
p-polarized wave components are only into p polarized waves and the scattering of
the incident s-polarized wave components are only into s polarized waves.

The separation into two polarization components is very important. It is found
that incident light with p-polarization couples to the surfaces plasmons through the
surface disorder. This is the only polarization that couples to the surface waves, and
the coupling to the surface waves allows its scattering dynamics to reveal much
more about the nature of the disordered surface than do scattering solutions that do
not couple to the surface waves. The other s-polarized component of light does not
couple to the surface plasmons through the roughness of the interface. Unlike the
p-polarization the s-polarization does not exhibit any of the interesting scattering
effects arising from interactions with surface plasmons. Consequently, only the
p-polarization will be treated in the following.

In this case of p-polarized light, the magnetic field above the surface is polarized
perpendicular to the plane of incidence and is of the form [9]

~H x; z; tð Þ ¼ 0;Hy x; zð Þ; 0� �
e�ixt ð4:114Þ

where

Hy x; z; tð Þ ¼ eik0x�ia0 k0xð Þz þ
Z

dq
2p

R qjk0ð Þeiqxþ ia0 qx0ð Þz: ð4:115Þ

Here the first term on the right in (4.115) is the incident wave on the interface and
the second term on the right is the reflected wave, composed of both the specular
and diffuse components of scattered light. In addition,
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a0 qxð Þ ¼ x2

c2
� q2


 �1=2
; q2\

x2

c2
ð4:116aÞ

and

a0 qxð Þ ¼ i q2 � x2

c2


 �1=2
; q2 [

x2

c2
ð4:116bÞ

where for the incident wave a0 k0xð Þ is real.
Equations (4.114)–(4.116) represent the standard form for an incident wave

being diffusely scattered above a random rough surface. The object in the following
is to determine R qjk0ð Þ in terms of the dielectric properties and surface disorder of
the interface. This is done by applying the boundary conditions at the random
surface.

The form in (4.115) is used to match boundary conditions at the surface of the
random interface. For this treatment care must be taken in applying random surface
boundary conditions to the form in (4.115). Such an application may introduce
additional assumptions into the treatment of the system. While the fields of the form
in (4.115) are valid in the region z[ n xð Þmax where n xð Þmax is the maximum of the
surface profile function, it is only in a limited sense that the form in (4.115) is also
valid within the entire region z[ n xð Þ: In particular, the assumption that (4.115)
can be continued to the region z[ n xð Þ may not be true if the roughness of the
surface is to strong.

The assumption that (4.115) is the true form of the solution for the entire region
z[ n xð Þ is commonly made in the study of surface physics of disordered interfaces
[9]. It is known as the Rayleigh hypothesis, and it is only accurate for weakly rough
surfaces. Its accuracy has been tested against results from computer simulation
studies and some analytical works, and it is generally known to be a good
assumption in the case that [9]

r
a
\0:1: ð4:117Þ

Here (4.117) is characterizing the surface disorder in terms of the parameters for the
Gaussian random surfaces in (4.112) and (4.113). The condition in (4.117) is also
consistent with the requirement that shadowing effects are absent from the random
rough surface so that the validity of the Rayleigh hypothesis is a very good
assumption in the calculations that follow.

Matching the boundary conditions at z ¼ n xð Þ; Brown et al. [11], have shown that
in the weak roughness limit the reflection amplitude in (4.115) is expressed as a series
in terms of the surface profile. This is done using an integral form for the refracted
fields below the surface which is treated using the Rayleigh hypothesis, Green’
theorem, and the extinction theorem to match the fields in (4.115) above the surface.
For the details of this development, the reader is referred to the literature [11].
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For the discussions here it is only important to understand the details of the fields
above the rough interface and the physical insight that their representations give
regarding the processes contributing to the diffuse scattering of radiation from the
interface.

From the Brown et al. [11] formulation the reflection amplitude of light of
frequency x is expressed as a series of scattering and multiple scattering events
from the rough interface. It has the standard form [9, 11]

R qjk0ð Þ ¼ 2pd q� k0ð ÞR0 k0ð Þ � 2iG0 qð ÞT qjk0ð ÞG0 k0a k0ð Þð Þ: ð4:118Þ

In (4.118) the first term on the right of the equation is the Fresnel coefficient for the
reflection of p-polarized light from a flat interface. It is given by

R0 kð Þ ¼ em xð Þa0 kxð Þ � a kxð Þ
em xð Þa0 kxð Þþ a kxð Þ ð4:119Þ

where

a kxð Þ ¼ em xð Þx
2

c2
� k2


 �1=2
ð4:120Þ

with Rea kxð Þ[ 0 and Ima kx[ 0ð Þ; and a0 kxð Þ is from (4.116). This describes
the specular reflection of the incident fields from the surface. The remaining term on
the right represents the scattering and multiple scattering from the rough interface
which will be the focus of the discussion of plasmon effects in the diffuse scattering
of light form the interface.

The second terms on the right in (4.118) represent the scattering and multiple
scattering terms of light from the interface disorder. These processes gives rise to
diffuse scattering from the rough surface and to the renormalization of the specular
reflection as light is scattered from the specular to the diffuse components with
increasing surface disorder.

In the second term, the Green’s function for the propagation of surface polaritons
of frequency x on the flat interface is [9, 11]

G0 kð Þ ¼ iem xð Þ
em xð Þa0 kxð Þþ a kxð Þ ; ð4:121aÞ

and the T-matrix describing the scattering of a surface polaritons as it moves along
the interface is given by the form [9, 11]

T pjkð Þ ¼ V pjkð Þþ
Z

dq
2p

V pjqð ÞG0 qð ÞT qjkð Þ; ð4:121bÞ
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Here, in the T-matrix defined in (4.121b), the surface plasmon scattering potential
for a plasmon of frequency x is given by

V pjkð Þ ¼ em xð Þ � 1
e2m xð Þ n̂ p� kð Þ em xð Þpk � a pxð Þa kxð Þ½ �; ð4:121cÞ

where

n̂ pð Þ ¼
Z

dx exp �ipx½ �: ð4:121dÞ

The potential in (4.121c) is correct to leading order in the surface roughness. Higher
order terms which do not qualitatively affect the later discussions have been
neglected in (4.121c).

The T-matrix in (4.121b) describes the repeated scattering of surface plasmons
as they propagate along the rough interface. It is of the standard form of a T-matrix
describing motion through a disordered media. The flat surface plasmon moves
along the surface and, in the leading term of the T-matrix series, it is scattered once
by the surface roughness. This is the first term in the scattering series of the
T-matrix. In the second term of the series the flat surface plasmon is scattered twice
by the random surface. In the nth term of the series the flat surface plasmon is
scattered n times by the surface, etc. For a weakly rough surfaces the terms of
successively higher number of scatterings should be successively decreasing with
the increasing number of scattering events. All of the scattering information about
surface plasmon propagation is eventually contained within the sum of the T-matrix
series. Consequently, the reflection coefficient in (4.115) is expressed in terms of
the set of scattering processes for plasmon propagation along the interface con-
tained within the T-matrix.

Another important function for characterizing the propagation of surface plas-
mons along the random interface is the surface plasmon Green’s function. It con-
tains the entire single plasmon response for propagation along the interface and like
the reflection amplitude is also expressed in terms of the T-matrix for scattering
along the surface. The two response functions, the scattering amplitude and the
surface plasmon Green’s functions, will be shown in the following to be closely
related to one another.

In terms of the T-matrix series in (4.121b) the Green’s function for the propa-
gation of surface plasmons on the rough surface is [9, 11]

G pjkð Þ ¼ 2pd p� kð ÞG0 kð Þ � G0 pð ÞT pjkð ÞG0 kð Þ: ð4:122Þ

This is the standard Dyson equation result for the full Green’s function of the
random system in terms of the Green’s function in the absence of scattering and the
scattering potential arising from the interaction of the surface waves with surface
roughness. The Green’s function in (4.122) explains the response of the surface
electromagnetic waves on the random interface as a sequence of scattering
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interactions with the surface roughness, relating an inputted stimuli to the rough
surface plasmons to their outputted response from the system.

From (4.118) and (4.122) a simple relationship is found between the R qjk0ð Þ and
G qjk0ð Þ responses of the system. Specifically, it is follows from these equations that
[9, 11]

R qjk0ð Þ ¼ 2pd q� k0ð Þ R0 k0ð Þ � 2iG k0ð Þa0 kð Þ½ � þ 2iG qjk0ð Þa k0ð Þ: ð4:123Þ

The differential reflection coefficient for the scattering of radiation from the
rough surface is computed from (4.115). It is related to the angular distribution in
the far field limit of the ratio of the scattered to the incident light power flow above
the surface. This ratio is computed as the quotient of the Poynting vector of the
scattered radiation obtained from the second term on the right side of (4.115)
divided by the Poynting vector of the incident radiation from the first term on the
right side of (4.115). In particular, the ratio of these Poynting vectors averaged over
the surface roughness is

Srefl
		 		
Sincj j ¼

1
L

Z
q2\x2

c2

dq
2p

a0 qð Þ
a0 k0ð Þ jR qjk0ð Þj2

D E
; ð4:124Þ

where q ¼ x
c sin hr; k0 ¼ x

c sin hi in terms of the angles hr and hi of the reflected
and incident radiation, respectively, and x is the frequency of the elastically
scattered light.

The integral in (4.124) can be rewritten as an integration in the scattering angle
hr of the reflected radiation to obtain

Srefl
		 		
Sincj j ¼

Z
dhr

@R
@hr

: ð4:125Þ

Here the differential reflection coefficient for the diffuse scattering is given by
[9, 11]

@R
@hr

¼ x
2pc

cos2 hr
cos hi

jR qjk0ð Þj2
D E

L
: ð4:126Þ

In (4.126) it is seen that the diffuse reflection from the surface is expressed directly
in terms of the reflection amplitude of the scattering form in (4.115).

Applying (4.123) to the (4.126) for differential reflection coefficient of the dif-
fuse reflection of radiation from the surface yields a form rewritten in terms of the
Green’s function for the surface plasmons on the rough interface. Performing this,
(4.126) then becomes [9]
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@R
@hr

¼ 1
L
2
p

x
c

� �3
cos2 hr cos hi jG qjk0ð Þj2

D E
diffuse

: ð4:127Þ

This relates the differential reflection coefficient for the diffusely scattered radiation
directly to the Green’s function response of the plasmons on the rough interface.
A study of the Green’s function for the propagation of surface waves along the
interface contains all of the physics of the diffuse scattering of the p-polarization of
electromagnetic waves from the random interface. The study of the surface plasmon
Green’s function is next addressed.

Surface Plasmon Green’s Function
The function of interest in (4.127)

Gðqjk0Þj j2
D E

ð4:128Þ

is technically known as a two-particle Green’s function. It involves the product of
two single particle plasmon Green’s functions along the interface and contains
much more information about the response of the system of plasmons to external
stimuli and to each other than is contained in the single particle Green’s functions.
In many body theories the two particle Green’s functions generally are responsible
for the transport functions of the system, e.g., the electrical conductivity, the
magnetic and electric susceptibilities, etc. Single particle Green’s functions such as
those in (4.122) do not describe the transport properties of systems but are closely
related to the dispersion relations and lifetime of the excitations in many body
systems. The single particle Green’s functions are obtained by directly averaging
(4.122) over the interface, probing the effects of the system on a single plasmon
propagating at the interface. These are first discussed followed by the study of the
two-particle Green’s functions.

Averaging (4.122) over the random surface, the single plasmon Green’s function
for a surface plasmon of frequency x is found to be given by [9]

GðqjkÞh i ¼ 2pdðq� kÞGðkÞ ð4:129Þ

where

GðkÞ ffi C1ðxÞ
k � KSPðxÞ � iDTotalðxÞ �

C1ðxÞ
kþKSPðxÞþ iDTotalðxÞ ; ð4:130aÞ

C1ðxÞ ¼ em;1ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�em;1ðxÞ

p
1� e2m;1ðxÞ

; ð4:130bÞ

KSPðxÞ ¼ x
c

em;1ðxÞ
em;1ðxÞþ 1


 �1=2
; ð4:130cÞ
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DTotalðxÞ ¼ DeðxÞþDSPðxÞ; ð4:130dÞ

DeðxÞ ¼ em;2ðxÞKsp

2em;1ðxÞ em;1ðxÞþ 1
� � ; ð4:130eÞ

and

DSPðxÞ ffi 2
ffiffiffi
p

p
ar2C2

1ðxÞ
em;1ðxÞ � 1
em;1ðxÞ


 �2
K4
SPðxÞ exp �a2K2

SPðxÞ
� � ð4:130fÞ

Equation (4.130a) is the standard from of a single particle Green’s function with
poles in the complex frequency wave vector plane representing the dispersive
properties of the surfaces plasmon-polaritons.

In the Green’s function of (4.130a), KSPðxÞ is the surface plasmon-polariton
wave vector for a surface plasmon-polarition of frequency x. It is expressed in
terms of em;1ðxÞ in (4.130c). In addition, DTotalðxÞ in (4.130a) is the imaginary part
of the Green’s function pole. It represents the decay of the plasmon-polarition as it
propagates along the interface. From (4.130d), DTotalðxÞ is seen to include the
lowest order losses coming from the surface roughness scattering and the dielectric
losses to the k � �KSPðxÞ surface plasmon-polariton poles from the materials
forming the interface. The lowest order contribution in the surface roughness losses
is given by DSPðxÞ and enters the pole structure of GðkÞ in (4.130a) through
DTotalðxÞ � DeðxÞþDSPðxÞ in (4.130d). The DeðxÞ contribution to DTotalðxÞ in
(4.130d) is given in (4.130e) and represents Joule losses in the system from the
imaginary part of the dielectric constant of the metal. This is solely a materials
property. The residue of the Green’s function pole, C1ðxÞ, is given in (4.130b).

The functions in (4.129) and (4.130) are seen to be of importance in determining
the dispersive properties of the single plasmon modes along the interface.
Specifically, the pole singularities of GðkÞ give the frequency versus wave vector
renormalized dispersion relation for the surface plasmons. From the imaginary parts
of the frequency poles of GðkÞ the life time of the rough surface plasmons before
they are scattered away into other modes of the system is obtained. In addition, the
imaginary parts of the wave vector poles of GðkÞ give the propagation distance of
the plasmons on the rough surface before they are scattered away into other modes
of the system. From (4.130a) the length of propagation along the surface of the
plasmons is 1

DTotal
so that the plasmons decay in space by the exponential form

e�DTotalx .
In order to compute the diffuse scattering of radiation of frequency x from the

rough interface, it is necessary to study the two particle Green’s function for the
propagation of surface polaritons of frequency x on the rough interface.
The specific form of the two particle Green’s function that is of interest in the
calculation of the diffuse scattering is given by the surface averaged function given
by GðqjkÞGðpjkÞh i. This two particle Green’s function is expressed in terms of a
series expansion in scattering and multiple scattering processes of the plasmon with
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the rough interface. The series is an expansion which is reminiscent of the T-matrix
treatment of the averaged single particle Green’s function in (4.122) and (4.129).

The two-particle Green’s function G qjkð ÞG pjkð Þh i is computed from (4.122) by
taking the product of GðqjkÞ and GðpjkÞ given by the expansion in (4.122). The
product of the left hand sides of (4.122) give GðqjkÞGðpjkÞ, and the product of the
right hand sides of (4.122) result in a complicated series involving the T-matrix
scattering terms. Both sides of the resulting products are averaged, with the left
hand side giving GðqjkÞGðpjkÞh i and the righthand side giving an expression in
the average scattering from the surface. The averages of the righthand side over the
rough interface is made by applying the properties of the Gaussian random surface
averages in (4.112) and (4.113).

Performing this averaging and following some algebra a Bethe-Salpeter integral
equation for the two particle Green’s function is obtain. The specific form of the
Bethe-Salpeter equation for the two particle Green’s function is [9]

GðqjkÞGðpjkÞh i ¼ 2pdðq� kÞ2pdðp� kÞ GðkÞj j2

þGðqÞGðpÞ
Z

dr
2p

Z
ds
2p

CðqrjpsÞh i GðrjkÞGðsjkÞh i:
ð4:131Þ

The equation in (4.131) expresses the desired two-particle Green’s function
GðqjkÞGðpjkÞh i as a series sum of scattering and multiple scattering process with
the random surface. The irreducible vertex function, CðqrjpsÞh i, contains all of the
fundamental scattering process contributing to the propagation of the two inter-
acting plasmons as they move along the interface.

The first term on the righthand side of (4.131) describes two plasmons moving
along the system without interacting with one another. The higher order processes
in the second term on the righthand side describe higher order correlated scatterings
of the two surface plasmons by the surface roughness. Details of the processes that
enter into CðqrjpsÞh i will be discussed later, but first some remarks on the general
form of GðqjkÞGðpjkÞh i and CðqrjpsÞh i must be made. These lead to a simplifi-
cation of the treatment of (4.131).

In (4.131) the average on the left side of the equality is given by the general form

GðqjkÞGðpjkÞh i ¼ 2pdðq� pÞG1ðpjkÞ: ð4:132Þ

Here averaging the product GðqjkÞGðpjkÞ over the surface randomness restores
translational invariance along the average interface, resulting in the delta-function
on the right side. The restoration of translational invariance along the average
interface also applies to the vertex function in (4.132) which has the general form

CðqrjpsÞh i ¼ 2pdðq� r � pþ sÞC0ðqrjpsÞ; ð4:133Þ
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again reflecting the restored translational symmetry of the averaged system. The
extraction of the delta-functions that arise upon the surface averaging contributes a
great simplification in the form of (4.131) and results in a more tractable integral
equation for the determination of the two-particle Green’s functions.

Placing the delta-function forms in (4.132) and (4.133) into (4.131) results in an
expression for G1ðpjkÞ in terms of C0ðqrjpsÞ. Specifically, the function G1ðpjkÞ is
obtained as a solution of the integral equations

G1ðqjkÞ ¼ 2pdðq� kÞ GðkÞj j2 þ GðqÞj j2
Z

dr
2p

C0ðqrjqrÞG1ðrjkÞ: ð4:134Þ

In this integral equation for G1ðqjkÞ the first term on the right is the only
delta-function in the equation. It represents two plasmons propagating in the system
without interacting with one another through correlated scattering with the surface
roughness. It does not contribute to diffuse scattering in the system. All of the
diffuse scattering contributions are contributed from the second term on the right
hand sider of (4.134).

It is seen from (4.127) that the two-particle Green’s function Gðqjk0Þj j2
D E

is

directly related to the diffuse scattering. The relevant Green’s function is obtained
from (4.132) and (4.134) to be of the form

GðqjkÞGðqjkÞh i ¼ LG1ðqjkÞ: ð4:135Þ

where the relationship between the length of the scattering surface L and the
delta-function has been used, i.e.,

L ¼ 2pdð0Þ ¼
Z

dx ð4:136Þ

Applying (4.127) and (4.135) it then follows that the differential reflection coeffi-
cient for the diffuse scattering is [9]

@R
@hr

¼ 2
p

x
c

� �3
cos2 hr cos hiG1ðqjk0Þdiffuse; ð4:137Þ

where q ¼ x
c sin hr and k0 ¼ x

c sin hi satisfy the conditions of elastic diffuse scat-
tering, i.e., q 6¼ k0.

For a weakly rough surface the leading order scattering term in the irreducible
vertex function is

CðqrjpsÞh i � VðqjrÞVðpjsÞh i ¼ 2pdðq� r � pþ sÞV0ðqrjpsÞ; ð4:138aÞ
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where.

V0ðqrjpsÞ ¼
ffiffiffi
p

p
ar2

emðxÞ � 1
e2mðxÞ

				
				
2

emðxÞqr � aðqxÞaðrxÞ½ � emðxÞps� aðpxÞaðsxÞ½ �e�1
4a

2ðq�rÞ2 :

ð4:138bÞ

This is the lowest order term in the scattering interaction between the two surface
plasmons with the rough surface. The scattering described by it represents the
correlated scattering of the two plasmons from the same region of the random
interface.

For the evaluation of (4.134) at this level of approximation

C0ðqrjqrÞ � V0ðqrjqrÞ; ð4:139Þ

and the full solution of (4.134) for the interaction in (4.139) is generated iteratively.
Upon iterating (4.134) a series is developed of the form [9]

G1ðqjkÞ ¼ 2pdðq� kÞ GðkÞj j2 þ GðqÞj j2C0ðqkjqkÞ GðkÞj j2

þ GðqÞj j2
Z

dr
2p

C0ðqrjqrÞ GðrÞj j2C0ðrknrkÞ GðkÞj j2

þ GðqÞj j2
Z

dr
2p

C0ðqrjqrÞ GðrÞj j2
Z

dr0

2p
C0ðrr0jrr0Þ Gðr0Þj j2C0ðr0kjr0kÞ GðkÞj j2

þ :::

ð4:140Þ

where here the first four terms of the iterative interaction are displayed.
The iterated series in (4.140) is represented in Feynman diagrams as the sum

over a set of so-called ladder diagrams shown in Fig. 4.9. The two solid parallel
horizontal lines in the figure represent the Green’s functions of two propagating
polaritons and the successive scatterings of the system are described by the vertical

Fig. 4.9 Ladder diagram contributions to the irreducible vertex [9]
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dashed lines. The surface waves propagate freely between consecutive correlated
surface scatterings of the two plasmons. For weak scattering each term in the series
is weaker than the previous terms in the series and the higher order terms in the
series correspond to processes with increasing amounts of surface scatterings [9].

The ladder diagram approximation is a commonly applied approximation in the
discussion of transport properties of many-body systems expressed in terms of
two-particle Green’s functions [9]. As an example, the transport properties of
electrical and thermal conductivities are related, respectively, to the two-particle
electron Green’s functions and the two-particle phonon Green’s functions of
electron and insulating lattice systems. Additionally, the two-particle Green’s
functions also enter into the scattering of neutrons from magnetic systems and in the
magnetic susceptibilities exhibited by magnetic materials.

In these theories the ladder approximation is responsible for the leading order
behavior of the conductivities and susceptibilities and scatterings displayed in these
various systems. The results from the ladder diagram treatment are also found in
elementary discussions based on kinetic theory. In the scattering of light from the
randomly rough surface, the ladder diagram approximation contributes to a general
diffused scattering above the surface. The resulting diffuse scattering of light is
continuous and slowly varying in the scattering angle above the surface [9].

To evaluate the integral equation of (4.134) and (4.140) it is useful to apply the
pole approximation in evaluating the integrals over r, r0, etc. In the pole approxi-
mation it is shown that the dominant contribution to the integrand comes from the
overlapping poles of the Green’s function product forms (i.e., the GðrÞj j2) within
the various integrands of the iterative series in (4.140). In the limit of weak scat-
tering, the overlap of the Green’s function product poles, for the purposes of doing
the integrals in (4.134) and (4.140), is described as [9]

GðrÞj j2ffi pC2
1

DTotal
½dðr � KSPÞþ dðrþKSPÞ�: ð4:141Þ

The form in (4.141) is essentially a residue times the sum of delta-functions at the
singularities of the surface plasmon Green’s function. With each iteration of the
series in (4.134) and (4.140) a new integral is generated involving a new integration
variable r00 with a new Gðr00Þj j2 which again dominates the integral in r00. Using
(4.141) in the evaluations of the integrals of the iterative series generated in (4.140)
reduces the series of terms involving multiple integrals to an algebraic series of
algebraic terms.

Applying the pole approximation in (4.141) to (4.140) and summing the
resulting algebraic series gives the following result for the two-particle Green’s
function for the diffuse scattering within the ladder approximation [9]
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G qjk0ð Þj j2
D E

¼ L 2pd q� k0ð Þ G k0ð Þj jf 2 þ G qð Þj j2 G k0ð Þj j2

� K qjk0ð ÞþC2
1= 2DTotal 1� DSP=DTotalð Þ2

� �h ih
� K qjKSPð ÞK KSPjk0ð ÞþK qj � KSPð ÞK �KSPjk0ð Þð
þ DSP=DTotalð Þ K qjKSPð ÞK �KSPjk0ð ÞþK qj � KSPð ÞK KSPjk0ð Þ½ �Þ�g

ð4:142Þ

Here [9]

KðqjkÞ ¼ ffiffiffi
p

p
ar2

emðxÞ � 1
e2mðxÞ

				
				
2

emðxÞqk � aðqxÞaðkxÞj j2exp � 1
4
a2ðq� kÞ2


 �
:

ð4:143Þ

Then from (4.127) and (4.137) the differential reflection coefficient for the diffuse
scattering within the ladder approximation is obtained as [9].

@R
@hr

� �
L
¼ 2

p
x
c

� �3
cos2 hr cos hi G qð Þj j2 G k0ð Þj j2

� K qjk0ð ÞþC2
1= 2DTotal 1� DSP=DTotalð Þ2

� �h ih
� K qjKSPð ÞK KSPjk0ð ÞþK qj � KSPð ÞK �KSPjk0ð Þð
þ DSP=DTotalð Þ K qjKSPð ÞK �KSPjk0ð ÞþK qj � KSPð ÞK KSPjk0ð Þ½ �Þ�g:

ð4:144Þ

Equation (4.144) provides for a general diffuse scattering above the rough
interface, but while it treats important contributions to the surface scattering it
leaves off some other very important contributions. By its nature the ladder
approximation does not include coherent processes. It is a ballistic approach to the
transport problem [9].

Some of the phase coherent processes that are left off in the ladder approxi-
mation contribute to weak Anderson localization effects that can be prominent in
the scattering from randomly rough interfaces. In the following these types of phase
coherent scattering processes are now included in the determination of the differ-
ential reflection coefficient from the rough interface. The total diffuse scattering is
then given as a sum of scattering terms from the ladder approximation added with
the phase coherent scattering which is now treated.

Phase coherent processes that contribute to weak localization effects are the
contributions from diagrams know as maximally crossed diagrams. These types of
diagrams are shown in Fig. 4.10, and represent processes in which the scattering of
the two plasmons encounter the surface roughness scattering in reversed order. The
diagrams arise naturally in the pairings arising in (4.113).
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The maximally crossed contributions and their localization and weak localiza-
tion effects in transport processes have been studied for a variety of electron,
phonon, and photon systems. A good explanation and interpretation of the how the
phase coherent effects enter in these diagrams has been offer by Bergmann and can
be found in [6]. In the following only the first diagram of the series is discussed. For
surfaces with dielectric losses this diagram contributes most of the weak localiza-
tion effects.

The contribution to the irreducible vertex function from the first diagram in
Fig. 4.10 is [9]

CcrossedðqkjqkÞh i ¼
Z

ds
2p

Z
dt
2p

VðqjsÞVðtjkÞh iGðsÞGðtÞ VðsjkÞVðqjtÞh i:
ð4:145Þ

The two plasmons on the surface are seen to encounter the rough surface, scattering
from the surface roughness in reverse order. The average over the surface disorder,
again, restores the translational symmetry to the theory so that, as with (4.135), the
vertex contribution in (4.145) takes the form

CcrossedðqkjqkÞh i ¼ LCcrossed;0ðqkjqkÞ ð4:146Þ

with L ¼ 2pdð0Þ ¼ R dx. Consequently, it follows from (4.145) that [9]

Ccrossed;0 ¼
Z

dt
2p

V0ðq; qþ k � tjt; kÞGðqþ k � tÞGðtÞV0ðqþ k � t; kjq; tÞ:
ð4:147Þ

In the evaluation of (4.147) the dominant contribution to the integrand comes
from the poles of the Green’s function product, Gðqþ k � tÞGðtÞ. For these inte-
grals, as with the approximation in (4.141) used to evaluate the integrals of the
ladder diagrams, an approximation for Gðqþ k � tÞGðtÞ can be written as

Fig. 4.10 Maximally crossed diagram contribution to the irreducible vertex [9]
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GðsÞGðr � sÞ ffi 4pC2
1DTotal

r2 þ 4D2
Total

½dðs� KSPÞþ dðsþKSPÞ�: ð4:148Þ

Using (4.148) in the evaluation of (4.147) and following some algebra gives [9]

Ccrossed;0ðqkjqkÞ ffi 4C2
1DTotal

ðqþ kÞ2 þ 4D2
Total

KðkjKSPÞKðkj � KSPÞ ð4:149Þ

where KðrjtÞ is defined in (4.143).
The irreducible vertex contribution in (4.149) has an interesting functional form,

showing the effects of weak localization. Notice that (4.149) is basically a
Lorentzian function of qþ k and gives a maximum contribution to the scattering at
q ¼ �k. This maximum shows up in the system as an enhancement of backscat-
tering in the propagation of the surface plasmons and will be seen later to lead to
enhanced retroreflection in the diffuse scattering of light from the surface.

Before discussing these effects and the total diffuse scattering from the surface,
some remarks will be made about the effect of including the complete set of
maximally crossed diagrams in Fig. 4.10. These will be seen to give a renormal-
ization of the retroreflection from the surface but do not change the qualitative
nature of the diffuse scattering from the rough surface.

The irreducible vertex including all of the maximally crossed contributions in
Fig. 4.10 has a similar form to that of the first crossed diagram in (4.146). In
particular, due to the restoration of translation symmetry upon surface averaging,
the sum of the maximally crossed terms takes the form

CT
MCrossedðqkjqkÞ

� � ¼ LCMCrossedðqkjqkÞ: ð4:150Þ

The sum of diagrams in Fig. 4.10 is done in [9] where it is shown that

CMCrossedðqkjqkÞ ¼ 4C2
1DTotal

ðqþ kÞ2 þ 4D2
Total

1

1� ðDSP=DTotalÞ2
½AðkÞþBðkÞ�: ð4:151Þ

Here

AðkÞ ¼ KðkjKSPÞKðkj � KSPÞ ð4:152aÞ

and

BðkÞ ¼ 1
2

DSP

DTotal
K2ðkjKSPÞþK2ðkj � KSPÞ
� � ð4:152bÞ

where KðrjtÞ is defined in (4.143).
Using the irreducible vertex in (4.151) the contributions of the maximally

crossed diagrams to the diffuse scattering cross section for the random surface is
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obtained. Specifically, form (4.118), (4.123), (4.125), (4.131), (4.150), and (4.151)
these contributions are [9]

@R
@hr

� �
MCrossed

¼ 2
p

x
c

� �3
cos3 hr cos hi G qð Þj j2 G k0ð Þj j2

4C2
1DTotal

qþ k0ð Þ2 þ 4D2
Total

1

1� DSP=DTotalð Þ2 A kð ÞþB kð Þ½ �:
ð4:153Þ

The total contribution to the diffuse scattering from the rough surface is then
obtained from (4.144) and (4.153) as [9]

@R
@hr

� �
¼ @R

@hr

� �
Ladder

þ @R
@hr

� �
MCrossed

: ð4:154Þ

In the following some examples of the scattering from (4.154) for weakly rough
surfaces are given. These illustrate the typical weak localization effects found in the
scattering from weakly rough surfaces that support surface plasmons.

Illustrative Example
The total diffuse scattering exhibited by (4.154) has been computed for visible light
at 4579 Å scattering from a randomly rough vacuum-silver surface. Results for the
differential reflection coefficient of light incident from vacuum at an incident angle
of 20� is plotted in Fig. 4.11 as a function of the diffuse scattering angle. The

Fig. 4.11 Enhanced backscattering from the analytic theory [9]. Reproduced with permission
from [9]. Copyright 1990 Elsevier
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surface roughness for the plot is Gaussian random and characterized by the
parameters a ¼ 1000 Å, r ¼ 50 Å [9, 12].

In the plot a general diffuse scattering is observed at all scattering angles above
the surface. This comes from the contribution of the ladder diagrams. In addition, a
sharp peak in the diffuse scattering is observed in the light diffusely reflected
opposite to the incident plane wave direction. This is the enhanced backscattering
or refroreflectance of light. It comes from the contribution of the maximally crossed
diagrams and is significant only over a range of a couple of degrees around the
backscattering direction.

Fig. 4.12 Computer
simulation study of enhanced
backscattering [16]. In a is
normal incident radiation and
in b is incident radiation at
20�. In both cased the
backscattering enhancement
is opposite the incident
radiation. Reproduced with
permission from [16].
Copyright 1990 Academic
Press, Inc
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The width of the backscattering peak is related to the distance that the surface
plasmon travels along the interface before it is reradiated into the vacuum or is
dissipated into dielectric losses. It is generally found that the backscattering
enhancement peak becomes more pronounced as the incident angle approaches
normal incidence, being greatest for normal incidence [9].

The theoretical results presented in Fig. 4.11 have been observed experimen-
tally. A number of experimental results confirming enhanced backscattering are
found in [16, 17]. In addition, computer simulation studies have also confirmed the
enhancement effects from a number of different surfaces with different degrees of
weak roughness.

As an example of a simulation study, in Fig. 4.12 results for the differential
reflection coefficient of light scattered from a vaccum-silver surface are presented
[16]. The study is made for 6127 Å light incident on a Gaussian random silver
surface characterized by a = 2 lm and r = 1.2 lm. Figure 4.2a shows results at
normal incidence while Fig. 4.2b presents results at an incident angle of 20�.
A large enhanced backscattering peak is observed in both plots.

Again, prominent backscattering peaks, which arise from phase coherence, are
observed in the diffuse scattering. The peaks from the simulation are seen to also
exhibit side lobes around the backscattering peak. These are diffraction effects
associated with the phase coherence of the backscattering peak.

A similar treatment to that given in the preceding discussions for a
vacuum-metal interface can be made for the scattering and transmission of light by
thin films with rough surfaces. In this case not only are enhancement peaks found in
the diffusely scattered radiation from the rough surfaces of thin films, but
enhancements are also observed in the diffusely transmitted light through the thin
films. The enhancements in the diffuse transmission of light are also due to the
effect of weak localization of the surface plasmons on the rough surfaces of thin
films. These effects from thin films are now addressed in the following.

4.2.4 Surface Plasmon-Polariton Modes for Light
Scattering from Thin Films with Rough Surfaces

In the following a problem related to the diffuse scattering of light from a rough
surface is treated. This is the problem of light scattering from the rough surface of a
thin film supporting surface plasmons-polaritons. For this system, the weak local-
ization of surface plasmon-polaritons on the thin film shows up in the light diffusely
transmitted through the film as well as in the light diffusely reflected from the thin
film. Just as in the earlier treated case of light incident on the randomly rough silver
surface the diffuse scattering of the light reflected from the thin film exhibits a
retroreflectance enhancement peak for diffusely backscattered light into the incident
beam and propagating opposite the incident beam. In addition, the diffusely
transmitted light traveling away from the thin film in a direction opposite to that of
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the specularly reflected light from the thin film is found to have an enhancement
peak in its differential transmission coefficient [10]. This enhancement is shown to
arise from the weak localization of the surface plasmon-polaritons on the film
surfaces.

A simple model for the reflection and transmission of light from a thin film with
a randomly rough surface [10] is shown schematically in Fig. 4.13. As with the
earlier discussions of the scattering from the rough vacuum-silver surface, to
facilitate the discussions the surface roughness is again treated as one-dimensional
roughness. The thin film is translationally invariant along the y-direction but is
disordered along the x-direction. The disorder is characterized by a Gaussian ran-
dom profile function zsurface ¼ nðxÞ relating the coordinates ðx; zÞ of the surface. For
this surface geometry the x-z plane is taken as the plane of incident of the light in
the system, and, again, due to these symmetry conditions both the incident and
scattered light travels in the plane of incidence [10].

Under these conditions, a thin film of average thickness d is considered with
vacuum in the regions z[ nðxÞ and z\� d. In the region �d\z\nðxÞ is a metal
film characterized by the frequency dependent dielectric constant eðxÞ ¼
e1ðxÞþ ie2ðxÞ where e1ðxÞ and e2ðxÞ are, respectively, the real and imaginary
parts of the dielectric constant [10].

For an additional simplification of the treatment, only the upper surface of the
thin film is taken to be randomly rough. This does not qualitatively affect the
scattering and transmission from the random systems but only facilitates the sta-
tistical averaging over the disorder in the system. For the scattering geometry of
Fig. 4.13, the light in the system is incident on the thin film from the region
z[ nðxÞ. Its scattering components are then diffusely reflected into the region
z[ nðxÞ and diffusely transmitted into the region z\� d.

Fig. 4.13 Schematic of the
scattering-transmission for a
thin film [10]. The figure is
from the original paper in
[10], and x ¼ x1, y ¼ x2, and
z ¼ x3 relates the coordinate
notation use here to that used
in [10]. Reproduced with
permission from [10].
Copyright 1989 Elsevier

4.2 Surface Plasmon-Polariton Modes for Shape Resonances, Gratings … 223



The statistical properties of the Gaussian random surface profile function n(x) of
the upper surface of the thin film are the same as those considered earlier in the case
of the scattering of light from a rough surface. Specifically, nðxÞh i ¼ 0 and

nðxÞnðx0Þh i ¼ r2 exp � x� x0j j2=a2
� �

, where the angular brackets denote an aver-

age over the ensemble of realizations of the surface profile functions. The higher
order correlations of the surface profile functions are again broken down into sums
of terms involving products of pair correlations by treating all pairwise combina-
tions [10].

The Fields and their Relation to the Differential Reflection and Transmission
Coefficients
As with the scattering from a one-dimensionally rough surface which is disordered
in the x-direction, in order for incident light traveling in the x-z plane of incident to
couple to the surface plasmon-polaritons of the thin film it must be p-polarized.
P-polarized light incident in the x-z plane has its magnetic field vector perpendicular
to the plane of incidence, being of the general form ~Hð~r; tÞ ¼ ð0;Hyðx; zjxÞ; 0Þe�ixt.
The other s-polarization component of light, with the electric field perpendicular to
the plane of incidence, does not couple to the surface plasmon-polaritons on the
random interface and is not of interest here [10].

For the scattering geometry in Fig. 4.13, the solution in the region z[ nðxÞ is
given by [10]

Hyðx; zjxÞ ¼ exp½iðkx� ia0ðkÞzÞ� þ
Z

dq
2p

RðqjkÞ exp½iqxþ ia0ðqÞz�; ð4:155aÞ

where the first term on the right is the incident plane wave and the second term on
the right contains the specular and diffusely scattered light from the thin film. The
wave vector of the incident wave, k ¼ x

c sin h0, is related to the angle of incidence
h0 in the usual way. In the region �d\z\nðxÞ the form of the solution

Hyðx; zjxÞ ¼
Z

dq
2p

exp½iqx�fBðqjkÞ exp½�iaðqÞz� þCðqjkÞ exp½iaðqÞz�g; ð4:155bÞ

gives a mixture of upward and downward propagating components of light within
the thin film. The solution for the transmitted light from the thin film in the region
z\� d has the form

Hyðx; zjxÞ ¼
Z

dq
2p

TðqjkÞ exp½iqx� ia0ðqÞz�: ð4:155cÞ

It represents a mixture of the specularly and diffusely transmitted light through the
thin film and propagating away from it. In the forms for the general solutions listed
in (4.155)
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a0ðqÞ ¼ x2

c2
� q2


 �1=2
;with Rea0ðqÞ and Ima0ðqÞ[ 0; ð4:156aÞ

and

aðqÞ ¼ eðxÞx
2

c2
� q2


 �1=2
;with ReaðqÞ[ 0 and ImaðqÞ[ 0: ð4:156bÞ

The coefficients BðqjkÞ;CðqjkÞ;RðqjkÞ; and TðqjkÞ for the complete solution of the
scattering of the p-polarization component are obtained by matching the boundary
conditions at the two surfaces of the thin film.

In matching the boundary conditions the Rayleigh hypothesis for weakly rough
surfaces is again applied. This is the assumption that the form in (4.155a) is valid
for z[ nðxÞ and not just for z[ nðxÞmaximum. Likewise the form in (4.155b) is
assumed to be valid for �d\z\nðxÞ and not just for �d\z\nðxÞminimum: For
weakly rough surfaces of the type considered here, which have relatively smooth
profiles, the assumptions of the Rayleigh hypothesis are known to be effective.
They are not found to affect the results presented in the following which are
consistent with experiment and computer simulation studies [10].

The differential reflection and transmission coefficients are expressed in terms of
the solutions for the reflection amplitude, RðqjkÞ; in (4.155a) and the transmission
amplitude, TðqjkÞ; in (4.155c). The coefficients of reflection and transmission, as
with the randomly rough surface scattering problem, are obtained by computing and
comparing the Poynting vectors of incident, reflected, and transmitted light from the
film surfaces. From these Poynting vectors the differential reflection coefficient for
reflectance from the rough surface of the thin film is

@R
@hs

¼ 1
L

x
2pc

cos2 hs
cos h0

RðqjkÞj j2
D E

; ð4:157Þ

where q ¼ x
c sin hs and k ¼ x

c sin h0. Similarly, the differential transmission coeffi-
cient for the transmission through the rough surface of the thin film is found to be
given by

@T
@ht

¼ 1
L

x
2pc

cos2 ht
cos h0

TðqjkÞj j2
D E

; ð4:158Þ

where in this case q ¼ x
c sin ht and k ¼ x

c sin h0. In (4.157) and (4.158) L is the
length of the scattering surface and h0, hs, and ht are, respectively, the incident,
diffuse reflection, and diffuse transmission angles measure as in Fig. 4.13.

Formulation of the Green’s Function Approach
Upon matching the boundary conditions and following some algebra, T-matrix
equations are developed for the reflection and transmission amplitudes in (4.155a)
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and (4.155c). In the resulting formulation the mean thickness of the thin film, d, is
assumed to be small but large enough such that exp½iaðqÞd�j j � 1. Consequently, in
the theory presented in the following all of the work is based on retaining terms of
the lowest nonzero order in exp½iaðqÞd�. This leads to an analytically tractable
theory exhibiting the interesting enhancement effects in both the differential
refection and transmission for the thin film. It is accurate for weak roughness and
for thin films satisfying exp½iaðqÞd� � 1j j.

Specifically, under these conditions the reflection amplitude takes the form [10

RðqjkÞ ¼ 2pdðq� kÞR0ðkÞ � 2iG0ðqÞTRðqjkÞG0ðkÞa0ðkÞ: ð4:159aÞ

Here the first term on the right side of (4.159a) gives the specular scattering from
the flat surface, and the second term represents the rough surface scattering which
renormalizes the specular reflection from the thin film and also contributes to the
general diffuse scattering contributions in the region above the thin film.

In the same way the transmission amplitude for the thin film with surface
roughness takes the form

TðqjkÞ ¼ 2pdðq� kÞT0ðkÞ � 2iG0ðqÞTTðqjkÞG0ðkÞa0ðkÞ: ð4:159bÞ

The first term on the right of (4.159b) gives the transmission for the thin film with
flat surfaces. The second term on the right represents the rough surface scattering
which renormalizes the flat surface transmission and contributes to a general diffuse
transmission into the region below the thin film.

In (4.159)

G0ðkÞ ¼ ieðxÞ
eðxÞa0ðkÞþ aðkÞ ð4:160aÞ

is the surface plasmon-polariton Green’s function for the thin film with flat surfaces,

R0ðkÞ ¼ eðxÞa0ðkÞ � aðkÞ
eðxÞa0ðkÞþ aðkÞ ð4:160bÞ

is the Fresnel reflection coefficient for the thin film with smooth surfaces, and

T0ðkÞ ¼ 4eðxÞa0ðkÞaðkÞ
eðxÞa0ðkÞþ aðkÞ½ �2 exp �i a0ðkÞ � aðkÞ½ �df g ð4:160cÞ

is the smooth surface transmission coefficient for the thin film. Equations (4.160b)
and (4.160c) enter the specular terms for the reflection and transmission of the
smooth surface thin film while (4.160a) describes the propagation response of the
surface electromagnetic on the smooth surface thin film.

The T-matrices in (4.159) contain the scattering corrections to the reflection and
transmission amplitudes due to the randomness of the upper surface of the thin film.
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From the boundary conditions and the thin film approximations they are found to be
of the forms [10]

TRðqjkÞ ¼ VRðqjkÞþ
Z

dp
2p

VRðqjpÞG0ðpÞTRðpjkÞ ð4:161aÞ

and

TTðqjkÞ ¼ VTðqjkÞþ
Z

dp
2p

VTðqjpÞG0ðpÞTRðpjkÞ: ð4:161bÞ

In these T-matrix forms there are two different scattering potentials given by

VRðqjkÞ ¼ eðxÞ � 1
e2ðxÞ nðq� kÞ½eðxÞqk � aðqÞaðkÞ� ð4:162aÞ

and

VT qjkð Þ ¼ 2
e xð Þ � 1
e xð Þ n q� kð Þ qkþ a0 qð Þa kð Þ

e xð Þa0 qð Þþ a qð Þ a qð Þ exp �i a0 qð Þ � a qð Þ½ �df g:

ð4:162bÞ

In (4.162)

nðQÞ ¼
Z

dx expð�iQxÞnðxÞ ð4:163Þ

is the Fourier transform of the rough surface profile function, and the potentials in
(4.162) are correct to lowest order in the weak surface roughness limit.

The T-matrix TRðqjkÞ describes the scattering of the surface plasmon-polaritons
along the rough surface of the thin film. It relates the surface plasmon-polariton
Green’s functions for the rough surface thin film to the smooth surface thin film
Green’s functions. In terms of the T-matrix the rough surface Green’s function is
given by

GðqjkÞ ¼ 2pdðq� kÞG0ðkÞþG0ðqÞTRðqjkÞG0ðkÞ: ð4:164Þ

The first term on the right in (4.164) is the Green’s function for the surface
plasmon-polariton on a thin film with a smooth surface. The second term includes
the multiple scattering interactions on the rough surface. From the T-matrix in
(4.161a) it is found to be composed of a sum of multiple scattering processes on the
rough surface.

The first term in the sum of TRðqjkÞ gives a single scattering of the surface
plasmon-polariton as it passes along the surface, while the nth term in the sum of
TRðqjkÞ describes n successive scattering of the surface plasmon-polariton as it
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passes along the rough surface. In this way, (4.164) represents the total dynamics of
the single plasmon-polariton along the rough surface of the thin film.

From (4.157), (4.159), and (4.164) the differential reflection coefficient for the
diffuse reflection can be written in terms of the Green’s function for the
plasmon-polariton propagation on the rough surface thin film [10]

@R
@hs

¼ 4
L

x3

2pc3
cos2 hs cos h0 GðqjkÞj j2

D E
: ð4:165Þ

The diffuse reflection in (4.157) arises as a coupling of the incident light, through
the rough surface, to surface plasmon-polaritons propagating along the interface.
This is followed by the scattering of the plasmon-polaritons along the rough
interface until they ultimately couple, by the surface roughness, out of the surface
and into bulk modes radiating away from the random interface. In particular, the
average of the Green’s function product in (4.165) is a two-particle Green’s
function. It represents the propagation of two surface plasmon-polaritons in their
correlated scattering along the random surface during the intermediate processes
between the incident and scattered light.

At the level of approximation considered here, the evaluation of (4.165) for the
diffusely reflected light from the thin film with rough surfaces yields essentially the
same result as that obtained for the diffusely reflected light from the rough surface
of a semi-infinite metal. This was treated earlier where the two-particle surface
plasmon-polariton Green’s function was calculated in terms of sums of ladder and
maximally crossed diagrams and will not be further pursued here. The focus in the
following will be on the diffuse transmission of light through the thin film with a
randomly rough surface. Again the diffuse transmission will be shown to be directly
related to the two-particle surface plasmon-polariton Green’s function which will be
evaluated in the context of the ladder and maximally crossed diagrams studied
earlier.

The TTðqjkÞ T-matrix in (4.161b) for the transmission processes is complicated
by the need of the surface scattered light to be transported through the thin film and
exit the lower smooth surface of the thin film. Transmission through the thin film
leads to a significant reduction of the intensity of the scattered light. Due to this,
most of the multiple scattering in TTðqjkÞ is contained within the TRðqjkÞ term
entering into the integrand of the integral on the right of (4.161b).

Both terms entering TTðqjkÞ on the right of (4.161b) contain only a single
VTðqjkÞ scattering term. This potential involves transmission through the thin film
and is generally small due to the decay of the fields as the light passes through the
thin film. Terms with multiple VTðqjkÞ scattering terms would be significantly
reduce from those contain a single VTðqjkÞ scattering term. Consequently, they are
not included in the scattering approximation presented here.

From (4.158), (4.159b), (4.161b), and (4.164) the differential transmission
coefficient for the diffusely transmitted light through the thin film with the randomly
rough surface is obtained in terms of the rough surface plasmon-polariton Green’s
function. Specifically, the differential transmission coefficient for the diffuse
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transmission can be written in terms of the Green’s function for the
plasmon-polariton propagation on the rough surface thin film [10]

@T
@ht

¼ 4
L

x3

2pc3
cos2 ht cos h0 G0

x
c
sin ht

h i			 			2 FðqjkÞj j2
D E

; ð4:166Þ

where FðqjkÞ is expressed in terms of GðqjkÞ by

FðqjkÞ ¼
Z

dp
2p

VTðqjpÞGðpjkÞ: ð4:167Þ

The diffuse transmission in (4.166) arises as a coupling of the incident light,
through the rough surface, to surface plasmon-polaritons propagating along the
interface. This is followed by the scattering of the plasmon-polaritons along
the rough interface until they ultimately couple, by the surface roughness, out of the
surface and into thin film modes radiating away from the random interface.
Eventually these thin film modes pass thorough the smooth lower surface of the
then film and radiate into the bulk media below the thin film. In particular, the
average of the FðqjkÞ product in (4.166) is related to the two-particle Green’s
function of the surface plasmon-polaritons. It represents the propagation of two
surface plasmon-polaritons in their correlated scattering along the random surface
during the intermediate processes between the incident and scattered light.

The form of FðqjkÞ explicitly introduces the VTðqjkÞ scattering potential into the
calculation of the diffuse transmission. The VTðqjkÞ scattering potential is smaller
than the VRðqjkÞ scattering potential for scattering along the rough surface as it
includes the effects of transmission through the thin film as part of its interaction. It
accounts for the fact that the diffuse transmission of light through the thin film with
surface roughness is a small effect. Higher order terms in the VTðqjkÞ scattering,
which are left off in the present theory, would be significantly less than those given
in (4.166).

In the evaluation of (4.166) for the differential transmission coefficient, it is
necessary to determine the two-particle scattering function given by

FðqjkÞj j2
D E

: ð4:168Þ

The averaging process in (4.168) is complicated by the presence of the two different
scattering potentials,VRðqjkÞ and VTðqjkÞ, combined with the pairwise correlations
of the surface profile functions arising from the Gaussian random surface statistics.
In particular, as a result of this, four pairwise contractions of the scattering
potentials are introduced into the calculation upon performing the average in
(4.168). These potential pairing in the averaging processes are
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V1ðqrjpsÞ ¼ VTðqjpÞV
TðrjsÞ

� �
; ð4:169aÞ

V2ðqrjpsÞ ¼ VRðqjpÞV
RðrjsÞ

� �
; ð4:169bÞ

V3ðqrjpsÞ ¼ VTðqjpÞV
RðrjsÞ

� �
; ð4:169cÞ

and

V4ðqrjpsÞ ¼ VRðqjpÞV
TðrjsÞ

� �
; ð4:169dÞ

The four pairing in (4.169) complicated the summation of the ladder and maximally
crossed diagrams that were shown in the treatment of rough surface scattering to
contribute the dominant effects.

Diagrammatic Solution
As was shown earlier in the considerations of rough surface scattering, the ladder
diagrams are responsible for a general diffuse reflection from the rough
vacuum-metal interface. The same is true in the thin film problem for a general
diffuse reflection above the thin film. In addition, however, for the thin film problem
the ladder diagrams also contribute to a general diffuse transmission into the region
below the thin film. The ladder diagrams represent the successive interaction of two
surface plasmon-polaritons in a correlated scattering involving closely located
portions of the scattering surface. The ladder diagram approach to perturbative
scattering from a weakly disorder system typically is used to consider to lowest
order the transport processes of a randomly disordered media.

In Fig. 4.14 the relevant ladder and the four scattering potentials in (4.168) and

(4.169) are shown for the determination of FðqjkÞj j2
D E

in the context of the ladder

approximation. These contribute the dominant effects, in the limit of weak surface
roughness, for the diffuse transmission of light at general transmission angles
through the rough surfaced thin film. Summing the ladder contributions gives a

contribution to FðqjkÞj j2
D E

of the form [10]

FðqjkÞj j2
D E

L
� LFLðqjkÞ G0ðkÞj j2; ð4:170aÞ

where FLðqjkÞ is written as

FLðqjkÞ ¼ VaðqjkÞþ C2
1

2DTotal

1

1� D2
SP

D2
Total

½AðqjkÞþBðqjkÞ�: ð4:170bÞ

In (4.170) L is the length of the surface in the x-direction, KSPðxÞ ¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1ðxÞ

e1ðxÞþ 1

q
,

C1 ¼ eðxÞ
ffiffiffiffiffiffiffiffiffiffiffi
�e1ðxÞ

p
1�e21ðxÞ

, DeðxÞ is the decay rate of the surface plasmon-polariton due to
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the imaginary part of the dielectric constant of the metal film, DSPðxÞ � DeðxÞ is
the decay rate of the surface plasmon-polariton due to scattering from the surface
roughness, and DTotalðxÞ ¼ DeðxÞþDSPðxÞ. [Note: That the surface
plasmon-polariton decay rate from the imaginary part of the dielectric and the
surface scattering for the thin film treated here are the same as for the semi-infinite
metal treated in (4.130).] In addition, AðqjkÞ and BðqjkÞ in (4.170) are [10]

AðqjkÞ ¼ VaðqjKSPÞ VbðKSPjkÞþ DSP

DTotal
Vbð�KSPjkÞ


 �
ð4:171aÞ

and

BðqjkÞ ¼ Vaðqj � KSPÞ Vbð�KSPjkÞþ DSP

DTotal
VbðKSPjkÞ


 �
: ð4:171bÞ

with the functions VaðqjkÞ and VbðqjkÞ expressed as

Va qjpð Þ ¼ 4
ffiffiffi
p

p
ar2

e xð Þ � 1
e xð Þ

				
				
2

a qð Þj j2 qpþ a0 qð Þa pð Þj j2
e xð Þa0 qð Þþ a qð Þj j2

� exp 2Im a0 qð Þ � a qð Þ½ �df g exp �a2
q� pð Þ2

4

" #
: ð4:172aÞ

and

Vb qjpð Þ ¼ ffiffiffi
p

p
ar2

e xð Þ � 1
e2 xð Þ

				
				
2

e xð Þqp� a qð Þa pð Þj j2exp �a2
q� pð Þ2

4

" #
: ð4:172bÞ

In the discussions to follow the ladder contribution in (4.170) will be found to
give a slowly varying contribution to the differential transmission coefficient of the
diffuse transmission below the thin film. Its intensity distribution in space is quite
similar to the diffuse differential reflection coefficient above the thin film, but it is of
a somewhat reduced intensity. The reduced intensity is due to the decay in the
electromagnetic fields as they penetrate into the thin film.

Fig. 4.14 Diagramatics for: a the sum of ladder diagrams, b the sum of maximally crossed
diagrams, and c the four different scattering lines used in (a) and (b) [10]. Reproduced with
permission from [10]. Copyright 1989 Elsevier
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In the earlier treatment of the scattering from a rough metal surface, the maxi-
mally crossed diagrams were shown to be responsible for the weak localization
effects in the diffuse reflection of light from the rough interface. Similarly, in the
following discussions of scattering from the thin film with rough surfaces, maxi-
mally crossed diagrams are now shown to be the source of weak localization effects
in the reflection and transmission of light by the thin film.

These diagrams, as with the ladder diagrams, represent the successive interaction
of two surface plasmon-polaritons in a correlated scattering involving closely
located portions of the scattering surface. However, in the case of the maximally
crossed diagrams the closely located portions of the scattering surface are
encountered by each of the two plasmon-polaritons in a reversed scattering
sequence from the other. This can be seen in Fig. 4.14 which shows the maximally
crossed diagrams contributing to the multiple scatterings of the two
plasmon-polaritons on the random surface of the thin film. A consequence of the
reverse sequence to the scattering of the two plasmon-polaritons is that a phase
memory is preserved in the scattering amplitude. The resulting phase memory is
known as weak localization and contributes an enhanced backscattering to the
response of the system which eventually shows up as enhancement peaks in the
differential reflection and transmission coefficients of the thin film.

Results for Diffuse Reflection
For the scattering of light incident on a rough metal surface the weak localization
effects were observed as an enhancement in the diffusely scattered light in the
direction opposite that of the incident beam. This is the enhanced retroreflectance
peak in the differential reflection coefficient for the light scattered by the rough
surface. The width of the retroreflectance peak in the differential reflection coeffi-
cient was shown to be related to the propagation distance of the surface
plasmon-polarition before its decays into other modes.

In the thin film system studied here, the same retroreflectance peak is found in
the differential reflection coefficient of the light reflected by the thin film. At the
level of approximation of the thin film discussion present here, the differential
reflection is described by the same formulae as that for the rough scattering surface,
and the width of the retroreflectance peak is again related to the decay length for
plasmon-polariton motion along the surface of the thin film. The identity of the
result for the thin film with the surface scattering result of the rough vacuum-metal
interface is due to the very weak transmission of light though the thin film con-
sidered in the following treatment.

Results for Diffuse Transmission
Only the weak localization effects in the diffuse transmission of light through the
thin film are treated in the following. These effects also arise from the weak
localization of the surface plasmon-polaritons on the rough surface of the thin film.
They result in an enhancement peak in the diffuse transmission below the thin film
that has the same width as that of the differential reflection coefficient of the
diffusely scattered light above the thin film. Both peaks are related to the decay
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length of the surface plasmon-polariton on the rough interface, and this accounts for
their same widths.

In Fig. 4.14 the relevant maximally crossed diagrams and the four scattering

potentials in (4.168) and (4.169) are shown for the determination of FðqjkÞj j2
D E

in

the context of the approximation involving maximally crossed diagram. These
contribute the dominant weak localization effects, in the limit of weak surface
roughness, for the diffuse transmission of light through the rough surfaced thin film.
The diagrams contribute as a sum of scattering sequences representing the phase
coherent scatterings as the plasmon-polaritons propagate along the rough interface
[10].

Summing the maximally crossed contributions in Fig. 4.14 gives a contribution

to FðqjkÞj j2
D E

for the phase coherent, weak localization effects, that has the form

FðqjkÞj j2
D E

MC
� LFMCðqjkÞ G0ðkÞj j2; ð4:173aÞ

where FMCðqjkÞ is written as

FMC qjkð Þ ¼ 2C2
1DTotal

qþ kð Þ2 þD2
Total

1

1� D2
SP

D2
Total

AMC qjkð ÞþBMC qjkð Þ½ �: ð4:173bÞ

In these L is again the length of the surface along the x-axis and KSPðxÞ, C1, DeðxÞ,
DSPðxÞ � DeðxÞ, and DTotalðxÞ ¼ DeðxÞþDSPðxÞ have been defined below
(4.170). The functions AMCðqjkÞ and BMCðqjkÞ in (4.173) are found to be given by
the forms [10]

AMCðqjkÞ ¼ Kð�kjKSPÞKðkjKSPÞþKð�kj � KSPÞKðkj � KSPÞ ð4:174aÞ

and

BMCðqjkÞ ¼ DSP

DTotal
½Kð�kjKSPÞKðkj � KSPÞþKð�kj � KSPÞKðkjKSPÞ�:

ð4:174bÞ

In (4.174)
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e xð Þ � 1
e xð Þ

				
				
2 a rð Þ
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� exp �i a0 rð Þ � a rð Þ½ �df g exp �a2
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: ð4:175Þ
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The contribution to the maximally crossed scattering in (4.173)–(4.175) yield

results for the weak localization contributions to FðqjkÞj j2
D E

that are valid in the

limit that

DSPðxÞ � DTotalðxÞ: ð4:176Þ

This means that the dielectric losses in the system dominate the losses from scat-
tering by the surface roughness into other surface and radiative electromagnetic
modes. Consequently, only the lowest order maximally crossed diagrams in
Fig. 4.14 contribute significantly to the enhancement peak in the differential
transmission coefficient of the diffusely transmitted light.

The peaked enhancement effect in the diffuse transmission enters through
(4.173). From (4.173) the enhanced transmission occurs when

q � �k: ð4:177Þ

This is the condition for a maximum in to exist in FðqjkÞj j2
D E

MC
�

LFMCðqjkÞ G0ðkÞj j2 and FMCðqjkÞ. It arises specifically from the Lorentzian form

2C2
1DTotal

qþ kð Þ2 þD2
Total

ð4:178Þ

in (4.173b) and contributes to both functions defined in (4.173). The width of the
Lorentzian peak is seen in (4.173b) to be set by DTotal which also gives the decay
length for surface plasmon-polarition propagation along the rough interface of the
thin film.

The differential transmission coefficient for the diffuse transmission of light
though the thin film is now obtained as a sum of the contributions from the ladder
diagrams and the maximally crossed diagrams. It follows from (4.166), (4.170), and
(4.173) that the differential transmission coefficient is given in terms of FLðqjkÞ and
FMCðqjkÞ by [10]

@T
@ht

¼ 4
L

x3

2pc3
cos2 ht cos h0 G0

x
c
sin ht

h i2				
				fFLðqjkÞþFMCðqjkÞg G0ðkÞj j2; ð4:179Þ

where q ¼ x
c sin ht and k ¼ x

c sin h0 for the incident angle h0 and transmission angle
ht.

The contribution of the ladder diagrams, FLðqjkÞ, is a smooth slowly varying
function of the transmission angle ht. It represents a general background at all
transmission scattering angles below the thin film. From (4.173), (4.179), and the
Lorentz form in (4.178) it is seen that the maximally crossed diagram terms,
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FMCðqjkÞ, in the differential transmission coefficient contribute a single narrow peak
to the transmission coefficient which is center about q ¼ �k and is of a width set by
DTotal. This peak represents transmitted light in the region below the thin film
moving in a direction directly opposite the motion of the specularly reflected light
in the region above the thin film. The peak in the differential transmission coeffi-
cient comes from the weak localization of the surface waves traveling on the thin
film. Unlike the scattering from the ladder diagrams terms, it is a phase coherent
scattering process.

Illustrative Example
In Fig. 4.15 (4.179) is evaluated for the differential reflection and transmission
coefficients for a thin silver film in vacuum. Light of optical wavelength
k ¼ 4579 Å is incident on the metal film with an angle of incidence of h0 ¼ 20�.
The dielectric constant of silver at this wavelength is of the form
eðxÞ � 7:5þ i0:24. For the plots, the roughness on the upper surface was taken to
be Gaussian randomness characterized by r ¼ 50 and a ¼ 1000 Å. Two plots are
shown one for a film of thickness d ¼ 800 Å and one for a film thickness of
d ¼ 1000 Å.

Fig. 4.15 Differential reflection and transmission coefficients for the diffusely reflected and
transmitted light through a thin metal film with a rough upper surface [10]. Reproduced with
permission from [10]. Copyright 1989 Elsevier
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4.2.5 Speckle Correlations in the Reflection
and Transmission of Light Through a Thin Film

Another aspect of the scattering and transmission of light through a thin film that is
influenced by surface plasmon-polaritons is the speckle correlations in the diffusely
reflected and transmitted light from the rough surfaces of the thin film [18–26]. In
the following a discussion of these effects is presented in the context of the model
just treated for the scattering of light from a thin film. This is preceded by an
introductory discussion of the speckle phenomenon, some of its general features,
and its technological applications.

Speckle is commonly observed in the scattering of laser light of a single
wavelength from a rough surface [20–26]. It is the grainy pattern of dark and bright
intensities found in the light viewed from over the entire scattering surface, with the
features of the bright and dark patches being dependent on the wavelength of the
light and the roughness of the scattering surface. A common example of the effect is
seen in the reflected light from laser pointers used at conference talks.

When the laser beam is scattered from a room wall or a presentation screen the
viewer sees a fine mixture of bright and dark grains in the illuminated region of the
pointer. As more wavelengths of light are introduced into the scattering, the overlap
of the patterning from the different wavelengths tends to washout the granular
pattern. This is why speckle is observed in the dot of coherent light from a laser
pointer and not so much from a focused beam of while light.

The bulk features of the granular mixture in the speckle pattern can be grossly
explained in a simple theoretical approximation based on a random walk addition of
the phasors of light scattered from the rough surface [18–26]. This approach treats
the scattering from the surface as a simple one encounter scattering (i.e., single
scattering) from the surface. The scattered light from different points of the surface
is represented by amplitudes and phases which vary from point to point along the
random surface. These components of light add to produce a net field at the point of
observation.

By making some reasonable simple assumptions on the statistical properties of
the amplitudes and phases of the different components of scattered light arriving at
the point of observation, the distribution of grain intensities within the speckle
pattern is generated. In general, the assumption of a random walk addition of the
phasors of light at the observation point explains many of the features found in the
intensity distribution within the speckle pattern. This portrays light from each point
on the surfaces as being part of a random walk contribution to the total field at the
point of observation. In this manner, the distribution of intensities observed within
the spackle pattern is shown to be distributed in a Poisson distribution.

A Simple Theory of Basic Speckle Phenomena
Goodman [18, 19] was the first to apply the random walk treatment to the study of
the intensity distributions within the speckle pattern. The Poisson distribution of
speckle intensities was shown to be of the general form [18, 19]
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PðIÞ ¼ 1
Ih i exp � I

Ih i
� �

; ð4:180Þ

where Ih i is the average intensity of the speckle pattern. In Fig. 4.16 the distribution
in (4.180) for PðIÞ versus the speckle intensity, I is plotted. The most probable
intensity is zeros and the probability decreases uniformly as the intensity increases.

The Poisson distribution offers an explanation of the relative occurrences of the
bright and dark intensities. It does not, however, explain correlations between
the dark and bright patches or their relative sizes. These properties depend on the
detailed geometry of the rough scattering surfaces and on the wavelength of the
coherent radiations illuminating the surface. In the case that the rough surface
supports surface plasmon-polaritons, it is also expected that the scattering of inci-
dent light into and out of surface plasmon-polaritons should be seen in the features
of the speckle patterning from the surface [18, 19].

A More Complete Approach with Applications: Correlations
In the following discussions a more detailed approach to the treatment of speckle
patterns will relate the correlations of the bright and dark grains in the speckle
pattern to the propagation of surface plasmon-polaritons along the rough surface.
The focus of the presentation will be on surfaces that support surface
plasmon-polaritons and on how the presence of these excitations in the system
influence the features of the speckle pattern [18, 19].

Fig. 4.16 Plots of PðIÞ versus the speckle intensity, I
Ih i, from the random walk treatment of the

distribution of speckle intensities [18, 19]
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This approach treats the scattering of light as a multiple scattering (multiple
interaction) of the light from the rough surface [20–26]. The multiple scattering
events, which manifest themselves as the scattering into and out of surface
plasmon-polaritons propagating along the surface, then introduce correlations
within the speckle pattern. In this way the distribution of the speckles within the
speckle pattern are found to be dependent in part on the properties of the surfaces
waves found at the interface. The correlation of features from the surface waves
within the pattern is determined from a study of the intensity-intensity correlation
functions of light diffusely scattered at the rough surface.

The speckle features of a rough surface are the foundation of a number of
technological techniques that are important both in the study of surfaces and in the
study of the scattering from volume disordered systems. Examples of applications
include: speckle metrology, speckle photography, holographic interferometry,
electronic speckle pattern interferometry, speckle imagining, dynamic speckle, and
biospeckle [27, 28].

Many of these techniques are implemented for the determination of surface
roughness, surface deformations, or effects related to material flows. In general, the
measurements in these studies may involve either static systems or systems which
change in time. Information in such applications of speckle is obtained on the
systems being studied from the changes in the speckle pattern in time or through the
change in the interference of a scattered speckle field from a rough surface as it
interacts with a reference beam. In these last mentioned processes the reference
beam and the light sent to scatter from the rough surface often originate from the
same light source.

The techniques just mentioned are based on the application of speckle tech-
nology, focused on effects which do not account for the correlations in the speckle
pattern due to the presence of surface wave effects. These correlations are expected
to introduce a new feature into the applications of speckle as a technology for the
characterization of surfaces. In addition, they are of interest in providing a funda-
mental understanding of the interaction of surface electromagnetic waves with the
scattered fields generated at the surface.

In the next subsection, the model for the scattering of light from a thin film with
a rough surface is reformulated to treat the correlations arising in the speckle pattern
due to the presence of surface plasmon-polaritons. Similar Green’s function tech-
niques to those applied to the study of rough surface reflection and transmission
coefficients form the basis of the calculations. As with the reflection and trans-
mission coefficients the weak localization of surface plasmon-polaritons are shown
to have an important influence on the speckle pattern generated from the thin film
with surface disorder.

The Model and Definition of Speckle Correlation Function
The model treated is the same as that studied in the discussions of the reflection and
transmission coefficients of light from a thin metal film with surface roughness
[20, 21]. In the following, this is briefly summarized, after which a discussion of the
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theoretical considerations for the speckle correlations in the diffusely scattered
radiation from the film is presented.

In the model of the thin film the system is composed of vacuum in the region
x3 [ nðx1Þ, a metal film characterized by an isotropic, complex, frequency-
dependent dielectric function eðxÞ for �d\x3\nðx1Þ, and vacuum for x3\� d.
(A schematic representation of this and the associated scattering geometry is shown
in Fig. 4.17.) The rough upper surface of the thin film has a one-dimensional
disorder characterized by a profile function nðx1Þ that is a single valued Gaussian
random process. For simplicity only one surface is consider to be randomly rough.
This restriction to one surface does not affect the basic nature of the qualitative
results obtained for the system in the following treatment [20, 21].

The statistical properties of the surface profile functions are, specifically, char-
acterized by the surface averages [20, 21]

nðx1Þh i ¼ 0; ð4:181aÞ

nðx1Þnðx01Þ
� � ¼ r2 expð� x1 � x01

		 		2=a2Þ ð4:181bÞ

Fig. 4.17 Schematic of the thin film and its scattering geometry [20, 21]. Reproduced with
permission from [20]. Copyright 1989 Elsevier
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where hi indicates an average of the profile over the rough surface. In the statistical
characterization provided by (4.181), r characterizes the root mean squared height
distribution about the x1-axis and a sets the correlation length of the surface profile
along the x1-axis.

As with the previous discussions of surface profiles with Gaussian random
disorder, all higher order correlations of nðx1Þ’s are expressed as products of the
correlation functions in (4.181). In particular, in the case of a product of four surface
profile functions

nðx1Þnðx001Þnðx01Þnðx0001 Þ
� � ¼ nðx1Þnðx01Þ

� �
nðx001Þnðx0001 Þ
� �

þ nðx1Þnðx001Þ
� �

nðx01Þnðx0001 Þ
� �þ nðx1Þnðx0001 Þ

� �
nðx01Þnðx001Þ
� �

: ð4:182Þ

Correlations involving a product of an odd number of surface profile functions are
zero. This is due to the result in (4.181a).

As with the reflection and transmission problem treated earlier, the incident and
reflected electromagnetic planes in the region x3 [ nðx1Þ are taken to be
p-polarized. A formal solutions for the form of the fields in this regions is then
given by [20, 21]

HI
2 x1; x3jxð Þ ¼ exp i kx1 � ia0 k;xð Þx3ð Þ½ �

þ
Z1
�1

dq
2p

R qjkð Þ exp iqx1 þ ia0 q;xð Þx3½ �; ð4:183aÞ

where a0ðq;xÞ ¼ x
c

� �2�q2
h i1=2

, Rea0ðq;xÞ[ 0, and Ima0ðq;xÞ[ 0. In terms of

the incident angle, hi, and the scattering angle, hs, in Fig. 4.17 the components of
wave vector parallel to the x1-axis in (4.183a) are k ¼ x

c sin hi and q ¼ x
c sin hs.

The p-polarized fields in (4.183a) are of the form of incident and reflected plane
waves that couple to the surface electromagnetic waves on the thin film. Due to the
one-dimensional nature of the surface roughness, the p-polarization of the fields is
maintained during the propagation of light throughout the thin film system. This is
true for the incident, reflected, transmitted and bulk wave of the thin film. The other
s-polarized plane wave solutions do not excite the surface electromagnetic waves
that are of interest in the following discussions. Consequently, the case of an
incident s-polarized plane wave interacting with the thin film will not be considered
here.

Corresponding to the solution of the form in (4.183a), in the region
�d\x3\nðx1Þ the form of the solutions of the p-polarized fields are
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HðIIÞ
2 ðx1; x3jxÞ ¼

Z1
�1

dq
2p

expðiqx1Þ � ½AðqjkÞeiaðq;xÞx3 þBðqjkÞe�iaðq;xÞx3 �

ð4:183bÞ

where aðq;xÞ ¼ eðxÞ x
c

� �2�q2
h i1=2

, Rea q;xð Þ[ 0 and Ima q;xð Þ[ 0. Finally, in

the region x3\� d the transmitted wave solutions for the p-polarization are given
by the form

HIII
2 x1; x3jxð Þ ¼

Z1
�1

dq
2p

T qjkð Þ exp iqx1 � ia0 q;xð Þ x3 þ dð Þ½ �; ð4:183cÞ

where q ¼ x
c sin ht in terms of the transmission angle ht in Fig. 4.17.

The nature of the propagation of the p-polarized fields interacting with the thin
film are obtained by matching the solutions in (4.183), using the electromagnetic
boundary conditions. These conditions involves the continuity of the electric and
magnetic fields at the interfaces of the thin film.

The formal solutions in (4.183) for the three regions are all matched by the
electromagnetic boundary conditions to obtain a set of equations which are then
solved for the amplitudes RðqjkÞ, AðqjkÞ, BðqjkÞ, and TðqjkÞ. The results for these
amplitudes are expressed in terms of the surface profile functions, the various wave
vectors, and the dielectric constant of the film. Of particular interest are the coef-
ficients RðqjkÞ and TðqjkÞ as these are the scattering amplitudes from the film of the
reflected and transmitted fields, respectively. These are used to determine the
speckle pattern generated by the interaction of light with the thin film.

In this way, the scattering amplitude R qjkð Þ for the reflection of light form the
surface of the thin film is determined to be given by [20, 21]

RðqjkÞ ¼ �2pdðq� kÞ � 2iGRðqjkÞa0ðk;xÞ ð4:184Þ

where GRðqjkÞ is the Green’s function for the propagation of surface
plasmon-polaritons along the rough surface of the thin film. For weak surface
roughness the electromagnetic surface wave Green’s function is obtained as a
solution of the Dyson equation

GR qjkð Þ ¼ 2pd q� kð ÞG0 k;xð ÞþG0 q;xð Þ
Z1
�1

dp
2p

VR qjpð ÞGR pjkð Þ ð4:185Þ
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where

G0ðk;xÞ ¼ iKþ ðk;xÞ
a0ðk;xÞD ðk;xÞ ð4:186Þ

is the Green’s function for the propagation of surface plasmon-polaritons along the
thin film in the absence of surface roughness. In (4.186) the parameters entering
into the smooth surface Green’s function are given by

D�ðk;xÞ ¼ K� � aðk;xÞK ðk;xÞ
eðxÞa0ðk;xÞ ; ð4:187aÞ

K� ¼ f ðk;xÞ � fþ ðk;xÞ; ð4:187bÞ

and

f� k;xð Þ ¼ 1
2

1� e xð Þ a0 k;xð Þ
a k;xð Þ


 �
exp 
ia k;xð Þd½ �: ð4:187cÞ

The scattering interactions of light with the rough surface in (4.184) arise from
the second term on the right side of (4.185). These terms involve the scattering
potential VRðqjkÞ which depends on the surface roughness profile function. To
lowest order in the surface roughness profile function nðx1Þ the scattering potential
of the surface roughness entering into the Dyson equation in (4.185) is

VRðqjkÞ ¼ vRðqjkÞn̂ðq� kÞ; ð4:188aÞ

where

n̂ðpÞ ¼
Z1
�1

dx1 expð�px1Þnðx1Þ ð4:188bÞ

is the Fourier transform of the surface roughness profile function, and

vRðqjkÞ ¼ eðxÞ � 1
e2ðxÞ � eðxÞqk � aðq;xÞaðk;xÞK ðq,xÞK ðk,x)

Kþ ðq;xÞKþ ðk;xÞ

 �

: ð4:188cÞ

Equations (4.184)–(4.188) formulate a complete description of the single and
multiple scattering processes entering into the reflection of light from the thin film.
Single scattering processes involve terms in (4.184) in which only a single factor of
VRðqjkÞ enters, while multiple scattering processes involve terms containing mul-
tiple factors of VRðqjkÞ. The multiple scattering terms account for processes in
which the incident light is scattered by the surface roughness into surface
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plasmon-polaritons which then propagate along the thin film as surface electro-
magnetic waves.

As the surface electromagnetic waves move along the rough surface they scatter
from the surface roughness. This renormalizes their dispersive properties and
amplitudes. Eventually the surface electromagnetic waves are scattered away from
the surface and into bulk radiating plane waves. This creates the reflected wave
generated by (4.183)–(4.188).

In terms of RðqjkÞ the intensity, IðqjkÞ, of the reflected light from the rough
surface of the thin film is characterized by [20, 21]

IðqjkÞ ¼ 1
L
x
c
a0ðq;xÞ
a0ðk;xÞ RðqjkÞj j2; ð4:189Þ

where L is the length of the rough surface along the x1 -axis, and kj j\ x
c and qj j\ x

c
are required for the incident and reflected waves to propagate to and from the thin
film. The intensity in (4.189) then represents the scattering process of a single plane
wave incident from the vacuum above the thin film in Fig. 4.17 to a plane wave
reflected from the surface into the vacuum above the thin film in Fig. 4.17.

In the following, discussions will be presented on the use of the intensity defined
in (4.189) to study the statistical features of the speckle generated by the scattering
of light from the thin film. This will involve statistical analysis on the level of single
and multiple incident plane waves as they interact with and are scattered from the
thin film.

Speckle Correlation Function
In order to characterize the statistics of the bright and dark patches of the speckle
patterns generated by the interaction of the plane waves of incident light with
the thin film, a measure of the variation of the scattered field intensity relative to the
mean intensity of the scattered fields is introduced. Representing the variation of the
scattered field about its mean value by DIðqjkÞ, for a single incident plane DIðqjkÞ
is defined by

DIðqjkÞ ¼ IðqjkÞ � IðqjkÞh i ð4:190Þ

Here hi is an average over the scattering surface.
For two different incident plane waves a correlation function based on (4.190)

for the speckle pattern created by the two plane waves can be introduced. The
correlation function is define so as to provide a measure of the similarity of the two
different speckles arising from each of the plane waves that are incident on the thin
film. The correlation function for this measure of the speckle pattern is defined as
[20, 21]

Cðq; kjq0; k0Þ ¼ DIðqjkÞDIðq0jk0Þh i ¼ IðqjkÞIðq0jk0Þh i � IðqjkÞh i Iðq0jk0Þh i;
ð4:191Þ
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where kj j; k0j j\ x
c and qj j; q0j j\ x

c are required for the incident and reflected waves,
respectively, to propagate to and from the rough surface in the region of vacuum
above the thin film.

Defined in this way, high values of Cðq; kjq0; k0Þ indicate that the speckle pattern
generated by one of the plane waves provides information about the nature of the
speckle pattern generated by the other plane wave. For Cðq; kjq0; k0Þ zero, the two
patterns provide no information relative to the other.

In the following the focus will be on understanding the speckle correlator
defined in (4.191). This allows for an understanding of the change in speckle
patterns as the incident and reflected waves of two different plane wave interact
with the thin film. It also provides an understanding of the degree of correlations
between the patterns generated by the two plane waves and how these correlations
arise from the propagation of surface electromagnetic waves along the thin film.

Green’s Function Approach
Using (4.184) and (4.189) in the correlation function in (4.191) and considering
only the diffuse scattering in (4.189), the correlation function of the speckle patterns
can be expressed in terms of the Green’s functions for the propagation of surface
plasmon-polaritons along the upper surface of the film in Fig. 4.17.

From (4.191) it then follows that [20, 21]

Cðq; kjq0; k0Þ ¼ 16
L2

x
c

� �2
a0ðq;xÞa0ðk;xÞa0ðq0;xÞa0ðk0xÞ � Dðq; kjq0; k0Þ

ð4:192Þ

where

D q; kjq0; k0ð Þ ¼ GR qjkð Þj j2 GR q0jk0ð Þj j2
D E

� GR qjkð Þj j2
D E

GR q0jk0ð Þj j2
D E

: ð4:193Þ

In (4.193) specular scattering terms involving 2pdðq� kÞ and 2pdðq0 � k0Þ have
been omitted as these are not part of the diffuse scattering component from the
rough surface. Only the diffuse scattering contains the interesting components of the
correlation of the speckle pattern with surface wave properties of the thin film.

The surface averages in (4.192) and (4.193) involve many different averages of
products of the surface profile functions. This provides a rich structure of correlated
properties of the patterns of the scattered light from the two incident plane waves,
arising in various level of the perturbation theory of the weak surface roughness
characterizing the surface wave propagation in terms of their Green’s functions.
These correlations are now addressed for the contributions to the correlation
functions at their various levels of approximation, obtaining an expression for the
correlation function as a series in the surface profile functions.

It will be shown that the correlations between the patterns of the two incident
beams exhibit a variety of memory and additional related effects arising from the
presence of surface electromagnetic waves as they are associated with the scattering
of each of the two incident wave by the thin film. These contributions are now
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considered in order of their significance in the perturbations expansion of
Cðq; kjq0; k0Þ in terms of the weak surface roughness.

The terms in Cðq; kjq0; k0Þ which are of leading order powers of nðx1Þ are now
treated. These terms are denoted as Cð1Þðq; kjq0; k0Þ and Cð10Þðq; kjq0; k0Þ, and the
leading contribution to both of these correlations are of order n4ðx1Þ and n6ðx1Þ. The
contribution Cð1Þðq; kjq0; k0Þ is determined to be proportional to 2pdðq� k �
q0 þ k0Þ while that of Cð10Þðq; kjq0; k0Þ is determined to be proportional to
2pdðq� kþ q0 � k0Þ. Consequently, each appears in a different region of the
scattering phase space, and they both represent distinctly different types of scat-
tering processes.

In terms of these two leading order terms it follows that the correlation function
becomes

Cðq; kjq0; k0Þ ¼ Cð1Þðq; kjq0; k0Þ þCð10Þðq; kjq0; k0Þ ð4:194Þ

where, as shown in the following, the terms Cð1Þðq; kjq0; k0Þ and Cð10Þðq; kjq0; k0Þ are
easily separated out form (4.192) and (4.193). The separation is made by using a
decoupling approximation on the surface averages of the production of four Green’s
functions, i.e., terms of the form

GR qjkð Þj j2 GR q0jk0ð Þj j2
D E

: ð4:195Þ

The decoupling approximation applied to (4.195) is similar to the decoupling
procedure used in the Hartree-Fock treatment of the electron-electron interactions in
a many-body treatment of electrons in metals and semiconductors. It is also similar
to the decoupling of magnetic interactions in the many-body theory of magnons. In
all of these treatments the four particle correlations functions are replaces by
products of two particle correlations functions.

Applying these ideas to (4.192) and (4.193) the result in (4.194) follows from
making the decoupling approximations [20, 21]

C 1ð Þ q; kjq0; k0ð Þ ¼ F q; kjq0; k0ð Þ G
R qjkð ÞGR q0jk0ð Þ� �

G
R q0jk0ð ÞGR qjkð Þ� � ð4:196aÞ

and

C 10ð Þ q; kjq0; k0ð Þ ¼ F q; kjq0; k0ð Þ G
R qjkð ÞG

R q0jk0ð Þ� �
GR q0jk0ð ÞGR qjkð Þh i ð4:196bÞ

where

F q; kjq0; k0ð Þ ¼ 16
L2

x
c

� �6
cos hs cos hi cos h

0
s cos h

0
i: ð4:196cÞ

The resulting decoupled expressions for Cðq; kjq0; k0Þ only involve averages of
two particle Green’s functions of the form GGh i and GGh i. These remaining two
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particle Green’s functions are subsequently evaluated using the same methods
employed to treat the diffuse scattering from the thin film in an earlier discussion.

In terms of a diagrammatic representation, the processes entering into (4.195)
and (4.196) are represented as in Fig. 4.18. In particular, the processes in (4.196a)
for the Cð1Þðq; kjq0; k0Þ terms are shown in Fig. 4.18a, and the processes in (4.196b)
for the Cð10Þðq; kjq0; k0Þ terms are shown in Fig. 4.18b. The two different and dis-
tinct contributions are seen to be separated processes in the diagrammatic repre-
sentation of the terms entering the correlation functions of light scattering. It should
be noted that the diagrams listed are those used in the Hartree-Fock approximation
of electron systems and in magnon decoupling.

Fig. 4.18 a Diagrammatic representation of the memory effect term, Cð1Þðq; kjq0; k0Þ, given in
(4.196a). b Diagrammatic representation of the term in (4.196b) denoted Cð10Þðq; kjq0; k0Þ.
c Definitions of the diagrammatic features representing the Green’s functions, the complex
conjugate Green’s functions, and the irreducible vertex functions occurring in the diagrammatic
representation of the terms entering into the correlation function Cðq; kjq0; k0Þ [20, 21].
Reproduced with permission from [20]. Copyright 1998 Elsevier
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In Fig. 4.18 the solid horizontal lines, as per the figure captions, represent
Green’s function propagators and their complex conjugates. The vertical lines
represent the scattering interactions of the Green’s functions with the surface
roughness.

In the case of the solid vertical lines the scatterings represent a summation of an
infinite series of single and multiple irreducible scattering effects. Some of these
multiple scattering terms contain phase coherent processes arising from weak
localization effects. These weak localization processes manifest themselves in sharp
peaks in the correlation function as a function of wave vector and are related to the
nature of the wave functions of the localized surface electromagnetic waves. As
seen from Fig. 4.18 the weak localization effects are only present in the
Cð1Þðq; kjq0; k0Þ contribution to Cðq; kjq0; k0Þ.

The dashed vertical lines represent correlated single scattering processes where
the correlation comes from the correlation of the surface profile functions of the
rough surface. These processes are the sole contribution to Cð10Þðq; kjq0; k0Þ as it
contributes to Cðq; kjq0; k0Þ. Consequently, there are no sharp peaks related to
surface wave localization in the Cð10Þðq; kjq0; k0Þ term, and it is generally found to
be a smoothly varying function of the various wave vectors [20, 21].

Weak Localization
To understand the origin and nature of the weak localization effects and the en-
hancements in the speckle correlation function related to them, a brief review of the
two-particle Green’s function for the propagation of surface plasmon-polaritons
along the rough surface of the thin film is necessary. For more detailed discussions
the reader is referred to the subsection on diffuse transmission and reflection from
the rough thin film. Following the review a presentation of numerical results for
(4.194) applied to a silver film is given.

The important localization effect terms in the correlation function in (4.194) and
(4.196a) involve diffuse scattering processes contained within the two-particle
Green’s functions of the form

G
RðqjkÞGRðq0jk0Þ

� �
: ð4:197Þ

For weak scattering these Green’s functions are obtained within the ladder and
maximally cross diagram approximations. These were treated earlier where they
were used for the determination of the diffuse scattering of light from the thin film
[20, 21].

In the ladder and maximally crossed diagram approximation it was shown that

G
RðqjkÞGRðq0jk0Þ

� � ¼ 2pdðq� kÞ2pdðq0 � k0ÞG
RðkÞGRðk0Þ

þ 2pdðq� k � q0 þ k0ÞG
RðqÞGRðq0ÞG

RðkÞG
Rðk0ÞLðq; kjq0; k0Þ

ð4:198Þ
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where [20, 21] (Representing the solid verticle line in Fig. 4.18.)

L q; kjq0; k0ð Þ ¼ V0 q; kjq0; k0ð Þ

þ
X
0\n

fn q; q0; k; k0ð Þ
k � k0ð Þ2 þ 4D2

n

þ gn q; q0; k; k0ð Þ
qþ k0ð Þ2 þ 4D2

n

 !

þ
X

0\n\m

fn;m q; q0; k; k0ð Þ
k � k0 � Kn;m
� �2 þD2

n;m

þ gn;m q; q0; k; k0ð Þ
qþ k0 � Kn;m
� �2 þD2

n;m

 !

þ
X
0;n;m

fn;m q; q0; k; k0ð Þ
k � k0 þKn;m
� �2 þD2

n;m

þ gn;m q; q0; k; k0ð Þ
qþ k0 þKn;m
� �2 þD2

n;m

 !

ð4:199Þ

In (4.199) the scattering potential term

V0ðq; kjq0; k0Þ ¼
ffiffiffi
p

p
ar2 exp � q� kj j2

4a2

" #
� vð1ÞR ðqjkÞvð1ÞR ðq0jk0Þ; ð4:200Þ

where vRðqjkÞ, which is defined in (4.188), has been encounter earlier in the dis-
cussions for diffuse scattering and transmissions from the thin film. The surface
electromagnetic waves enter into (4.199) through the wave vectors of the forward
and backward propagating surface plasmon-polaritons, KnðxÞ, at the frequency of
the incident light, x, and the decay of these excitations in wave vector space is
characterized by Dn. In terms of these dispersion characteristics Kn;m ¼ Kn � Km

and Dn;m ¼ Dn � Dm enter into (4.199).
The scattering potential in (4.200) is a smoothly varying function of q; q0; k; k0 as

are the various factors of fn, gn, fn;m, and gn;m, and the reader is referred to the
literature for a detailed discussion of these terms. Here only an understanding of the
rapidly changing features as a function of wave vectors will be a focus. These are
the features that are of most importance in seeing the effects of surface electro-
magnetic waves on the development of correlations in the speckle pattern.

A strong wave vector dependence is introduced by the Lorentzian factor entering
the three sums on the left hand side of (4.199). These factors introduce the inter-
esting weak localization effects arising in the correlation functions from the prop-
erties of the surface electromagnetic waves that move along the thin film. The
Lorentzian peaks that are introduced into (4.199), just as in the earlier study of the
diffuse reflection and transmission of light from the thin film, have widths that are
set by the rate of decay, Dn;m, of the surfaces waves as they propagate along the
rough film. As was found in those studies these width can be quite narrow, leading
to rapid enhancement over narrow bands of wave vector space.

In (4.199) the first two sums on the right are terms for the ladder approximation
and the last two terms on the right are the maximally crossed contributions. The
ladder terms account for the usual diffusive transport properties found in disordered
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media, and the maximally crossed terms account for phase coherent processes
related to weak Anderson localization effects. As shall be seen in the later dis-
cussions of numerical results, both types of contributions account for Lorentzian
peaks enhancements over different regions of wave vector space.

Before a presentation of a numerical example, the contributions to Cðq; kjq0; k0Þ
from the Cð10Þðq; kjq0; k0Þ term is outlined. This introduces effects that are less
indicative of the properties of surface electromagnetic waves along the thin film
than those from the Cð1Þðq; kjq0; k0Þ term. Both terms, however, contribute to the
same order in the surface roughness.

The Cð10Þðq; kjq0; k0Þ term in the correlation function in (4.194) and (4.196b)
involves diffuse scattering processes contained within two-particle Green’s func-
tions of the form [20, 21]

GRðqjkÞGRðq0jk0Þh i: ð4:201Þ

An important feature of the two-particle Green’s function introduced in (4.201) is
the absence of a complex conjugate pair of Green’s functions forming the product.
This has great significance in the treatment of the scattering entering into the
Bethe-Salpeter equation for (4.201). In particular, for weak roughness, the maxi-
mally crossed diagrams no longer give significant contributions. Consequently, to
obtain a good weak scattering result, one can deal mainly with the lowest terms of
the ladder approximation for the surface scattering.

In the weak roughness limit, it is then shown that [20, 21]

GR qjkð ÞGR q0jk0ð Þh i ¼ 2pd q� kð Þ2pd q� k0ð ÞGR kð ÞGR k0ð Þ
þ 2pd q� kþ q0 � k0ð ÞGR qð ÞGR q0ð ÞGR kð ÞGR k0ð ÞU q; kjq0; k0ð Þ ð4:202Þ

where (representing the dashed verticle lines in Fig. 4.18.)

Uðq; kjq0jk0Þ ¼ ffiffiffi
p

p
ar2 exp � q� kj j2

4a2

" #
� vð1ÞR ðqjkÞvð1ÞR ðq0jk0Þ ð4:203Þ

and vð1ÞR ðqjkÞ is from (4.188).
Combining the above results in (4.196)–(4.203) for the Cð1Þðq; kjq0; k0Þ and

Cð10Þðq; kjq0; k0Þ contributions to Cðq; kjq0; k0Þ as indicated in (4.194), it follows that

Cð1Þðq; kjq0; k0Þ ¼ Fðq; kjq0; k0ÞDð1Þðq; kjq0; k0Þ; ð4:204aÞ

Cð10Þðq; kjq0; k0Þ ¼ Fðq; kjq0; k0ÞDð10Þðq; kjq0; k0Þ; ð4:204bÞ
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where

Dð1Þðq; kjq0; k0Þ ffi L G0ðqÞG0ðq0ÞG0ðkÞG0ðk0Þj j2
� fLðq; kjq0; k0ÞLðq0; k0jq; kÞg2pdðq� k � q0 þ k0Þ ð4:205aÞ

and

Dð10Þðq; kjq0; k0Þ ffi L G0ðqÞG0ðq0ÞG0ðkÞG0ðk0Þj j2
� fUðq; kjq0; k0ÞUðq0; k0jq; kÞg2pdðq� kþ q0 � k0Þ: ð4:205bÞ

These represent the dominant terms in the weak surface roughness which are now
evaluated for a numerical example.

A simplified notation can be introduced to aid in the presentation of numerical
results for the contributions to the correlation functions. This is done in (4.204) and
(4.205) by extracting the delta-function factors involving the wave vectors and
displaying them explicitly in the contributions to the correlation function. Making
this separation it follows that [20, 21]

Cð1Þðq; kjq0; k0Þ ¼ 2pdðq� k � q0 þ k0ÞCð1Þ
0 ðq; kjq0; k0Þ ð4:206Þ

and

Cð10Þðq; kjq0; k0Þ ¼ 2pdðq� kþ q0 � k0ÞCð10Þ
0 ðq; kjq0; k0Þ: ð4:207Þ

The two functions are readily seen to be composed of an envelope function which is
restricted in phase space by a delta-function condition on its wave vector compo-
nents entering the scattering geometry. In the following, discussions will be made
regarding the properties of the envelopment modulating the delta-functions.

Illustrative Example
The Cðq; kjq0; k0Þ correlation function in the approximation of (4.194) and (4.204)–
(4.207) has been evaluated for a specific realization of the thin film model of
Fig. 4.17. In this evaluation, light of wavelength k ¼ 4579 Å is incident on a silver
film, and the dielectric constant of silver at this wavelength is found to be given by
eðxÞ ¼ �7:5þ i0:24. For the numerical results the film has been taken with a mean
thickness of 350 Å and the Gaussian random surface roughness is characterized by
the parameters a ¼ 1000 Å and r ¼ 50Å. This is similar to the thin film
parameters used in the earlier discussions of the diffuse reflection and transmission,
and the small mean thickness allows for a diffuse transmission which exhibits its
own speckle correlation function in addition to the speckle correlation function of
the diffusely reflected light [20, 21].

In Fig. 4.19 a plot is presented of the LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ and

LCð10Þ
0 ðq; kjq0; q� kþ q0Þ terms for the light reflected from the thin film. Here L is

the length of the rough surface and conditions have been set on the four wave
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vectors so that the delta-functions are always non-zero, i.e., 2pdðq� k � q0 þ k0Þ ¼
L and 2pdðq� kþ q0 � k0Þ ¼ L, respectively. This is used to reduce the wave
vectors from the four ðq; k; q0; k0Þ independent variables to three independent
variables q, k, and q0. Consequently, the plots are only over the set of q, k, and q0 for
which the envelops of Cð1Þ and Cð10Þ are nonzero [20, 21].

In particular, from Fig. 4.17 the wave vector components parallel to the mean
interfaces of the thin film are written in the forms [20, 21]

q ¼ x
c
sinðhsÞ; ð4:208aÞ

k ¼ x
c
sinðhiÞ; ð4:208bÞ

q0 ¼ x
c
sinðh0sÞ; ð4:208cÞ

Fig. 4.19 Plots of LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ (solid line) and LCð10Þ

0 ðq; kjq0; q0 þ k � qÞ (dashed
line) as a function of h0s for fixed hs ¼ �10� and hi ¼ 20�. The angle h0i is set for

LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ by the condition that q� k � q0 þ k0 ¼ 0 and for LCð10Þ

0 ðq; kjq0; q�
kþ q0Þ by the condition that q� kþ q0 � k0 ¼ 0 [20, 21]. Reproduced with permission from [20].
Copyright 1989 Elsevier
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and

k0 ¼ x
c
sinðh0iÞ: ð4:208dÞ

These expressions relate the ðq; k; q0; k0Þ wave vector components to their associated
angles ðhs; hi; h0s; h0iÞ used in the presentation of the plotted data in Fig. 4.19.

For the plots in Fig. 4.19 [20, 21] the angles hs ¼ �10� and hi ¼ 20� are fixed
and the correlation functions are presented as a function of h0s. The solid line results

are for LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ and the dashed lined results are for

LCð10Þ
0 ðq; kjq0; q� kþ q0Þ. The plots for both contributions to the correlation func-

tion have a general smoothly varying component, but the LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ

contribution has an addition structure consisting of some sharp peaks as a function of
h0s.

Two large peaks are found in LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ at h0s ¼ �10� and

h0s ¼ �20�. These arise from the phase coherent Lorentzian processes found in
(4.199) and are referred to, respectively, as the memory and time-reversed memory
effects. The memory effect is observed to occur for h0s ¼ hs ¼ �10� and the
time-reversed memory effect for h0s ¼ �hi ¼ �20�. Both of these features originate
in the multiple scattering effects of the surface electromagnetic waves along the
interface of the thin film, and their widths are related to the lifetime for surface wave
propagation along the thin film. The remaining smaller satellite peaks located on

LCð1Þ
0 ðq; kjq0; q0 þ k � qÞ come from higher order processes along the rough sur-

faces, and for a complete discussion of these the reader is referred to the literature.
A similar study can be made for the speckle correlation function of the light

diffusely transmitted through the thin film. These results are now briefly outlined.
From Fig. 4.17 the wave vector components parallel to the mean interfaces of

the thin film for diffuse transmission are written in the forms

qt ¼ x
c
sinðhtÞ; ð4:209aÞ

q0t ¼
x
c
sinðh0tÞ ð4:209bÞ

where (4.208b) and (4.208d) again represent the incident plane wave components
parallel to the mean surfaces of the thin film. With these wave vectors for the
diffusely transmitted waves, the correlation function of the transmitted diffuse
scattering is defined for the transmitted fields in a similar fashion to that for the
reflected speckle in (4.194). The diffuse scattering again can be written in terms of
the averages of Green’s functions for the motion of surface electromagnetic waves
along the rough surface of the thin film. Following from this reformulation, the
leading order terms of the correlations of the diffuse transmission can then be
evaluated just as in the case of the reflected scattered fields.
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In particular, to leading order the speckle correlation function of the diffuse
transmitted waves has the form [20, 21]

CTðq; kjq0; k0Þ ¼ CTð1Þðq; kjq0; k0Þ þCTð10Þðq; kjq0; k0Þ ð4:210Þ

where

CTð1Þðq; kjq0; k0Þ ¼ 2pdðq� k � q0 þ k0ÞCTð1Þ
0 ðq; kjq0; k0Þ ð4:211aÞ

is a term containing the phase coherent multiple scattering contributions to the
speckle correlation function and

CTð10Þðq; kjq0; k0Þ ¼ 2pdðq� kþ q0 � k0ÞCTð10Þ
0 ðq; kjq0; k0Þ ð4:211bÞ

has no interesting phase coherent processes. This is the analogue of the correlation
function in (4.194) for the diffusely reflected light. The diagrammatic processes
entering into CTð1Þðq; kjq0; k0Þ are similar to those contributing to Cð1Þðq; kjq0; k0Þ,
while the processes entering into CTð10Þðq; kjq0; k0Þ are similar to those contributing
to Cð10Þðq; kjq0; k0Þ. Both terms have the distinctive form of delta-function condi-
tions on the scattering wave vectors multiplying an envelope function. The focus in
the following will be on the envelope functions.

In Fig. 4.20 results [20, 21] are presented for LCTð1Þ
0 ðq; kjq0; k0Þ (solid line) and

LCTð10Þ
0 ðq; kjq0; k0Þ (dashed line) plotted as a function of h0t for fixed values of

ht ¼ �10� and hi ¼ 20�. The thin film geometry is the same silver film as that for

the plots of LCð1Þ
0 ðq; kjq0; k0Þ and LCð10Þ

0 ðq; kjq0; k0Þ in Fig. 4.19. As in Fig. 4.19 the
light is of wavelength k ¼ 4579 Å.

As with the correlation function results in Fig. 4.19, the result in Fig. 4.20 for

the LCTð1Þ
0 ðq; kjq0; k0Þ contribution to the correlation functions exhibits a series of

sharp peaks while the LCTð10Þ
0 ðq; kjq0; k0Þ contribution is a smooth function of h0t.

The two large peaks in LCTð1Þ
0 ðq; kjq0; k0Þ at h0t ¼ �10� and h0t ¼ �20� are,

respectively, the memory and time-reverse memory effects. Both of these peaks
arise from the phase coherent propagation of surface electromagnetic waves along
the rough surfaces of the thin film and represent multiple scattering effects from the
interaction of light with the thin film. The memory effect is observed to occur for
h0t ¼ ht ¼ �10� and the time-reversed memory effect for h0t ¼ �hi ¼ �20�.

Higher order satellite peaks which are smaller in amplitude than the memory and

time-reversed memory peaks are also observed in LCTð1Þ
0 ðq; kjq0; k0Þ plotted in

Fig. 4.20. These come from processes involving the dispersion of two different
surface electromagnetic modes along the interface, and the reader is referred to the

literature for a discussion of these process. As with the LCð10Þ
0 ðq; kjq0; k0Þ contri-

bution to the correlation function of the reflected light, the LCTð10Þ
0 ðq; kjq0; k0Þ term

in the diffuse transmitted light has none of the interesting phase coherent properties
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found in the LCTð1Þ
0 ðq; kjq0; k0Þ terms. This is due to the weak roughness and the

absence of phase coherence in the multiple scattering process involved in

CTð10Þ
0 ðq; kjq0; k0Þ.
Due to the delta-function factor, 2pdðq� k � q0 þ k0Þ and 2pdðq� kþ q0 � k0Þ,

in (4.194)–(4.196) and in (4.210)–(4.211), the leading order processes that have just
been discussed have been defined over a very restricted region of phase space.
Consequently, the Cð1Þ and Cð10Þ terms of the speckle correlation function are often
referred to as short range contributions. In addition to these terms there are various
long range and infinite range contributions to the multiple scattering correlations of
the speckle correlator. These contributions enter as additive terms to the speckle
correlation functions, and the nature of these additional terms entering the speckle
correlation function will now be discussed [20, 21].

The Long Range Contribution to the Speckle Correlation Function
In the following a brief presentation of the nature of the longer range contributions
to the speckle correlation function is made. To facilitate the presentation only the

Fig. 4.20 Plots of LCTð1Þ
0 ðq; kjq0; q0 þ k � qÞ (solid line) and LCTð10Þ

0 ðq; kjq0; q0 þ k � qÞ (dashed
line) as a function of h0t for fixed ht ¼ �10� and hi ¼ 20�. The angle h0i is set for

LCTð1Þ
0 ðq; kjq0; q0 þ k � qÞ by the condition that q� k � q0 þ k0 ¼ 0 and for LCTð10Þ

0 ðq; kjq0; q�
kþ q0Þ by the condition that q� kþ q0 � k0 ¼ 0. The conditions on the geometry of the thin film
and the wavelength characteristics of the incident light are the same as in Fig. 4.19. The film is a
silver film with the same dielectric properties as in Fig. 4.19 [20, 21]. Reproduced with permission
from [20]. Copyright 1998 Elseviers
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Fig. 4.21 Plots of:
a Cð1:5Þðq; kjq0; k0Þ,
b Cð2Þðq; kjq0; k0Þ, and
c Cð3Þðq; kjq0; k0Þ as a function
of h0s for fixed hs ¼ �10�,
hi ¼ 20�, and h0i ¼ 30�. The
film parameters and
wavelength of light are as in
Figs. 4.19 and 4.20 [20, 21].
Reproduced with permission
from [20]. Copyright 1998
Elsevier
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correlations in the reflected light are treated, and the reader is referred to the
literature for a treatment of these correlations in the transmitted light.

Other contributions in addition to the Cð1Þ and Cð10Þ terms that enter additively
into the speckle correlation function of the diffusely reflected light are the long
range terms denoted Cð1:5Þ and Cð2Þ and an infinite range term denoted Cð3Þ. Each of
these new components enters at a characteristic order of the perturbation sequence
in the surface profile function, and unlike the Cð1Þ and Cð10Þ terms these terms give
non-zero contributions for general values of ðq; k; q0; k0Þ wave vectors [20, 21].

In particular, the Cð1:5Þ and Cð2Þ components enter at orders n6ðx1Þ and n8ðx1Þ,
respectively, while Cð3Þ

first enters at order n12ðx1Þ. Both the Cð1:5Þ and Cð2Þ

components are found to exhibit sharp peaks in their wave vector dependence
arising from the excitation of surface electromagnetic waves. This, however, is not
the case with the Cð3Þ components which are generally smooth, nearly constant,
functions of the wave vector variables. This accounts for their consideration as
infinite ranged.

All of the processes forming the Cð1:5Þ, Cð2Þ, and Cð3Þ components can be easily
represented diagrammatically. However, since the number of diagrams entering into
the accounting for these terms in quite large, the reader is referred to the literature
for a detailed listing of them [20, 21].

In Fig. 4.21 some numerical results are presented for the Cð1:5Þ, Cð2Þ, and Cð3Þ

components of the speckle correlation functions, considered for the same system
studied in Figs. 4.19 and 4.20 and for the same incident wavelength of light. For
these plots the angles hs ¼ �10�, hi ¼ 20�, and h0i ¼ 30� are fixed. (Notice that in
Figs. 4.19 and 4.20 only two angles where fixed as the third was then set by the
delta-function conditions on the wave vectors. The greater range of wave vectors
over which the Cð1:5Þ, Cð2Þ, and Cð3Þ components are non-zero requires the third
angle be set in order to make a simple plotting of these functions.)

In Fig. 4.21a a plot is presented of Cð1:5Þðq; kjq0; k0Þ versus h0s. A number of sharp
peaks are observed which find their origins in the excitation of surface electro-
magnetic waves along the thin film. The widths of the peaks are related to the
lifetimes of the surface waves along the rough interfaces of the thin film. In
Fig. 4.21b a similar plot of Cð2Þðq; kjq0; k0Þ versus h0s is presented. Again the sharp
peaks are related to the excitations of surface electromagnetic waves and the widths
of the peaks arise from the lifetime of the surface waves along the thin film [20, 21].

Unlike the plots in Fig. 4.21a, b, the plot in Fig. 4.21c of Cð3Þðq; kjq0; k0Þ versus
h0s is smoothly varying and near a constant. The effects of surface electromagnetic
waves are not directly evident from this contribution to the speckle correlation
function [20, 21].

The preceding results are interesting as they demonstrate that there are detailed
features of the statistics of the speckle of light scattering from rough surfaces and
thin film. The speckle from a surface contains important components directly
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related to the surface electromagnetic waves excited on the surface. Consequently,
the nuances of the speckle statistics are affected by the details of the electrody-
namics of the surfaces reflecting and/or transmitting the diffusely scattered light.

4.3 Some Application of Plasmon-Polaritons

Plasmon-polaritons have a long history in the study of optical phenomena and form
the basis of a number of important technological applications [29–63]. In this final
section some of the recent applications of plasmon-polaritons will be described.

First the long studied technique of surface enhanced Raman Spectroscopy will
be briefly reviewed [29–40]. This is one of the older applications of surface elec-
tromagnetic waves in technology and has been developed into an important labo-
ratory tool. It involves using the large surface fields generated when surface
electromagnetic waves are excited on interfaces to enhance the spectroscopic
measurement for molecules deposited on the interface. This enhanced spectroscopy
arises in part from the increased interaction of the fields at the surface with the
molecules deposited on them.

More recently, important advances have also been made in the use of
plasmon-polaritons for subwavelength light-guiding, in the design of plasmonic
circuitry applications, and in the enhanced transmission of light by films and
metamaterials [41–63]. These developments are a new class of applications that are
in the process of formulation. The ideas involved in these technologies will also
briefly be reviewed here.

4.3.1 Surface Enhanced Raman Spectroscopy

An important application of surface electromagnetic waves is in surface enhanced
Raman spectroscopy (SERS) [29–40]. This is a spectroscopic technique applied to
molecules that are adsorbed on surfaces supporting surface electromagnetic waves.
It is used to study the inelastic scattering arising from the interaction of incident
light with the molecules on the surface and from their binding with the surface. The
surfaces in these studies are generally rough or formed with a layer of particulates,
and a necessary feature is that resonances of the plasmon-polariton exist near the
frequency at which the spectroscopic measurements are to be performed.

In addition, the surfaces must exhibit a mechanism by which the incident light
used to perform the spectroscopy is coupled to the surface electromagnetic waves.
This provides for the excitations of surface wave fields by the incident light.
Common materials used in the design of surfaces for SERS are silver and gold, but
the effect is found generally to a greater or lesser extent on any type of material
providing for surface electromagnetic waves. For many applications, however, gold
and silver are a preference as these exhibit good plasmon resonances in the range
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400–1000 nm of the visible and near infrared. Aluminum has been used for studies
in the ultra-violet [29, 34, 35, 38, 39].

The SERS has a great potential as a technique that extends the range in which
Raman spectroscopy can be applied to the consideration of weakly dilute samples
and trace analysis. In this regards it can be of importance in the design of sensors or
detectors. Areas that have employed SERS are in biochemistry, food safety, threat
detection, forensics, medical diagnostics, bacteria detection, and the study of cel-
lular materials [29–33, 36]. It can be sensitive to the presence of materials on the
order of single molecules [29–40].

In the development of the spectroscopy of the adsorbed molecules, the function of
the surface is to allow the excitation of surface plasmon-polaritons at the frequency
of the incident light so as to concentrate light at the frequency of the incident wave
on the surface adsorbed molecule. The concentrated field of the surface waves then,
through their interaction with the molecules, increases the molecular signal gener-
ated by the adsorbed molecules over the signal generated in the absence of the
surface waves.

The surface plasmon-polaritons excited by the incident fields develop a con-
centrated surface plasmon-polariton field intensity at the interface between the two
media which is much larger than that of the incident wave alone. This concentrated
field intensity was demonstrated in the earlier discussions of the properties of
surface plasmon-polaritons excited along the interface. There it was shown that
surface electromagnetic waves exhibit a peak intensity at the position of the
interface between two media and that the fields decay exponentially with the
separation distance from the interface [29].

The signals generated in the light scattered from a molecule have intensities that
depend on the intensity of the light of the frequency of the incident spectroscopic
wave at the position of the molecule. This includes both the incident field and the
plasmon-polariton that it excites on the surface. The field amplitude of the light
radiated by the molecule is then proportional to the field amplitude at the site of the
molecule generating the molecular response [29, 34, 38, 39].

In addition, the light generated during the Raman processes can also excite its
own plasmon-polariton at the frequencies of the inelastically scattered wave. This
leads to a further enhancement of the inelastic fields observed. Taking all of the
amplification factors into account, the intensity of the signal generated is the square
of the amplitude of the total inelastically radiated fields. This intensity is in turn
proportional to the square of the intensity of the total spectroscopic fields of the
incident and plasmon-polariton waves at the position of the molecule as well the
amplification factors from the generation of the inelastic fields and their excited
plasmon-polaritons [29, 34, 38, 39].

As a result of its dependence on the square of the field amplitudes and their
amplification factors, large enhancements in the intensity of the Raman signal can
be achieved with the presence of the plasmon-polariton resonance. In some
instances Raman spectroscopy can even be performed on a single adsorbed
molecule, and, for general surface coverages, enhancements of the Raman
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scattering peaks that are of order 104 � 106 have been observed over those obtained
using standard techniques in the absence of surface electromagnetic waves. Claims
of enhancements to 1012 have been made [29, 34, 38, 39].

Due to molecular distortions and the geometric properties of the molecule itself
as it is added onto the surface, symmetry considerations involving the
molecule-surface adsorption enter into the spectroscopy of the modes observed.
Some Raman modes found in the spectroscopy of molecules in the absence of the
surface may be absent when the surface is present while other modes of the
molecule are enhanced. In addition, the irregularity of the surface roughness can
enter into the surface spectroscopy. Due to the non-uniformity of the surface, it may
develop so-called hotspots in which the Raman modes display more enhancement
than in other portions of the surface [29–40].

Originally it was thought that the enhanced area of a rough surface was the factor
responsible for the enhancement of the Raman spectroscopy lines [29]. More
molecules could be presented in a given region of the mean scattering plane than for
a flat surface, but this has been shown not to be the prime factor in the enhance-
ment. It is now generally agreed that the enhanced fields arising from surface
plasmon-polaritons are a great contributing factor to SERS. In addition, certain
chemical effects related to the surface adsorption may be in play.

To understand the nature of SERS and it basic mechanisms, in the following first
a simple treatment of the elastic scattering of light will be given. This is followed by
an elementary general discussion of the inelastic scattering processes of light known
as Raman scattering and their relationships to the elastic processes also occurring at
the surface. The treatment is very much simplified and employs a classical model
involving classical electrodynamics. Following the discussions of the basic Raman
mechanisms the effects of surface enhancement will be discussed along with an
example of the effect. For a detailed quantum mechanical treatment the reader is
referred to [28, 29, 34, 40].

Simple Model of Elastic Scattering
The elastic scattering of light from a molecule can be roughly understood by
considering a highly simplified model. The basics of the model were put forward by
considerations of the molecular polarizability made by Drude in the early twentieth
century. Later these considerations were developed into a treatment of elastic
scattering from molecules by Rayleigh and Thomson.

In the following version of Drude’s model the molecule is considered as com-
posed as an electron bound to an harmonic oscillator site. The model can be easily
extended to treat multiple electrons at different frequencies of oscillation about the
binding site, but the basic features of the response of the system are contained in the
one electron system and are easily generalized to consider higher numbers of
electrons.

In a simplistic Drude approach the equation of motion, for a single harmonically
bound classical electron interacting with an external electromagnetic field, is given
by
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m €xþ c€xþx2
0x

� � ¼ �eEðtÞ: ð4:212Þ

Here x is the displacement of the electron from equilibrium, x0 is the frequency of
the harmonic motion of the electron upon its displacement from equilibrium, m is
the effective mass of the electron, and the term involving c represents energy
dissipated to the environment by the atom through various statistical mechanical
processes. In addition, the electric field E(t) driving the electron motion is taken to
be parallel to the electron displacement and represents an interaction from the total
fields at the frequency of the incident wave. For the considerations of the elastic
scattering given here, only radiation at frequencies of interest to Raman spec-
troscopy are treated.

For the frequencies of interest in typical Raman spectroscopy studies the electric
field interacting with the molecule may be taken to be independent of the spatial
coordinates. This follows as the wavelength of the incident radiation is much
greater than the size of the molecules with which it interacts. At these same fre-
quencies of light the magnetic components of the Lorentz force on the electron are
ignored in (4.212). The forces of magnetic origin in general are small for appli-
cations of Raman scattering.

The electric field of an incident wave of frequency x is then represented by
EðtÞ ¼ E0e�ixt and generates a response from (4.212) of the form xðtÞ ¼ x0e�ixt.
Upon substitution of these two expressions for the field and electron displacement
from equilibrium into (4.212) it follows that they are related by

m �x2 � icxþx2
0

� �
x ¼ �eEðtÞ: ð4:213Þ

Considering the case of the single electron, its polarization is then described by

p ¼ �ex ¼ e2

m
1

x2
0 � x2 � ixc

E: ð4:214Þ

This is the Drude polarization result in the simple single electron limit.
The expression in (4.214) for the single electron polarization has the standard

form of a Lorentzian resonance about the frequency, x0, of the electron oscillation,
and the necessary damping term c is seen to limit the singularity of the Lorentzian at
the resonance frequency. The expressions in (4.213) and (4.214) represent the basic
processes involved in the elastic scattering of light from the molecule, though for
quantitative accuracy a quantum mechanical treatment is required along with
extending the considerations to the case of molecules involving many electrons.

The classical model, however, can be easily extended to consider many elec-
trons. Adding electrons to the treatment just results in a response that is a sum over
Lorentzian resonances representing the oscillation frequencies of each of the sep-
arate electrons.

The generalization to molecules with many electrons is briefly mentioned next,
followed by finishing the considerations of the elastic scattering from the single
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electron model. In the discussions of the total scattering from the molecule, first the
elastic component of the scattering will be discussed. This is followed by discus-
sions of the Raman scattering which is inelastic in nature and the modification of
the (4.213) and (4.214) needed to understand Raman scattering. It will be seen that
the Raman scattering frequency peaks are closely related to the elastic scattering
peaks being treated here.

When generalized to treat N molecules per volume each of which consists of
Z electrons, the electric polarization vector is

P ¼ Ne2

m

XZ
j¼1

fj
1

x2
j � x2 � ixcj

E: ð4:215Þ

Here xj is the frequency of the harmonic oscillator of the jth electron, cj is the rate
of decay of the jth electron, and fj is the degeneracy of the state of the jth electron.
As mentioned earlier, the polarization is found to be composed of a sum of reso-
nances occurring at the frequencies of the harmonic displacements of the electrons
in the molecule. From (4.215) the dielectric constant representing the electron
response of the system of molecules is then given by

eðxÞ ¼ 1þ 4p
Ne2

m

XZ
j¼1

fj
1

x2
j � x2 � ixcj

: ð4:216Þ

The properties of the many electron systems in (4.215) and (4.216) essentially
display the basic features of the single electron system with the added treatment of
multiple resonance frequencies existent in the model. The proceeding discussions
will focus on the single electron system, presenting discussions of the elastic and
then the Raman scattering of light from the single electron system.

Radiation from the Molecular Electron: Elastic Scattering
During the interaction of the electron with the incident fields, as described in
(4.212), the electron undergoes an acceleration described by

€x ¼ e
m

x2

x2
0 � x2 � ixc

E tð Þ: ð4:217Þ

In general, this motion is non-relativistic so that the power radiated by the accel-
erating charge is related by the Larmor formula

dU
dt

¼ 2e2

3c3
€xj j2 : ð4:218Þ

Combining (4.217) and (4.218) then represents the elastically scattered radiation
from the electron bound in the molecule.
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In particular, in (4.218) dU
dt is the rate of energy loss of an accelerating electron

through radiation damping and c is the speed of light. From (4.217) and (4.218) it
follows that the rate of energy radiated by the electron as it is driven by the incident
field is

dUr

dt
¼ 2e2

3c3
e
m

� �2 x4

x2 � x2
0

� �2 þ c2x2
E2
0 : ð4:219Þ

In this approximation, the total scattering cross section of the molecule inter-
acting with the incident field is obtained by comparing the radiated power to the
power flux of the incident plane wave as it interacts with the molecule. The average
flux of the incident fields is then computed as the Poynting vector. For the incident
fields, this has the form

S ¼ c
4p

E2
0 : ð4:220Þ

Consequently, in terms of the scattered and incident fluxes the total elastic scat-
tering cross section of the radiation incident on the single molecule is obtained as
the ratio of (4.219) and (4.220) so that

rTotal ¼
dUr
dt

S
: ð4:221Þ

Following a little algebra it is found that

rTotal ¼ 8pe4

3m2c4
x4

x2 � x2
0

� �2 þ c2x2
: ð4:222Þ

This represents the total of the elastic diffusely scattered radiation from the mole-
cule at general frequencies of the incident light.

Two limits of the elastic scattering that are important are Rayleigh scattering and
Thomson scattering. In the limit of Rayleigh scattering the frequency of the incident
radiation and the rate of atomic damping obey x,c � x0. This is the case of elastic
scattering from a strongly bound electron so that from (4.222) the Rayleigh limit
becomes

rRayleigh ¼ 8pe4

3m2c4
x4

x4
0
: ð4:223Þ

The cross section exhibits the famous x4 scattering relation that among a variety of
scattering effects is responsible for the blue coloration of the sky.

The other famous limit of (4.222) is that of Thomson scattering. This is the
opposite limit to that of the Rayleigh limit. In this case x0; c ! 0 so that the
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electron is considered to be free, unbound, and experiencing no dissipative losses.
From (4.222) it follows that the total cross section approaches a constant given by

rT hom son ¼ 8pe4

3m2c4
: ð4:224Þ

This is the non-relativistic limit of scattering from electrons and its relativistic
counterpart is Compton scattering.

The elastic scattering that is of most interest in Raman scattering is from
Rayleigh scattering. This follows as the frequencies of the incident light in most
Raman experiments are generally chosen to be much less that x0. Consequently, in
general, the inelastic scattering known as Raman scattering is found at side band
frequencies to the frequency of elastic scattering of the scattered light generated in
the molecular sample by an incident plane wave of light. The Raman side bands are
much weaker than the elastic scattering bands as they arise from perturbations of the
equilibrium structure of the materials arising from the excitation of elementary
interactions in the system.

Raman (Inelastic) Scattering
The Raman interactions leading to the excitation or absorption of elementary
excitations are weak scattering processes. Processes involving the creation or
destruction of single excitations are of small probabilities, and processes involving
the creation and destruction of more than one elementary excitations are accord-
ingly even less probable. While processes involving single excitations lead to
frequency peaks in the inelastic scattering cross section, multiple excitation pro-
cesses tend to be broad distributions in frequency [29–39].

A large variety of elementary excitations can be involved in generating the
Raman effect. In this regard, processes involved in the inelastic scattering observed
in Raman scattering can arise from the creation or absorption of more than one type
of elementary excitations in the scattering medium. In the case that phonons are
involved in the inelastic processes the scattering is often referred to as Brillouin
scattering, but the excitations created may also be from a variety of electronic,
plasmon, and polariton modes that may be present in the large variety of materials
that are studied for their inelastic processes.

Due to the weak cross sections of Raman inelastic processes they can be sep-
arated into two different types. First order Raman processes involve a single ele-
mentary excitation, while second and higher order processes involve multiple sets
of elementary excitations.

First Order Processes
First order Raman scattering involves the creation or destruction of a single ele-
mentary excitation in the scattering medium. The selection rules for these processes
are that the energy or frequencies of the light and elementary excitations are con-
served as well as their momenta. Specifically,
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x0 ¼ x� X ð4:225aÞ

where x0;x; and X are, respectively, the frequencies of the Raman scattered light,
the incident light, and the elementary excitation. In the case of the momenta con-
servations it follows that

~k0 ¼~k � ~K ð4:225bÞ

where ~k0;~k; and ~K are, respectively, the wave vectors of the Raman scattered light,
the incident light, and the elementary excitation. Here the upper signs in (4.225) are
for the absorption of an elementary excitation and the lower sign is for the creation
of an elementary excitation.

The conservation relationships in (4.225) and the basic idea of Raman inelastic
processes itself can be easily obtained from considerations of the polarization
response of a molecule to an applied electric field and the interaction of the
molecular polarization with elementary excitations in the system. In the following a
brief sketch is given of such an approach based on simple considerations. These
discussions provide a rough theory that underlines some of the basic principles of
the Raman effect. A completely correct treatment, however, requires quantum
mechanics and the details of the crystal structure of the system being studied.
Following these discussions, the role of surface plasmons in surface enhanced
Raman spectroscopy will be discussed and some examples provided as an
illustration.

In terms of the molecular polarizability,a, the dipole moment of a molecule in
response to the applied electromagnetic field is

~p ¼ a~Eapplied : ð4:226Þ

This provides the response of the molecule in terms of the molecular polarizability
which in turn is affected by the environment of the molecule within the medium it is
located. The molecular environment contains various types of elementary excita-
tions which then influence the molecular polarizability and show up in the Raman
spectroscopy.

If an elementary excitation of the scattering medium interacts with the molecules
forming the Raman media, its effect on the polarizability can be described by
introducing a generalized coordinate u for the amplitude of the interaction of the
excitation with the molecule. The molecular polarizability is then a function of the
amplitude, u. In this interaction, it is reasonable to assume that the polarizability can
be expanded as a Taylor series in u. It then follows that in terms of the generalized
coordinate

a ¼ a0 þ a1uþ a2u
2 þ � � � : ð4:227Þ
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The forms in (4.226) and (4.227) are over simplifications as for most molecules
the molecular polarizability is a tensor and the generalized coordinate is a vector so
the (4.227) is a series involving a number of tensor terms. The basic idea of the
Raman response, however, is contained in the treatment in (4.226) and (4.227) and
will be followed throughout the discussions presented here.

If the generalized coordinate u of the elementary excitation interacting with the
molecule has a time dependence of the form

u tð Þ ¼ u0 cos Xt; ð4:228Þ

where X is the frequency of the elementary excitation, then for an applied field

E tð Þ ¼ E0e�ixt: ð4:229Þ

it follows that the molecular dipole has a complicated time dependence composed
of a number of harmonically varying terms in time. This is given by

~p ¼ a0 þ a1u0 cos Xtþ a2u
2
0 cos Xtþ � � �� �

E0e�ixt: ð4:230Þ

The dipole in (4.230) is seen to have frequency components at frequencies x,
x ± X, and x ± 2X. These correspond to elastic processes, processes involving
the creation and destruction of elementary excitations, and processes involving the
creation and destruction of two elementary excitations, respectively.

First consider the terms involving a single elementary excitation. These are
responsible for many of the important sharp frequency peak found in Raman
scattering spectra. The various first order processes acting to form the spectra can be
classified into a number of categories involved different types of inelastic transi-
tions. Each of these enter into the scattering in its own way.

Inelastic processes which involve the creation of a single elementary excitation
are known as Stokes processes and those involving the destruction of a single
elementary excitation are known as anti-Stokes processes. All of these scatterings
involve the elementary excitations that are quantized and obey Bose-Einstein
statistics. Generally, at thermal equilibrium they are found to obey the Planck
distribution. These properties are important in the following discussions.

For such a system involving first order scattering processes, if the system is
initially in thermal equilibrium the intensities of the Stokes and anti-Stokes lines in
Raman scattering satisfy the relation

I xþXð Þ
I x� Xð Þ ¼ exp � �hx

kBT

� �
ð4:231Þ

where x is the frequency of the incident wave and I x0ð Þ is the intensity of the
Raman spectroscopy line at frequency x0. It is important to note, however, that in
the case of SERS the relation in (4.231) may be modified by the processes involved
in the resonant excitation of surface plasmon-polariton waves. In general, however,
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it is seen that at low temperature the anti-Stokes lines are frozen out and the Raman
spectroscopy is dominated by the Stokes peaks.

Higher order Raman Processes
Some inelastic processes involve the creation and destruction of two elementary
excitations or the simultaneous creation and destruction of elementary excitations.
These processes enter the scattering through the third term on the right in (4.230).
The selection rules for these processes are that the energy or frequencies of the light
and elementary excitations are conserved as well as their momenta, including the
crystal momentum when applicable.

Specifically,

x0 þx� X� X0 ð4:232aÞ

where x0;x;X; and X0 are, respectively, the frequencies of the Raman scattered
light, the incident light, and the two elementary excitations. The momentum con-
servation is then given by

~k0 ¼~k � ~K � ~K 0 þ~G ð4:232bÞ

where ~k0;~k; ~K; ~K 0 are, respectively, the wave vectors of the Raman scattered light,
the incident light, and the two elementary excitation. In (4.232b) ~G is a reciprocal
lattice vector that may enter into the as the component of crystal momentum in the
case of a crystalline media or substrate.

In practice, the second order Raman affect does not manifest itself in sharp
Raman frequency peaks. This is due to the multiplicity of ways that two elementary
excitations can enter into satisfying the conservation relations in (4.232).

The earlier discussions were focused upon the basic ideas of Raman
Spectroscopy as an inelastic scattering processed based on polarizabilities of the
system. In the following it will be discussed how surface plasmons can be used to
enhance the Raman effect. This provides an important technique for many impor-
tant applications of this spectroscopy.

Mechanisms of Surface Enhanced Raman Spectroscopy
To conclude the discussion some remarks will now be made on the function of the
surface in SERS. In particular the focus will be on the role of the surface in
enhancing the fields to which the molecules are subjected. Discussions of the
chemical effects of molecular adsorption on the surfaces will not be addresses.
These considerations may be important in some instances and the interested reader
is referred to the literature for such discussions [29–40].

The surface enhancement of the Raman effect arises from the resonant interac-
tion of the molecules with surface plasmon-polariton resonances of the incoming
and outgoing radiations as they interact and are generated by the molecule,
respectively. Common types of surfaces that are used in SERS are rough surfaces or
surfaces formed from metal particulates. For a good SERS effect rough surfaces
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typically are required to have subwavelength features that range from 1 to 100 nm.
This is also the case with collections of particulates [29–40].

A Simple System for Surface Enhanced Raman Spectroscopy
A simple example of a SERS generating surface is a spherical metal particle. The
molecules that are the objects of the SERS study would be located at or near the
surfaces of the spherical particle. Since the particle is a subwavelength feature, its
response to the applied incident field is modeled as that of a spherical dielectric
interacting with a uniform electric field [29–40]. The polarization generated in a
dielectric sphere by a uniform field is known to be given by

~P ¼ 3
4p

e xð Þ � 1
e xð Þþ 2

� �
~E: ð4:233Þ

Here e(x) is the frequency dependent dielectric function of the material forming the
sphere and ~E is the applied electric field from the incident wave.

It is readily seen from (4.233) that an enhancement of the polarization occurs in
the regions of frequency for which

e xð Þ � �2: ð4:234Þ

As discussed in an earlier chapter this is the condition for the excitation of a
plasmon-polariton resonance in the sphere, and is the origin of the red coloration
found in some glasses made to contain small gold particulates. In the case of the
SERS affect, an incident field at this frequency will generate a large polarization
response in the particle which will in turn create a large field at the surface adsorbed
molecules. This polarization response is a result of the excitation of the
plasmon-polariton mode in the sphere. In the case that the inelastically generated
fields of the molecule are also at frequencies near the resonance, an enhancement of
the fields radiated at the inelastic frequency will take place. Again, this effect on the
inelastic wave is due to the plasmon-polariton excitation [29–40].

Figure 4.22a illustrates the polarization response of a spherical gold particle in a
uniform time-dependent electric field. On the scale of the spherical particle, in
general, the incident light for the Raman spectroscopy has wavelength much greater
than the diameter of the sphere. This allows for the neglect of the spatial depen-
dence of the wave and is responsible for the dipole response of the particle to the
field. The single sphere is found to generate an intense local field that would allow
the spectroscopic study of molecules adsorbed on its surface [29–40].

For many spectroscopic applications a collection of particles is used. These may
be arranged in the deposition of a colloidal film or through some other deposition
technique on a surface. In this case particles aligned parallel to the field of the
incident field may assist in the generation of large enhancement fields. The aligned
particles form an aligned set of dipoles such that the electric fields between the
dipoles undergo enhancements in the regions separating the dipoles. This is illus-
trated in Fig. 4.22b.
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In the aligned system, the polarization generated depends on the field alignment.
In asymmetric systems electromagnetic interactions between particles can result in
collective plasmon-polaritons propagating through the arrays of particles. In this
limit, the array would approach the limit of a rough surface which supports prop-
agating plasmon-polaritons similar to the rough surfaces of the earlier discussions in
this chapter. The plasmon-polariton resonance of surface electromagnetic waves
excited on a randomly rough surface are another important arrangement used in
applications of SERS.

To conclude, some experimental results of Raman spectroscopy performed on
rough Ag, Au, and Cu surfaces is presented [40]. These results illustrate the
dependence of Raman spectroscopy on surface roughness and on the composition
of the surface upon which the molecules are adsorbed.

In Fig. 4.23 experimental results are presented for poly(3-hexylthiophene) and
plyaniline-eneraldine base on various roughness of a Au supporting surface. In
Fig. 4.23a the various rough surface profiles are shown for the periodic width a and
the periodic peaks to valley height h. The figure is drawn to represent the ration a/h,
and the reader is referred to the paper [40]. The metal surfaces are made using a
deposition technique that allows for the surface profile to be modulated.

In Fig. 4.23b, c the SERS spectra are presented for (b) poly(3-hexylthiophene)
and (c) polyaniline-emeraldine base structure. The numbered curves in each plot
correlate with the number of the surface profiles in Fig. 4.23a. It is seen that as the
surface roughness is increase the intensity of the spectra generated on the surface is
found to increase significantly.

Fig. 4.22 Schematic plots of an applied electric field interaction with polarized spheres. In a a
single sphere is polarized by the external field and in b multiple aligned spheres are polarized by
the external field. The plus and minus signs indicate the polarized charge regions of the spheres
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In Fig. 4.24 SERS spectro of emeraldine base films on Ag, Au, and Cu surfaces
[40]. This offers a comparison of the spectra obtained from the excitation so surface
plasmons on the three different metal surfaces. For a more detailed discussion of the
chemistry and the detailed differences in the spectra generated on the different metal
surfaces the reader is referred to the original paper [40].

4.3.2 Subwavelength Properties in Light-Guiding, Spasers,
and Plasmonic Circuitry

In the following some important applications of the subwavelength properties of
plasmon-polaritons to technology and device designs are discussed. These include:
subwavelength properties in light-guiding [41–46], spasers [47–56], and plasmonic
circuitry [41–46].

Fig. 4.23 a Idealized change
in the metal roughness by
means of different preparation
techniques; roughness
dependence of SERS intensity
of b poly(3-hexylthiophene)
and c polyaniline-emeraldine
base structure. Spectra (1–4)
from (b) and (c) correspond to
the (1–4) roughness profiles
in (a) [40]. Reproduced with
permission from [40].
Copyright 1998 Elseviers
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The design of various types of waveguides for the steering of plasmonic exci-
tations along channels laid out on the interface between media supporting plasmons
has been a recent consideration [41–46]. In this regard, a large range of different
types of waveguide channels created on planar surfaces have been proposed and
tested to determine their effectiveness and efficiency characteristics in the trans-
mission of plasmonic signals. Problems in regard to the propagation losses for both
straight and bent waveguide channels have been found to be important components
of the considerations needed in the design of these transmission devices. From the
various waveguides that have been studied the next step has been the construction
of plasmonic circuits created by the assembly and interconnection of arrays of
conjoined waveguides.

The circuit complexity is again limited by the efficiencies of the single
waveguide designs and of the joins that are made between waveguides [41–46].
These circuits and their waveguide components all require nanoscience dimension
for their effective operation and are part of the current focus on nanoscience studies
for the miniaturization of devices available for important technological applications.

In order to read into plasmonic circuits various inputs from the outside world and
to restrict the flow of information within the plasmonic circuits, specially designed
waveguide segments have been composed to act as heat and optical sensors and as
polarization filters within the plasmonic circuitry [41–56]. These rely on the sen-
sitivity of the materials used in waveguide design to external agents such as applied

Fig. 4.24 SERS spectra of emeraldine base films of 30 nm thickness deposited on (1) Ag, (2) Au,
and (3) Cu; (4) corresponds to the SERS spectrum of a 85 nm emeraldine salt film on Ag [40].
Reproduced with permission from [40]. Copyright 1998 Elsevier
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electric fields, the presence of chemical and biological agents, and the heat and
optical interactions coming from the outside world to affect the way in which they
manipulate plasmon-polaritons.

In addition, it is found that certain physical design patterns can be introduced
into the waveguide channel components which make the waveguides sensitive to
the transmission of different polarizations of guided modes introduced into them
[41–56]. These allow for the modulation of polarized signal with plasmonic
circuits.

Another important component of plasmonic circuits involves the design of
plasmonic lasers and spasers which are used to introduce plasmonic signals into the
circuits or the design of other efficient method for coupling signals from the outside
world into the plasmonic circuitry [41–52]. These are needed to excite
plasmon-polariton modes into circuits which will then use them to perform device
operations.

A final aspect of the subwavelength interaction of light in plasmonic systems
involves the enhanced transmission of light though plasmon supporting plates.
These enhancers may be formed from a layer or plane of a single plane material or
from composite metamaterials. The planar structures are used to perform important
amplifications on optical signal which are incident on the full planar
plasmon-polariton surfaces. This last example has less to do with optical circuits
and more to do will general optical effects of materials. Consequently, it will be
discussed separately in the following treatment in this chapter.

In the following, discussions are first given of plasmonic waveguides and their
assembly into plasmonic circuits. The basic properties of waveguides and the
various geometries of waveguide design are given. The design of plasmonic lasers
for the excitation of plasmon-polariton waveguide modes are discussed and of
various couplers for the coupling of external light into the waveguide in order to
excite plasmon-polariton guided modes within waveguides. Waveguide losses and
efficiency will be considered along with restrictions on the design of full plasmonic
circuits. Routers and waveguide couplers will be explained and their use in plas-
monics discussed. The features of waveguides needed in the design of polarizers,
sensors of heat and chemical and biological agents, and waveguide modulation by
external applied fields are explained.

A. Plasmonic Waveguides and Circuits

Recently there has been a great amount of effort focused on the development of
plasmonic circuit technology. This is meant to promote plasmonics as another
approach in optoelectronic methods for the replacement of electronic components
by improvements based on optics or for improving the interfacing of optical and
electronic systems. As with all such approaches to optoelectronics, plasmonics has
its own particular set of advantages and disadvantages in attaining these objectives.

The advantages of plasmonics involves the ability to facilitate the miniaturiza-
tion of circuits and the potential to increase the speed, over that found in electronics
systems, at which signals and energy can travel in the systems intended to perform
device functions. However, a major disadvantage of plasmonics is the large decay
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rate of signals in plasmonic systems and the need to develop efficient means of
coupling signal into and out of plasmonic circuits [41–52]. The rapidly developing
field of plasmonic circuitry is currently directed to the resolution of these problems
and to the design and implementation of plasmonic devices in various fields of
engineering, physics, and biology.

A fundament basis of this is the development of plasmonic waveguides for the
transportation of plasmonic signals and energy through space [41–46]. In addition,
various devices for the modification and manipulation of plasmonic signals are
needed for the design of circuits which, similar to electronics circuits, produce
meaningful outputs from a set of input signals. Efficient means of inputting and
outputting optical signals from the plasmonic circuits as well as the development of
plasmonic lasers for the generation of optical signals within plasmonic circuits are
also required [53–56].

In the following the initial focus will be on discussions of the problems related to
the function of plasmonic waveguides and the various type of waveguide designs
considered for plasmonics. What are the advantages and problems with some of
these waveguide designs? This is followed by the treatment of circuit devices and
lasers, followed by circuit considerations and applications.

Plasmonic Waveguides
Plasmonic waveguides are in general one-dimensional features placed on or near
the interface between two media [41–46]. The interface between the two media,
along with the waveguide feature, support plasmon-polariton modes that travel
along the waveguide channel. In particular, the channel of the waveguide feature is
designed to steer the propagation of a plasmonic wave along its one-dimensional
length.

The channel of the waveguide may be formed as a composite ridge taking the
form of a strip on the surface, a surface groove, a surface edge, a nano-wire close to
or on the interface between two media, or even as one-dimensional arrays of
nano-particles on the interface of a surface [41–46]. In some instances, the guiding
channel may include two parallel stripes. As a general rule, however, all of these
channels are set to tightly confine propagating guided modes at scales that are
beyond the diffraction limit of light. Each of the channels mentioned has been
studied and characterized for efficiency in a variety of device applications and will
be discussed later.

For the design of compact circuits, it is helpful if the guided plasmon-polariton
modes are tightly bound about the waveguide channel. This facilitates the formu-
lation of compact, localized circuits in space. The two aspects of the guided mode
propagation length and the tightness with which the modes are localized about the
guiding channel are fundamental design features taken into account in the formu-
lation of waveguides for plasmon-polariton propagation. Unfortunately, they are
often found to be conflicting aspects that need to be resolved to build optimal
performing wave guides and circuits [41–46].
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There are a large variety of designs and design considerations that have gone
into the composition of the numerous one-dimensional waveguide channel designs
that have been studied [41–52]. These considerations are needed to maximize the
propagation lengths of the plasmon-polariton guided modes, increase their con-
finement characteristics about and within the channel media, and aid in the prop-
agation of guided modes efficiently through channel bends meant to change the
direction of guided mode propagation along the surface. In addition, the efficient
interface between the waveguide and optical sources, inputted, and outputted sig-
nals which may be electrical, chemical, thermal, or optical in nature is necessary for
many important circuit operations.

A common problem in the design of plasmonic waveguides is that of signal
energy losses. These losses arise from both Joule heating and radiative scattering
losses from the waveguide due to impurities or in the dielectric mismatches at the
interfaces between waveguides or the devices with which they interact. As a result
plasmon-polaritons have a range of propagation along the waveguide channel
which, typically, is of the order of millimeters. Some of the approaches put forth to
limit the losses are to incorporate low-loss materials into channel designs [41–52].
Applications in this regards that have been helpful have involved the use of metal
oxides and nitrides as well as designs based on graphene interfaces.

Another source of radiative losses occurs in bended waveguides. These have
channels which are not straight but at some points along the channel length are bent
to propagate the guide modes in a different direction than that of the original
channel before the bend. The radiative losses at the bend increase with the sharp-
ness of the angle of the bend. Bragg mirrors have in some cases been employed to
reduce these loss effects.

Related to the energy loss problems is the need to overcome the generation of
heat within the waveguides. The heat generated in plasmonic circuits, in some
instances, can approach the heat generated within electrical circuits [41–46]. In both
plasmonic and electronics systems the generated heat can produce unwanted
modifications in the properties which a crucial to the correct functioning of the
circuits On a more positive note, heating effects may also be of interest in the design
of certain types of sensors. Here the modification of the circuit operating charac-
teristics may be a vital point in their design. This will be discussed later.

For an optimally functioning waveguide one would wish to develop a guide that
both tightly confines the plasmon-polariton modes localized within and about the
wave guide channel and also exhibits a long propagation length along the channel
for its guided modes [41–46]. It is generally found, however, that these two features
oppose one another. In particular, highly confined modes tend to exhibit higher
energy losses. Consequently, the propagation length of guided modes along the
channel is inversely related to the radius of the region about the channel in which
the plasmon-polariton fields are confined. In a successful waveguide design a
balance must be made between these two characteristics.

In Fig. 4.25 a schematic is presented showing a number of waveguide geome-
tries [45]. In each figure the waveguide channel is taken to be perpendicular to the
page so that the cross section of the localized electromagnetic fields for the guided
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modes are bound to the features centered in each of the plots. The fields of the
guided modes are concentrated in a region of finite radius within the plane of
the page. Perpendicular to the page the guided modes are extended through the
waveguide channel.

The geometry of the guide in Fig. 4.25a is for a long range surface
plasmon-polariton wave guide. This is composed of a thin metal film which is
surrounded by a dielectric. Due to the two parallel horizontal surfaces of the film
and the reflection symmetry of the system about the horizontal center plane of the
film, the guided plasmon-polaritons modes separate into guided modes that are
symmetric and anti-symmetric in the direction normal to the metal film [41–52].

The symmetric mode is the mode of interest in applications. As the film is
decreased in thickness the range of propagation of the symmetric mode increases so
that the range of propagation can be tuned in this manner. However, with
decreasing thickness the radius of the region of confinement in the plane of the page
increases. Consequently, a balance is needed for the operation in this design
between confinement and propagation length Due to the need to balance these

Fig. 4.25 A schematic of a number of different waveguide geometries that have been studied. In
all of the figures the waveguide channel is perpendicular to the page. Waveguides shown include:
a long range surface plasmon-polariton guided mode, b the metal wedge waveguide, c the
V-groove channel waveguide, d the plasmonic slot waveguide (also illustrating the double-strip
waveguide), e the dielectric loaded surface plasmon waveguide, f the hybrid plasmonic waveguide,
and g the nano-wire waveguide[ [41–46]
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opposing effects, the guide geometry in Fig. 4.25a is not always a good solution to
the problem of waveguide design.

The channel designs in Fig. 4.25b, c are, respectively, metal wedge and
V-groove channel waveguides [41–46]. In these two designs the lower medium is
metal (e.g., silver) and the upper media is dielectric (e.g., SiO2). The dielectric
mismatch of the two media supports plasmon-polariton, with the wedge and
grooves on the interfaces creating a set of localizing guided plasmon-polariton
modes bound about them.

The wedge waveguide confines the energy of the guided modes moving into the
page in Fig. 4.25b to locate about the channel length in the region surrounding the
wedge. The localization about the wedge is determined by the angle at the apex of
the wedge so that decreasing the apex angle increased the confinement about the
wedge.

For the groove waveguide the guided modes that exist localized within and
about the channel are referred to as channel plasmon-polaritons [41–52]. The
location of the guided mode energy within the channel depends on the wavelength
of the mode for its propagation along the channel. It is, in general, found that the
depth of the channel groove should not be considerably less that the penetration
depth of the fundamental guide mode the channel supports. This follows as part of
the consequences of the positioning of the channel modes and their propagation
distances along the channel being dependent on the apex angel of the groove.

Figure 4.25d illustrates the plasmonic slot waveguide composed as a metal plane
with a slot channel into which a dielectric is introduced. In addition, the media
surrounding the metal plane is also taken to be dielectric. The left and right features
in the figure illustrate the slot in the metal plane within which guided
plasmon-polariton modes propagate. The slot width can be much less than the
wavelength of the guided mode confined within it, and the dielectric medium in the
slot can be different than the dielectrics that surround the metal plane. In general,
the system is designed so as to support fundamental guided modes which are highly
confined within the slot [41–52].

A variant of the slot waveguide is the double-strip waveguide. In this design two
thin metallic strips are deposited on a dielectric substrate. The two strips support
guided modes propagating along their strip lengths. The surface charges generated
by the guided modes as they move long the channel are found to be 180° out of
phases.

In Fig. 4.25e the geometry is for a dielectric loaded surface plasmon-polariton
waveguide. This waveguide is composed of a high refractive indexed (e.g., Si)
which is deposited as a strip on a metal surface (e.g., Ag). In the figure the metal is
at the bottom of the figure and the strip is the dark feature on the metal. The metal
surface and strip are then surrounded in the upper region of the figure by a low
index medium (e.g., SiO2). The guided mode is limited to the surface region by
metal low refractive media interface, and the width of the region about the strip in
which the fields are confined is set by the size of the high refractive media strip
within the low index cladding medium. The guided mode propagations
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perpendicular to the page. In this design the functioning of the system is somewhat
similar to that found in cladded dielectric waveguide used in fiber optics [41–52].

Figure 4.25f illustrates the hybrid plasmonic waveguide. It is somewhat similar
to the dielectric loaded surface plasmon-polariton waveguide but represents a
general improvement of the design. Here a metal (e.g., Ag) occupies the lower
region of the figure and the upper region is a low dielectric index material (e.g.,
SiO2). The dark region is a high index (e.g., Si) strip of material and below the strip
and the metal surface is another strip of a low refractive index medium. The guided
modes of the high refractive index medium interacts with the surface plasmon-
polariton modes of the metal surface to form hybrid guided modes that travel
perpendicular to the page along the strip channels.

In general hybrid waveguides have been found to provide a combination of the
propagation characteristics of cladded fiber optics waveguides and the confining
characteristics of plasmon-polariton waveguides effectively to provide longer range
between confinement than found in some other waveguide designs.

A feature of these waveguides is that they can confine guided mode of TE
polarization within the high index medium and TM polarization within the low
index medium. This then offers added capacity for treating signals of the two
polarization differently within the plasmonic circuitry. Both polarization can be
treated differently within the circuit through the applications of polarization filters.
Such applications will be considered later.

Related to the hybrid plasmonic waveguides are nano-wire plasmonic guides.
These are illustrated in Fig. 4.25g. The metallic nano-wire is place on or near the
surface of the planar metal dielectric interface. Fast and slow modes appear,
respectively, near the top and bottom of the nano-wire. An isolated wire will display
a helical guided mode with a period that is related to the radius of the wire.

B. Plasmonic Devices for Circuit Applications

In the following some discussions are presented of plasmonic devices that may be
connected together with plasmonic waveguides so as to form circuits. These are the
mechanisms that are used to modify or initiate the information carried throughout
plasmonic circuits to eventually be outputted to the world outside of the circuitry. In
addition, the inputting and outputting devices themselves are important features in
the development of plasmonic circuits and will also be considered.

Types of devices needed for circuit designs include [41–52]: Plasmonic lasers
which act as light sources or signal amplifiers; surface plasmon-polariton logic
gates for processing inputted logical signals into logical gate outputs in computer
applications; sensor devices that modulate signals initialed or flowing through them
as they interacted with externally applied fields, chemical or biological agents, or
externally generated heat; surface plasmon-polariton multiplexers and routers for
the transfer of signals into different channels of branched waveguide systems;
plasmonic switches; and plasmonic interfaces with electronic circuits. Recently
devices of all these types have been the focus of a great amount of research effort by
a wide range of plasmonic research groups. Some of these basic components of
circuit design are now briefly discussed, but no attempt is made to give a
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comprehensive review of the field. For such a review the reader is referred to the
literature.

Couplers
To input energy into plasmonic waveguides, light from the outside world must
either be directly coupled into a waveguide or there must be some type of plas-
monic laser designed to introduce a signal into a waveguide. This requires a means
of mediating the interaction between light from the bulk or from a plasmonic laser
with the plasmonic guided modes of the waveguide. In both instances problems
involving the dielectric mismatch and interface geometry between the waveguide
and the bulk or lasing media are a difficult problem [1–6, 41–46].

As discussed in earlier sections of this chapter, at a flat metal-dielectric interface
the dispersion relations of bulk light and surface plasmon-polaritons are distinct
from one another. From those discussions it was found that it was the translational
symmetry of the surface that allows the bulk and surface modes to exist indepen-
dent of one another. In order to introduce bulk light into the plasmon-polariton
system then requires some type of disruption of the translational symmetry at or
near the surface of the metal dielectric surfaces or at the waveguide channel. In
general, the disruption of the translational symmetry of the surface or waveguide is
usually accomplished either by using prism coupling or the by the introduction of
surface features which destroy the translation symmetry of the plasmonic surface or
waveguide.

Prism coupling involves placing one of the flat surfaces of a prism on
(Kretschmann geometry) or near (Otto geometry) the plasmon-polariton supporting
surface [1–6] (see the schematics in Fig. 4.26 for an illustration of these two
geometries). In each of these configurations light is sent into the prism so that it is
internally reflected by the prism surface near the plasmon-polariton supporting
surface. This internal reflection in the case of the Kretschmann geometry creates an
evanescent wave in the metal of the supporting surface.

In the case of the Otto geometry the evanescent wave is created both in the
region between the prism and the metal of the supporting plasmon-polariton surface
and also within the supporting metal itself [1–6]. In both cases the evanescent wave

Fig. 4.26 Illustration of the prismatic coupling of bulk light to excite surface plasmon-polaritons
at a dielectric-metal interface. The configurations shown are: a the Kretschmann geometry and
b the Otto geometry
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is used to interact with the supporting surface so as to create a plasmon-polariton
wave along the supporting surface or in a waveguide constructed on the surface.
Prismatic coupling, however, can be highly ineffective for the introduction of light
into a nano-scale systems and other nano-scale means have recently been sought
[41–46].

A signal can also be introduced into a plasmonic waveguide through the
application of light generated by a plasmonic laser [53–56]. These lasers function as
nanoscale devices and are often based on nano-wire designs. In the nano-wire
design a segment of semiconductor nano-wire is used as a cavity resonator and also
as a source of gain. A high gain material used to develop nano-wire lasers is based
on semiconductors (e.g., CdS) and the nano-wire itself is generally separated, by a
spacer of material with a low index of refraction (e.g., MgF2), from the metal (e.g.,
Au) surface which is part of the surface plasmon support. A number of devices have
been fashioned based on this design, but problems remain involving the efficient
coupling of the laser output into plasmonic waveguides. These follow from the
dielectric mismatch at the laser-waveguide interface and the mismatch of the
geometric properties between the laser and the waveguide into which it couples.
Methods to improve the efficiency of the coupling of the plasmonic laser into
plasmonic waveguide is currently and focus of attention.

Recently, in the nano-wire design some success in the formulation of tunable
lasers has been achieved [41–56]. These types of systems are based on the use of
semi-conducting lasing media of the form InxGa1�xN for the nano-wire cavity. In
the InxGa1�xN based lasers the outputted light can be tuned through the optical
spectrum form blue to red.

Spaser
One of the important ideas that has been developed related to the design of
nano-lasers is the spaser. The spaser uses stimulated emission to generate intense,
coherent, surface plasmonic excitations. The functioning of the spaser is closely
related to that of the laser, but whereas the laser creates an intense coherent beam of
photons the spaser creates an intense coherent beam of surface plasmon-polaritons
[49–56].

The principles of operation of the laser and the spaser are similar. This is due to
the similarity in the physical properties of the photon and the surface
plasmon-polariton excitations considered in each of the two systems. In particular,
both the laser and the spaser deal with the amplification of electrically neutral spin
one bosons, and, the plasmonic excitations, similar to photons, are weakly inter-
acting with one another so that the modes of the system are highly linear.

In their operations both the laser and the spaser involve a type of resonant cavity
and an externally excited gain medium. The external exciting fields in each case can
be at different frequencies from the output modes that are generated.

The original idea for the spaser is illustrated in Fig. 4.27a. A type of resonant
cavity is formed by a spherical nano-particle consisting of a dielectric core with an
outer layer of silver. (Note that the composition of the spherical nano-particle could
be revered, with the inner core formed of silver and the outer shell of dielectric.)
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The nanoparticle acts as a sort of resonant cavity for enhancing the surface
plasmon-polariton fields that are generated in the surface plasmon-polariton modes
on the nano-particle. The coherent enhancement of these cavity modes arises as a
result of pumping provided by an externally applied bulk electromagnetic field
[53–56].

To accomplish the pumping, in the spaser design, the nano-particle is surrounded
by quantum dots. These are used to pump the system in order to generate the
intense surface plasmon-polaiton modes attached to the nano-particle cavity. For
this pumping an external electromagnetic field is sent into the system to excite the
quantum dots, generating in them a gas of electron-hole pairs. The electrons and
holes of the gas then combine to form excitons.

In the absence of the nano-particles the excitons on the quantum dotes would
normally decay by emitting a bulk photon to propagate out of the system. If,
however, the frequency of the surface plasmon-polaiton modes of the nano-particle
is chosen to be the same as that of the bulk photon arising from the exciton decay a
quite different process takes place. This is a crucial point of the spaser operation.

In the presence of the nano-particles the excitation energy of the exciton can be
preferentially transferred to the surface plasmon-polariton modes of the
nano-particle. This occurs due to the difference in the transition rates for the gen-
eration of bulk modes and the generation of cavity modes. It leads to an amplifi-
cation of the surface plasmon-polariton modes on the nano-particle. The end result
of the spaser operation, then, is the generation by stimulated emission of the surface
plasmon-polaiton modes of the spaser (see Fig. 4.27b for a schematic summary of
all of the processes outlined above for the spaser operation).

The spaser mechanism is quite useful in particular for the amplification of the so
called ‘dark’ surface plasmon-polariton modes. These are surface plasmon-polariton

Fig. 4.27 The basic design of the spaser. A nano-particle based spaser is shown in (a). The black
is a region of dielectric. The grey is a metal shell and the white outer shell is a region of
nano-quantum-dots. The energy level diagram for spaser operation is shown in (b). The left of the
figure b represents the nano-quantum—dot transitions in which an electron-hole gas is pumped
from outside the system. The electrons and holes in the gas combine to form excitons. The
excitons preferentially decay, giving up their energy to plasmons formed at the metal dielectric
interface
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modes that weakly couple to bulk electromagnetic modes. Due to their weak
interactions with bulk electromagnetic modes, the dark modes are difficult to excite
by other non-spaser based methods of coupling into them. In addition, the dark
modes are very stable to decay into the bulk modes and this limits the radiative loss
mechanism [49–56].

The resulting amplification of the surface plasmon-polariton modes allows for
the generation of intense electric fields that are then available for Raman spec-
troscopy, flourescence imagining, and other chemical and biological investigations.
In addition, due to their plasmonic nature they are subwavelength, focused, fields.
This is an asset in the localized applications of the amplified fields as well as for
plasmonic circuit applications.

It is seen that whereas the laser amplifies outputted photonic modes, the spaser
amplifies outputted surface plasmon-polariton modes. The outputted modes of the
spaser, however, can be converted to photonic laser modes by the introduction of a
symmetry breaking to the nano-particles. Symmetry breaking provides for the
conversion of the amplified surface plasmon-polariton modes into radiated bulk
optical modes by inducing transitions from the surface plasmon-polaritons to the
bulk electromagnetic modes. The spaser then acts as a nano-laser.

Other Nano-laser/spaser Configurations
A number of different types of nano-lasers have been engineered based on these and
related ideas from laser technology. One type of laser design is based on the so
called Metal-Insulator-Metal waveguide cavity [49–55]. As the name suggests this
is basically a tri-layered system composed of an insulator layered between two
metal plates, and it produces laser fields that are confined one-dimensionally. The
metal-insulator interfaces support surface plasmon-polaritons which travel along the
metal-insulator interfaces.

Consequently, there is a confinement of the surface wave modes in the direction
normal to the metal insulator interfaces. As the plasmon-polariton modes propagate
along the interfaces they are, in addition, confined by a partial reflective coating that
is applied at the end of the layering and is positioned to be perpendicular to the
direction of the surface mode propagation. The resulting system then forms a
Fabry-Perot cavity.

In this arrangement, in addition to its function in forming a surface
plasmon-polariton supporting interface between the metal plates, the insulating
medium also acts as a gain medium which is pumped by external electromagnetic
modes applied to the system. The surface plasmon-polaritons eventually arise from
the pumped fields created within the cavity.

This is a rough description of the basic operational mechanism of the
Metal-Insulator-Metal based laser. It is, however, a bit of an over simplification as a
number of considerations and extra feature are involved in guiding and generating
and pumping the surface plasmon-polariton lased within the cavity. For the details
of this the reader is referred to the literature.

Related to the Metal-Insulator-Metal laser is the whispering gallery cavity based
laser [53–55]. Here the surface plasmon-polariton exhibit a type of one-dimensional
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propagation as they are steered around a semiconductor disk which is coated by
metal.

An example of a nano-laser involving two-dimensional confinement of the
lasing modes was given earlier [49–56]. As mentioned at that time, another
important laser structure is the hybrid Metal-Insulator Semiconductor laser com-
posed as a nano-wire segment and a metal planar surface between which is a
magnesium fluoride spacer. Like the Metal-Insulator-Metal laser this involves a
gain medium, but in this case the confinement is in two dimensions with the fields
confined within a two-dimensional region localized about the nano-wire of the
system.

An example of a nano-laser having a full three-dimensional confinement of the
radiation is the nano-particle laser, again related to the nano-particle system treated
earlier [49–53]. Some recent fabrications of these types of systems have been made
based on gold cores surrounded by sodium silicate shells which are in turn encased
in a dye doped silica shell. The dye doped silica provides the gain medium which is
pumped for the laser action. The modes are confined within the sphere of the
nano-particle.

Other Photonic Nano-devices
Another important development in plasmonic devices are surface plasmon polariton
logic gates [41–52]. These are based on the formulation of devices based on
nano-wires, branchings of nano-wires, and the coupling of ring resonator waveg-
uides. In all of such gates, logical inputs to the gate are represented by configu-
rations of optical signals sent to the gate device. In turn a configuration of outputted
optical signals is generated from the interaction of the gate with the inputted light
and represents an outputted logical response to the logical input.

Logical gates are needed in the design of digital circuits for computers and have
become particular important to nano-science for their use in quantum computing
applications [41]. A large number of quantum systems have been investigated as
possible sources of designs of quantum computers, and plasmonic is just one of
many systems currently under investigation for such applications.

Recently some work has been done the development of circuitry that would act
as AND, OR, and NOT gates [41]. In one formulation the polarizations of the
guided plasmon-polariton modes were used to construct AND and OR logic gates
[41–52]. In this approach, two polarized guided waves were inputted into a
nano-wire waveguide with the two different logical inputs (i.e., 0 or 1) represented
by the polarization of the guided waves. The result of the operation of the AND or
OR logical gates was then indicated by the threshold intensity of the combined
waves exiting the nano-wire. An illustration of such a combining of polarized
signals within a nano-wire waveguide is show in Fig. 4.28a.

In another approach to the design of logic gates a branched system of inter-
connecting waveguides is used [41–52]. A simple illustration of this is given in
Fig. 4.28b. In the Y-type structure shown in the figure two input waveguides meet a
third output waveguide at a vertex common to all three. In the figure signals are
inputted into the two waveguides labelled I1 and I2. These two input signals
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combine in the third wave guide O where they are outputted as a logical signal. By
changing the relative phase of the two input signals, the intensity of the output
signal is modulated. In particular, the output signal can be change from a signal
maximum to a signal zero, providing an on off switching response. Continuing
along these lines, in Fig. 4.28c a circuit has been designed by adding a fourth
waveguide representing a control laser input. The resulting circuit can then be made
to operate as a logical NOR gate.

A third approach involves a similar idea but it is based on the coupling between
ring resonator waveguides which can be operated in a manner so as to act as a NOT
gate. For a further treatment of these the reader is referred to the literature [41–52].

Other developments have involved the design of modulators which can change the
flow of plasmonic guided modes that flow through them as they interact with outside
stimuli [41–52]. An example is an electro-optical modulator. This is based on a type of
hybrid waveguide structure shown in Fig. 4.25f. The dark layer is chosen to be an
n-type silicone and the lower metal surface is silver. Between the silicone and silver a

Fig. 4.28 Schematic plots of: a nano-wire plasmonic waveguides where the arrows indicate the
two polarization of guided surface plasmonic waves along the nano-wire (Indicated in black.),
b the three plasmonic waveguides forming an AND or OR logic gate where I1 and I2 are the input
channels and the outputted phase added wave exits the logic gate at O, and c the NOR gate with
inputs I1 and I2, control C, and the outputted signal at O
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layer of dielectric with a strong Kerr nonlinearity is introduced forming a capacitor.
The system is designed so that the guided mode field is contained within the Kerr
dielectric.Modulation of the dielectric properties of theKerrmedia can then be used to
modulate the guided mode flow through modulating device.

In terms of the design of plasmonic circuits hybrid nanoplasmonic waveguides
have displayed certain advantages over some of the other waveguide designs
[41–52]. They provide for a tight confinement of the guided mode to the channel
and also allow for ultra-sharp bending of the waveguide channel. Some circuit
designs based on hybrid channels are the submicron-donut resonator which offers a
resonant interaction with the modes of a straight waveguide channel. The donut
resonator is a circular channeled feature (e.g., of radius 800 nm) which couples with
the modes of a straight waveguide through its proximity to the waveguide channel
(see Fig. 4.29a). Another design is a power splitter which redirects the energy flow
in a single waveguide into two waveguides. An illustration of such a splitter in the
Y-splitter shown in Fig. 4.29b. A number of different type of coupler have been
developed based on similar types of designs to the Y-splitter including some
directional couplers.

Couplers formed between two different waveguides which are distinct from one
another have also been developed [41–52]. In these devices two different waveg-
uides can be in close proximity to one another over a common length (see
Fig. 4.29c). Along the region of close proximity the modes of the two waveguide
can couple to one another through a weak interaction. Depending on the length of
the region of proximity, a guided mode launched within one of the waveguides can
be transferred by the weak coupling to travel in the other waveguide of the coupled
pair. The transfer effect is also found to be dependent on the polarization of the
modes launched into the system. This facilitates their use in the design of polar-
ization beam splitters which allow plasmonic circuits to handle the propagation of
TE and TM guided modes differently.

Fig. 4.29 Illustration of the waveguide channel designs looking down on the plane of the
metal-dielectric interface which is the plane of the page. In these schematics: a represents the donut
resonator interacting off-channel with a log straight waveguide, b a Y-splitter which sends energy
in one channel to propagate within two other waveguide channels, and c a waveguide coupler
formed by placing two waveguides with channel lengths in close proximity
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Related to the coupler are guided mode polarizers [41–52]. Polarizing structures
which preferentially allow one waveguide polarization to continue down a
waveguide while reflecting the other polarization can be by made by introducing a
region of grating into the waveguide. In this way polarizers which only pass either
TE or TM modes have been fashioned. These structures allow for the design of
plasmonic circuits that treat TE and TM components of inputted signals differently.

Another important application in plasmonic circuitry arises due to the sensitivity
of the surface plasmon resonance effect to small changes within the parameters
characterizing the plasmonic waveguides [41–52]. These sensitivities from the basis
of the applications of plasmonic systems as heat, optical, chemical, and biological
sensors. In addition, in the case of heat applications the sensitivity can be used to
tune the properties of the circuitry introduced into device design.

As a final important circuitry feature that will be mentioned here, surface
plasmon-polaritons are excitations that combine both an electromagnetic and an
electronics component and this dual nature of the exciations facilitates the inter-
action of plasmonic signals with electronic systems [41–52]. In particular, the
propagation of plasmonic modes along nano-wire wave guides can be used to
induce interactions with electronic components. As an example, in some recent
work electronic transistors have been designed in which plasmonic nano-wire
waveguides form part of the base-collector-gate design of the transistor [41–52].
Plasmonic signals traveling along the nano-wire then effect the signal in the tran-
sistor and act as a signal connection between the plasmonic circuit and the elec-
tronic circuit of which they are a part.

4.3.3 Plasmonic Subwavelength Enhanced Transmission
of Light

Another important feature of the subwavelength nature of the surface
plasmon-polariton excitations is found in the enhanced transmission of radiation
transmitted through a perforated metal film which supports surface
plasmon-polaritons [57–63]. This is illustrated in Fig. 4.30 where light is normal
incident from above a thin metal film that has a periodic patterning of holes pen-
etrating the slab. Under certain conditions on the patterning, the fraction of the
incident light transmitted through the slab into the region below the thin film is
larger than expected from standard considerations of classical optics.

The phenomenon is termed extraordinary optical transmission and occurs for a
periodic patterning of subwavelength apertures penetrating the metal film.
A primary contributing mechanism in the transmission enhancement is believed to
be the excitation of surface plasmon-polaritons on the metal film. These assist in the
propagation of energy through the penetrating features of the metal film.

Before considering the extraordinary optical transmission from the array of
holes, it is useful to review the results of diffraction from a thin film containing a
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penetrating single hole [63]. The study of the single holed systems provides insights
into the nature of the physical processes entering into the extraordinary optical
transmission phenomena and gives an idea of the significance of surface electro-
magnetic waves in the later discussions. Consequently, as a useful preliminary, the
very basic system of a single hole in a film which does not support surface
plasmon-polariton excitations will be discussed [63].

Following these remarks the enhancements arising in a system of periodically
patterned holes on a surface plasmon-polariton supporting film will be presented
and discussed in comparison with the results of the single holed film [57–62]. This
allows for the direct observation of the importance of surface plasmon-polaritons in
the phenomena while offering an indication of the extent of the transmission
enhancement observed in extraordinary optical transmission. Specifically, the
results will indicate how large the transmission effects are when compared to those
found in the problem of a single hole.

Bethe considered the transmission problem in Fig. 4.30 for a thin film with a
single aperture, treating the case in which the film is a perfect conductor [63]. In
particular, due to the perfect conductivity, the film in this case does not support
surface plasmon-polariton excitations so that these excitations do not enter into the
problem. The film then only acts as a boundary condition to the waves propagating
in the region outside the film, providing a limit keeping them from entering into the
volume of the thin film.

The diffraction from a circular aperture is shown in Bethe’s theory to be exactly
solvable. As a result which is of importance to the discussions of enhanced
transmission, a single subwavelength hole of radius, r; is shown to have a trans-
mission efficiency that scales as r=kð Þ4 where k is the wavelength of the incident
radiation. Consequently, for optical radiation incident on a hole of radius of order of
150 nm, a transmission efficiency is obtain which is of order 10�3. As seen in the
later discussions, this is less by at least three orders of magnitude compared to

Fig. 4.30 Enhanced transmission of light through a thin metal film that has a periodic patterning
of holes penetrating the slab. Light is normal incident on the film from above and partially
transmitted below the thin film. The transmission is assisted by surface plasmon-polaritons excited
on the thin metal film
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experimentally determined transmission efficiencies of the extraordinary transmis-
sion results from a periodic patterns of such subwavelength holes.

In addition, the radiation transmitted through the hole is diffusely transmitted
with an intensity distribution that is essentially uniform in the transmission angle
below the thin film. In the case of periodic patterning the periodicity of the
transmitted sources of radiation (i.e., the diffraction of the system) tends to project
the light normally outward from the thin film [57–62]. This phase coherence,
however, does not account for all of the enhancement observed in the light trans-
mitted though the film. It is only part of the mechanism accounting for the three
orders of magnitude difference mentioned earlier.

The case of a periodic patterning of subwavelength holes presents new feature
which tend to enhance the transmission efficiency of the thin films. In general for
radiation that is incident normal to the metal film, the ratio of the intensity of
radiation transmitted through the area of the hole or, in the case of the periodic
pattern, the holes in the thin film divided by the intensity of radiation incident on the
area of the hole or holes measures the efficiency of the transmission through the thin
film.

For films which do not support surface plasmon-polaritons the efficiency of
transmission is found to be larger for a periodic pattering of holes than for a single
hole. However, the efficiency of transmission is generally found to be much greater
for periodic patterns in thin film which support surface plasmon-polariton than on
systems of the same pattering which do not support surface plasmon-polaritons.
This shows that the surface plasmon-polaritons are a fundamentally important
feature in understanding the nature of extraordinary optical transmission.

Experiment
An early experiment that demonstrated the extraordinary optical transmission was
performed by Ebbesen et al. [61]. In their experiment they considered a thin Ag film
deposited on a quartz substrate. In a first study, the transmission of normal incident
light through an Ag film with a thickness of t ¼ 200 nm was measured. The Ag
film had a pattern of subwavelength holes of diameter d ¼ 150 nm arranged on a
square lattice with a lattice constant a0 ¼ 900 nm. In Fig. 4.31 the results from
their paper are presented [61].

In Fig. 4.31 the narrow peak at k ¼ 326 nm is from the excitation of a bulk
plasmon in the silver. It is found to decrease as the thickness of the film is
increased. A minimum in the transmission intensity versus wavelength is found at
a0 and for k[ a0

ffiffi
e

p
where e is the dielectric constant of the quartz substrate there is

no diffraction through the thin film either for a single hole or for the periodic array.
Between a0\k\a0

ffiffi
e

p
there are two extraordinary transmission peak maxima.

These arise for the presence of surface plasmon-polaritons on the thin Ag film.
The largest transmission peak in Fig. 4.31 occurs at k ¼ 1370 nm. For this peak

the transmission efficiency is found to be greater than two so that there is twice as
much light transmitted through the thin film than is incident on the area of the
periodic apertures of the thin film. This difference in the transmission efficiency
from that of a film which does not support surface plasmon-polaritons, as shall now
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be seen from the experimental studies and later shown in theory, comes from the
presence of the surface plasmon-polariton excitations as part of the transmission
mechanism.

The importance of surface plasmon-polariton as the mechanism of the trans-
mission enhancement in the results in Fig. 4.31 is evidenced experimentally by a
further series of studies in which the transmission effect is determined as a function
of the film parameters as well as the materials supporting the excitations. Some of
the experimental studies of these factors are briefly reviewed in the following. This
is followed by the presentation of a simple theory which indicates the origin of the
transmission effects as being due to the surface plasmon-polaritons propagating
along the thin film.

In Fig. 4.32 experimental results for the Transmission Intensity versus k=a0 are
presented for a series of films formed of different metals deposited on quartz
substrates. In these plots the film thicknesses, hole diameters, and lattice constants
of the array of holes are different for each material that is investigated. It is seen,
however, that in the presentation in the scaled variable k=a0; the curves for the
different films have a similar system of transmission peaks and minima. In addition,
the enhancement peaks are observed to scale precisely with the period of the square
lattice array.

This scaling is to be expected in the case that the transmission effect is mediated
by the surface plasmon-polaritons of the thin films and is a strong evidence that this,
indeed, is the case. In particular, the surface plasmon-polaritons are the only waves
propagating in the two-dimensional array of the surface which have a dispersion

Fig. 4.31 Transmission
intensity through a Ag thin
film versus the wavelength of
light. The thickness of the
film is t ¼ 200 nm, the holes
of the film are cylindrical of
diameter d ¼ 150 nm, and the
holes are arranged in a square
lattice with the lattice constant
a0 ¼ 900 nm. The result is
for the zeroth order
transmission [61]. Reprinted
by permission from
Macmillan Publishers Ltd:
[Nature] (Nature 391, 667),
copyright (1998)
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relation depending on the ratio of their wavelength to the period of the square lattice
array of holes in the thin film. Consequently, results dependent on surface
plasmon-polaritons should exhibit this type of scaling behavior.

A feature of the transmission maxima in Fig. 4.32 which does exhibit a sig-
nificant change from curve to curve in the plot is the difference in peak width of the
various curves. The peak width of each of the curves is found to depend strongly on
the ratio t=d: In Fig. 4.32, the width of the plotted curves is greatest for the case
t=d ¼ 0:2 and decreases to the sharpest peaks at t=d ¼ 1: This is in accord with the
general observation that the larger the diameter of the holes in the film compared to
the film thickness the less sharp as a function of wavelength are the transmission
peaks. It again indicates a strong dependence of the transmission effect on the
wavelength of the surface electromagnetic waves.

An important feature in the transmission plots arising from the bulk Ag plas-
mons in the thin film is a transmission peak at the far left hand side of the Fig. 4.32
[61]. The intensity of this peak is found to decrease and eventually disappear with

Fig. 4.32 Measured transmission intensity versus k=a0 for various square lattice arrays. Results
are for: (solid) Ag with a0 ¼ 600, d ¼ 150, t ¼ 200 nm; (dashed) Au with a0 ¼ 1000 nm,
d ¼ 350 nm, t ¼ 300 nm; (dashed-doted) Cu with a0 ¼ 1000 nm, d ¼ 500 nm, t ¼ 100 nm [61].
Reprinted by permission from Macmillan Publishers Ltd: [Nature] (Nature 391, 667), copyright
(1998)
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increasing slab thickness of the samples. The decrease in this feature is much more
pronounced than that associated with the transmission features arising from the
surface plasmon-polaritons and is evidence of the difference in the mechanisms it
involves.

As a final experimental study [61], Fig. 4.33 presents some results for the
transmission versus wavelength for two Ag arrays with identical square lattices of
identical holes but for different film thicknesses. Both arrays have a0 ¼ 600,
d ¼ 150 nm. One array, however, has t ¼ 200 nm (Solid) and the other has
t ¼ 500 nm (Dashed). For the comparison of the transmission results of the two
arrays, the dashed spectrum has been multiplied by 1.75.

Again, the left most peaks from bulk Ag plasmons are seen to decrease sig-
nificantly as the film thickness is increased. The other extraordinary optical trans-
mission maxima at higher wavelengths decrease less quickly with increasing film
thickness, exhibiting an approximately linearly decrease with the increase in film
thickness. These last maxima arise from the surface plasmon-polaiton mechanism
which includes propagation mediated by the subwavelength holes in the film. This

Fig. 4.33 Transmission versus wavelength for two Ag arrays. Both arrays have a0 ¼ 600,
d ¼ 150 nm. One array has t ¼ 200 nm (solid) and the other has t ¼ 500 nm (dashed). The
dashed spectrum has been multiplied by 1.75 for the comparison [61]. Reprinted by permission
from Macmillan Publishers Ltd: [Nature] (Nature 391, 667), copyright (1998)
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mediation accounts for the lower sensitivity of these transmission maxima to the
change in film thickness [61].

Simple Theory
The above experimental results for the extraordinary optical transmission maxima
can be understood by a simple analytical theory based on a coupled mode approach
[60]. This approach gives a rough treatment of the basic surface plasmon-polariton
mechanism and provides an estimate of the gross features of the effect. It does not
give a complete treatment such as would be handled, for example, in a computer
simulation study. Nevertheless, the analytical treatment discussed provides a deeper
understanding of the relationship of the phenomena to the surface
plasmon-polaritons of the thin film than that provided by computer simulation
studies.

In the following the coupled mode theory for extraordinary optical transmission
at normal incidence through a thin metal film is presented [60]. In the presentation,
following a description of the transmission problem to be treated, some general
remarks about the nature of the coupled mode approach are made. It is shown that
the coupled mode approach is a general method which is widely used to develop an
understanding of the properties of many-body problems considered in physics.
These types of problems include those found in phonon, electron, photon, and fluid
systems. This is then followed by the application of the formalism of the coupled
mode method to explain the surface plasmon-polariton treatment of the extraordi-
nary optical transmission maxima. The explanation is made for the specific trans-
mission problem earlier formulated for study. The section concludes with some
references to computer simulation studies which have generated more precise
treatments of extraordinary optical transmission problems.

The system that is considered for study is a metal film of thickness, t, that is
patterned by a square lattice array of subwavelength holes [60] (see Fig. 4.34 for a
schematic diagram). The surfaces of the thin film are both parallel to the x-y plane,
and the axes of the subwavelength holes are in the direction of the z axis. The lattice
constant of the square lattice array is a, and the square holes in the film have edges
of length l that are aligned along the x and y directions. The metal film is surrounded
by vacuum and the holes penetrating the film contain vacuum.

For this scattering system, light of wavelength k[ l is incident on the film,
traveling in the negative z direction. The light interacts with the film, having both a
reflected and transmitted component. The focus on the treatment given later is on
determining the transmission of electromagnetic fields through the film for trans-
mitted light propagating in the negative z direction.

The electromagnetic fields in the above outline transmission problem can be
thought of as being separated into the incident and transmitted waves propagating
along the z direction, surface plasmon-polariton modes propagating parallel to the
metal-vacuum interfaces, and the surface electromagnetic modes moving along the
z directions of the hole surfaces [60]. Each of these components interact with one
another through coupled transitions which move the electromagnetic fields through
the thin film in a sequence of exchanges between the modes of the system.
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Fig. 4.34 Schematic of an infinite square lattice pattern of holes in a thin film. The pattern is in
the x-y plane where the x axis is horizontal and the y axis is vertical. The lattice constant is a, and
the edge length of the square holes is l. The vertical rows of holes are labeled by integers. The
positive z-axis of the thin film geometry is out of the page
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In this sequence of transfers the propagating incident fields transition into sur-
face plasmon-polaritons which are in turn transferred into the fields propagating
within the holes. The fields in the holes are finally transferred into the transmitted
fields exiting below the thin film. In this manner the transmission through the film is
described as a successive series of transitions between the various earlier mentioned
modes or degrees of freedom [60].

The theory that describes these transitions between the modes or degrees of
freedom of the thin film can be generated as a coupled mode theory [60, 64]. This
type of theory is one that is common to many-body treatments that occur
throughout all of physics and is appropriate for the dynamics of the electromagnetic
scattering from the thin metal film. The coupled mode formulation describes the
motion of excitations in a dynamical system as evolving through a series of tran-
sitions between the various degrees of freedom composing the system dynamics.
The transitions are described by couplings between the degrees of freedom that
determine the transition rate of one mode of the system into the other modes of the
system. In general the couplings are linear, arising from the linear interactions
present in a linear dynamical problem.

Coupled Mode Theories
A good example of a coupled mode theory is provided by the theory of phonons
within a crystal lattice. This a basic system which, in the harmonic approximation,
is commonly treated in texts on condensed matter physics. The simplest case of it is
provided by an infinite chain of harmonically coupled atoms with a Hamiltonian
given by [7]

H ¼
X
n

m
2
_u2n þ

k0
2

un � unþ 1ð Þ2

 �

: ð4:235Þ

Here m is the atomic mass, k0 is the spring constant of the atomic interactions, and
un is the displacement of the nth atom from its equilibrium position at na where a is
the lattice constant of the chain.

The equations of motion obtained from the Hamiltonian are

mx2un ¼ k0 2un � unþ 1 � un�1ð Þ ð4:236Þ

where a time dependence of the form e�ixt is assumed. Rewriting (4.236) in the
form

un ¼ k0
mx2 � 2k0

unþ 1 � un�1ð Þ ð4:237Þ

it is seen that the displacement un is induced in the system as a transition from the
displacement degrees of freedom unþ 1 and un�1. The vibrational modes of
the system are found to propagate as a series of tunneling transitions between the
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degrees of freedom of the dynamical system of the chain of atoms. The coupling
coefficients that fix these transition amplitudes are given by

k0
mx2 � 2k0

ð4:238Þ

The next most important system treated in many-body physics is the thigh
binding model of electrons [7, 65]. This is a basic model for understanding the
properties of valence and conduction electrons in semi-conductor systems. It treats
the electronic motion in these systems in terms of hopping jumps of the individual
electrons between the atoms forming the crystal. These hopping transitions provide
the basis for understanding the electronic current exhibited in materials with
electron dynamics described by the thigh binding model.

The Hamiltonian of a one-dimensional tight binding model of electrons has the
form [65]

H ¼
X
n

t0a
þ
n an þ t1 aþ

n anþ 1 þ aþ
n an�1

� �� �
: ð4:239Þ

where t0 and t1 are electron hopping coefficients, and aþ
n and an are the Fermi

creation and destruction operators, respectively. The equations of motion obtained
from (4.239) are

eaþ
n ¼ t0aþ

n þ t1 aþ
nþ 1 þ aþ

n�1

� � ð4:240Þ

where e is the energy of the mode which is assumed to have a harmonic time
dependence. These are a set of difference equations which now involve quantum
mechanical Fermion operators.

Rewriting (4.240) in the form

aþ
n ¼ t1

e� t0
aþ
nþ 1 þ aþ

n�1

� � ð4:241Þ

the electron at the nth site is found to arrive there by tunneling from the nþ 1ð Þth
and n� 1ð Þth sites. Again the transition amplitudes for these tunneling or hopping
processes are given by the coupling coefficients

t1
e� t0

: ð4:242Þ

The transport in both the Boson and Fermion systems considered here are seen to
be very similar, involving the tunneling of excitations along the sites of the
one-dimensional chains. The fundamental difference is in the different quantum
statistics of each system, but the dynamical interactions between the sites of the
chain are handled the same in the theory of the two systems. Consequently, many of
these basic ideas for treating a many-body system in terms of coupling and
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transitions between its various degrees of freedom can easily be extended to the
study of other types of dynamical systems. Such considerations are now extended to
treat the extraordinary optical transmission through the thin film problem associated
with the system in Fig. 4.34.

Coupled Mode Treatment of Enhanced Transmission
For the thin film geometry in Fig. 4.34, the transmission through the film is studied
for incident plane wave radiation. The radiation is taken to be traveling in the
negative z-direction, incident normal to the surface of the thin film, and polarized
with its magnetic field along the y-direction. This choice of polarization favors a
coupling of the incident wave with surface plasmon-polaritons on the thin film that
are propagating in the x-direction. Consequently, it will be assumed in the treatment
presented here that the surface plasmon-polaritons excited in the system only
involve surface modes moving in the positive and/or negative x-directions [60].

The degrees of freedom entering into the description of the dynamics of the
transmission problem include: the initial incident and final transmitted plane waves
traveling along the z-axis, the two surface plasmon-polaritons modes propagating
along the x-direction in the film surfaces, and the electromagnetic modes propa-
gating in each of the subwavelength holes penetrating the thin film. Each of these
degrees of freedom is described by a normalized wave function which is defined
within a specific spatial domain of the system. Consequently, the total normalized
wave function of the system is written as a linear combination of the degrees of
freedom separately weighted by an appropriate amplitude. By determining the
amplitudes multiplying the component wave functions of the various degrees of
freedom, a complete wave function description of the propagation of light though
the system is obtained.

The basic assumption of the coupled mode theory presented here is that the
propagation of the incident electromagnetic radiation through the thin film is
mediated by a specific sequence of transitions. First there is a transition of
the incident fields to the surface plasmon-polaritons which then transition into the
modes of the individual subwavelength holes. Finally the fields in the holes exit the
film by transitioning into the outgoing transmitted electromagnetic fields.

This sequence of processes is only a subset of all of the possible processes. For
example, there are processes in which the fields of the incident plane wave tran-
sition directly into outgoing transmitted waves, processes in which the fields of the
surface plasmon-polaritons transition directly into the transmitted fields, etc. The
assumption, however, is that these are less dominant processes than those outlined
above [60]. This can be eventually verified by comparing with results from a full
computer simulation treatment.

In order to set up the system of coupled mode equations, consider the structure
of vertical columns of holes in Fig. 4.34 that are labeled by the integers n� 1; n;
and nþ 1: First consider the surface plasmon-polariton modes propagating in the
positive and negative x-directions with wave numbers kSP: The wave functions of
the surface plasmon-polaritons on the incident surface that are propagating to the
right will enter the total wave function of the scattering problem with amplitudes
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An�1;An; and Anþ 1: These are the amplitudes for the right moving surface
plasmon-polariton wave function in each of the columns labeled n� 1; n; and
nþ 1:

Similarly, the wave functions of the surface plasmon-polaritons on the incident
surface that are propagating to the left will enter the total wave function of the
scattering problem with amplitudes Bn�1;Bn and Bnþ 1: These are the amplitudes
for the left moving surface plasmon-polariton wave function in each of the columns
labeled n� 1; n; and nþ 1:

In addition to the surface waves, the holes in the vertical columns n� 1; n and
nþ 1 have amplitudes for the hole wave functions of the waves propagating down
the holes. These amplitudes, respectively, are given by cn�1; cn; and cnþ 1: The hole
excitations deliver the electromagnetic fields from the incident to the transmission
surface.

This completes the set of coefficients Am;Bm; cmf g needed for a complete
description of the total wave function of the scattering problem starting from the
incident wave. It now remains to determine how these coefficients couple to one
another in a linear relationship.

The set of Am;Bmf g coefficients are related to one another and the incident field
by a set of two linear equations. These have the form [60]

An ¼ bþ eikSPasAn�1 þ eikSPaqBnþ 1 ð4:243aÞ

for right moving surface plasmon-polariton waves, and

Bn ¼ bþ eikSPsBnþ 1 þ eikSPaqAn�1 ð4:243bÞ

for left moving surface plasmon-polariton waves.
In (4.243) b is the transmission amplitude for the normal incident plane wave

radiation to transition into the left and right moving surface plasmon-polaritons. It
governs the transition of incoming electromagnetic waves into surface
plasmon-polaritons as well as the transition of surface plasmon-polaritons into
outgoing electromagnetic waves. The s term is the transmission amplitude for the
tunneling of a surface plasmon-polariton wave to propagate along the surface as it
encounters a column of holes. It provides for the continued propagation of the
excitation in the direction it was going before it was incident on the column of
holes. The q term is the transmission amplitude for the reflection of a surface
plasmon-polariton wave as it encounters a column of holes. It provides for the
reflection and propagation of the excitation in the direction opposite to that in which
it was originally going before it was incident on the column of holes.

In addition, the various surface plasmon-polariton phase factors entering into the
coefficients in (4.243) account for the phase changes between the Am;Bmf g as they
are associated with different columns in Fig. 4.34. These phase factors account for
the fact that the surface plasmon-polariton wave functions change phase as they
pass from one column of holes to the neighboring column of holes.
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A third equation needed to complete the description of the total wave function of
the system is given by the linear form [60]

cn ¼ tþ eikSPaaAn�1 þ eikSPaaBnþ 1: ð4:243cÞ

Here t is the transmission amplitude from the bulk plane wave into the modes of a
single column of holes, and the a represents the modulus of the scattering transition
coefficient of the surface plasmon-polaritons into the modes of the subwavelength
holes penetrating the thin metal film. The phase factors again account for the phase
differences of the surface plasmon-polariton wave functions between the columns
of holes in the system.

Due to the subwavelength nature of the holes in the film, it is expected that
aj j; qj j � bj j; sj j: In particular, the arrays of holes in the thin film enter the problem
as perturbations to the thin film system [60].

A solution of the set of equations in (4.243) can be found by assuming the forms
[60]

An ¼ A0; ð4:244aÞ

Bn ¼ B0; ð4:244bÞ

and

cn ¼ c0: ð4:244cÞ

This assumption for the form of the solution provides for a uniform transition of the
incident mode over the entire surface.

The uniform mode in (4.244) represents the lowest order model solution in the
infinite system and will be used as the basic transmission solution for the thin film
model. In particular, experimentally, the transmission observed from the thin film is
found to be uniform over the entire area of the thin film.

Substituting (4.244a) and (4.244b) into (4.243a) and (4.243b) gives solutions for
A0;B0f g that are of the form [60]

A0 ¼ B0 ¼
1� eikSPas
� �þ qeikSPa

1� eikSPasð Þ2�q2ei2kSPa
b ð4:245Þ

It then follows from (4.243c) that

c0 ¼ tþ 2eikSPaa
1� eikSPas
� �þ qeikSPa

1� eikSPasð Þ2�q2ei2kSPa
b: ð4:246Þ

From (4.245) it is seen that the transmission amplitude for the transition of the
incident plane waves into waves traveling down the system of holes is given by
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ta ¼ c0 ¼ tþ 2eikSPaa
1� eikSPas
� �þ qeikSPa

1� eikSPasð Þ2�q2ei2kSPa
b: ð4:247Þ

Equation (4.247) then represent processes occurring at the incident surface of the
thin film which is the first surface of the considerations given here.

The waves excited within the holes then travel away from the first surface down
the holes until they encounter the second surface of the thin film. This is the surface
from which the transmitted wave exits the thin film. At the second surface part of
the waves in the holes are transmitted out of the thin film becoming radiation
transmitted through the film and part are reflected back into the channel. The
reflected waves travel back up the channel while the transmitted radiation con-
tributes to the total transmission through the thin film.

Both the transmitted and reflected wave for radiation propagating in the holes are
important in determining the total transmitted fields through the thin film. The
nature of the reflected fields at the second surface are now addressed followed by
the determination of the total transmission from the thin film.

The nature of the reflected wave in the hole modes must be determined before a
complete solution of the transmission from the thin film is obtained. The modes in
the holes of the thin film are reflected back and forth down their channels as they
are in part transmitted and in part reflected at each end of the hole channels. For
these modes the thin film acts as a Fabry-Perot oscillator, and, as with discussions
of Fabry-Perot resonators, the fields that are passed by the resonator in each cycle of
oscillation must be accounted for in determining the total output from the resonator.
A discussion of the physics of the exit surface for the final transmitted wave is now
addressed. This allows for an estimate of the reflection amplitude of the modes in
the holes which then is used along with the transmission amplitude to determine the
resonator output [60].

Similar considerations to those made in (4.243), treating the fields at the incident
surface of the thin film, can be made at the second surface of the thin film from
which the electromagnetic fields exit the thin film as transmitted waves. (In the
following discussions the thin film surface receiving the original incident wave is
referred to as the first surface, and the thin film surface from which the transmitted
wave exits the thin film as the transmitted wave of the film is referred to as the
second surface.) In the formulation at the second surface a set of relations is
developed between the incident and reflected modes in the column of holes and the
surface waves on the second surface. As stated earlier, the focus in the development
of these relations is on obtaining an approximation for the reflection coefficient of
the hole modes from the second surface.

In particular, an approximate relation between the surface electromagnetic
modes at the second surface and the modes in a column of holes is given by the set
of equations of the form [60]
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A0
n ¼ aþ eikSPasA0

n�1 þ eikSPaqB0
nþ 1 ð4:248aÞ

B0
n ¼ aþ eikSPasB0

nþ 1 þ eikSPaqA0
n�1 ð4:248bÞ

c0n ¼ rþ eikSPaaA0
n�1 þ eikSPaaB0

nþ 1: ð4:248cÞ

Here the primed coefficients A0
m;B

0
m

� 
refer to the surface plasmon-polaritons on

the second surface of the thin film, and c0n refers to the mode in the holes of the nth
column that propagate from the second surface to the first surface. (Notice that in
(4.243) and (4.248) the modes represented by cn and c0n move in opposite directions
in the column of holes.)

In (4.248c) the coefficient r is the reflection coefficient for hole modes as they are
reflected at the second surface of the thin film. In addition, the value of a, in the
context of (4.248c), is taken as the amplitude for the transition of the incident hole
mode on the second surface into the surface plasmon-polariton modes on the
second surface. By reciprocity it is the same as the a in (4.243).

The phase factors in (4.248) are again chosen to account for the phase differ-
ences in the coefficients between the different columns. As with the discussion of
(4.243) the holes are a perturbation on the system so that for the particular thin film
being considered it is assumed that the transition amplitudes satisfy
aj j; qj j � bj j; sj j:
Proceeding as earlier in the case of (4.243), it follows from (4.248) that [60]

c00 ¼ rþ 2eikSPaa2
1� eikSPas
� �þ qeikSPa

1� eikSPasð Þ2�q2ei2kSPa
: ð4:249Þ

As earlier in (4.247) it then follows that

ra ¼ c00 ¼ rþ 2eikSPaa2
1� eikSPas
� �þ qeikSPa

1� eikSPasð Þ2�q2ei2kSPa
ð4:250Þ

provides the amplitude of reflection for the modes moving within the system of
holes. It represents the reflection at the thin film surfaces for the uniform mode
within the holes, just as (4.247) represents the transmission from these modes.

Equations (4.245)–(4.247) and (4.249) and (4.250) then provide the basis for the
solution of the dynamics of a uniform mode of the thin film transmission problem.
It represents a mode of the system with a uniform transmission and reflection of the
incident radiation over the entire planar area of the infinite slab. Equations (4.247)
and (4.250) do this for a single encounter of the hole mode with a thin film surface,
providing both the transmission and reflection amplitude for this one encounter
process. To correctly treat the total transmission of the thin film, however, (4.247)
and (4.250) must be used to obtain the Fabry-Perot solution of the multiple scat-
tering processes involved in the resonating motion of the hole modes in the slab.
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The solutions in (4.247) and (4.250) will now be used as a basis for determining
the transmission coefficient of the incident plane wave through the thin film, taking
into account multiple scattering processes of the modes in the holes. These results
follow upon examining the Fabry-Perot resonance of the modes oscillating in the
system of holes. In these discussions, first the general nature of the Fabry-Perot
resonance solution will be explained followed by its application to the extraordinary
transmission problem.

Multiple Scattering Processes
Now that the transmission coefficient, ta; and reflection coefficient, ra; of the
incident light on the thin film with the pattern of penetrating holes has been
determine at both of the film surfaces, the problem of transmission through the thin
film is greatly simplified. The new problem is that of the transmission through a
homogeneous thin film that has the same transmission and reflection coefficients at
its surfaces as the film with the pattern of holes and which is described by an
effective refractive index ne representing the propagation of the fields in the hole
modes. This is the problem of transmission of light through a Fabry-Perot resonator.
The solution of the transmission problem for a general Fabry-Perot resonator is
treated next.

To understand the transmission through the Fabry-Perot resonator, consider the
resonator problem based on the schematic figure shown in Fig. 4.35. The light in
the system is normal incident on the film in the region above the film. The trans-
mission and reflection coefficient of the upper surface of the film are t1; r1;
respectively, and the transmission and reflection coefficient of the lower surface of

Fig. 4.35 Schematic of the Fabry-Perot resonator slab of effective refractive index ne: The
transmission and reflection coefficients t1; r1; respectively, are for the upper surface. The
transmission and reflection coefficients t2; r2; respectively, are for the lower surface. The thickness
of the thin film is denoted by t
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the film are t2; r2; respectively. The film is taken to have an effective refractive
index ne and the film thickness is t:

For the transmission through the film the incident light is partially transmitted
and partially reflected at the upper surface. The light transmitted through the upper
surface then travels to the lower surface where it is partially transmitted and par-
tially reflected. The partially reflected component at the lower surface in turn
propagates back to the upper surface where it is partially transmitted and partially
reflected. The partially reflected component of light at the upper surface then travels
back to the lower surface where it undergoes partial transmission and partial
reflection. In this way, the total transmission of light through the slab is built up as
the sum of the various transmissions through the lower surface.

The sequence of transmissions and reflections outlined above are represented
mathematically by an infinite series for the total transmission of light through the
film, tT ; obtained as a sum of multiple scattering events at the film surfaces. This
series is given by

tT ¼ t1eikt t2 þ r2eiktr1eiktt2 þ r2eiktr1eikt
� �2

t2 þ � � �
n o

¼ t1t2eikt
1

1� r1r2ei2kt
;

ð4:251Þ

where k is the wave number of light in the thin film.
For the case of interest to the problem of the thin film with subwavelength

penetration holes, it follows from (4.247) and (4.250) and the principle of
reciprocity that t1 ¼ t2 ¼ ta and r1 ¼ r2 ¼ ra: Specifically, the transmission and
refection coefficients for the electromagnetic modes in the holes of the thin film are
the same at both the first and second surfaces of the thin film. The total transmission
for the thin film with subwavelength penetrating holes is then from (4.251) given by
[60]

tT ¼ t2ae
ikt 1
1� r2aei2kt

: ð4:252Þ

The result for the extraordinary optical transmission is obtained from (4.247),
(4.250), and (4.252) with the input of the parameters a; b; s; q and the parameters of
the surface plasmon-polariton wave number, etc. For these considerations, the
coefficients a; b; s; q can be determined for a single column of penetrating holes
studied as a function of the wavelength. When the results for the coupling coeffi-
cients determined in this way are used in (4.247), (4.250), and (4.252) a reasonable
agreement is found with the results obtained from more general computer
simulation studies. In addition, an important feature of the analytical result is that
the extraordinary optical transmission effect can also be seen to arise from some of
the analytical properties of (4.247), (4.250) and (4.252).
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Extraordinary Transmission Effect
From the analytic studies presented in (4.252) the extraordinary transmission fea-
tures are found to arise from the denominators in the second terms on the right hand
side of (4.247) and (4.250). These denominators can be used to understand the
transmission enhancement on the basis of its perturbation nature.

Each of the denominators in (4.247) and (4.250) are of the form

1� eikSPas
� �2�q2ei2kSPa; containing an important factor of

1� eikSPa sþ qð Þ: ð4:253Þ

This factor in the denominators accounts for the presence of the extraordinary
optical transmission effect. In particular, for the case in which

1� eikSPa sþ qð Þ � 1� eikSPas � 0 ð4:254Þ

the denominators in (4.247) and (4.250) become small with the net result that the
transmission in (4.252) becomes large, exhibiting an extraordinary optical trans-
mission maxima. (Notice in (4.254) the perturbation limit of the holes, for which
qj j � sj j; has been used.)
For the case of weak scattering by the column of subwavelength holes it is

expected that sj j � 1 so that, in the case of a long propagation length for surface
plasmon-polaritons along the surface of the film,

eikSPas � ei Re kspað Þþ/sð Þ ð4:255Þ

where s ¼ sj jei/s : The extraordinary optical transmission maxima then occur under
the condition

Re kSPað Þþ/s � 2pm ð4:256Þ

where m is an integer.
It is seen from (4.256) that the enhancement effect is intimately connected by the

propagation properties of the surface plasmon-polariton modes on both of the two
surfaces of the thin film. In addition, for the model presented, the effect requires that
the holes be a perturbation on the propagation of the surface plasmon-polariton. The
modes in the holes are also essential for the enhancement in providing a path for the
electromagnetic waves through the film.
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Chapter 5
Metamaterials

5.1 Basic Properties of Metamaterials

Metamaterials are engineered materials that are designed to manipulate light in
ways that are not possible with materials taken directly from nature [1–6]. In their
designs metamaterial have a synthetic structure introduced into them at subwave-
length scales. As a result, for the wavelengths they manipulate, the metamaterials
appear to be homogeneous media. A homogeneous medium, however, with pre-
viously unseen optical properties. In the development of this new class of optical
materials, metamaterials have been studied in the frequency regions between the
terahertz and optical regions. The essential limitation on the wavelengths of their
applications being the ability to design and implement an appropriate subwave-
length pattern of synthetic features which provides the source of the metamaterial
response.

If chosen well their subwavelength structure allows metamaterials to exhibit
optical responses and design characteristics otherwise not found in the study of
traditional optics. The increase in the available types of optical responses shows up
in a greater range of refractive properties and a variety of unusual energy transport
properties exhibited by the new class of optical metamaterials. When added to the
existent properties of naturally occurring optical materials, metamaterials increase
the range of design characteristics that can be achieved in optical technology. This
provides for an important variety of devices made possible solely through the novel
optical characteristics of metamaterials.

The synthetic structure of metamaterials is designed by including specific arti-
ficial features and patterns of artificial features at subwavelength dimensions within
an otherwise homogeneous background medium [1–11]. The artificial features and
patterns are introduced to modify the material so that it exhibits a specific effective
permittivity and permeability when interacting with radiation of wavelengths much
greater than the artificial inclusions engineered into the material. Just as crystalline
materials appear homogeneous to electromagnetic waves at optical wavelengths,
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meta-materials are fashioned to appear homogeneous to the specific set of wave-
lengths they are designed to manipulate [1–12]. The discrete structure of both the
natural occurring medium and the synthesized metamaterial is not directly noticed
by the radiation with which they interact.

The newly fabricated metamaterials have found many possible and proposed
applications in device technology [1–11]. Such tested and proposed uses of
metamaterials include design applications in: certain schemes of making cloaking
devices, antenna designs, high resolution lenses, systems displaying enhanced
transmission effects, sensors, second harmonic generation schemes, applications to
medical optics, and in the simulation of optical effects found in general relatively
[13–22].

Many of these device applications depend on the greater range of refractive
manipulation of light made possible by metamaterials in the applications of ray
optics. Metamaterials, however, have a number of problems associated with the
inherent nature of the designs upon which their subwavelength structure is based
[1–22]. These include problems associated with the range of frequencies over which
their design and implementation functions successfully and problems with the loss
of optical energy as light moves through the metamaterials. In particular, energy
loss is often found to occur as part of the characteristics of metamaterial design
fundamentals. Consequently, there is currently a great endeavor focused on
developing better, more efficient, metamaterials as well as in formulating meta-
material applications in the design and implementation of optical device
technology.

Initially in the study of metamaterials the interest in the artificial subwavelength
inclusions was based on their magnetic resonance properties [1–6]. Specifically,
artificial inclusions can be designed so that they exhibit magnetic resonance
responses to electromagnetic waves that are not found in the magnetic resonance
properties of atoms and molecules occurring in natural crystals. The inclusions form
artificial resonators which can be tuned to exhibit resonant properties with external
electromagnetic fields over a much wider range of frequencies than those available
in atomic and molecular interactions.

Systems containing these subwavelength features exhibit resonant frequencies
and associated regions of negative permeability at frequencies in which atomic and
molecular of crystalline materials do not [1–6]. This is an essential point, important
in the design of metamaterials exhibiting the property of a negative refractive index
at frequency regions of interest for device applications. It is an essential property in
the new optics of these materials as, in naturally occurring materials, no material
has been found that has a negative refractive index [1–6].

It was shown in the early twentieth century that a requirement for a homoge-
neous medium to exhibit a negative index of refraction is that at the frequency of
the radiation both the permittivity and permeability of the media must simultane-
ously be negative. Frequency regions in naturally occurring media of simultaneous
negative permittivities and permeabilities do not exist, and this has been a funda-
mental restriction on traditional optics.
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In metamaterials, the situation is different. Negative index regions have now
become available in designs of meta-materials. Consequently, the possibility of
negative refractive index metamaterials extends what was once considered a fun-
damental limitation on optical design.

Metamaterials are a different class of artificial system from the periodic dielectric
structures known as photonic crystals [1–22]. While the basic properties of pho-
tonic crystals arise from the diffraction of light in the periodic system, the object of
metamaterials is in the design of a material which exhibits refractive (not diffrac-
tive) effects. The confining properties of photonic crystals, used to trap light in
resonator cavities or waveguides is not a primary focus in metamaterial technology.
Metamaterial design is focused on the gradual changes in the motion of light
typically associated with ray optics. However, metamaterials offer an extended
range of refractive properties to develop ray optics over the refractive properties
available from naturally occurring materials. While the metamaterial can be clas-
sified as a new type of material, photonic crystals function more in the role of an
optical device performing a diffractive function.

Recently the ideas of metamaterial technology have been extended to the study
of another class of artificial materials. These are the so-called hyperbolic materials
[23–25]. Hyperbolic materials are engineered to exhibit a specific type of electro-
magnetic dispersion relation for light propagating within them. They are composed
of subwavelength features and again appear as homogeneous media for frequencies
of light with which they are designed to interact.

In hyperbolic materials a focus is on the construction of a material with a
particular form of dielectric tensor which sets the electromagnetic dispersion [23–
25]. Specifically, the dielectric tensor is designed so that it leads to a hyperbolic
form of the dispersion relation for light propagating within the material. As shall be
shown later, materials with hyperbolic dispersion relations display a variety of
interesting and useful effects on light moving within them. Whereas the earlier
discussed metamaterials involved introducing structures that provide a magnetic
resonance response, the structure of hyperbolic materials, as shall be seen, are based
on a surface plasmon-polariton mechanism.

The subwavelength structures introduced into media in order to create hyper-
bolic materials are chosen to support surface plasmon-polaritons on their surfaces.
The intense subwavelength fields of the surface plasmon-polariton excitations,
distributed throughout the bulk of the hyperbolic material, enter as an important
factor in the material design considerations. They are key in determining the
interesting responses of the materials to applied electromagnetic fields.

The resulting hyperbolic materials, in some cases, are found to exhibit negative
index of refraction [23–25]. In addition, they have also been shown to display
enhanced transmission effects as well as properties useful in applications for the
design of sensors and other optical device applications. These applications arise
from a series of variations in the hyperbolic material designs.

In addition to the idea of creating metamaterials with extended optical properties,
photonic crystals have been shown under certain conditions to exhibit properties
that mimic some of the interesting effects found in metamaterials. These effects are
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usually limited and are localized about certain regions of the photonic crystal band
structure in wave vector space. Some aspects of photonic crystals exhibiting unu-
sual optical effects similar to those found in metamaterials will be briefly review at
the end of this chapter.

In the following, discussions will first be given of metamaterials based on
subwavelength features designed to give a magnetic resonant response to externally
applied fields. The resonant response in these types of metamaterials is usually
provided by a subwavelength feature known as a split ring resonator. There are
many types of split ring resonator designs depending on the frequencies at which
they are meant to operate as well as other design requirements peculiar to the
material being formulated. In its basic form, it is just a structure with a resonant
interaction when driven by an external frequency dependent field. The operation of
the simplest form of a split ring resonator will be explained in terms of a simple
modes of an LRC circuit which is driven by an externally applied magnetic field.

Following some basic discussion regarding the use of the split ring resonators in
metamaterial designs, the essential properties exhibited by metamaterials are dis-
cussed. The most important of these is the property of negative refraction, and the
behavior of light propagating in negative index media is reviewed. Examples of the
behavior of negative index media presented include: the refraction of light at the
interface between positive and negative indexed media, the properties of a perfect
lens, the properties of radiation traveling within negative index media, and dis-
cussions of potential device applications.

The chapter is concluded with a presentation on the properties of
hyperbolic-materials [23–25]. This includes discussions on the nature of the
dielectric tensor in these systems and the properties of the associated dispersion
relation of light in hyperbolic metamaterials. Applications of these materials are
then explained in terms of the dispersive properties of light.

In addition, the use of photonic crystals to mimic some of the effects found in
metamaterials is discussed. These photonic crystal properties are an analogy of
various band structure effects found in the magneto-resistance of conduction
electrons [12].

The first topic which is next addressed deals with the properties of a basic split
ring resonator unit as it enters into meta-materials as a component and how split
ring resonators can be arrayed in three dimensions to form bulk materials with
engineered diamagnetic responses.

5.1.1 Properties of Split Ring Resonators and Split Ring
Resonator Arrays

The split ring resonator is the basic artificial inclusion used in the formation of
metamaterials [1–11]. There are many variations on its design details that are made
for engineering material considerations, and some of these will be discussed later in
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this chapter. In its basic form, however, the split ring resonator is a conducting ring
with a gap cut into it. (For a schematic of the simplest form of split ring resonator
see Fig. 5.1.) The basic design of the split ring resonator causes it to function as an
elementary forced resonator circuit of a kind that is commonly studied in intro-
ductory physics and electrical engineering courses.

The ring of the split ring resonator acts as an inductance, just as a ring of wire
has a self-inductance when interacting with an external magnetic field or when a
current is passed through the ring. The gap in the ring acts as a capacitor in which
equal and opposite charges are developed on the surfaces that are separated by the
ring gap. The split ring resonator then combines the inductance of the ring in series
with the capacitance of the gap in the ring to form a simple LC resonant circuit
[1–11].

The split ring resonator has no net charge on it, but, by interacting with a
time-dependent external magnetic field applied perpendicular to the plane of the
ring, it can develop a time-dependent current within the ring. As a result of
the inductive interaction with the driving field, the current induced in the ring has
the same frequency as that of the external field. The applied frequency driving the
split ring current, however, is generally different from the natural resonant fre-
quency set by the inductance and capacitance of the ring. To a large extent the
difference between the resonant and applied frequencies determines the response of
the ring to the applied field. This response characteristic is an essential feature of the
nature of the split ring resonator as a harmonic oscillator forcibly driven by the
externally applied field [1–6].

The natural frequency of the split ring resonator is determined from the induc-
tance of the ring and the capacitance of the gap by a standard formula from the
elementary physics of an LC circuit. This resonant frequency is then given by [1]

Fig. 5.1 Basic design of an
idealized SRR unit.
A metallic ring with a gap
filled with dielectric media
forms the basis of an LC
circuit
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x0 ¼ 1ffiffiffiffiffiffi
LC

p ð5:1Þ

where L and C are the self-inductance and capacitance of the split ring, respectively.
The frequency in (5.1) is the resonant frequency of the interaction of the split ring
resonator with an external driving electromagnetic wave, setting many important
properties of the interaction of the ring with the external field.

The relationship of the resonant frequency in (5.1) to the frequency of the
applied magnetic field will determine whether or not the magnetic moment induced
in the split ring resonator is paramagnetic of diamagnetic in nature. In particular, the
magnetic moment of the split ring resonator is determined by the electric current
induced in the ring by the externally applied magnetic field. The phase of the
induced current relative to that of the applied field is set by the resonant conditions
of the split ring, and this is an important factor determining the dipole moment of
the ring.

In a system formed as an array of split ring resonators, the nature of the para-
magnetic or diamagnetic response of the array depends on the responses of the
individual split ring resonators of the array as they interact with the external field
and also with one another. This is the case with metamaterials formed as arrays of
split rings. For these type of arrays, the collective response of all of the rings
forming the arrays determines the important diamagnetic or paramagnetic response
of the system, and this collective response depends on the self-inductance of the
rings as well as the mutual inductance between rings.

In addition to the self-inductance, the neighboring rings in the meta-material
have a mutual inductance coupling between one another. These mutual inductances
couple the split rings together and gives them a collective dynamics of propagating
electromagnetic waves between the rings. The mutual inductive couplings allow the
magnetic fields generated from the currents flowing within one split ring to induce
fields in its neighboring split rings. This process results in a traveling wave of such
field transfers throughout the array of rings.

For an array of split rings formed on a lattice, the system (which is electrically
neutral on the whole) exhibits what are termed magneto inductive waves [1–11].
These waves are electromagnetic waves which travel as plane waves in the array
and exhibit a dispersion relation which depends on the mutual inductive couplings
between the split rings. The study of magneto inductive waves has a long history
prior to the study of metamaterials. Metamaterials, however, in part exhibit prop-
erties and characteristics which are functions of the physics of the magneto
inductive waves.

The properties of magneto inductive waves will be discussed later. For now the
focus is on a single split ring resonator and how it gives a paramagnetic or dia-
magnetic response to an applied frequency dependent electromagnetic field [1].

Consider the single split ring resonator in Fig. 5.1 driven by an external elec-
tromagnetic wave of frequency, x, and with it magnetic field perpendicular to the
plane of the page. The natural resonant frequency x0 of the split ring resonator is
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determined from (5.1) in terms of the self-inductance and capacitance of the split
ring. A resonant interaction of the electromagnetic wave with the ring is observed as
x passes through x0 [1–6].

The essential physics of the split ring resonator interaction with the external field
can be understood on the basis of the simple resonator circuits in Fig. 5.2. In
Fig. 5.2a a simple resonator circuit composed as an inductor and a capacitor is
shown. This models the basic split ring resonator where the inductance in Fig. 5.2a
is the inductance of the ring and the capacitor is that of the gap in the ring. The
resonance frequency for the free standing ring oscillator is given by (5.1).

A time dependent magnetic field introduced perpendicular to the plane of the
split ring then, through an application of Faraday’s Law, generates an electromotive
force in the ring. In the Fig. 5.1 the applied magnetic field is perpendicular to the
page with the positive sense of the field out of the page, and the positive current in
the loop is in the anti-clockwise direction [1].

The induced emf in the split ring resonator from the magnetic field can be
introduced into the circuit of Fig. 5.2a as an externally applied source of emf. The
circuit representing the split ring resonator driven by the external magnetic field is
that shown in Fig. 5.2b. Here the source of applied emf is from the emf generated in
the ring by the changing magnetic field.

The induced emf from the time dependent field enters the LRC electromagnetic
oscillator circuit shown in Fig. 5.2 as a driving force of the harmonic motion. The
ring of the split ring feature acts both as the self-inductance of the circuit and
the origin of the driving emf through the induced Faraday’s Law interaction with
the external field [1].

Fig. 5.2 Schematics of: a an LC ring with a time varying magnetic field perpendicular to the
plane of the ring, b an LRC forced harmonic oscillator circuit
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For the system represented in Fig. 5.2b, the equation of the driven oscillator is
given by the standard form [1]

L
d2Q
dt2

þR
dQ
dt

þ Q
C
¼ V : ð5:2Þ

In this equation Q is the charge on the capacitor, V is the forcing emf from
Faraday’s Law, and the equation has been modified to include resistive losses.

Resistive losses are important in restraining the response of the split rings from
becoming singular at the resonant frequency and also as a source of inefficiency in
the split ring design. They come from two sources: Joule losses to the materials
forming the ring and its capacitive gap and radiative losses from the ring. Care must
be taking in the design of the system so that these two types of losses are kept low.
In terms of radiative losses, the split ring itself forms an antenna, and an object is to
make it as inefficient an antenna as possible [1–6].

Loss mechanisms are a major problem with metamaterials based on arrays of
split ring resonators. Losses become particularly important in the system at and near
resonance, and these are the regions of most interest for the design of metamaterials
exhibiting the property of negative index of refraction. Another problem of res-
onator based metamaterials is the narrow band of frequencies over which the sys-
tems exhibit resonant behaviors. As shall be seen later, this limits much of the
applications of these types of artificial materials.

To understand the response of the split ring resonator to an applied electro-
magnetic wave polarized with a magnetic field perpendicular to the page in
Fig. 5.1, the physics of the driven oscillator in (5.2) is now treated. Through a
straightforward application of Faraday’s Law, a magnetic field component of the
form BðtÞ ¼ B0 cosxt interacting with the split ring is found to develop a
time-dependent emf within the ring. In this way the driving emf is then given by [1]

V ¼ V0 sinxt; ð5:3Þ

where V0 ¼ xAB0 for a ring of area A, and the maximum flux through the split ring
is given by AB0. Equation (5.3) expresses the forcing emf of the model system in
Fig. 5.2b which represents an equivalent circuit for the split ring interacting with
the external field. It expresses this directly in terms of the applied magnetic field. By
using (5.3) in (5.2) the dynamics of the two related systems are determined.

Using (5.3) as the driving term in the theory of the LRC forced oscillator, the
response of the current in the ring is given directly from the impedance of the series
inductor-resistor-capacitor circuit. This is found worked out in many elementary
texts in physics and engineering. Specifically, it is shown that the relationship of the
amplitude of the current I0 to the amplitude of the voltage V0 through the impen-
dence Z is written as V0 ¼ ZI0. In addition, in this relationship the impedance Z of
the forced LRC oscillator circuit has the form [1]
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ZðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ xL� 1

xC

� �2
s

ð5:4Þ

in terms of the inductance, capacitance, resistance and the frequency of the driving
potential.

A second important formula for relating the induced current in the circuit to the
induced emf is that giving the phase difference between the current and driving
potential. This phase difference, /, between the current and the driving emf is
obtained from the standard formula

/ ¼ tan�1 xL� 1
xC

R

� �
: ð5:5Þ

In terms of the driving potential in (5.3) the current in the ring (and in its repre-
sentative driven circuit in Fig. 5.2b) is then given by [1]

IðtÞ ¼ I0 sinðxt � /Þ ð5:6Þ

where the amplitudes of the current and driving potentials are related through the
standard form

I0 ¼ V0

ZðxÞ : ð5:7Þ

From (5.3) through (5.7) the system is seen to exhibit a resonance when
x ¼ x0 ¼ 1ffiffiffiffiffi

LC
p . In particular, from (5.4) the impedance has a minimum value of

Z ¼ R under these conditions so that for a fixed input voltage amplitude the output
current amplitude I0 ¼ V0

ZðxÞ attains a maximum value. In addition, from (5.5), under

the resonant condition x ¼ x0 ¼ 1ffiffiffiffiffi
LC

p the current and voltage are both in phase, i.e.,

/ ¼ 0. These two aspects of resonance are of fundamental importance for the
design of metamaterials. One is useful to designs meant to display negative index
effects, and one is a design problem which needs to be handled effectively [1].

As shall be shown later, the resonance maximum in the current is a good thing
for the design of negative refraction media based on arrays of split ring resonators.
On the other hand, the lack of phase difference between the applied voltage and
current response at resonance gives rise to a design problem which is a fundamental
difficulty in split ring metamaterials. It requires that the split ring exhibits its
greatest losses at the frequency the ring exhibits the most interesting response
properties [1].

As a consequence of the zero phase difference at the resonant condition, the time
average resistive power losses in the circuit at resonance are a maximum given
by [1]
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Pavg ¼ I0ffiffiffi
2

p
� �2

R ¼ V0ffiffiffi
2

p
� �2 R

Z2 : ð5:8Þ

These loses arise directly from the presence of resistance in the system and are
absent in systems without resistance. In the power loss formula the resistance
R represents both the natural resistance of the materials forming the split ring and
also the radiation resistance of the ring. The radiation resistance component of the
total resistance arises from the behavior of the ring as an antenna when the ring
carries a time-dependent current. It adds to the resistance coming from the dissi-
pative properties of the materials forming the ring. Many of the proposed designs of
split ring features are focused on dealing with the problem of removing or lessening
both of these two types of resistance losses from the split ring array.

At resonance the relative phase difference between the driving potential and
current is zero. In particular, as the frequency of the driving potential is changed
through the resonance condition at x ¼ x0 ¼ 1ffiffiffiffiffi

LC
p the relative phase changes sign,

being different in sign on either side of its zero at the resonance frequency. As shall
now be seen, the zero of the phase is the important point for the operation of the
split ring resonator in affecting the magnetic response of the split ring to the
externally applied field. The type of magnetic response exhibited by the split ring is
strongly dependent on the sign of the relative phase of the driving potential and the
induced current [1].

As the frequency of the applied field is passes through resonance, the magnetic
response of the ring to the applied field passes from a diamagnetic to a paramag-
netic type of response. The change from diamagnetic to paramagnetic response is
directly linked to the change in sign of the relative phase, /, at the resonance
transition. The transition in the magnetic properties of the system is essential in the
development of negative refractive index materials. It will now be discussed in this
context.

To understand the magnetic response of the split ring to the applied magnetic
field, it is necessary to study the magnetic moment of the ring generated by the
current induced in it by the external field. This is done by calculating the time
averaged magnetic moment studied as a function of the applied field. In particular,
for the ring structure in Fig. 5.1 the magnetic moment of the loop, l, is given by the
standard formula [1]

lðtÞ ¼ IðtÞA; ð5:9Þ

in terms of the area of the ring A and the induced current IðtÞ in (5.6) generated by
the applied potential VðtÞ in (5.3). Equation (5.9) gives the magnetic moment of the
ring as a function of time. The object now will be to determine the time average
magnetic moment of the split ring as it interacts with the applied time-dependent
magnetic field.

The best approach to understanding the time averaged magnetic moment of the
split ring is to study the potential energy of the split ring as it interacts with the
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external applied magnetic field. The magnetic potential energy of the induced
magnetic moment of the ring interacting with the applied magnetic field is again
obtained using the standard relationship [1]

UðtÞ ¼ �lðtÞBðtÞ ð5:10Þ

Substituting (5.6) for the induced current and the form for the external field given
above (5.3) into (5.10), it follows that

UðtÞ ¼ �AI0B0 cosðxtÞ sinðxt � /Þ: ð5:11Þ

This represents the instantaneous potential energy of the magnetic moment induced
by the applied time-dependent field.

For engineering applications the instantaneous potential energy is not as inter-
esting as the time averaged potential energy which represents the properties of the
ring over time scales of interest for device applications. The time scales of interest
in device applications are much longer that those of the rapid fluctuations in the
variation of the magnetic moment with the applied magnetic field.

Performing a time average of the expression in (5.11) over a period of the time
variation of the applied magnetic field, it is found that the average potential energy
of the split ring in the applied field is

�U ¼ AI0B0

2
sin /ð Þ ð5:12Þ

From (5.12) it is seen that the average potential energy is proportional to the factor
of sinð/Þ. Since the sine is an odd function, it follows that the sign of the potential
energy is directly related to that of the phase difference /.

A consequence of the zero phase difference between the induced current and emf
at resonance is that at resonance �U ¼ 0. This indicates that the effective magnetic
moment of the split ring is zero at the resonant frequency. However, on either side
of the resonance frequency the time averaged moment will be either diamagnetic
(negative) or paramagnetic (positive).

The regions of interest for meta-material applications are the regions of non-zero
magnetic moment. These are at frequencies slightly above or below the resonant
frequency. To understand the properties of the average moment in these regions it is
useful to expand the frequency of the applied electromagnetic wave about the
resonant frequency of the split ring resonator.

Specifically, the frequency of the applied wave is written in the form [1]

x ¼ x0 þDx: ð5:13Þ

Applying (5.13) for x in (5.5), to leading order in Dx the phase difference between
the applied potential and the induced current takes the form [1]
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/ � 2
L
R
Dx: ð5:14Þ

In addition, from (5.4) the impedance relating the amplitude of the applied potential
to the amplitude of the induced current becomes

Z � R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

L
R

� �2

Dxð Þ2
s

; ð5:15Þ

again to leading order in terms of Dx.
The important issues to be addressed in the regions of frequency about the

resonant frequency are the behavior of the power loss of the split ring and the
determination of the average magnetic moment of the split ring. These two quan-
tities are now studied as function of Dx, applying the expansions in (5.14) and
(5.15).

The average power dissipation in (5.8) can be determined in terms of Dx in the
regions about the resonance condition. Applying (5.15) in (5.8) gives the average
power to leading order in Dx in the form [1]

Pavg ¼ V0ffiffiffi
2

p
� �2 R

Z2 �
V0ffiffiffi
2

p
� �2 1

R 1þ 4 L
R

� �2ðDxÞ2� � ð5:16Þ

The maximum power loss is found at the resonant frequency at which Z ¼ R. As
the frequency changes from resonance, Dx 6¼ 0 and the average power in (5.16)
becomes less than at the resonance condition. Consequently, the properties of the
system at resonance are most conducive for the split rings to exhibit dissipative
losses.

The average potential energy and the related magnetic moment of the split rings
can be studied as functions of Dx using (5.5), (5.12), (5.14), and (5.15). From these
formulae it follows that the time averaged potential energy for the interaction of the
split ring with the magnetic field is

�U � AI0B0
L
R
Dx: ð5:17Þ

Here the averaged potential energy is seen to be proportional to Dx, with the sign of
the average potential energy depending on the sign of Dx.

From (5.17) it follows that for positive Dx the split ring is diamagnetic and for
negative Dx the split ring is paramagnetic. The effective magnetic moment of the
split ring is directly related to the average potential energy of the ring as it interacts
with the applied field.
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Consequently, the effective magnetic moment is obtained as [1]

leff ¼ �
�U
B0

ð5:18Þ

Using V0 ¼ xAB0 and (5.7), (5.14), (5.15), and (5.17) in (5.18) it follows that the
effective moment

leff ¼ � L
R2

xA2B0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 L

R

� �2ðDxÞ2q Dx: ð5:19Þ

It consequently follows from (5.19) that the sign of the effective magnetic moment
is opposite to that of Dx.

From (5.16) and (5.19) it is seen that near resonance the basic properties of the
energy loss and effective magnetic moment of the split ring are simply related to the
difference between the frequency of the electromagnetic wave and the resonant
frequency of the split ring resonator [7]. These two properties are presented in
Fig. 5.3 plotted for the region near the resonant frequency. The power loss in the
LRC circuit from (5.16) is plotted in Fig. 5.3a in the region in the close neigh-
borhood of the resonant frequency. The maximum of the power loss at the Dx ¼ 0
resonance condition is clearly observed with a gradual decrease in the scaled fre-
quency variable 2LDx=R. The full width at half maximum of the curve is deter-
mined from the condition LDx=R ¼ 1.

The effective magnetic moment from (5.19) is plotted in Fig. 5.3b where as a
function of frequency it is seen to pass through a sign change as the frequency of the
applied field goes through the resonance frequency. In this process, the response of
the split ring resonator passes through regions of enhanced paramagnetic (positive
effective magnetic moment) and diamagnetic responses (negative effective mag-
netic moment) as the frequency of the electromagnetic wave passes through the
resonance of the split ring resonator.

The region of enhanced diamagnetic response has been of great recent interest as
in this region it is possible to use split ring resonators to facilitate the design of
materials with negative permeability. For the case that the diamagnetic response is
made great enough, the split ring resonator will exhibit a negative permeability
[1–10]. This is requisite to the design of systems with negative refractive index
properties.

A focus in the design of negative refractive index metamaterials is to form an
array of split ring resonators which as a whole gives a collective negative effective
permeability response to applied electromagnetic waves. The theory presented
earlier was focused on the response of a single split ring resonator. It is a peda-
gogical example. A real array of split ring resonator must take into account the
interactions of each split ring with the other split rings of the array [1–10].

In addition, the above theory of the split ring resonator relies on a perturbation
expansion in terms of Dx. This was done for the sake of presenting a simple
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analytic discussion that indicates the basic behavior. In a more realistic treatment a
greater range of frequencies in terms of Dx must be studied. The widening of the
region of frequencies is needed in order to enter a region of frequencies where
higher order terms of Dx enter. It is, generally, in this region that the split ring gives
a large enough response of the system so that it exhibits a full negative permeability
instead of just a diamagnetic response. The separation, however, of the frequency
response at the resonant frequency into diamagnetic and paramagnetic regions is
not effected by the inclusion of the higher order terms in Dx.

In its self, the simple model of the split ring given in Fig. 5.1 is an over
simplification of the type of resonators that are used in the designs of real meta-
materials. Various types of modifications are necessary for the effective application
of the ideas represented by the simple split ring discussed earlier, and some of these
modified forms and the reasons for their modified forms will be discussed later.

Fig. 5.3 Power loss of the
field to the SRR and the
effective magnetic moment of
the SRR: a the normalized
power, 2RPavg=V2

0 , and b the
normalized magnetic moment,
2Rleff =xA

2B0, both plotted
versus 2LDx=R where Dx ¼
0 at resonance
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Design Considerations

The results in Fig. 5.3 illustrate not only the basic development of the diamagnetic
response of the split ring but also a problem with the implementation of split ring
resonator meta-materials for their negative refractive index possibilities. The
maximum of the losses in the materials occurs in close proximity to the region of
enhanced diamagnetism, extending the region of losses into the region of negative
refractive index. One of the design problems of meta-materials is to find ways of
lessening the losses of the materials while obtaining a good negative index of
refraction. The resonance nature of the negative index presents another design
problem. In particular, the resonances associated with the negative index response
are typically associated with instabilities of the system at a single frequency. This
tends to limit the negative index effect to frequency regions close to the isolated
resonant frequencies. Consequently, the applications which are discussed later in
split ring resonator based metamaterials have predominantly been studied for nar-
row frequency bands [1–10]. In applying these magnetic design considerations, it
must also be remembered that for a material to display a negative index of refraction
it must simultaneously have a negative permittivity and permeability [4, 5], and this
presents a focus on the associated properties of the permittivity of the total system.

The discussions above have shown that a single split ring resonator can be tuned
to exhibit a negative permeability for an electromagnetic wave with a magnetic field
polarized perpendicular to the plane of the split ring resonator. However, new
problems arise with the incorporation of these properties into the design of a bulk
three dimensional metamaterial. Specifically, it is necessary to make an effective
three dimensional array of split ring resonators forming a material displaying a three
dimensional homogeneous isotropic diamagnetic response to electromagnetic
waves propagating in the material.

An example of such a three dimensional array is obtained by placing split ring
resonators periodically arranged in the x-y, y-z, and x-y planes of a bulk media. The
sets of split ring resonators in these three different planes then forms a three
dimensional crystal created by the repetition of the three split ring resonators basis.
In addition, the resonance conditions of the split ring resonators of the array must be
tuned to give an enhanced diamagnetic response for long wavelength electromag-
netic waves for which the metamaterial appears homogeneous. For these wave-
lengths the dielectric resonance must be sufficiently great that the material exhibits a
net negative permeability.

In addition, to the engineered diamagnetic response the background medium
component of the metamaterials in which the split ring resonators are arrayed must
exhibit a negative permittivity response [1–10]. This may in itself require designs
based on inclusions with a background supporting medium. The negative permit-
tivity response, however, is not as problematic as the negative permeability
response, and the reader is referred to the literature for the details of these [1–10].

The two conditions of negative permittivity and permeability when successfully
achieved combine to create a bulk material with a negative permeability. The
theoretical basis for the combination of negative permittivity and negative
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permeability to form a negative index medium shall be demonstrated in the next
sections of this chapter.

As a final point regarding the practical applications of split ring resonators in the
construction of metamaterials for specific device applications, remarks are made on
some of the structures recently used in engineering realizations of split ring res-
onator based meta-materials. The first structure proposed as a split ring resonator
unit was based on the split ring feature presented in Fig. 5.1 but with just a little
more complicated structure.

In particular, Pendry et al. [26] initially proposed a split ring resonator in which
two of the C shaped structures in Fig. 5.1 are composed into a single unit. In this
structure one large C contains a second small C. Both C’s lie in the same plane, and
the gaps of the two C’s are arranged to be 180° in opposition to one another [3, 26].
These were, subsequently, shown [3, 27, 28] to exhibit essentially the same type of
properties as the single ring resonator shown in Fig. 5.1.

In the two C split ring resonator proposed by Pendry et al. [26] the magnetic
resonance feature of the unit depends on more parameters of the system than in the
single C resonator in Fig. 5.1. Specifically, with the added geometric variables of
the resonator structure, variations can be made in the inner and outer radii of the
rings, the gaps in the rings, and the gap between the inner and outer C’s. This
allows for a more flexible system which can be adjusted to meet specifications need
for the design of metamaterials for engineering applications.

As an example, the double C structure can be used to reduce electric dipole
effects associated with the capacitive gaps of the C’s. In the double ring structure,
the opposite directed rings tend to cancel the dipole effects from the single ringed
structure. This reduces the electric field interactions between neighboring rings
from being electric dipole interactions to being of the order of electric quadrapole
interactions. In addition, the capacitive effects in the system now include those
arising from the capacitance between the inner and outer C rings as well as between
the ring gaps [2, 3]. This allows for a greater variety of resonant frequencies to be
available from the resonator design.

The Pendry et al., proposal has been applied in a number of experimental
treatments. Soon after the double C structure was proposed an experimental
application to the study of magneto-inductive waves in a one-dimensional chain
based on the double C resonators [19–23, 29]. In addition, the double C resonators
were employed [30] as well in the first designs of negative indexed media and
cloaking devices [31].

Since Pendry’s suggestion of the double C resonator structure, a number of other
resonator configurations have been put forth. Some of the modification made in the
split ring resonator structure are specifically tailored for the resonator to handle
different frequency ranges of applications than those treated in the studies of Pendry
et al. These include split ring resonators involving essentially different geometric
structures than that of the Pendry double C.

Examples of such different geometry types encountered in resonator unit designs
involve features based on: U-shape geometries [32], omega type geometric struc-
tures [33], and S-shape resonator geometries [24]. Even the single C-shape structure
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which in its basic form is shown in Fig. 5.1 has found some device applications
[34]. These geometric variations have been developed to handle design problems
encountered at various frequency bands and in specifications required in the designs
of devices for which reparameterization of the original split ring resonator geometry
is not effective.

The various representation of these structures and their resonant properties have
been characterized in terms of equivalent circuit models [3, 27, 28, 35]. These
models express the nuances of the basic resonance interaction of the resonator with
an applied external electromagnetic wave, yielding response properties in terms of
their specific structural details. The frequency ranges over which the different types
of split ring resonator structures operate to provide a negative permeability
response, however, in all cases are found to be limited to a narrow region about a
single resonance frequency. This continues to be a basic problem in the design of
negative indexed materials on the basis of magnetic resonators.

In the above treatments the basic ideas of the operation of magnetic resonators in
the design of negative index metamaterials. For more detains, the reader is referred
to the original literature for this field [1–36]. The discussions now turn to the
properties of negative refractive index materials themselves, including some
remarks about device application of these materials.

5.1.2 Negative Refractive Index Metamaterials

In this subsection the propagation characteristics of an electromagnetic wave
traveling in a medium described in terms of a negative permittivity and a negative
permeability are discussed [1–5]. The medium is taken to be uniformly homoge-
neous and isotropic, and the electromagnetic wave is considered to be of the form of
a plane wave propagating one-dimensionally through the medium. The resulting
dynamics of the system is shown to be characterized as that for a negative refractive
index material, with the solution of the simple one-dimensional motion illustrating
many of the basic features of electromagnetic waves in a negative indexed medium.

For this system some of the interesting properties of the electromagnetic wave
dynamics are determined. These include the unusual relationship between the three
vectors of the electric field, the magnetic field, and the wave vector of the propa-
gating electromagnetic wave solutions. Another interesting property involves the
relationship between the Poynting vector for the energy flux of the electromagnetic
wave through the medium and the wave vector of the electromagnetic wave. These
are determined and their unusual properties linked to a display of negative index of
refraction [1–5].

Later, these permittivity and permeability properties that characterize the prop-
agation of electromagnetic waves through negative refractive index media will be
seen to be of great importance in describing the refraction of waves at the planar
interface between two different types of media. In particular, new previously
unobserved refractive effects are found in the light traveling between positive and
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negative indexed media. These effects are at the basis of some of the important
proposed device applications that have been set forth in the new metamaterial
technology [1–5, 13–23].

To understand the nature of negative refractive materials first consider the
characteristics of a plane wave propagating in one dimension within a uniform
medium of general permittivity and general permeability. This will be done
mathematically in a way so that the sign of the permittivity and permeability never
enter into the considerations during the derivation of the dynamics of the wave
propagation. At the end of these considerations, however, the permittivity and
permeability can be chosen negative. The results at the end of the process then
reveal the characteristics of materials with negative index of refraction. These
considerations begin by reviewing the mathematics for an electromagnetic plane
wave [1, 5, 15] moving along the x-axis with ~E and~B polarized, respectively, along
the y- and z-axes.

For this system it follows from Faraday’s law that

@Ey

@x
¼ � @Bz

@t
ð5:20Þ

and from Ampere’s law that

� @Bz

@x
¼ le

@Ey

@t
þ lrEy ð5:21Þ

where e is the permittivity, l is the permeability, and r is the conductivity. In (5.20)
and (5.21) there are no restrictions on the e, l, and r other than that they are real
and r� 0. The conductivity in most of the following discussion is considered to be
small or zero so that it involves either a very small perturbation or no perturbation
on the system.

Under the stated conditions, the plane wave solutions of (5.20) and (5.21) take
the general form

Ey ¼ E0ei kx�xtð Þ ð5:22aÞ

and

Bz ¼ B0ei kx�xtð Þ: ð5:22bÞ

Upon substituting (5.22) into (5.20) and (5.21) a matrix equation is generated for
the field amplitudes. It has the standard matrix form

k �x
�ðlexþ ilrÞ k

				
				 E0

B0

					
					 ¼ 0: ð5:23aÞ
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The solution to the set of linear homogeneous algebraic equations in (5.23a) yields
two modal solutions for the amplitude of the electric and magnetic inductance.

The dispersion relation of the plane wave solutions is obtained from the zeros of
the determinant of the matrix in (5.23a) so that [1, 5, 15]

k2 � ðlex2 þ ilrxÞ ¼ 0: ð5:23bÞ

Equation (5.23b) can be treated as an equation for the wave vector k determined at
fixed frequency x[ 0. In this way, expanding to first order in r results in the
following set of complex wave vectors

k ¼ � ffiffiffiffiffi
le

p
x� ilr

2
ffiffiffiffiffi
le

p : ð5:24Þ

From (5.24) it is seen that the upper signs come from taking the square root to be
a positive number and the lower signs come from taking the square root to be a
negative number. The positive sign gives a phase velocity in the positive x-direction
while the negative sign gives a phase velocity in the negative x-direction. It should
be noted for the following discussions that for the cases in which both the per-
mittivity and permeability are positive or negative, no further considerations of the
complex form of the wave vectors are needed.

For the case of a mixture of positive and negative signs in the permittivity and
permeability in (5.24), however, the situation is more complex. The added com-
plication in these cases is due to the

ffiffiffiffiffi
le

p
factors in (5.24). Nevertheless, such

systems involving mixed sign are not of interest for the discussions here and,
consequently, will be ignored in the following considerations.

Substituting (5.24) into (5.22) for systems in which the permittivity and per-
meability are of the same sign gives [1, 5, 15]

Ey ¼ E0eið�
ffiffiffiffi
le

p
xx�xtÞe�

lr
2
ffiffiffi
le

p x ð5:25aÞ

and

Bz ¼ B0eið�
ffiffiffiffi
le

p
xx�xtÞe�

lr
2
ffiffiffi
le

p x
: ð5:25bÞ

In the case of the upper signs in the exponentials in (5.25), the corresponding field
amplitudes determined from (5.23a) are related by

E0

B0

					
					 ¼

1ffiffiffiffi
le

p
1

				
				A ð5:26aÞ

where A is a normalizing amplitude of the wave. For solutions with the lower sign
in the exponentials in (5.25), the corresponding field amplitudes determined from
(5.23a) are related by
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E0

B0

					
					 ¼ � 1ffiffiffiffi

le
p
1

				
				A: ð5:26bÞ

Here A, again, is the normalized amplitude of the magnetic induction.
From (5.25a) and (5.25b) it is found that in the r ! 0 limit the Poynting vector

for the plane wave solutions propagating along the x-axis is given by [1, 5, 15]

~S ¼ 1
2
1
l
~E �~B� ¼ � 1

2
1
l

1ffiffiffiffiffi
le

p Aj j2̂i: ð5:27Þ

The form on the far right hand side of (5.27) is a one-dimensional Poynting vector
representing an energy flow along the x-axis.

Furthermore, from the far right expression in (5.27) the upper (lower) sign is for
waves propagating to the right (left). This is an important point that will enter into
the consideration of negative indexed materials. In particular, it is seen that the net
direction of the energy flow along the axis is ultimately determined by the sign of
the permeability of the medium. The sign of the permeability can act in (5.27) to
reverse the energy flow from being in the direction of the plane wave propagation to
being in the opposite direction.

To illustrate this point, consider the following: From (5.27), it follows that in the
case of a positive indexed material (i.e., for e; l[ 0) the flow of energy in
the system is parallel to the wave vector of the plane wave. Specifically, from (5.25)
the wave vector for the positive index material is given by � ffiffiffiffiffi

le
p

x̂i which for
positive permeability is parallel to the vector in (5.27).

However, from (5.27) in the case of a negative indexed material (i.e., for e; l\0)
the flow of energy in the system is anti-parallel to the wave vector. Under the same
considerations as those made for the positive index medium, again for the negative
index material the wave vector is given from (5.25) by � ffiffiffiffiffi

le
p

x̂i which for negative
permeability is opposite to the vector in (5.27). The signs of the one-dimensional
wave vector and Poynting vector, consequently, agree in a positive indexed med-
ium and disagree in a negative index medium.

When a small non-zero conductivity is included in the electromagnetic solutions
of (5.25) they exhibit spatially decaying fields. The decay in the fields is a direct
result of the dissipated losses in the system introduced by the electric conductivity.
These losses transfer the field energy to other degrees of freedom in the system. As
a result of this mechanism both the electric field and the magnetic induction

solutions given in (5.25) exhibit a decay governed by factors of the form e�
lr

2
ffiffiffi
le

p x, and
in the case of zero conductivity the fields are seen to revert to purely propagating
plane wave forms.

For the case of a positive indexed material with lr[ 0, the amplitude of the
wave is seen from (5.25) and (5.27) to decay in the direction of the energy flow. In
particular, it follows from (5.27) that, in the limit of zero conductivity, the energy
flow is parallel to the direction of the wave vector, and this is the direction of the
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amplitude decay. The small conductivity expressions then describe the flow of
energy in the direction of the wave vector of the plane wave solution, and as the
wave moves through space both its energy and amplitude decrease. These are
common behaviors with which physicists and engineers are familiar.

For the case of a negative indexed material with lr\0, a quite different,
unexpected set of behaviors are found. In particular, as with positive index mate-
rials, it follows from (5.25) and (5.27) that the amplitude of the waves again decay
in the direction of the energy flow. However, it is seen from (5.27) that in the limit
of zero conductivity, the wave vector of a wave propagating in the negative indexed
medium is anti-parallel to the energy flow of the wave. This follows from (5.27)
because the permeability of the negative index material is negative.

Both the positive and negative indexed media solutions just discussed make
physical sense. In both solutions the field dynamics describes energy flows in which
the energy of the waves decay as the flow of energy spatially advances through the
respective positive or negative index dissipative media. The essential difference in
the two types of media, however, is that in a positive index medium the wave vector
is parallel to the energy flow whereas in a negative index medium the wave vector
is anti-parallel to the energy flow. It shall be seen later, in the discussions of
refraction between media, that the property of the parallel or anti-parallel nature of
the wave vector and Poynting vector introduces fundamental differences in the
refractive behaviors of positive and negative index media.

The anti-parallel nature of the wave vector and Poyning vector in negative
refractive index media may at first seem unusual or counterintuitive. That this is not
the case can be understood by considering the motion of a broad energy pulse
within a negative refractive index medium. This provides an illumination of the
detailed motion of energy in a negative index medium. In the following, this motion
will be discussed and a comparison made with pulse propagation in a positive index
medium.

To establish a comparison, first consider the treatment of a plane wave pulse of
radiation propagating in a positive indexed medium, i.e., for e; l[ 0. The medium
is taken to be non-dissipative, and the pulse is broadly localized in space. Due to the
positive index of the medium, the motion of the energy components forming the
pulse are then in the direction of their wave vectors. In addition, as a simplification
it will be assumed that the pulse envelop is very broad so that only a limited set of
wave vectors are summed into the representation of the pulse.

In particular, the electric and magnetic energy density of the pulse propagating in
the positive index medium are given, respectively, by [1, 5, 15]

UE ¼ 1
2
e Eðx; tÞj j2; ð5:28aÞ

UB ¼ 1
2
1
l
Bðx; tÞj j2: ð5:28bÞ
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The magnitude of the Poynting vector giving the flow of energy in the direction of
the wave vector in the absence of dispersion or for weak dispersion, is related to the
energies in (5.28) by

S ¼ 2 UEj jv ¼ 2 UBj jv: ð5:29Þ

In (5.29) v is the speed of light in the positive index medium and the equality of the
energy density of the electric and magnetic fields has been used.

Since e; l[ 0 the Poynting vector in (5.28) through (5.29) represents a net flow
of positive energy carried by the pulse. This is a standard result found from classical
electrodynamics for the propagation of a very broad pulse through space. In par-
ticular, in (5.29) the pulse is considered in the limit that it is essentially of uniform
energy density extended throughout space.

Now the same treatment is extended to consider the flow of energy of a spatially
localized field pulse propagating in a negative indexed medium. In the negative
index medium the results in (5.28) and (5.29) also hold for a propagating pulse.
However, now e; l\0 so that the energy densities in (5.28) are negative. As a
consequence, the pulse, written in the field amplitudes E x; tð Þj j and B x; tð Þj j, shows
up as a spatially localized decrease in energy. This is opposite the case in the
positive index e; l[ 0 case in which the pulse represented a spatially localized
increase in energy.

Though the pulse in the negative index medium moves in a direction parallel to
the wave vector, it is a pulse of energy decrease not of energy increase.
Consequently, as it moves the pulse decreases the energy in the region to which it
travels. This is opposite to the pulse in a positive index medium that increases the
energy in the region to which it travels.

When comparing the Poynting vectors of pulses moving in the positive and
negative index media, it is useful to note that the flow of an amount of negative
energy past a point in space can be viewed as the flow of an equivalent amount of
positive energy in the opposite direction. Applying this, the amplitude of the
Poynting vector in (5.29) for a negative index medium, then, represents a pulse of
energy decrease traveling parallel to the wave vector. It is equivalent to the flow of
an energy pulse in the direction anti-parallel to the wave vector. These properties
illustrate the essential difference between the Poynting vectors in positive and
negative index media.

The earlier discussions of the Poynting vectors in positive and negative index
media have a certain analogy with the properties of the current density of electrons
and holes in semiconductors. In particular, in the treatment of the current density in
semiconductors, positive charged holes move parallel to the electric field to create
the same electric current as negative charged electrons moving anti-parallel to the
electric field. Consequently, currents arising from positive and/or negative charges
cannot, in general, be distinguished. Such a distinction between electron and hole
currents can only be made through the application to the system of a symmetry
breaking magnetic field.
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In the case of the optics problem the motion of pulses in positive and negative
index media behave like electrons and holes in their respective n and p type
materials. The motion of net electrical charge through the semiconductors is similar
to the motion of energy in the optical systems.

In our later discussions, the analogy of the positive and negative index problem
in optics with the problem of electrons and holes in semiconductors will be
extended to considerations of the flow of light energy past an interface between a
positive and negative index medium. In particular, this type of optical interface
problem is reminiscent of the problem of the flow of electrical current consisting of
electrons and holes passing through a p-n semiconductor junction. At the optical
interface a pulse of light energy is an energy particle in a positive indexed optical
medium, and in a negative indexed optical medium a pulse of decrease of light
energy is an energy hole. The energy moves through positive (negative) indexed
media by the motion of energy particles (energy holes), just as electrons carry the
current in n-type semiconductors and holes carry the current in p-type semicon-
ductors [12]. Similar to electrons and holes meeting at a p-n junction, the energy
particles and holes, upon meeting, can combine to destroy one another.

In the next section, the problem of the interface between a positive and negative
index medium are discussed. This problem exhibits many of the interesting prop-
erties that arise for technological applications of these types of optical media. In
addition, the analogy with the p-n junction in semiconductor physics will be further
discussed.

5.1.3 Refraction Between Positive and Negative Index
Media

The next level of problem from that of the propagation of a plane wave in a
negative index medium is the refraction of a wave at the interface between two
different media, one of which having a negative index. This involves the study of a
boundary value problem which, at the interface between the two media, applies the
standard electrodynamic boundary conditions on the four electromagnetic fields. In
their application, the boundary condition relations employed are taken directly from
classical electrodynamics without amendment. They are quite general and appro-
priate for interfaces between either positive or negative index media.

This section focuses on the example of the refraction of a plane wave at the
planar interface between a positive and a negative indexed material [1, 5, 15]. In a
first study the refraction of light originating in a positive indexed medium is treated
as it is refracted into a negative index medium. This is followed by a treatment of
the refraction of light originating in the negative indexed medium as it is refracted
into a positive index medium.

For these two cases a detailed study of the relationships of the wave vectors and
energy flows at the interface is given, and a comparison of these relations with those
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for a wave traveling between two positive index media is made. The wave vectors
and energy flows at the interface between a positive and a negative index medium
are found to have an unusual relationship compared to those at the interface
between a positive and another positive index medium or between a negative and
another negative index medium. The unusual properties at the interface between a
positive and a negative index medium are shown to arise from the flow of energy.
Specifically, the energy flow and wave vector are oppositely directed in a negative
index medium.

The discussions here will only consider the electromagnetic modes of the
refraction problem. The important topic of the related surface electromagnetic wave
solutions on an interface between positive and negative media will not be treated in
this section. The study of surface waves is a very important aspect of the properties
of electromagnetic waves at an interface between media and will be treated else-
where in discussions related to device applications. It is also an important topic in
the study of plasmonics.

In particular, following the treatment of refraction in this section, the refraction
results are applied as a part of the discussion of the design of a perfect lens [1–5,
13]. The perfect lens involves the refractive properties discussed below as well as
the properties of surface electromagnetic waves traveling along the planar interface
between a positive and a negative index medium [13]. The additional considera-
tions of surface electromagnetic waves are needed so that all of the optical waves
originating from the optical object in the lens system can be assembled by the
perfect lens into the image generated by the lens. This involves propagating as well
as evanescent waves arising in the object-lens-image system. The discussions of
surface electromagnetic waves will, however, be included in the course of the
presentation of materials on the perfect lens.

For the most part, in the discussions of refractive effects, surface electromagnetic
waves, and the perfect lens the focus will be on lossless media. Some discussions at
the end of the chapter will be made on attempts to overcome the losses in meta-
materials implementing magnetic resonance effects in their designs.

Light Originating in the Positive Index Media

In this subsection, a treatment is given of the refraction of light at the planar
interface between a positive and negative index medium. For the considerations, a
plane wave of light is incident on the interface from the side of the positive index
medium, with part of the incident light being refracted at the interface while part is
reflected at the interface. To keep the consideration brief a focus will be on the case
of light polarized with the magnetic field perpendicular to the plane of incidence.
Once this case is understood the other case of the electric field polarized perpen-
dicular to the plane of incidence can be easily worked out.

In the geometry of the interface problem (given in the schematic diagram in
Fig. 5.4) the positive indexed medium called “medium 1” is in the region y[ 0,
and the negative indexed called “medium 2” is in the region y\0. Medium 1 is
described by permeability and permittivity parameters l1; e1 [ 0 of a positive index
medium, and medium 2 is described by the corresponding parameters l2; e2\0 of a
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negative index medium. Medium 1 is taken to be the medium containing the
incident wave.

The expressions for the incident and reflected waves in medium 1 are obtained as
general forms of the solution of the Maxwell equation in the uniform homogeneous
medium characterized by e1; l1. For the expression of these solutions, the various
positive angles describing the incident, reflected as well as the refractive plane
waves about the interface are indicated in the schematic diagram given in Fig. 5.4.
The boundary value problem at the interface is then completely specified within the
context of the variables defined in Fig. 5.4.

In terms of these angles the wave incident on the interface from medium 1 is of
the form [1, 5, 13, 15]

~EI ¼ EIðcos hîiþ sin hî jÞei kðsin hix�cos hiyÞ�xt½ 	; ð5:30aÞ

~BI ¼ EI
k
x
k̂ei kðsin hix�cos hiyÞ�xt½ 	; ð5:30bÞ

Fig. 5.4 Refraction at planar interface for incident light in a positive medium and refracted light
in a negative medium. The arrows indicate the wave vectors and as represented in the figure
hi; hr; ht [ 0
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where the positive angle hi is shown in Fig. 5.4. The wave is assumed to be
polarized with the magnetic field perpendicular to the plane of incidence.

Similarly, the wave reflected at the interface back into medium 1 is given by

~ER ¼ ERð� cos hr̂ i þ sin hr̂ jÞei kðsin hrxþ cos hryÞ�xt½ 	; ð5:31aÞ

~BR ¼ ER
k
x
k̂ei kðsin hrxþ cos hryÞ�xt½ 	; ð5:31bÞ

where the positive angle hr is shown in Fig. 5.4 and the magnetic field is again
perpendicular to the plane of incidence.

In both the expression for the incident and reflected waves the wave number for
propagation in the positive index medium is given in terms of the frequency,
permeability and permittivity by the expression

k ¼ ffiffiffiffiffiffiffiffiffi
l1e1

p
x: ð5:32Þ

For the solutions in medium 1, described by (5.30) through (5.32), the relationship
between the incident and reflected wave amplitudes (i.e., EI , ER, respectively) are
obtained as part of a boundary value problem considered later at the interface
between media 1 and 2.

From the form of the solutions in (5.30) and (5.31), the wave vectors of the
incident and reflected waves in the positive medium are given by [1, 5, 15]

~ki ¼ kðsin hi;� cos hi; 0Þ; ð5:33aÞ

~kr ¼ kðsin hr; cos hr; 0Þ: ð5:33bÞ

The wave vector in (5.33a) represents a wave with a phase velocity directed towards
the interface whereas the wave vector in (5.33b) represents a wave with a phase
velocity directed away from the interface. From (5.30) through (5.33) the respective
Poynting vectors of the incident and reflect waves is obtained from the standard
expression for the Poynting vector in classical electrodynamics.

In this way it follows that [1, 5, 15]

~SI ¼ 1
2
1
l1

1
x

EIj j2~ki ð5:34aÞ

is Poynting vector of the incident wave and

~SR ¼ 1
2
1
l1

1
x

ERj j2~kr ð5:34bÞ

is the Poynting vector of the reflected wave. Equations (5.33) and (5.34) show the
standard result of the interface problem, indicating an energy flow, respectively,
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into and out of the interface between the two media. Note that since l1 [ 0 in the
positive index medium, the Poynting vectors of both the incident and reflected
waves are parallel to their respective wave vectors.

The next part of the solution to consider is the refracted wave in medium 2. This
part of the problem is in the region located below medium 1 and the interface. In
this region medium 2 has a negative index (i.e., e2; l2\0) so that additional care
must be taken in its treatment. This must be done while choosing a solution for the
refracted wave in medium 2 that represents an energy flow away from the interface.
In particular, the energy refracted at the interface into medium 2 must travel away
from the interface so that energy does not collect at the interface between the two
media. At the same time the wave vector of the solution in medium 2 must correctly
match the interface boundary conditions with the two waves in medium 1.

Under these conditions, the correct form of the solution for the transmitted wave
is

~ET ¼ ETð� cos ht̂ iþ sin ht̂ jÞei qðsin htxþ cos htyÞ�xt½ 	; ð5:35aÞ

~BT ¼ ET
q
x
k̂ei qðsin htxþ cos htyÞ�xt½ 	; ð5:35bÞ

where the positive angles defined by Fig. 5.4 are used for the case of a negative
medium 2. Consequently, the positive angle ht is located in the third quadrant,
being measured from the y-axis.

In both (5.35) expressions for the refracted wave the wave number for propa-
gation in the negative index medium is given in terms of the frequency, perme-
ability, and permittivity by the expression

q ¼ ffiffiffiffiffiffiffiffiffi
l2e2

p
x: ð5:35cÞ

In the system in medium 2, described by (5.35), the relationship between the
incident and transmitted wave amplitudes (i.e., EI , ET , respectively) are obtained as
part of a boundary value problem considered later at the interface between media 1
and 2.

From the general form of the transmitted wave solution in (5.35), it is seen that
the wave vector in medium 2 is given by [1, 5, 15]

~qt ¼ q sin ht; cos ht; 0ð Þ ð5:36Þ

where q ¼ ffiffiffiffiffiffiffiffiffi
l2e2

p
x. In this case the wave vector of the transmitted wave in (5.36) is

found to exhibit the counterintuitive property that it points from the medium
containing the refracted wave towards the medium containing the incident wave.
This is not a difficulty as medium 2 is a negative refractive index medium.From
earlier discussions, it is known that the flow of energy in a negative index medium
is in a direction opposite that of the wave vector. Consequently, the direction of the
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wave vector in (5.36) is necessary to account of the flow of energy away from the
interface.

From (5.35) and (5.36) and the standard form of the Poynting vector from
classical electrodynamics it follows that the Ponyting vector of the transmitted wave
solution take the form [1, 5, 15]

~ST ¼ 1
2
1
l2

1
x

ETj j2~qt: ð5:37Þ

It is seen from (5.36) that since l2\0 in the negative index medium, the trans-
mitted wave Poynting vector represents an energy flow opposite qt. In particular,
the energy in the transmitted wave travels away from the interface and into the third
quadrant.

Another important feature of the form of the solution in (5.35) through (5.36)
involves the component of the wave vector of the solution along the interface. The
electromagnetic boundary conditions at the interface require that the component of
the wave vectors of the incident, reflected, and refracted waves agree at the inter-
face. This follows directly as a consequence of the translational symmetry of the
interface. The form of the wave vector chosen in (5.36) is made so as to provide a
basis for this agreement. The details of this condition and its fulfilment will be
discussed again later.

The agreement of the interface wave vectors and the requirement of energy flow
away from the interface are seen to set the general form of the solution. Before
finishing the boundary condition problem to determine Er, ET in terms of EI , the
refraction problem in which medium 2 is a positive index medium will be set
up. This facilitates a comparison of the two problems.

In order to provide an understand of the new aspects of negative index media in
refraction problems, it is useful to make a comparison of the results obtained in
(5.30) through (5.37) for a negative index medium 2 to the case in which medium 2
is a positive indexed medium. This provides for a detailed study of where,
specifically, the differences in the two problems arise. In the following, the cal-
culations in (5.30) through (5.37) are repeated, considering the case in which
medium 2 is positive indexed (i.e., e2; l2 [ 0).

In the case of a positive index medium 2, the form of the solution in (5.35) for
the transmitted wave must be changed. The transmitted wave in media 2 is now
given by

~ET ¼ ETðcos ht̂ iþ sin ht̂ jÞei qðsin htx�cos htyÞ�xt½ 	; ð5:38aÞ

~BT ¼ ET
q
x
k̂ei qðsin htx�cos htyÞ�xt½ 	; ð5:38bÞ

where, in the case of a positive medium 2, the positive angle ht must be in the fourth
quadrant and measured from the y-axis.
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From the form of the solution in (5.38), it is now seen that the wave vector of the
transmitted wave written as [1, 5, 15]

~qt ¼ q sin ht;� cos ht; 0ð Þ ð5:39Þ

where in terms of the positive permeability and permittivity and the frequency of
the wave

q ¼ ffiffiffiffiffiffiffiffiffi
l2e2

p
x: ð5:40Þ

The wave vector of the refracted wave is now directed from medium 1 to medium 2,
pointing away form the interface and into medium 2.

Computing the Poynting vector of the solution in (5.38) through (5.40) the flux
of energy from through the interface is given by

~ST ¼ 1
2
1
l2

1
x

ETj j2~qt: ð5:41Þ

Since for the positive index medium l2 [ 0, the wave vector and Poynting vector
are now parallel to one another. As a result the energy of the transmitted wave again
flows away from the interface.

The energy flow generated from (5.38) is now into the fourth quadrant. This
comes from the boundary conditions at the interface and the translational symmetry
of the system along the interface. Specifically, the components of the wave vectors
parallel to the interface between the two media must be the same for the incident,
reflected, and refracted waves. The form for the fields in (5.38) are the only possible
solutions satisfying the conditions on the energy flow and the wave vector.

To summarize the two problems discussed above: First consider the solutions in
(5.35) through (5.37) and (5.31) through (5.34) for the refraction between the
positive and negative index media. Start by comparing the solutions in (5.35)
through (5.37) for the negative indexed medium 2 with the solutions for the
reflected wave for the positive indexed medium 1 given in (5.31), (5.33b), and
(5.34b). Both solutions have wave vectors with positive y-components. However,
the two solutions both represent energy flows away from the y ¼ 0 plane in
opposite directions along the y-axis. This is due to the sign difference between
l1 [ 0 and l2\0 in the Poynting vectors obtained from their solutions.

From (5.35) and (5.36) for the transmitted wave for the l2\0 medium the wave
vector and Poynting vectors are anti-parallel. In this case the wave vector has a
positive component along the y-axis, while from (5.36) the energy flow of the
transmitted wave is in the negative y-direction. The energy flow of the transmitted
wave is, consequently, directed away from the interface. The reflected wave,
however, is in medium 1 so that its wave vector and Poynting vectors are parallel
and the reflected wave has an energy flow along the positive y-axis.

For the case in which medium 2 is a positive index medium, the behavior of the
wave vectors and energy fluxes change from the negative index case. For the
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solution of this case, treated in (5.38) through (5.41), all of the energy flows are in
the direction of the wave vectors of the solutions. The reflected and refracted waves
have oppositely directed y-components of their wave vectors and, consequently,
their energy fluxes are oppositely directed.

As mentioned earlier the translational symmetry of the planar interface at y ¼ 0
between media 1 and 2 requires all of the x-components of the wave vectors of the
incident, reflected, and refracted waves to agree. [In particular, this follow from
applying boundary conditions to the solutions in (5.30), (5.31), (5.35), and (5.38).]
This requires that in the reflected solutions

hi ¼ hr ð5:42aÞ

and in the refracted wave solutions

k sin hi ¼ q sin ht: ð5:42bÞ

These results arise solely from the translational symmetry and are independent of
whether or not media 1 and 2 are positive or negative indexed materials.

In applying (5.42b) it should be remembered that the angle ht has been defined
differently for the positive and negative index problems. In the above discussions
for positive index media postive ht has been measured anti-clockwise from the
negative y-axis, while for negative index media positve ht has been measured
clockwise from the negative y-axis. If in the negative index media positive ht is
redefined to be measured anti-clockwise from the negative y-axis, then in Snell’s
law in (5.42b) ht ! �ht. As a consequence of this Snell’s law for the redefined
angle now reads

k sin hi ¼ �q sin ht ð5:42cÞ

or

ffiffiffiffiffiffiffiffiffi
l1e1

p
sin hi ¼ � ffiffiffiffiffiffiffiffiffi

l2e2
p

sin ht: ð5:42dÞ

Written in terms of the newly defined ht Snell’s law in (5.42c) and (5.42d) appears
to determine the refraction for an interface between a positive and negative index
medium where the sign of the refractive index is made clear. In this formulation, the
refractive index of medium 2 is negative.

The field solutions for the refraction problem at the interface of positive and
negative index media are formulated in (5.30), (5.31), and (5.35), while the field
solutions at the interface of two different positive index media are formulated in
(5.30), (5.31), and (5.38). In order to determine the electric field amplitudes from
these two sets of solutions, it is necessary to match the boundary conditions at the
interface between the two media. The boundary conditions are the same at the
interface between a positive and negative index medium and between a two positive
index media. They involve the continuity of the component of the electric field
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tangent to the interface and the component of the magnetic field tangent to
the interface. Following from this application the fields ER, ET are expressed in
terms of EI .

From the continuity of the electric fields tangent to the interface it follows that

EI � ER ¼ aET ; ð5:43aÞ

where a ¼ cos ht
cos hi

for a positive indexed medium 2 and a ¼ � cos ht
cos hi

for a negative
indexed medium 2. Similarly, from the continuity of the component of the magnetic
field tangent to the interface it follows that

EI þER ¼ bET ; ð5:43bÞ

where b ¼ l1
ffiffiffiffiffiffiffi
l2e2

p
l2

ffiffiffiffiffiffiffi
l1e1

p . In (5.43b) b is the same for both a positive or a negative indexed

medium 2.
Equations (5.43) are then general expressions, valid for an interface between a

negative and a positive index medium or between two different positive index
media. The difference between these two problems is that a and b are defined
differently for the two cases. Solving (5.43) the three field amplitudes are given by

ET ¼ 2
aþ b

EI ; ð5:44aÞ

ER ¼ b� a
aþ b

EI ð5:44bÞ

for the appropriate a and b defined below (5.43a) and (5.43b).
Equations (5.44) solves the problem of the refraction of light for light incident

from a positive index medium onto an interface with a medium of negative index of
refraction. For the study of the perfect lens it is useful to also consider the solution
in the case that the light is incident from the negative index of refraction onto an
interface with a positive index of refraction. These solutions along with a treatment
of the properties of surface plasmon-polaritons at the interface of positive and
negative index media are a basis for the treatment of the properties of a perfect lens.
The next section handles refraction going from a negative index medium into a
positive index medium.

Refraction of Light Originating in the Negative Indexed Media

In the case of light going from a negative index medium to a positive index
medium, the considerations are somewhat similar to those in the refraction problem
just treated. The planar interface is between a negative indexed medium 1 (i.e.,
l1; e1\0) in the region y[ 0, and a positive indexed medium 2 (i.e., l2; e2 [ 0) is
in the region y\0. This is illustrated by the schematic figure presented in Fig. 5.5.
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Now, however, the incident wave is in the negative indexed medium located above
the interface, and the transmitted wave is in the positive indexed medium [1, 5, 15]
located below the interface.

For the positive angles defined in Fig. 5.5 the wave incident on the interface
from medium 1 has the form

~EI ¼ EIðcos hîi� sin hîjÞei kðsin hixþ cos hiyÞ�xt½ 	; ð5:45aÞ

~BI ¼ �EI
k
x
k̂ei kðsin hixþ cos hiyÞ�xt½ 	: ð5:45bÞ

Here again only the polarization with a magnetic field perpendicular to the plane of
incidence is studied. The other polarization is left to be worked out by the reader.
The form of the reflected wave in medium 1 is then given by

~ER ¼ ERðcos hr̂ iþ sin hr̂ jÞei kðsin hrx�cos hryÞ�xt½ 	; ð5:46aÞ

Fig. 5.5 Refraction at a planar interface for incident light in a negative index medium and
refracted light in a positive index medium. The arrows indicate the wave vectors and as
represented in the figure hi; hr ; ht [ 0
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~BR ¼ ER
k
x
k̂ei kðsin hrx�cos hryÞ�xt½ 	; ð5:46bÞ

where the polarization of the reflected wave is maintained during the interaction
with the interface between the two media.

The wave vectors of the incident and reflected waves in (5.45) and (5.46) are,
respectively,

~ki ¼ k sin hi; cos hi; 0ð Þ; ð5:47aÞ

~kr ¼ k sin hr;� cos hr; 0ð Þ; ð5:47bÞ

where the wave number in (5.47) is related to the frequency, permittivity, and
permeability by the expression

k ¼ ffiffiffiffiffiffiffiffiffi
l1e1

p
x: ð5:48Þ

From (5.47a) the wave vector of the incident fields within medium 1 points away
from the interface whereas the wave vector of the reflected fields within medium 1
points towards the interface. The directions of the two wave vectors seem
anomalous but are due to the negative index of refraction of the medium 1. This is
clarified from a discussion of the energy flux in these two waves, obtained by
considering their Poynting vectors.

The Poynting vector of the incident and reflected waves is computed using the
standard expression from classical electrodynamics. Applying this expression for
the Poynting vector to the fields in (5.45) and (5.46) the energy flux of the incident
field is given by [1, 5, 15]

~SI ¼ 1
2
1
l1

1
x

EIj j2~ki; ð5:49aÞ

and the energy flux of the reflected fields is

~SR ¼ 1
2
1
l1

1
x

ERj j2~kr: ð5:49bÞ

Equations (5.47) and (5.49) show the energy flux into and out of the interface of the
two media.

In the negative index medium 1, l1\0. Consequently, the energy flux of the
incident and reflected waves in medium 1 is opposite to their wave vectors. While
the wave vector of the incident wave points away from the interface the energy flux
of the incident wave is towards the surface, and while the wave vector of the
reflected wave points towards the interface the energy of the reflected wave is away
from the interface. This is a general property of propagation in a negative indexed
medium.
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In the problem considered in Fig. 5.5, medium 2 containing the transmitted
wave is a positive index medium. For this case e2; l2 [ 0, and the transmitted wave
in medium 2 is given by

~ET ¼ ETðcos ht̂ iþ sin ht̂ jÞei qðsin htx�cos htyÞ�xt½ 	; ð5:50aÞ

~BT ¼ ET
q
x
k̂ei qðsin htx�cos htyÞ�xt½ 	: ð5:50bÞ

In (5.50) the wave vector of the transmitted wave is seen to be given by the form

~qt ¼ q sin ht;� cos ht; 0ð Þ; ð5:51Þ

where the wave number is written in terms of the frequency, permittivity, and
permeability as

q ¼ ffiffiffiffiffiffiffiffiffi
l2e2

p
x: ð5:52Þ

For the case of the positive index medium the transmitted wave vector is observed
to point away from the interface between the two media.

From the fields in (5.50) the Poynting vector of the transmitted wave is given by

~ST ¼ 1
2
1
l2

1
x

ETj j2~qt; ð5:53Þ

where now for the positive permeability l2 the Poynting vector is parallel to the
wave vector of the transmitted wave. In the positive index media below the interface
both the wave vector and the energy flux are directed away from the interface.

Again, a consideration of the translational symmetry parallel to the interface of
the two media requires the equality of the x-components of the wave vectors of the
incident, reflected, and transmitted waves. A consequence of this is that the inci-
dent, reflected, and transmitted waves obey the angular conditions

hi ¼ hr ð5:54aÞ

and

k sin hi ¼ q sin ht: ð5:54bÞ

The first relation in (5.54a) is the standard condition between the angle of incidence
and the angle of reflection known as the law of reflection. The second relation is
Snell’s law which, as in the discussion of (5.42), can be rewritten to manifestly
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exhibit a negative index of refraction. This involves redefining the positive sense of
the angles in Fig. 5.5 and is left to the reader.

Both the incident and reflected field amplitudes can be written in terms of the
amplitude of the incident wave. This involves an application of the boundary
conditions at the interface between the two media. The first condition is the con-
tinuity of the tangential component of the total electric field at the interface.
Applying this condition to (5.45), (5.46), and (5.50) requires that

EI þER ¼ aET : ð5:55aÞ

Here a ¼ cos ht
cos hi

for the case in which medium 1 has a negative index of refraction
and medium 2 has a positive index of refraction.

The second boundary condition is the continuity of the tangential component of
the total magnetic field at the interface. From (5.45), (5.46), and (5.50) this requires

�EI þER ¼ bET : ð5:55bÞ

Here b ¼ l1
ffiffiffiffiffiffiffi
l2e2

p
l2

ffiffiffiffiffiffiffi
l1e1

p between a negative index medium 1 and a positive index medium

2.
Solving (5.55) gives [1, 5, 15]

ET ¼ 2
a� b

EI ; ð5:56aÞ

ER ¼ aþ b
a� b

EI ; ð5:56bÞ

relating the reflected and transmitted wave amplitudes to that of the incident wave.
Using (5.56) the full results, discussed above, for the field amplitudes and energy
flux can now be expressed in terms of the amplitude of the incident fields.

An Analogy with Semiconductors

The refraction of light at an interface between positive and negative indexed media
has an analogy with electron and hole currents passing through an n-p or p-n
semiconductor junction [1, 12]. In a semiconductor the electrons and holes are
discrete particles of charge with motions that can both transfer a net amount of
charge from one point to another in an electrical system. A current of electrons
flows in an n-type semiconductor, while a current of holes flows in a p-type
semiconductor. At an n-p or p-n junction the nature of the carries and their drift
velocities changes as one passes through the interface of the junction.

Similarly, an electromagnetic pulse in positive or negative indexed media,
respectively, either carries energy or an energy decrease. In this way the electro-
magnetic pulses, in their motion, accomplish a net energy transfer from point to
point in an optical system. As with electrons and holes in the electrical system,
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pulses of energy or an energy decrease in the optical system move differently in the
two types of dielectric media. In particular, pulses in positive index media move in
the direction of the energy flow whereas pulses in negative indexed media move
opposite the direction of energy flow. At the interface between a positive and
negative indexed medium the energy flow in the light transferred through the
system must change from pulses of energy to pulses of energy decrease in the
respective supporting media. They do this in a manner which provides for the net
flow of energy through the system.

Consider light traveling from a positive to a negative index medium. The light
incident on the interface from the positive indexed medium is in the form of an
energy pulse with its motion directed towards the interface. As the pulse travels
towards the interface, it interacts with a pulse of energy decrease coming towards
the surface from the negative indexed medium. This response of the system arises
through the solution of the electromagnetic boundary value problem at the interface
which links the fields in the positive and negative indexed media. In this way the
pulse of energy decrease in the negative indexed medium exists as a response to the
fields from the incident energy pulse at the interface.

The incident energy pulse and the pulse of energy decrease destroy one another
as they meet at the interface. In the process of their destruction, however, they
create a reflected energy pulse at the interface in the positive index medium. The
reflected pulse created in this manner travels away from the interface and into
the bulk of the positive indexed medium. The net result of the refraction process in
the system is the creation of two separate pulses providing a net energy flow
moving away from the interface in both the positive and negative indexed media.

In the case in which light traveling in a negative index medium is incident on the
interface with a positive index medium, a pulse of energy decrease propagates in the
negative medium away from the interface. This creates an incident energy flow
towards the interface. From the boundary value problem in the two media, the fields
of the pulse of energy decrease in the negative index medium causes an energy
pulse to be created in the positive index medium. The created pulse of energy
moves away from the interface and into the bulk of the positive indexed medium.
This represents the transmitted energy flux in the positive index medium.

In addition, as part of the same boundary value problem, an additional pulse of
energy decrease is created in the negative index medium. The additional pulse of
energy decrease travels towards the interface through the negative indexed medium
and represents the flow of reflected wave energy in the negative index medium. The
reflected wave energy, from the pulse of energy decrease traveling in the negative
index medium towards the interface, represents a reflected energy flow from the
interface.

The energy flows, then, correctly describe the flux of incident, reflected, and
transmitted energy even though the pulse propagation in the media appears to be
unorthodox. For a net incident flow of energy to the interface, the net result in the
final state of the system is energy moving away from the interface and into the bulk
of both the positive and negative indexed media.
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To conclude, in both of the refraction problems discussed earlier, the energy
transport properties are determined by the differing natures of the energy pulses in
the positive indexed media and the pulses of energy decrease in the negative
indexed media. The essential consideration in treating energy flow in these two
different media is that the energy flux is parallel to the wave vector in positive
indexed media and anti-parallel to the wave vector in negative indexed media. This
is due to the differing nature of the energy content contained by the pulses in the
two types of media which is ultimately related to the different signs of the per-
mittivity and permeability in the two media.

In an analogy with the physics of n-p and p-n semiconductor junctions, at the
interface between positive and negative index media of the optical system,
the energy pulses and pulses of energy decrease in part destroy one another at the
interface between positive and negative index media. The destruction at the inter-
face then gives rise to various reflected and transmitted flows of energy in the
dielectric media [1, 12].

5.2 Perfect Lens

The refraction of light at the interface between different optical media is commonly
used in the important application of lens design [1–5, 13]. For these optical func-
tions a basic lens is composed of two interfaces that are designed so that light from
the position of an object or source is steered through the lens to form an image at
another position in space. The image created by the lens may be magnified as well
as shifted in its angular orientation in space relative to that of the object. In addition,
as the light flows through the system and passes through the position of the image it
appears to come from the image rather than the object from which it originated.
This shifts the position at which one perceives the location of the object.

Magnification, location, and orientation are the essential relationships of the
image to the object that are managed by the lens. In this way lenses form the
fundamental components in optical microscopes, telescopes, spectrometers, and
many other such optical instruments meant to manipulate the appearances of optical
images in space.

In classical optics, in which the design of lenses is based on materials with
positive index of refraction, lenses are composed of curved surfaces. These surfaces
are arranged so that the lens consists of a finite bounded volume of optical medium.
As a result such lenses usually present a circular aperture to the incident light, and
this turns out to be one of the many fundamental limitations on their designs and on
the optical properties they exhibit. In particular, the image resolution of the lens is
related to the finite aperture of the lens [1–5, 13].

There are many other problems to be overcome in the design of a lens based on
media of positive index of refraction. These must be addressed in order for the lens
to provide a good image, i.e., a nicely focused representation of the object presented
with a high degree of accuracy. From the standpoint of fabrication the presence of
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impurities in the surface curvature and in the optical medium need to be addresses
as well as energy losses and the dispersive properties in the optical material. The
two last mentioned of these factors provide a fundamental restriction on the lens
design while the first two are problems of engineering implementation or fabrica-
tion. All of these factors have been addressed in the many years that classical
optical systems have been studied [1, 4, 13] so that optics has become one of the
most accurate areas of study in the sciences.

In the optics of positive indexed materials there is a fundamental limitation on
the refraction at the interface between two media. This was discussed earlier where
it was shown that in such systems the refraction of a ray of light incident on a planar
interface from the first or second quadrant can only be refracted, respectively, into
the third or fourth quadrants [1, 4, 13]. Due to these restrictions, a focusing lens
from positive index material must have at least one concaved or convex curved
surface. The presence of curvature in the lens surface allows for an additional
bending of a ray of light from that arising solely from the difference in the index of
refraction between the media forming the interface. This limitation on the optics of
positive index materials is seen in the simple case of a single planar surface.

While a dielectric mismatch between two positive index media at a planar
interface is unable to focus an image, a dielectric mismatch between a positive and
negative index medium is by itself able to focus an image. The reason for this is due
to the much larger change in the path of the refracted light from that of the incident
beam that is obtained at the interface between positive and negative index media. In
the system of two positive index media a planar interface between the media cannot
cause the refracted light to cross the optical axis of the system. This is a funda-
mental difference between positive-positive and negative-positive interfaces.

Unlike negative index systems, however, in positive index media a result of the
curvature of the lens surfaces is that the two surfaces intersect one another in a
circle of radius R. This intersection is the aperture of the lens. The finite radius of
the lens aperture is known to provide a fundamental limitation on the resolution of
the image formed by the lens. Only wavelengths less that the diameter of the lens,
when emitted by a source, can pass through the lens and arrive at the focus of the
lens in a way so as to contribute to the formation of a well resolved image of the
source.

A general criterion for the focusing power of a lens in positive index media
systems involves the wavelengths of the light from the source and the radius of the
lens aperture. This occurs in classical optics in the form of the Rayleigh focusing
criteria. In forming an image of an object, only wavelengths of light, k, satisfying

k\R ð5:57Þ

are resolved by the lens in the focused image of the object.
Lens of finite apertures are then essentially imperfect due to this limitation of

their focusing ability arising from finite R of the lens aperture. To give a perfect
image of the object, the image formed by the lens should contain all Fourier
components of light rather than a restricted subset satisfying (5.57). As shall be
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shown later, a perfect image must include all of the propagating components for the
source as well as all of the evanescent components generated by the source.

The new optics of negative indexed materials allows for the design of lenses
which, in principle, can have infinite apertures. This can be seen from the earlier
discussions of the refraction of light at the interface between a positive indexed
medium to a negative indexed medium. At such an interface the refraction of a ray
of light incident on a planar interface from the first or second quadrant of a positive
indexed medium is refracted into the fourth or third quadrants of the second neg-
ative indexed medium, respectively. This means that the additional beam bending
arising from a curved surface between the two media is not necessary and precludes
the need for additional bending from a curved surface. A consequence of this,
which shall be treated below, is that it is possible to design a lens that is composed
as an infinite slab of negative refractive medium. The details of such a design will
be discussed later.

Here it shall only be pointed out that a lens with an infinite slab geometry
displays an infinite aperture with R ! 1 in (5.57) of the Rayleigh focusing cri-
terion. As a result, in principle the lens is able to focus into the image it forms all of
the propagating wavelength components of the object or source received into the
lens system. By a careful choice of the permittivity and permeability in the optical
system, the slab lens can be adjusted so that the phases of the propagating waves
and the decay rates of the evanescent components of light from the object are
reassembled at the image in such a way as to give a complete characterization in the
image of the object [1, 4, 13]. The image and the object are the same but only differ
in their positions in space.

In an ideal theoretical sense a slab lens of negative refractive index medium can
be engineered to give an image with a perfect resolution of the source or object
features. The lens is perfect only in the ideal sense, just as in classical optics perfect
surfaces and dispersionless media allow for an optimal lens under the limitations of
positive indexed media optics. It is important to note that the perfect lens model has
some practical complications in its experimental realization. These come from
losses in the system due to the magnetic resonance origins of engineered negative
indexed materials and the dielectric and current losses in the system components
involved in the design of metamaterials.

The magnetic resonances required in the metamaterial design are required by the
Kramer-Kronig relations to also be associated in increase energy losses in the
systems. These energy losses are greatest at the resonant frequency around which
the system operation is of most interest. Another problem with metamaterials based
on magnetic resonances is that the regions of negative permeabilities they create
only exist over a narrow band of frequencies. Consequently, due to the difficulties in
material losses and the nature of magnetic resonances, the idea of a perfect lens has
only been very narrowly realized experimentally [1–5, 13].

In the remainder of this section the above qualitative discussions will be firmed
up, with a theoretical treatment given of the properties of a particular formulation of
the perfect lens. The formulation considered here was originally proposed by
Pendry [13].
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In the considerations, first the slab system will be defined and its geometric
optics properties discussed. This will be followed by a treatment of the details of
how the phase and evanescent wave properties of the object are related to the image
formed by the lens. Finally, it will be shown that the phase and evanescent nature of
the object and image of the lens are identical. This is the basic property exhibited by
a perfect lens, i.e., the perfect reconstruction of the object in the image.

5.2.1 Ideas of the Perfect Lens

The geometry of the perfect lens and its imaging system is shown in Fig. 5.6a. In
the figure, the lens is designed as a slab formed of a negative refractive index
medium. An object is placed at x ¼ 0, and the slab forming the lens is located
between x ¼ d0 and x ¼ d0 þ d so that the width of the lens slab is d. Both of the
surfaces of the slab are taken to be parallel to the y-z plane [13]. As shall be shown
later, an image of the object is formed by the lens at x ¼ 2d.

As a simple source or object for the treatment of the optics of the lens, a point
dipole is located at the origin of coordinates. The dipole is located to the left of the
lens, and the image of the dipole formed by the system is on the right of the lens.
The horizontal lines in the figure represent the optical axis and the geometric
considerations of the components forming the imaging of the dipole source by the
lens. These are presently to be discussed.

In the following treatment, the region outside the slab is vacuum. In order to
make a perfect lens for this particular choice of surrounding medium, a specific
requirement is set on the value of the negative refractive index of the slab medium.
In particular, the negative index medium of the slab for a surrounding vacuum must
be set to a refractive index of −1. The necessity of this choice will become apparent
in the course of the following presentation [13].

With this particular set of refractive indices the image of the dipole will be
shown to be formed at x ¼ 2d. This is indicated in Fig. 5.6, and an explanation of
the geometric optics of the lens and its focusing features is now presented [13].

The location of the dipole image can be understood from a consideration of
Fig. 5.6b. In the figure two rays are shown leaving the dipole source (object) at
x ¼ 0. These propagate in the x-y plane and eventually encounter the left planar
surface of the infinite slab lens. Upon encountering the lens an application of
Snell’s law for an interface between vacuum with an index of refraction of 1 and a
medium of negative index of −1 requires that the magnitudes of the incident angle
equals that of the transmission angle.

The resulting refraction is indicated in the figure. Later it shall be explained that
there is no reflected wave generated by the interaction with the surface. As they
travel through the lens the refracted rays next meet the optical axis of the system at
x ¼ 2d0.

Both rays shown in the figure pass through x ¼ 2d0 and proceed towards the
second surface of the lens. After traveling a distance d � d0 they arrive at the

344 5 Metamaterials



Fig. 5.6 Schematics for: a the object (at x ¼ 0) and image (at x ¼ 2d) of a perfect lens of
thickness d located in the region between x ¼ d0 and x ¼ d0 þ d, and b a ray optics diagram for the
formation of an image I of and object O by the perfect lens diagramed in (a). The optical axis in
(b) is the horizontal line
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second surface of the lens. At their encounter with the second surface the rays are
again refracted. Later it shall be explained that there is again no reflected wave
generated by the interaction of these rays with the second surface [13].

At the second surface of the lens the two rays again are refracted in a manner so
that the amplitudes of the angles of incidence equal those of the angles of refraction.
This is indicated in the geometric opitcs figure, Fig. 5.6b. As a result of this
refraction, the light from the point on the optical axis a distance d � d0 to the left of
the second surface of the lens shows up as an image point a distance d � d0 to the
right of the second surface. The final image is then formed at x ¼ 2d.

The treatment just outlined in terms of Fig. 5.6b gives a basic geometric optics
presentation of the motion of propagating light in the system. It shows the position
of the image in its relation to the source or object and also the position of another
image formed within the lens. However, to understand in detail the nature of the
image formed by the lens it is necessary to study the changes in phase of the light as
it moves through the imaging process of the lens [13]. These phase changes are not
addressed in the geometric optics discussions just given.

Such phase considerations allow for a comparison of the light amplitude and
phase at the image as it is related to that at the source. In the following the phase
changes in the radiation from the source will be determined as it passes through the
lens and forms an image. It will also be explained that no reflection occurs to waves
propagating through the lens system.

Next consider the nature of the fields as the electromagnetic wave propagates
through the perfect lens. This includes the full representation of the fields in terms
of a Fourier series consisting of the full solutions of the Maxwell equations for the
light moving through the system. A discussion is given of the changes in amplitude
and phase of these various components.

For such considerations, the magnetic fields in the system can be represented by
the general form [13]

~Hð~r; tÞ ¼
X
ky;kz

~Hðky; kzÞei kxxþ kyyþ kzz�xt½ 	: ð5:58Þ

This expression for the magnetic fields determines them as series composed of
plane waves and evanescent waves. This is an important point as the presence of
both propagating and evanescent waves in the series comes from the nature of the
dispersion relation of the electromagnetic modes of the system. This feature is now
discussed.

In vacuum, the wave vector components of the electromagnetic modes satisfy

k2x þ k2y þ k2z �
x2

c2
¼ 0 ð5:59aÞ
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where c ¼ 1ffiffiffiffiffiffiffi
l0e0

p , and within the slab of refractive index n the wave vectors satisfy

k2x þ k2y þ k2z � n2
x2

c2
¼ 0 ð5:59bÞ

where c
n ¼ 1ffiffiffiffi

le
p . From (5.58) and (5.59) it is found that the propagating waves at the

dipole source are those for which kx; ky; kz are all real. However, in the complete
representation in (5.58) evanescent waves, which have at least one imaginary wave
vector component, are also included in the sum. It is necessary to understand how
both of these types of modes are handled by the system to completely determine the
imaging properties of the lensing system.

Behavior of the Propagating Modes

To understand the nature of the image of the point dipole that is created by the lens,
consider the light propagating in the x-y plane containing the dipole. The magnetic
field of the waves propagating in this plane can be divided into two polarizations. In
one polarization the magnetic field vector is perpendicular to the plane of incidence
and in the other the magnetic field vector is parallel to the plane of incidence. Due
to this separation, the refraction of each of these polarizations can be studied
separately. For simplicity in the following considerations only one of these com-
ponents will be discussed in detail.

In the treatment now presented, the details of the refraction of the fields which
have magnetic fields polarized perpendicular to the x-y plane are given. A similar
treatment for the other polarization is left to the reader, who can also obtain the
details from the literature [13].

The general form of the magnetic field in the x-y plane arising from the dipole
source located at x ¼ 0 is given from (5.58) by [13]

Hzðx; y; z ¼ 0; tÞ ¼
X
ky;kz

Hzðky; kzÞei kxxþ kyy�xt½ 	: ð5:60Þ

For properly chosen Fourier coefficients, this represents the magnetic field radiated
by the dipole source of frequency x everywhere in the x-y plane. In particular, at
x = 0 the dipole fields of (5.60), which include those at the position of the dipole at
x ¼ y ¼ z ¼ 0, are then written as

Hzðx ¼ 0; y; z ¼ 0; tÞ ¼
X
ky;kz

Hzðky; kzÞei kyy�xt½ 	: ð5:61Þ

As the x coordinate in (5.61) is changed from zero, the properties of the fields
exhibit a change related to their properties as the radiation fields of the dipole

source. This comes from the phase factors ei kxxþ kyy�xt½ 	 which multiply the Fourier
coefficients in (5.60). By studying these phase factors, the changing nature of the
field amplitudes can be determined as functions of time and position.
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Of particular interesting in the following is to determine how the ei kxxþ kyy�xt½ 	
phases change as light from the source passes through the lens and forms an image.
In the following it will be demonstrated that the phase generated at the source, when
passed through the perfect lens, remains unchanged at the image. This is a very
important point in the reconstruction of the image of the source. This will be
explained later.

An interesting calculation is to consider one of the Fourier components in (5.61)
and to determine how it changes during the propagation of the wave through the
lens in Fig. 5.6. In particular, for this determination start with the component in
(5.61) given by [13]

ei kyy�xt½ 	: ð5:62Þ

This is just one of the phase terms multiplying the Fourier coefficients in (5.61).
As mentioned earlier, in general the phase factors in (5.61) separate into two

different types. These are classified as propagating and evanescent waves, and the
classification of the two types depends on the values of

k2x ¼ �k2y � k2z þ
x2

c2
ð5:63Þ

In particular, if the right side of (5.63) is positive the waves propagate through the
system while if the right side of (5.63) is negative the waves are evanescent in
nature. In the discussion, first a treatment will be given of propagating wave terms
in (5.61). Afterward, this will be followed by a treatment of evanescent terms.

Considering the propagating terms: As the wave from the dipole source prop-
agates towards the first surface of the lens, located at x ¼ d0, the factor in (5.62)
becomes [13]

ei kxd0 þ kyy�xt½ 	: ð5:64Þ

The wave is seen to pick up a phase factor related to the distance it must travel to
arrive at the x ¼ d0 surface of the lens.

Once the wave arrives at the surface it undergoes an additional phase shift as it
passes from one side to the other of the interface. This phase shift is given by the
transmission amplitude through the planar interface. It was determined earlier in
this chapter in the discussion of refraction from a positive indexed to a negative
indexed medium.

The transmission amplitude at the left surface of the lens can be evaluated using
(5.44a). For the system in Fig. 5.6b it is found from this formulas that the relative
transmission amplitude is −1 and the reflection amplitude is zero. However, an
account must be made of the factor of −1 introduced in the field amplitude defi-
nition in (5.35a). Specifically, the field amplitude was defined with a factor of −1
introduced. An adjustment is needed so that the signs in the definitions of the field
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amplitudes in (5.35a) and (5.45a) agree as the first becomes the input for the second
equation.

Consequently, upon applying the transmission amplitude and the correction to
the definition of the field amplitude, the net transmitted wave retains the form given
in (5.64) upon entering the negative index medium. The wave transmitted into the
lens then propagates through the lens and becomes the incident field on the second
surface of the lens.

Upon entering the medium of refractive index −1, the wave propagates through
the negative index medium from the first to the second surface. In doing so it
changes its phase by a factor of e�ikxd .

The reason for the negative sign in the argument of the exponent is that the wave
moves in a negative index medium. Consequently, for the energy of the wave to
move from left to right through the lens the wave vector of the wave must point
from right to left. From earlier discussions, this is a known general property of
waves in a negative index medium.

Upon arriving at the second surface the factor in (5.64) transform into [13]

e�ikxdei kxd0 þ kyy�xt½ 	 ¼ ei kxðd0�dÞþ kyy�xt½ 	: ð5:65Þ

After its arrival, it must undergo transmission from the negative index medium to
the vacuum. Upon doing this it acquires a phase shift which is governed by the
transmission amplitude determined in (5.56a) and (5.56b).

The transmission amplitude at the second surface from (5.56a) and (5.56b) is a
factor of 1, and the reflection amplitude is zero. Consequently, the phase of the
wave upon passing through the second surface of the lens and emerging into the
vacuum is

ei kxðd0�dÞþ kyy�xt½ 	: ð5:66Þ

After passing through the lens the wave propagates through vacuum to arrive at the
image which is located x ¼ 2d.

The next consideration is to understand how the wave propagates from the
second surface of the lens to the image located at a distance d � d0 to the right of
the second surface of the lens. The propagation is through vacuum and introduces a
factor of eikxðd�d0Þ. Now the energy flow and the wave vector are parallel to one
another as the medium is positive index media.

Applying the eikxðd�d0Þ phase change to (5.66), the phase at the image becomes
[13]

ei kyy�xt½ 	: ð5:67Þ

This is now the phase of the propagating components multiplying the Fourier
amplitudes in the representation of the magnetic field at the image.
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However, (5.67) is also the phase factor for the propagating components at the
original position of the dipole source. Consequently, the resulting contribution to
the field from the propagating Fourier components at the image is

Hzðx ¼ 2d; y; z ¼ 0; tÞ ¼
X
k0y;k0z

Hzðk0y; k0zÞei k
0
yy�xt½ 	: ð5:68Þ

where the sum over primed wave vectors is restricted to the propagating waves in
the system. This is exactly the same expression as the propagating wave part of
(5.61) at the dipole source. The propagating waves contributions therefore are the
same in both the source and the image.

As a result, the propagating fields from the dipole are exactly identical with those
from the image. Their origin has only been relocated in space.

The propagating fields, however, are not the only fields associated with the
dipole. In particular, the dipole is also a source of evanescent fields which decay in
space as they pass through the lens and are projected into the image. These fields
also arise as the set of solutions obtained from the Maxwell equations and are
passed through the lens to contribute to the fields at the source and at the image.
The change in these components must be examined to understand the complete
relationship of the source to image. It shall be shown in the following that the terms
involving the evanescent waves are also identical in their contributions to the source
and image fields.

Behavior of the Evanescent Fields

To begin the study of the interaction of the negative index lens in Fig. 5.6 with the
evanescent waves from the source, it is necessary to understand the transmission
and reflection of these waves at the interfaces. Consequently, in the following a
study will be given of the reflection and transmission of evanescent waves that are
incident on the interface between positive and negative index media. These results
will then be used to determine the interaction of the evanescent waves with the lens
system in Fig. 5.6.

In the following a study is presented of the evanescent wave solutions at the
interface between a positive and negative index medium, treating the case in which
the magnetic field is polarized perpendicular to the plane of incidence. A focus is on
the determination of the transmission and reflection coefficients of these waves as
they pass from a positive to a negative indexed medium and as they pass from a
negative to a positive indexed medium.

First consider an evanescent wave incident from a positive index medium
passing into a negative index medium. For these treatments the appropriate
Maxwell equations are of the form [13]

r�~B ¼ �il0e0x~E ð5:69aÞ
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and

r�~E ¼ ix~B ð5:69bÞ

Here the waves are considered to have frequency x, and ðl0; e0Þ ¼ ðl0; e0Þ in
vacuum, and in the negative index medium ðl0; e0Þ ¼ ðl; eÞ with le ¼ 1

c2 where c is
the speed of light in vacuum.

These forms of the Maxwell equations will be used to study the transmission of
an evanescent wave through the surface between a positive and negative index
medium. The interface in the treatment is represented schematically in Fig. 5.7. In
this figure, the interface between the two different media is the x-z plane, and the
evanescent fields are evanescent along the y-axis. The geometry is consistent with
that used in the refraction treatments for propagating waves given in Sect. 5.1 and
has a different coordinate arrangement than that in Fig. 5.6. Since only the trans-
mission amplitudes are of interest here, the coordinate system used for the calcu-
lation is not important.

The solutions of (5.69) for the incident evanescent waves in vacuum are [13]

~EI ¼ i
q

l0e0x
BIeqyþ ikx̂iþ k

l0e0x
BIeqyþ ikx̂j ð5:70aÞ

Fig. 5.7 Evanescent waves at the x-z interface. Waves either decay or increase along the y-axis as
they leave the surface, depending upon the conditions of the treatment for the transmission
amplitudes being considered in the text
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and

~BI ¼ BIeqyþ ikxk̂: ð5:70bÞ

In both of these expressions

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � l0e0x2

p
ð5:71Þ

where k2 [ l0e0x
2. With these definitions, the solutions for the reflected evanes-

cent waves in vacuum are

~Er ¼ �i
q

l0e0x
Bre�qyþ ikx̂iþ k

l0e0x
Bre�qyþ ikx̂j ð5:72aÞ

and

~Br ¼ Bre�qyþ ikxk̂ ð5:72bÞ

The incident fields in (5.70) are seen to decrease as they approach the surface while
the reflected fields in (5.72) are seen to decrease they leave the surface.

The solutions for the transmitted evanescent waves in the negative index med-
ium are [13]

~Et ¼ i
q0

lex
Bteq

0yþ ikx̂iþ k
lex

Bteq
0yþ ikx̂j ð5:73aÞ

and

~Bt ¼ Bteq
0yþ ikxk̂ ð5:73bÞ

In these expressions the factor governing the decay of the waves in the medium is
given by

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � lex2

p
ð5:74Þ

where k2 [ lex2. The transmitted waves in (5.73) are again found to decay as one
moves away from the interface and the source of the fields in the positive index
medium.

Applying the electromagnetic boundary conditions to the fields in (5.70), (5.72)
and (5.73) at the interface, the following occurs: The continuity of the component of
the electric field at the y ¼ 0 interface between the two media yields the condition
[13]
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BI � Br ¼ q0

q
l0e0
le

Bt: ð5:75aÞ

The continuity of the component of the magnetic field at the y ¼ 0 interface
between the two media yields a second condition

BI þBr ¼ l0
l
Bt ð5:75bÞ

In dealing with these equations a useful relationship between the permeability
and permittivity of the vacuum and the �1 negative index medium is [13]

le
l0e0

¼ 1 ð5:76aÞ

It follows from this that the permeabilities and permittivities in the two media are
related by [13]

l
l0

¼ e0
e
: ð5:76bÞ

Both of these conditions are helpful in simplifying the transmission and reflection
amplitudes obtained from (5.75a) and (5.75b).

From (5.75) and (5.76) it follows that the reflected and transmitted magnetic
fields are given in terms of the incident magnetic field by

Hr ¼
�q0 þ e

e0
q

q0 þ e
e0
q

H0 ð5:77aÞ

and

Ht ¼
2 e
e0
q

q0 þ e
e0
q
H0 ð5:77bÞ

These expressions relate through (5.70), (5.72), and (5.73) the magnetic and electric
fields of the reflected and transmitted fields those of the incident fields for the case
of an incident field in the positive index medium.

Repeating the above for the case in which the incident wave is in the negative
index medium, the reflected and transmitted magnetic fields in this case are
expressed in terms of the incident magnetic field by [13]

Hr ¼
� e

e0
qþ q0

e
e0
qþ q0

H0 ð5:78aÞ

and

5.2 Perfect Lens 353



Ht ¼ 2q0
e
e0
qþ q0

H0: ð5:78bÞ

These expressions relate through (5.70), (5.72), and (5.73) the magnetic and electric
fields of the reflected and transmitted fields those of the incident fields for the case
of an incident field in the negative index medium.

Summarizing the above: At the interface for an evanescent wave to go from a
positive index medium to a negative index medium, the relative reflection ampli-
tude is [13]

r ¼ �q0 þ e
e0
q

q0 þ e
e0
q

ð5:79aÞ

and the relative transmission amplitude is

t ¼ 2 e
e0
q

q0 þ e
e0
q

ð5:79bÞ

At the interface for an evanescent wave to go from a negative index medium to a
positive index medium, the relative reflection amplitude is

r0 ¼ � e
e0
qþ q0

e
e0
qþ q0

ð5:80aÞ

and the relative transmission amplitude is

t0 ¼ 2q0
e
e0
qþ q0

: ð5:80bÞ

Combining the results in (5.79) and (5.80) both the reflection and transmission
through the lens in Fig. 5.6 can be determined for the evanescent fields. This allow
for the determination of the nature of the evanescent fields at the image in terms of
the evanescent fields at the dipole source.

The above transmission and reflection amplitudes are for a single interface. To
account for the two interfaces involved with the slab transmissions a sequential
process of single interface transmissions and reflections must be addressed. These
are now discussed.

The transmission and reflection through the lens must take into account the
multiple reflections and transmission as the electromagnetic fields bounces back and
forth between the surfaces of the lens. In terms of the transmission amplitude in
(5.79) and (5.80) the transmission through the lens can be written as an infinite
series summing the various encounters of the evanescent wave with the lens
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surfaces. The total transmission amplitude through the surface is given by the series
[13]

T ¼ tt0 e�qd þðr0Þ2e�3qd þðr0Þ4e�5qd þ 
 
 

n o

¼ tt0
e�qd

1� ðr0Þ2e�2qd
: ð5:81Þ

In (5.81) the factor tt0 represents the transmission of the wave through the first
surface followed by transmission through the second surface. The terms in the
brackets represent a sum of multiple reflections within the lens. The first term, e�qd ,
represents the decay of the fields going from their entry at the first surface to their
exit at the second surface. The second term of the series, rr0e�3qd , represents the
fields in the lens going from their entry at the first surface, to a reflection at the
second surface, followed by a reflection at the first surface, and then a transmission
through the second surface. The exponential term accounts for the decay along the
path represented in the second term. The successively high terms in the series
represent successively longer paths in the negative index medium.

Applying a similar reasoning to the reflections from the lens, the total reflection
amplitude is given by [13]

R ¼ rþ tt0r0fe�2qd þðr0Þ2e�4qd þðr0Þ4e�6qd þ 
 
 
g ¼ rþ tt0
r0e�2qd

1� ðr0Þ2e�2qd
:

ð5:82Þ

This, again, sums all of the multiple reflection processes as the decaying wave
amplitude is reflected back and forth within the lens to represent the total reflection
from the lens.

As a final consideration, the permeability and permittivity parameters charac-
terizing the negative index medium are chosen so that the negative index of
refraction of the lens material is −1. This is done for the transmission through the
slab by substituting (5.79) and (5.80) into (5.81) and taking the limit of l ! �l0
and e ! �e0. The transmission amplitude reduces to the limiting form

T ¼ lim
l!�l0
e!�e0

tt0
e�qd

1� ðr0Þ2e�2qd

( )

¼ lim
l!�l0
e!�e0

4
e
e0
qq0

e�q0d

q0 þ e
e0
q

� �2
� q0 � e

e0
q

� �2
e�2q0d

8><
>:

9>=
>;

¼ eqd:

ð5:83Þ
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This limiting process is also done for the reflection amplitude yielding [13]

R ¼ rþ tt0
r0e�2qd

1� ðr0Þ2e�2qd
¼ lim

l!�l0
e!�e0

rþ tt0
r0e�2qd

1� ðr0Þ2e�2qd

( )

¼ lim
l!�l0
e!�e0

rþ 4
e
e0
qq0ð�rÞ e�2q0d

q0 þ e
e0
q

� �2
� q0 � e

e0
q

� �2
e�2qd

8><
>:

9>=
>;

¼ 0:

ð5:84Þ

Consequently, no reflected wave is generated.
The transformation of the evanescent waves as they originate in the source, pass

through the lens, and arrive at the image can now be determined. To treat the
evanescent waves, consider one of the Fourier components in (5.61) in which the
component of wave vector in the x-direction is imaginary. [Notice the different
coordinate system used in (5.61).] In particular, in this case it is assumed that

kx ¼ iq: ð5:85Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y � l0e0x2

q
is positive real and ky is also real. The focus in the

following with be on the transformations in such a term as the light goes through
the lens system.

To determine how the evanescent component changes during the propagation of
the wave through the lens in Fig. 5.6, start with the component in (5.61) given by

ei kyy�xt½ 	: ð5:86Þ

Remember that now and in the following the coordinates in Fig. 5.6 are being used.
These are not the same as those of the system in Fig. 5.7 used to determine the
transmission amplitude of an evanescent wave as it encounters an interface between
a positive and negative index media. The transmission amplitude determined from
Fig. 5.7 is independent of the coordinates used in its determination so that this is
not a problem here.

Considering the evanescent terms in Fig. 5.6: As the wave from the dipole
source propagates towards the first surface of the lens, located at x ¼ d0, the factor
in (5.62) becomes

e�qd0 þ i kyy�xt½ 	: ð5:87Þ

From (5.83) it was determined that as the evanescent term passes through the lens
the wave amplitude is multiplied by a factor of
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eqd: ð5:88Þ

Emerging from the second surface of the lens the amplitude is of the form

eqde�qd0 þ i kyy�xt½ 	 ¼ eq d�d0ð Þi kyy�xt½ 	: ð5:89Þ

After passing the lens the wave must continue on a distance d � d0 to arrive at the
image. The resulting amplitude at the position of the image is [13]

ei kyy�xt½ 	: ð5:90Þ

This, however, is just the factor in the Fourier term that we started with at the
source. Consequently, both the propagating and evanescent factors in the Fourier
representation of the source signal are reproduced identically at the position of the
image. This is the function of the perfect lens.

5.2.2 Other Applications of Positive–Negative Refractive
Properties

Aside from the perfect lens, there are a number of other applications that have come
from the development of systems exhibiting a negative refractive index. As in the
case of the perfect lens such applications arise from the increased deflection of the
incident ray as it encounters an interface between positive and negative refractive
media. Through application of this increase range of optical properties, in principle
it has become possible to guide light at will in its motion through space.
Consequently, the increased guiding of light facilitated by the diffractive photonic
crystal technology is now complemented in the guiding of light through the design
of continuum limit refractive metamaterials [14–43].

An example of such a use of the guiding ability of metamaterials is found in the
development of electromagnetic cloaking [1–5, 37, 38]. In electromagnetic cloaking
an engineered medium is designed which displays a gradual spatial variation of the
refractive index. As the index varies though space, taking on a range of positive
and/or negative values, light can be steered around an object hidden in the medium.
This is arranged so as to make the object essentially invisible to an observer
receiving light from the cloak.

In a typical cloaking arrangement the cloaking device is designed as a hollow
dielectric shell. The object to be hidden is put in the hollow of the shell, and the
material of the shell is formulated to have a variation of the index of refraction
which guides light around the hollow of the shell. In this way the index variation is
made so that parallel incident rays on the outside of the dielectric shell are steered
around the hollow containing the object to be hidden. As the rays encounter the
shell surface opposite that of their incidence they are sent off into the region outside
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the shell in a direction parallel to that of their original direction before the encounter
with the cloaking device [37, 38].

To accomplish the steering of light in this manner requires the use of both
positive and negative indexed media [37, 38]. Again, as with the development of
the perfect lens, the efficiency of the cloaking device is dependent on the properties
of the materials used in its design and the degree that the system can be accurately
assembled. Due to the restrictions from magnetic resonance effects, the losses near
resonance, and the dielectric and joule losses of the materials, this has only been
done in the case of a narrow band of frequencies of incident light and with some
degree of signal degradation.

These ideas can be extended in many ways. As a recent very interesting example
of employing the ideas of designing media with a spatial variation of positive and
negative index, suggestions have also been made for mimicking certain optical
effects in special and general relativity [19–22]. These ideas are based on the
relativistic invariance of the Maxwell equations and their transformations between
various different coordinate systems. Such transformations can result in Maxwell
equations with renormalized index of refractions.

These types of examples may seem extreme. However, they suggest many other
applications in the design of passive optical systems for device applications that,
though more mundane, may be important to technology. In addition to the study of
passive optical interactions, the index of refractions of metamaterials offer many
new design features in active optical systems.

It is seen that the increase in the range of index of refraction of metamaterials
offers many opportunities for passive optical systems. Now the focus will be placed
on the properties of active optical systems. In particular, all of the earlier discussed
topics of metamaterial technologies have focused on the interaction of existing
radiation fields with devices designed from metamaterials. Another set of important
application of metamaterials involves radiation problems dealing with the genera-
tion of radiation fields. Specifically, how does the presence of metamaterials affect
the generation of radiation from charge and current sources. These types of origin
problems not only cover the unusual phenomena exhibited by electromagnetic
fields radiated into metamaterials by the typical features treated in classical elec-
trodynamics (i.e., point dipoles,, accelerating charges, Doppler effect) but also the
broad and important technological applications of antenna theory [1–5, 13–17]. In
the following these topics will be outlined.

5.3 Radiation in a Negative Indexed Medium

The unusual properties of electromagnetic fields in negative refractive index media
lead to some novel behaviors observed in the standard radiation problems of
classical electrodynamics. An important determiner of the properties of these
radiation fields arises from the fact that the wave vector and Poynting vector of the
radiation in a negative indexed medium are anti-parallel. This relationship is
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responsible for altering some of the behaviors of the radiation fields generated
within negative refractive index media by accelerating charges from those found in
positive refractive index media. In the following, the radiation fields of an electric
dipole antenna located in a negative indexed medium and of a point change moving
within a negative index medium are treated [1–5, 13–17]. Some additional dis-
cussions will also be given of Cherenkov radiation and of the Doppler effect
observed in negative refraction index media.

Radiation problems in classical electrodynamics are best treated in terms of the
electromagnetic vector and scalar potentials, ð~Að~r; tÞ;Vð~r; tÞÞ, rather than directly in
terms of the electromagnetic fields which are related to these potentials by [1]

~Eð~r; tÞ ¼ �rV � @~Að~r; tÞ
@t

ð5:91aÞ

and

~Bðr*; tÞ ¼ r �~Að~r; tÞ: ð5:91bÞ

Applying (5.91) in the Maxwell equations and working in the Lorentz gauge in
which the potentials are further specified by the gauge relationship

r 
~A ¼ � 1
c2m

@V
@t

ð5:92Þ

the radiation equations for electromagnetic waves generated from time varying
charge and current sources can be written in terms of ð~Að~r; tÞ;Vð~r; tÞÞ [38]. Upon
doing this one finds the following relationships

r2V � 1
c2m

@2V
@t2

¼ � 1
e
q; ð5:93aÞ

r2~A� 1
c2m

@2~A
@t2

¼ �l~J; ð5:93bÞ

where ð~Að~r; tÞ;Vð~r; tÞÞ are the vector and scalar potentials and ð~Jð~r; tÞ; qð~r; tÞÞ are
the current and charge densities of the source terms. In these equations, cm is the
speed of light in the medium.

The solutions of the inhomogeneous equations in (5.93) are

V�ð~r; tÞ ¼ 1
4pe

Z
qð~r0; t�Þ
~r �~r0j j d

3r0; ð5:94aÞ
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~A�ð~r; tÞ ¼ l
4p

Z ~Jð~r; t�Þ
~r �~r0j jd

3r0; ð5:94bÞ

where t� ¼ t � ~r�~r0j j
cm

. In (5.94) the upper (lower) signs are known as the retarded
(advanced) potentials of the fields generated by the source terms. These two dif-
ferent types of solutions will be very important in the treatment of positive and
negative indexed media.

It should be noted that homogeneous solutions for which ð~Jð~r; tÞ; qð~r; tÞÞ ¼
ð0; 0; 0; 0Þ in (5.93) can be added to (5.94) to match particular boundary conditions
which may be placed on the radiation problem. For the presentations in the fol-
lowing, however, homogeneous solutions will not be needed. In this regard, it shall
be assumed that the charge and current sources are localized in infinite space so that
the fields go to zero at infinite separation from the sources.

In positive indexed media the radiation fields in (5.94) from the retarded
potentials describe the motion of radiation away from the sources generating them,
and the advanced field solutions describe a time reversed state in which the radi-
ation fields return from infinity to arrive at the charge and current sources. Later, it
shall be shown that these relationships are reversed in a negative refraction index
medium. In particular, for radiation in a negative refraction index medium the
advanced potentials are those of interest in the description of radiation generated at
charge and current sources and propagating to infinitity, and the retarded potentials
describe the time reversed fields traveling from infinite to arrive at the charge and
current sources. Consequently, in the following both retarded and advanced
potentials will be considered.

Upon evaluating (5.94) for a given set of localized charge and currents, the
electric field and the magnetic induction are then obtained from the vector and
scalar potentials in (5.94) through and application of (5.91). This then accounts for
a complete solution of the electric and magnetic radiation fields of a localized
source in infinite space. As an interesting limiting case of these results, notice that
in the limit as cm ! 1 in (5.94) the potentials, appropriately, reduce to the scalar
and vector potentials of static electric and magnetic induction fields.

As a first example of the application of the above radiation formulation consider
the fields generated by an electric point dipole source. For these considerations the
dipole is taken to be located at the origin of coordinates, having a dipole moment
given by the harmonic time dependent form [1]

~pðtÞ ¼ p0 cosðxtÞk̂; ð5:95Þ

and with the focus of the treatment being on the kr � 1 far field limit. Here k is the
wavenumber of the radiation fields, and in this limit the point of observation is a
great distance from the source. In particular, it is much greater than a wavelength.

Treating (5.91) through (5.94) for the dipole source in (5.95) by considering the
kr � 1 far field limit in which the point of observation is a great distance from the
source, the electric field and magnetic induction are [1–5]
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~E ¼ � lp0x2

4p
sin h
r

cosx t � r
cm

� �
ĥ; ð5:96aÞ

~B ¼ � lp0x2

4pcm

sin h
r

cosx t � r
cm

� �
/̂; ð5:96bÞ

where ðr; h;/Þ are the standard polar coordinates centered at the dipole source
which is located at the origin of coordinates. From (5.96) the Poynting vector of the
electromagnetic radiation fields is given by

~S
D E

¼ � lp20x
4

32p2cm

sin2 h
r2

r̂: ð5:97Þ

Using (5.97) the average power radiated from the dipole can be computed using
standard methods. Upon doing this the average power is found to be given by

Ph i ¼ � l
12p

p20x
4

cm
: ð5:98Þ

Notice from (5.97) and (5.98) that for a positive indexed medium the perme-
ability in each of these expressions is positive. Consequently, in this limit the upper
sign from the retarded solution gives an energy flow away from the dipole source.
In the other limit of a negative indexed medium the permeability is negative.
A consequence of this is that the lower sign from the advanced solution gives an
energy flow away from the dipole source. These results indicate the fundamental
difference of the radiation generated by a source in the positive and negative index
media.

A related important type of radiation problem is the determination of the radi-
ation from a point charge accelerating in a dielectric medium. This again exhibits
important differences in the treatment of the moving source as it passes through a
positive or negative refractive index medium. It shall be the focus of the next
discussions [1–5].

As a starting point in the consideration of this system, the results in (5.94) for the
radiation fields of a general time-dependent localized charge distribution is used.
The case of (5.94) for a general localized charge and current density are then
specialized to the problem of a single accelerating point charge. In this application
the limit r0 � r is considered, and the charge distribution is considered to be
located about the origin of coordinates. Under these restrictions and in the
non-relativistic limit, (5.94) become [1–5]

V�ð~r; tÞ ¼ 1
4pe

Q
r
þ r̂ 
~pðt�Þ

r2
þ r̂ 
~_pðt�Þ

cmr

" #
; ð5:99aÞ
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~A�ð~r; tÞ ¼ l
4p

~_pðt�Þ
r

: ð5:99bÞ

where in these equations Q represents the net charge of the distribution and~p tð Þ is
the electric dipole moment of the charge distribution about the origin of coordi-
nates. The electric and magnetic induction fields are then related to these potentials
using (5.91) and from these the general properties of the radiation fields are
obtained.

To apply (5.99) to an accelerating point charge it is only needed to determine the
electric dipole moment of the charge relative to the origin of coordinates. Once this
is done, the radiation fields of the charge distribution are expressed in terms of the
dipole moment and found to be given by

~Eðr; h;/; t�Þ ¼ l
4p

~€pðt�Þ sin hr ĥ; ð5:100aÞ

~Bðr; h;/; t�Þ ¼ � l
4p

~€pðt�Þ
cm

sin h
r

/̂: ð5:100bÞ

Here ðr; h;/Þ are standard polar coordinates chosen so that the charge is acceler-
ating along the z-axis.

From the fields in (5.100) it follows from the standard expressions of classical
electrodynamics that the Poynting vector of the radiation fields from the acceler-
ating charge is [1–5]

~S ¼ � l €pðtÞ½ 	2
16p2cm

sin2 h
r2

r̂: ð5:101Þ

From this a standard consideration gives the net radiated power from the acceler-
ating charge in the form

P ¼ � l
6p

q2a2ðtÞ
cm

; ð5:102Þ

where aðtÞ is the acceleration of the charge.
From the result in (5.101) and (5.102) the properties of the radiation in the

positive and negative refractive media directly follow. In the case of a positive
indexed medium the permeability and permitivity are both positive. Consequently,
the upper sign from the retarded solution gives an energy flow away from the dipole
source. In the case of a negative indexed medium the permeability and permittivity
are negative. Now, in this case, the lower sign from the advanced solution gives an
energy flow away from the dipole source. It is found that, in the positive indexed
medium the Poynting vector and wave vector are parallel while they are
anti-parallel in the negative indexed medium. This is a general result that is evident
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from the earlier discussions of energy flow in positive and negative refractive index
media.

Both of the problems treated above are basic to the study of radiation and offer a
direct comparison of the flow of radiation generated in positive and negative
refractive media. Next a different set of problems will be addressed that arise in
relativity. These are basic problems in electrodynamics which display surprising
differences between the physics of positive and negative indexed media.

Specifically, the Doppler effect and the properties of Cherenkov radiation will be
treated. The Doppler effect is an effect involving the frequency shift measured in the
light from a moving source of radiation. This is a significant and important result in
spectroscopy of atoms and molecules. Following this a return to more complex
radiation problems will be made in the consideration of the details of the Cherenkov
radiation. Cherenkov radiation is encountered in the motion of relativistic accel-
erating point charges. A comparison will be made of the Cherenkov radiation in
positive and negative refractive indexed media [1–5].

5.3.1 Doppler Effect

Another interesting property of negative index media is the nature of the Doppler
effect. This involves a source and observer located within and in relative motion
inside a negative index medium [1–5, 44–46]. It turns out that the frequency shift of
the source radiation at the observer is quite different depending on whether the
source and observer are located in a positive or a negative index media. In the
following discussions of both types of media will be treated and the observed
Doppler shifts in the two different media compared.

To understand the Doppler effect in both positive and negative index media,
consider the Lorentz transformation between the two reference frames in Fig. 5.8.
In Fig. 5.8, a source of radiation of frequency x is located at the origin of the
unprimed frame and an observer is located at the origin of the moving primed
frame. The primed frame is moving with a velocity v relative to the unprimed
frame. The two frames are in a uniform homogeneous medium which can be either
positive or negative index media.

The question posed regarding the Doppler effect is how are the frequency x in
the rest frame of the source and the frequency x0 of the source in the observer’s rest
frame related to one another. This can be determined through the nature of the plane
wave form as it transforms between the primed and unprimed frame.

The relationship between the primed and unprimed frequencies are obtained by

considering the transformation of the plane wave form eið~k
~r�xtÞ in the unprimed

frame to the plane wave form eið~k
0 
~r0�x0t0Þ in the primed frame. Both of these forms

are scalars under the Lorentz transformation. Consequently, it follows that
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~k 
~r � xt ¼~k0 
~r0 � x0t0 ð5:103Þ

between the two frames.
To accomplish this transformation, both the 4-vector of position and time and the

4-vector of wave vector and frequencymust be transformed by the appropriate Lorentz
formulae. Under the Lorentz transformation for the coordinates and time, it follows
that between the primed and unprimed frames the variables are related by [44–46]

t0 ¼ c t � v
c2

z
� �

; ð5:104aÞ

z0 ¼ cðz� vtÞ; ð5:104bÞ

x0 ¼ x; ð5:104cÞ

y0 ¼ y; ð5:104dÞ

where c ¼ 1� v2
c2

h i�1
2
. Similarly, the wave vectors and frequencies in the two

frames are related by the Lorentz transformation forms given by [44–46]

x0 ¼ cðx� vkzÞ; ð5:105aÞ

k0z ¼ c kz � v
c2

x
� �

; ð5:105bÞ

Fig. 5.8 Source and
Observer frames of reference
for the discussions of the
Doppler effect

364 5 Metamaterials



K 0
x ¼ Kx; ð5:105cÞ

k0y ¼ ky: ð5:105dÞ

From an application of these two sets of relationships, the frequencies in the primed
and unprimed frames follow directly.

As an initial point consider the Doppler effect in a positive index medium. From
Fig. 5.8 consider an electromagnetic wave originating from the source of frequency
x and propagating to deliver energy to be received by an observer located at the
origin in the primed frame. The observer is located to the right of the source and is
moving with a velocity v away from the source.

For the source to transmit energy to the right of the source in the unprimed
frame, the wave vector in the unprimed frame must be positive, i.e., it should be a
vector pointing to the right. For this case under the Lorentz transformation in
(5.105a), both v[ 0 and kz [ 0.

From (5.105a) it then follows that

x0 ¼ cðx� vkzj jÞ\x: ð5:106aÞ

The frequency perceived by the moving observer in the rest frame of the observer is
at a lower frequency than the frequency in the rest frame of the source. As a result,
the radiation is Doppler shifted to the red as it is received by the moving observer.

Now consider the Doppler shift in the case that the medium in which the
radiation propagates is a negative refractive index medium. Again consider the
situation of the source and observer in Fig. 5.8. For the source to transmit energy to
the right of the source in the unprimed frame, the wave vector in the unprimed
frame must now be negative, i.e., it should be a vector pointing to the left.

This follows as in a negative index medium the energy flow is in the opposite
direction to that of the wave vector. For this modified case under the Lorentz
transformation in (5.105a), v[ 0 but kz\0. From (5.105a) it then follows that [44–
46]

x0 ¼ cðxþ vkzj jÞ[x: ð5:106bÞ

The frequency perceived by the moving observer in the rest frame of the observer is
now at a higher frequency than the frequency in the rest frame of the source, i.e., it
is shifted to the blue as it is received by the moving observer.

In general, the Doppler shift in a negative index of refraction medium is opposite
the sense of the shift in a positive index of refraction medium. Both of the cases
treated in (5.106) are for observers receding from the source. The cases in which the
observer approached the source is left to the considerations of the reader.

Now consider another relativistic effect. This is the generation of Cherenkov
radiation by a moving radiating point charge.
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5.3.2 Cherenkov Radiation

A final important radiation problem to treat is that of Cherenkov radiation from a
charge moving in a dielectric medium. This involves the study of the configuration
of the radiation fields emitted by the charged particle. For the case that the speed of
the particle is greater than the speed of light within the medium an important new
effect is found. In particular, a characteristic cone of radiation, known as Cherenkov
radiation, is generated by the particle with the axis of the cone centered about the
velocity vector of the particle. It turns out that there are qualitative as well as
quantitative differences in the Cherenkov effect as it is observed in positive and
negative refractive index media.

To understand the Cherenkov effect in a negative refractive index medium, first a
review of the Cherenkov effect in a positive index of refraction medium is devel-
oped. Following this the Cherenkov effect within a negative refractive index
medium will be discussed, applying similar arguments as those used in the dis-
cussions for the positive index medium. A focus will be given only to the aspects of
the Cherenkov effect that exhibit a difference between the two different media.

In Fig. 5.9a a schematic diagram is presented for a radiating charged particle
moving in a positive index of refraction medium having a refractive index n[ 0.
The particle is traveling horizontally to the right with a velocity v[ 0 which is
greater than the speed of light, cn, within the medium. In order to radiate energy, the
particle must also be accelerating, but in the following discussions the acceleration
of the particle will not enter the discussions other than through the assumption that
radiation fields are emitted.

Referencing the figure it is seen that in a time Dt the particle will move hori-
zontally on its trajectory through a distance vDt. During this same time the radiation
emitted at the position of the particle at the beginning of the time interval will

Fig. 5.9 Schematic diagram
for the Doppler effect in: a a
positive index of refraction
medium and b a negative
index of refraction medium.
In both figures the particle is
moving to the right
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propagate a distance c
nDt. The radiation is emitted as a spherical wave, but applying

Huygen Principle it is found that the waves radiated along the trajectory of the
particle add to form a wave front indicated in the figure as a dashed line.

Considering the triangle in Fig. 5.9a formed from the distance traveled by the
particle and the distance from the point of emission of the radiation to the wave
front, the angle h of the wave vector cone of radiation emitted from the moving
particle is obtained. This cone of wave vectors formed about the velocity vector of
the particle is the Cherenkov radiation which, from the right triangle in Fig. 5.9a,
makes an angle h with the velocity vector and is given by [44–46]

cos h ¼ c
nv

ð5:107Þ

Since in the positive index of refraction medium the Poynting vector is parallel to
the wave vector of the propagating radiation, h defines the angle with the velocity
vector of the cone of radiated energy emitted as Cherenkov radiation.

The treatment for the Cherenkov radiation from a charge moving in a negative
refractive index medium parallels that of the above discussions for a positive
refractive index medium. However, unlike the positive index solution, where the
radiation is obtained from a retarded solution of the Green’s function, the negative
index solution uses the advanced solution of the Green’s function. Whereas the
retarded solution represents spherical waves propagating away from the source, the
advanced solution represents spherical waves converging on the source. This is not
a problem as in positive index medium the energy flow is away from the source and
in the direction of the wave vector, but in a negative index medium the energy flow
is away from the source and in the direction opposite the wave vector.

In Fig. 5.9b a schematic diagram is presented for a radiating charged particle
moving in a negative index of refraction medium with refractive index n\ 0. The
particle is again traveling horizontally to the right with a velocity v[ 0 which is
greater than the speed of light, c

nj j, within the medium.

Referencing the figure it is seen that in a time Dt the particle will move through a
distance vDt horizontally towards the right on its trajectory. At any time during this
journey the phase of the wave received at the position of the particle originates from
the dashed line drawn on the figure. For example, the phase received at the particle
after it passes through the distance vDt is located a distance c

nj jDt from the dashed

line. This is shown in the figure. The dashed line is again the origin of the phase or
wave vector carried by the wave as it is received at the source. The wave vector
ultimately is directed towards the source.

In this process, the radiation is received at the location of the sources in the form
a spherical wave. The location of the dashed line of phase origin in the figure is a
consequence of applying Huygen Principle operating in the time reverse [44–46].

An important point in all of this is that the energy flow in the negative index of
refraction medium is opposite to the direction of the wave vector. As the wave
vector is received by the source, the energy is propagating away from the source.
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Considering the triangle in Fig. 5.9 b formed from the distance traveled by the
particle and the distance from the point of phase origin on the dashed line, the angle
h in the figure is given by (5.107). This however, is not the angle of interest.

The angle of interest in the Cherenkov problem is the angle between the particle
motion and the cone of radiation emitted by the particle. This angle is denoted by
/ ¼ p� h in the figure. From the schematic in Fig. 5.9b it follows that [44–46]

cos/ ¼ c
nv

: ð5:108Þ

Since in the negative index of refraction medium the Poynting vector is anti-parallel
to the wave vector of the propagating radiation, / defines the angle with the
velocity vector of the cone of radiated energy emitted as Cherenkov radiation.

5.4 Application of Metamaterials in Antenna Design

On a point of technological application, it is important to note that metamaterials
have entered into a number of useful design proposals on antennas [1–5, 32, 33,
40–43]. Antenna engineering is a complex technology that is constantly being
modified to meet new developmental requirements in the electrical engineering of
devices. In this regards, the implementation of metamaterials has been made to aid
in the design of smaller sized antennas with high gain operating over greater
bandwidths.

The implementation of metamaterials is proposed based on the novel properties
they exhibit as a class of materials. In regards to their new properties, however, not
all of the applications of metamaterials in antenna design are based on negative
index properties. As an example, in some technologies the development of meta-
materials with zero permittivities and/or permeabilities have found application in
the design of antennas which manifest interesting radiative properties.

In this sense, the formulation of metamaterials offers another opportunity to
extend the range of properties found in naturally occurring materials. Metamaterials
are not just designed to display properties absent in naturally occurring materials.
They can extend the range of properties known to be available through conven-
tional means [1–5, 32, 33, 40–43].

In the following some of these ideas of metamaterial designs are presented by
offering examples from early studies of antennas incorporating metamaterials. For
the discussions, a design based on negative index of refraction media and a design
based on an application of a zero permeability metamaterial are focused upon.
These discussions are given as illustrations of the potential available based on
metamaterial technology, and a comprehensive treatment of antenna design is not
intended.

An early indication of the potentials of metamaterials in antenna design was
made by Ziolkowski and Kipple [40]. They treated the problem of a radiating dipole
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centered within a shell of negative refractive index medium using both analytical
and computer simulation methods. (The schematic for the problem they studied is
shown in Fig. 5.10.)

Through their considerations they demonstrated that negative refraction index
media can offer important opportunities in antenna design. In the following, their
study will be summarized as an example of an important result for radiation
problems and antenna design. Specifically, it will be seen that negative index
media, if properly employed, can greatly increase the radiation efficiency of
antennas.

The problem treated by Ziolkowski and Kipple [40] considered the specific
configuration of a dipole located within a metamaterial shell shown in Fig. 5.10. In
the figure an electric dipole source of radius a, frequency x, and dipole moment I0l
is located at the center of a dielectric shell of inner radius r1 and outer radius r2. The
shell is composed of an homogeneous negative index of refraction medium, but,

Fig. 5.10 An infinitesimal electric dipole of strength I0l centered within a negative index of
refraction metamaterial of inner radius r1 and outer radius r2 [40]
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otherwise, the media inside and outside of the shell are positive refractive index
media.

The object of the calculations was to study the radiation fields and the power
radiated by the dipole within the shell. This can be used to determine the effects of
the negative index of refraction medium on the radiation properties of the system. In
their original paper a variety of other geometric configurations were consider, but
here the focus is on the result for the problem in Fig. 5.10.

For the system in Fig. 5.10, a particular set of permittivity and permeability
parameters of the form

ðe1; l1Þ ¼ ð�e2;�l2Þ ¼ ðe3;l3Þ ¼ ðe0; l0Þ ð5:109Þ

where considered. In particular, the positive index of refraction media are vacuum
and the negative index of refraction medium of the shell has a permittivity and
permeability which are the negative of those of the free space values. It should be
noted that this arrangement of the permittivities and permeabilities is essentially the
same as that used in the treatment of the problem of the perfect lens. In the perfect
lens problem studied earlier a negative index slab lens with permittivity and per-
meability parameters that are the negative of those of free space was surrounded by
vacuum.

In the numerical studies of the system in Fig. 5.10, the frequency of the source
was f ¼ 10GHz ¼ c=k0 and I0l ¼ 2k0=1000Am with I0 ¼ 1A. These values were
selected as a reasonable set of parameters that would characterize a radiation
problem of interest in nano-photonics. The metamaterial shell which forms part of
the antenna structure had an inner radius r1 ¼ 100 lm while the outer radius was
varied in the region r2 [ r1. This allowed for a determination of the value of r2 at
which the most power is radiated from the dipole-shell antenna array, i.e., what
value gives the best antenna for the radiation generated at the dipole [40].

For the system and parameters just given the total power radiated to infinity by
the dipole within the shell was determined. In addition, as a comparison, the total
power radiated to infinity by the same dipole placed alone in vacuum was also
determined. From the ratio of these two powers the change in relative radiative
efficiency of the antenna with and without the shell of metamaterial was
determined.

In Fig. 5.11 the ratio of the radiated power for the shell system divided by the
radiated power for the dipole placed alone in vacuum is presented as a function of
r2. The antenna with the metamaterial shell is found to be a much improved antenna
over that of the dipole alone. The results of Fig. 5.10 are now discussed in some
detailed considerations of the particulars [40].

The results plotted in Fig. 5.11 indicated that a tremendous enhancement of the
power radiated from the dipole is achieved in the presence of the metamaterial. This
is found over a wide range of values for the outer radius of the shell. As a result, a
considerable leeway is available for the design of the antenna.

As a particular point, note that over the wide range of outer radii giving
enhanced radiative power, a maximum in the power radiated is observed at
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r2 ¼ 748:8mm. At this outer radius an enhancement in the radiated power is
observed of a little over 70 times the radiated power of the system in the absence of
the metamaterial shell.

These results illustrate the potential amplification properties metamaterials with
negative index of refraction offer in the design of antennas. It also provides a great
potential for enhancing the fields radiated from other types of antennas which, in
the absence of metamaterials in their designs, would otherwise be poor radiators. In
this regard, in general, conventional antennas require a half wavelength dimension
to be efficient radiators whereas metamaterials have allowed for a reduction of the
antenna dimensions by 25–50 times.

The above example employed negative index of refraction metamaterials as a
means to improve antenna performance. Some useful effects can also be developed
using metamaterials that exhibit zero permittivities and/or permeabilities. These
dielectric properties of the metamaterial can be used to affect the directionality of
the radiation patterns generated by antennas as well as to affect their radiation
efficiencies [40].

As an example of this type of system consider a slab of material composed of
such a metamaterial. It shall be shown that by judiciously choosing the permit-
tivities and permeabilities a directional antenna can be designed. The discussions
presented in the following are based on a study given by Tang, Mei, and Cui [42].

In Fig. 5.12 the properties of the radiation fields in an antenna system, based on
a design employing a metamaterial in which the permeability tensor has a specific
form, is considered. The system is based in part on an antenna formed from an
infinite wire carrying a harmonically time varying current. The metamaterial
enhanced antenna is then formed by placing the wire centered within a slab of
metamaterials [40].

To establish a point of comparison it is good to begin by considering the fields
generated by the wire alone. In Fig. 5.12a the radiation fields from an infinitely long

Fig. 5.11 Plot of the ratio of
the power radiated by the
dipole located within the shell
of negative refractive index
medium divided by the power
radiated by the dipole located
within free space versus the
outer radius of the dipole
shell. The plot is made for a
fixed inner shell radius. The
details of the parameters of
the problem are given in the
text [40]. Reproduced with
permission from [40].
Copyright 2003 IEEE
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wire carrying an harmonically varying current are illustrated. The wire generates
spherical waves which are radiated from the wire and travel out from it as dashed
cylindrical wave crests. The circles of increasing radii in the figure then represent
the crests of the waves at a particular point in time.

Next a metamaterial slab with a zero permeability component medium is
introduced into the system so that the radiating wire in contained within the slab. In
particular, the y-component of the permeability tensor is set to zero in the meta-
material slab. For the metamaterial antenna the infinite wire is place at the center of
the infinite metamaterials slab of thickness at t as shown in Fig. 5.12b.

As a consequence of the zero permeability component of the slab the radiation
pattern is distorted into the new field pattern shown in Fig. 5.12b. Now the dashed
radiation wave crests move off in planes parallel to the surfaces of the metamaterial
slab. The radiation generated by the infinite wire in every direction has been
redirected to move off from the antenna in a very restricted sense. In addition, the
antenna also focuses the total power from the antenna, concentrating it along one
axis in space.

This particular system provides an illustration of the transformation of the
radiation fields available with the applications of metamaterials. The metamaterial
does not necessarily need to display negative refractive index properties as the
focus of its application.

Of course, there are many other important applications of metamaterial ideas to
obtain antenna solutions [40–43]. Some of these include the development of strips
of metamaterial transmission lines as well as smaller configurations of resonators
formed in a variety of combinations and configurations [42]. The resonance
properties of these can be designed to minimize their reflected power properties and
set the frequency bands over which they exhibit these minima. This is an aid in the
antenna designs. In addition, some ideas of antenna design involve the layering of
positive and negative refractive index media [42]. This is done in such a way that

Fig. 5.12 The radiation fields from: a an infinite wire placed along the z-axis in free space and
b the same infinite wire located in a metamaterials which has a zero y-component of its magnetic
permeability tensor [42]. Reproduced with permission from [42]. Copyright 2015 Springer
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the negative refractive index slabs compensate for phase changes in the positive
layers. Such layers rid the system of phase changes which inhibit the radiation fields
generated by these types of structures. Also applications based on two and three
dimensional arrays of nano-circuits exist and are found to display important
radiative features [42]. As well as radiative systems operating over a wide range of
frequencies, some metamaterial systems have been developed to inhibit thermal
radiation for surfaces and coating. This is also an important function of the ideas of
antenna operations.

There are many such ideas that have been put forth for designs based on ideas
from the foundations of metamaterials, and these cannot be further gone into here.
For details of metamaterial antennas and their further properties the reader is
referred to the literature [40–43].

5.5 Photonic Crystal Solutions to the Negative Refractive
Index Problem and Hyperbolic Materials

In this section discussions are presented of systems based on photonic crystals which
can exhibit some of the properties of negative index of refraction metamaterials
[47–49]. The first systems considered are photonic crystals exhibiting electromag-
netic band structures and which are operated in the diffractive limit. A focus will be
on these systems considering the case in which the electromagnetic dispersion
relation displays regions in wave vector space in which the electromagnetic modes
of the photonic crystal have oppositely directed phase and group velocities. In these
regions the phase velocity and wave vectors of the modes are opposite the direction
of the energy flow in the system. As note in the earlier discussions of the basic
properties of metamaterials, this feature of the energy flow in the electromagnetic
modes is an essential property of negative index of refraction media. For the pho-
tonic crystal systems the negative index is a band structure effect and the wave
vectors of the modes of interest are of order of the inter-atomic spacing.

A second type of system considered is a metamaterial based on photonic crystal
like layerings or on arrays of cylinders or nano-wires. Due to their periodicity
properties these systems look like photonic crystals, but they are designed to act as
metamaterials for light which has much larger wavelengths than the fundamental
lengths characterizing the periodicity of the media. For these wavelengths of light
the materials appear to be homogeneous media with dielectric properties which are
anisotropic in space. Such materials are known as hyperbolic metamaterials and
depending on their specific structure they exhibit metallic (dielectric) behavior
along one axis of space and dielectric (metallic) properties in the plane perpen-
dicular to this axis. The essential feature that characterizes these materials is that
light propagating in them has a hyperbolic dispersion relation. This gives them
many interesting properties that are related to negative index media and to the
formation of lenses displaying features of prefect lenses [47–49].
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5.5.1 Photonic Crystals

A photonic crystal functioning in the diffractive limit of its interaction with elec-
tromagnetic radiation modes can exhibit properties of a negative refractive index
material. This comes from the form of the band structure of the electromagnetic
modes in the photonic crystal. In particular, in some cases it is possible to have
regions of the photonic crystal wave vector space in which there are modes which
have the modal phase velocity opposite to that of its group velocity.

In Fig. 5.13 an example of such a dispersion relation is presented. Shown in the
figure is a hypothetical plot of the frequency of electromagnetic modes as a function
of the wave vector. Two bands are presented as an illustration, and the upper band
is the one used to understand the functioning of the photonic crystal as a negative
refractive index medium. The dispersion relation of this band is designed so as to
exhibit oppositely directed phase and group velocities [47–49].

In the region near the origin in the frequency versus wave vector plot, the upper
band has a dispersion relation in which the frequency of the modes increase in
frequency as the wave vector is decreased to zero. The dispersion relation in this
region is then approximated by the form [47–49]

xðkx; ky; kzÞ ¼ x0 � 1
2
x1ðk2x þ k2y þ k2z Þ: ð5:110Þ

Computing the group velocity obtained from (5.110) at the wave vector ðkx; ky; kzÞ
gives the result

~vg ¼ rxðkx; ky; kzÞ ¼ �x1ðkx; ky; kzÞ ð5:111Þ

It is seen that the direction of the group velocity is opposite that of the wave vector
and, consequently, parallel to the phase velocity. As a result, the energy flux of the
mode is opposite the mode vector of the mode. This is a fundamental signature
feature of a negative refractive index medium.

Fig. 5.13 Schematic of the
dispersion relations in two
bands of a photonic crystal in
a region near and centered
about the center of the
Brillouin zone
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A similar effect is found in the transport properties of electrons in metals and
semi-conductions. In these systems the presences of regions of modal solutions in
which the phase and group velocity are opposite one another has been studied early
on. The origin of the effect, as with the photonic crystal effect, arises due to the
strong Bragg scattering of the modes from the periodic lattice of the system.
Consequently, it is a diffraction effect whereas in metamaterials the negative index
property is a refractive rather than a diffractive effect.

5.5.2 Hyperbolic Materials

A second application of photonic crystals to negative refractive index technology is
in the development of hyperbolic metamaterials. These are designed to function in
the refractive limit of photonic crystal implementation and to exhibit similar
properties to negative refractive index media. They are artificial structures formed
as layered media or composite media based on nano-wire arrays, and their inter-
esting properties derive from the form of the dispersion relation of electromagnetic
waves propagating within them.

The basis of the interesting properties of hyperbolic metamaterials is their hy-
perbolic dispersion relations [23–25, 42, 43]. In a hyperbolic medium the frequency
versus wave vector dispersion relation of electromagnetic radiation exhibits con-
stant frequency surfaces which are hyperbolas of revolution in phase vector space.
To understand the nature of the properties arising from these unusual dispersion
relations consider the nature of the dispersion relation of light in a uniform positive
medium as compared to those of a metamaterial medium with a hyperbolic dis-
persion relation.

First consider light in a uniform medium with a positive index of refraction. The
dispersion relation of light in such a medium is written as [23–25, 42, 43]

k2x þ k2y þ k2z
le

¼ x2: ð5:112Þ

As readily seen, the dispersion relation in (5.112) represents the propagation of
modes which have constant frequency surfaces in the form of spheres.

For a useful later comparison with the dispersion relations of the hyperbolic
media, in Fig. 5.14a a plot of the dispersion relation of the spheres of the positive
index medium are shown in the x-z plane. This gives a cross section of the dis-
persion relation which appears as a circular cross section intersecting in the x-
z plane for which ky ¼ 0 in (5.112). The circular nature of the cross section of the
constant frequency surface fixes many of the qualitative behaviors of the wave
propagation in the medium. These are now addressed.
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Fig. 5.14 Schematics of
constant frequency surfaces
in: a positive index refractive
medium, b Type I hyperbolic
metamaterial, and c Type II
hyperbolic metamaterial. The
rotation symmetry of the
surfaces is about the vertical
axis
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To understand the qualitative aspects of the propagation of waves of frequency
x, rewrite (5.112) considering the ky ¼ 0 surface. In this way (5.112) takes the form
[23–25]

k2z ¼ lex2 � k2x : ð5:113Þ

Next consider the nature of wave propagation in the z-direction as it depends on the
value of kx. Two types of behaviors along the z-direction are observed. For
lex2 [ k2x the wave propagates along the z-direction as a plane wave, but for
lex2\k2x the wave is evanescent along the z-axis. Consequently, only small kx
propagate whereas larger kx decay in space.

An important point is to note the different behaviors of the kx in the transfer of an
image through the optical system. If a wave is emitted from a source on the z-axis
and travels on the z-axis along the positive z-direction, plane wave states will travel
indefinitely along the z-axis. Evanescent waves, however, will decay and be
gradually lost to the radiation fields as they move along the z-direction.

The loss of the evanescent waves in the radiation emitted by the source repre-
sents a loss of information about the source, and the loss of information from the
evanescent components increases with distance from the source along the
z-direction. In terms of the information radiated into space, only the propagating
plane wave component of the radiation from the source can faithfully transfer
information about the source along the z-direction. In its final form, the resulting
image generated from the energy radiated by the source and sent through the system
will be incomplete when it is reassembled into the form of an image.

In conclusion, it follows that if a vector field pulse of the form~f ðx; y; z ¼ 0Þ is
created in the x-y plane, it will increasingly lose evanescent information in its
propagation for increasing z[ 0. It shall now be seen that this is not the case if the
medium into which the source radiates is a hyperbolic medium. This is done by
following the above considerations, treating the form of the hyperbolic dispersion
relation. First some introduction will be given regarding the hyperbolic form of
dispersion relation and how it can occur.

Consider the propagation of radiation in the case of a hyperbolic medium.
Hyperbolic media have permittivity and permeability tensors that are of the general
forms

e? 0 0
0 e? 0
0 0 ejj

						
						 ð5:114aÞ

l? 0 0
0 l? 0
0 0 ljj

						
						 ð5:114bÞ

5.5 Photonic Crystal Solutions to the Negative Refractive Index Problem … 377



These matrices yield dispersion relations for two modes which differ in polarization
and are known as the ordinary and extraordinary waves. The waves of interest to the
following discussions are the extraordinary waves, and it is assumed that only these
modes are excited for the properties discussed. The dispersion relation of the ex-
traordinary modes is given by [23–25]

k2x þ k2y
lejj

þ k2z
le?

¼ x2: ð5:115Þ

where it is assumed that ljj ¼ l? ¼ l.
In the dispersion relation in (5.115) the cases of interest in the study of hyper-

bolic materials are for lejj\0 and le? [ 0 in Type I hyperbolic materials and for
lejj [ 0 and le?\0 in Type II hyperbolic materials. For positive l it is seen then
that Type I materials are metallic in the ejj direction and dielectric in the plane
perpendicular to this direction. In the case of Type II materials for positive l these
materials are dielectric in the ejj direction and metallic along the e? plane per-
pendicular to this direction.

The essential feature of hyperbolic materials in the determination of their elec-
tromagnetic properties is their dispersion relation as obtained from (5.115).
A schematic plot of the dispersion relation in the x-z plane for Type I and Type II
materials is shown in Fig. 5.14. For the plots of both Type I and Type II materials
the dispersion relations are found to intersect the x-z plane in hyperbolic surfaces of
constant x.

The important point in these plots is that the constant frequency surfaces, unlike
those of the uniform positive refractive index medium, are unbounded, i.e., the
constant frequency surfaces extend to regions in wave vector space in which the
length of the wave vectors are arbitrarily large. This has significant consequences
for the propagation of radiation from sources and the density of electromagnetic
modes in hyperbolic materials. It is at the basis of two of the most important
technological applications of hyperbolic materials.

Before further discussing the radiative and electromagnetic density of states
properties of hyperbolic metamaterials, it is important to take a break here and to
note some practical material science aspect to these media. Conventional crystalline
(non-artificial) solids exist which display hyperbolic tensors of the form in (5.114).
These, however, are limited in the frequency range over which they exhibit
hyperbolic properties. The metamaterial format is needed to increase the range of
frequencies over which the hyperbolic properties are available. In addition, the
detailed nature of the composite geometry in the formulation of the composite
material is fashioned to match the technology of it application and can take many
different forms and formats.

Some examples of the materials used in layered and nanowire hyperbolic
composite media and their applications to the electromagnetic spectra as media
composed of two components are featured in the following. The ranges of appli-
cations that have been made for the indicated frequency range are: (1) In the
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ultraviolet Au=Al2O3 and Ag=Al2O3, (2) In the visible Au=TiO2 and Ag=TiO2,
(3) In the ultraviolet Au=Al2O3 and Ag=Al2O3, (4) In the near-infrared Ti=N and
Zr=N, and (5) In the mid-infrared and terahertz III–V semiconductors. Hyperbolic
media have been formed from these composites in both layered and nanowire
composites, and for the particulars of the metamaterial designs employed in these
formulations the reader is referred to the literature.

To understand the qualitative electrodynamic properties of composite hyperbolic
materials, revisit the considerations in (5.112) and (5.113) but now applied to the
hyperbolic media. For these discussions consider the case of a Type I hyperbolic
material. A similar argument can be easily extended to treat Type II materials.

In Type I media the general from of the dispersion relation of light now is
written in the form

k2x þ k2y
lejj

þ k2z
le?

¼ x2: ð5:116Þ

This dispersion relation is to be considered in the x-z plane in phase space. With this
restriction (5.116) can be rewritten for ky ¼ 0 into the form

k2z ¼ le? x2 � k2x
lejj


 �
ð5:117Þ

for which lejj\0.
Following the earlier treatment for the positive index media in (5.112), again

consider the nature of wave propagation in the z-direction as it depends on the value
of kx. This will reveal the important qualitative nature of the propagation of radi-
ation for a source located in a hyperbolic medium and the nature of the information
it carries with it. It is seen for the hyperbolic material in (5.117) that, unlike the
positive refractive index medium, the wave vector kz is always real. In this medium,
there are no evanescent waves.

As a consequence, if a pulse in the form of a vector field~f ðx; y; z ¼ 0Þ is created
in the x-y plane, it does not lose evanescent information from the source as it travels
in the z[ 0 direction. Unlike in the positive medium, there is no evanescent
information to lose. All of the radiated modes from the source are plane wave,
propagating, states. Consequently, all of the information from the source is retained
in some form as it is propagated from the source.

A similar result is obtained from a consideration of the propagation in Type II
media, and the arguments are essentially the same in both Type I and Type II
media. Based on these results one can design a type of waveguide of hyperbolic
metamaterial in the form of a finite slab. By placing a dipole source appropriately at
one side of the slab, the evanescent modes from the source as they enter the slab of
hyperbolic medium are made to propagate as plane waves in the hyperbolic slab.
Upon encountering the opposite side of the slab from that of the source, these waves
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are extracted. The extracted waves retain the information originally generated at the
dipole source.

Since the hyperbolic metamaterial delivers all components of the radiation field
it is natural to try to apply it in the design of a perfect lens. An attempted to make a
perfect lens in the form of a slab of hyperbolic material, however, has not been
successful. This is because of the anisotropy of the dielectric medium. In particular
the absence of evanescent waves is not effective for every propagation direction of
the materials and, under general conditions, a properly focused image is not
possible.

Attempts have been made at the design of slab lenses similar to the perfect lens
of negative refraction medium discussed in earlier sections. Some aspects of neg-
ative refraction are present in a slab lens in which ejj\0 is perpendicular to the slab
surface and e? [ 0 is parallel to the surface. For this medium the rays from the
source that make small incident angles on the slab surface exhibit negative index of
refraction properties. In particular, the phase and group velocities are opposite one
another. As the incident angle is increase, however, the system eventually loses this
property and the incident rays are no longer focused by the slab. The perfect lens
becomes imperfect in this sense.

Some advances in lens designs have been made through the combination of
hyperbolic materials and curved geometries to form so-called hyperlenses.
Applying these ideas an imaging lens can be made that acts on the near-field
radiation generated by a source on one side of the lens and forms on the other side
of the lens a subwavelength image of the source or object. To do this the layered
hyperbolic metamaterial is bent into a half cylinder [23–25].

In this arrangement, the layering of the metamaterial is perpendicular to the
radian vector going out from the axis of the cylinder. For this geometry, the near
field object is transformed by the lens into a far field image with a greater resolution
than that which is theoretically attainable from lenses of classical optics. In the last
stages of the generation of the final far field image the radiation exiting the
metamaterial is acted on by a conventional lens. On the whole, however, the
resulting image is more resolved than that obtained using standard optical methods.
This type of lens arrangement is often referred to as a hyperlens.

A final development of hyperbolic metamaterials that is of interest for tech-
nology is the effect they have on the electromagnetic density of states within the
hyperbolic medium. Unlike the frequency density of states of radiation in free
space, which is related to the bounded spherical surfaces of constant frequency,
hyperbolic materials have constant frequency surfaces based on the hyperbolic
constant frequency surfaces obtained from (5.116) and (5.117). This means that the
constant frequency surfaces of hyperbolic materials are of infinite extent in wave
vector space. An interesting consequence arises from this in the decay of excited
atoms and molecules located within these two different types of materials [23–25].

The density of frequency states for modes of frequency x are the number of
modes between the x and the xþDx surface of the phase space dispersion relation
in the limit as Dx ! 0. This is very large for hyperbolic materials and represents an
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increase in their density of states from that of the density of states of frequency x in
free space.

The rate of decay of an excited atom or molecule is found to be proportional to
the density of frequency states of the electromagnetic mode radiated into by the
atom during its decay. The rate of decay will then depend on the density of fre-
quency modes in the material within which the atom is located. For the enhanced
density of states provided by the hyperbolic medium there is an increase in the rate
of decay of atoms over that found in free space which has a lower density of states.

The properties of materials with enhanced frequency density of states carries
over to the case of an atom or molecule in the proximity of the hyperbolic meta-
materials. Recent studies have been made of the radiation rates of atoms as a
function of their separation from a hyperbolic medium. An enhancement is
observed arising from the proximity of a medium with an enhanced number of
modes for the atom or molecule to radiate into.
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Chapter 6
Force

In this chapter forces that are often taken into consideration in the study of
nanoscience are discussed. These are forces that can be used in the manipulation of
individual nanoparticles or in the assembly of systems formed from an ordered
arrangement of nanoscale features. Such interactions are very important for tech-
nological applications as well as in developing an understanding of how small
particles interact with their environments. In this regard, there are many applica-
tions in self-assembly processes and in the manipulation of both biological and
non-biological particles.

In the following, some discussions of the use of magnetic and electric fields in
particle manipulation are given. Treatments of the properties of ferromagnetic,
paramagnetic, and diamagnetic particles manipulated by the use of externally
applied magnetic fields are presented [1–7]. Each of these three types of magnetic
systems is found to display its own characteristic properties in an interaction with
an applied field, and these interactions facilitate their technological uses in bio-
logical [1, 5, 7] and non-biological systems [1–7].

Similar discussions are also given of the interaction of ferroelectric and
non-ferroelectric particles in an applied electric fields [8–10]. Again, these have
various technological applications which distinguish between the dielectric prop-
erties of the particles involved.

These discussions will be followed by considerations of the trapping of indi-
vidual ions in space. In order to trap ions in space it is necessary to use time varying
electromagnetic fields, and the trapping of such ions is very important in many
studies in quantum optics [11, 12]. Such quantum optics treatments include both
technologically based discussions and in tests of the foundations of quantum
mechanics.

An important device in the technology of particle trapping and manipulation is
the optical tweezer [13–20]. This has many applications in the study of biological
and non-biological particles where it exhibits important means of positioning and
orienting nano-particles. A brief discussion of the basic theory for the operation of
the optical tweezer will be given.
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In a final presentation the Casimir effect will be treated [21–28]. This is observed
as a weak short range force that exists between surfaces and which may be
attractive or repulse in nature. The Casimir force arises solely from the properties of
the electromagnetic density of states as they are modified by the geometry and
dielectric properties of the surfaces. These surface interactions can be important in
various mechanical considerations of nanoscience machines.

6.1 Magnetic Forces for the Manipulation
of Nanoparticles

One means of manipulating nanoparticles is through the application on them of
static external magnetic fields [1–7]. This can be a very important device in
nanoscience for the physical transport of particles through space or for their
alignment in space. In such applications the applied fields acting on nanoparticles
with magnetic properties are found to develop forces and torques on the particles.
These interactions cause the particles to align or to be propelled in space relative to
the lines of applied magnetic induction. They are basic ideas which set the stage for
many important applications in the engineering of nano-machines, the manipulation
of biological cells such as bacteria, for the sorting and assembly of nanoparticles,
and for applications in drug delivery systems [1–7].

Generally, interactions of this type are particularly important in the nanoscience
mechanics where they enter into considerations of forces or torques on particles
exhibiting paramagnetism, diamagnetism, or ferromagnetism. Forces and torques in
these systems ultimately arise from the changes in the energy of interaction of the
particle as the configuration of the system is changed. In particular, the force on the
particle is related to the negative of the derivative of the particle energy with respect
to some generalized space coordinated used to represent the orientation or motion
of the particle in space. Ultimately, the theory of these nanoparticle interactions has
an origin in the most basic fundamentals of the theory of magnetostatics [1–7].

In the following, after a brief review of some basic theoretical ideas of mag-
netostatics, the mechanical effects that are commonly employed in the manipulation
of paramagnetic, diamagnetic, and ferromagnetic particles are discussed. The first
system to be treated is that of ferromagnetic nanoparticles. These exhibit permanent
magnetic moments that can be influenced by an applied magnetic field but are not
dependent on the applied fields for their existence. After this discussions of para-
magnetic and diamagnetic particles are given. In these types of particles the mag-
netic moments of the particles are induced by the applied fields so that in the
absence of an applied field the particle has no magnetic moment [1–7].

In the discussion of the particle dynamics, two different field types are addressed.
In uniform fields the particles can be oriented in space. For spatially non-uniform
fields, however, the particles can be both oriented and propelled along trajectories
in space.
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After the theoretical treatment of the forces and torques on the three different
types of particles, some of the recent applications in nanoscience systems are given
as illustrations. These include: applications to mechanical nano-projectiles that can
be steered through space along predetermined trajectories, the design of drug
delivery system, the guiding of bacteria through space, and the separation of
nanoparticles on the basis of their various different sizes, etc. [1–7].

6.1.1 Review of Magnetostatics

In the study of magnetism three basic fields are encountered. These are the magnetic
field, ~H, the magnetic induction, ~B, and the magnetization, ~M . Each of these three
vectors arises from different currents flowing in the materials they characterize, and,
ultimately, the energy and force on particles in an applied magnetic field are all
expressed in terms of these vectors.

In the following, the origins and relations between the three fields are reviewed.
This is followed by some general considerations of the energy and forces on
nano-particles interacting with an external magnetic field.

Properties of the Three Magnetic Vectors
From Maxwell’s equations, it is found that the magnetic field is generated by the
currents of free charge moving in the system, e.g., conduction electrons internal or
external to the media. The magnetization arises, however, from a different set of
charges that are bound to atoms and molecules and are confined to move within
them. These bound charges then generate atomic or molecular currents.

The bound charge currents, in their circulation about the atoms and molecules,
create magnetic moments which are ultimately related the magnetization as the
vector sum of the magnetic dipoles of the individual atoms. Finally, the magnetic
induction is related to both the magnetic field and the magnetization by the rela-
tionship [1]

~B ¼ l0 ~Hþ ~M
� � ð6:1Þ

where l0 is the permeability of free space.
For paramagnetic and diamagnetic media the magnetization is linearly related to

the magnetic field through the relationship [1]

~M ¼ v~H; ð6:2Þ

where the constant of proportionality v is the magnetic susceptibility. In the case
that v[ 0 the medium is paramagnetic, and in the case that v\0 the medium is
diamagnetic.
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For both of these types of linear magnetic media vj j � 1 so that the effect of the
magnetization on these systems is small. This is seen by applying (6.2) in (6.1).
From this substitution, the magnetic induction in a linear media is found to be
related to the magnetic field through the linear form [1]

~B ¼ l0 1þ v½ �~H � l~H: ð6:3Þ

Since vj j � 1 it follows that in paramagnetic and diamagnetic media ~B � l0~H to a
good approximation. In some cases considered in the following, however, it shall be
seen that the small magnetization does result in significant physical effects in
nano-systems.

Important physical effects in nanoscience related to the magnetic susceptibility
show up in mechanical effects of nanoparticles interacting with applied magnetic
fields. These effects are intimately related to the paramagnetic and diamagnetic
nature of the particles. In particular, it will soon be seen that the difference in the
sign of the susceptibility in paramagnetic and diamagnetic systems results in very
different mechanical behaviors for particles made from these two different media.
This is found from the difference in the way the diamagnetic and paramagnetic
magnetization contributes to the particle energy in an applied magnetic field. To
begin these considerations, first consider the interaction of a magnetic particle with
an applied magnetic field.

Energy of a Particle in an Applied Magnetic Field
In the presence of an applied magnetic field, the energy density within the media of
a magnetic particle is of the form [1]

u ¼ 1
2
~H �~B; ð6:4Þ

where B
*

is the magnetic induction within the particle. The energy density in (6.4)
consists of two contributions. Specifically, it includes an energy associated with the
creation of the applied field and an energy associated with the magnetization of
the particle. The focus in the following will be on the energy associated with the
magnetization of the particle.

From a consideration of the relationships in (6.1) and (6.3), the total energy
density in (6.4) including the field energy and the energy of interaction with the
magnetization of the particle then becomes [1]

u ¼ 1
2

1
l0

~B� ~M

� �
�~B: ð6:5Þ

It is seen from (6.5) that the energy density associated with the particle magneti-
zation can be separated out from the energy density associated only with the applied
field. In particular, the energy associated with the magnetization disappears for zero
magnetization.
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Making this separation gives to leading order in the small magnetization of the
particle [1], the energy density associated with the particle magnetization given by

u ¼ � 1
2
~M �~B ¼ � 1

2
v~H �~B ¼ � 1

2l0
vB2: ð6:6Þ

In addition, since ~M is small~B is essentially the same inside and outside the particle
as, similarly, is the case with ~H.

Forces on Particles
The force acting on the particle is related to the change of the particle energy,
determined from (6.6), as it is displaced in the field. Assuming that u is constant
over the particle the energy of the particle is given by [1]

U ¼ Vu; ð6:7aÞ

where V is the volume of the particle. Consequently, from the particle energy it
follows that the force on the particle is given by [1–7]

~F ¼ �rU ¼ V
l0

v ~B � r� �
~B: ð6:7bÞ

The result in (6.7b) assumes that the particle is in a background medium which is
neither paramagnetic nor diamagnetic so that the energy of the particle is related
only to the susceptibility of the particle itself. This is not always the case and
nano-particles are often found suspended within media which exhibit their own
magnetic properties. When this is the case, additional considerations must be made.

If the background medium suspending a nano-particle has a paramagnetic or
diamagnetic interaction with the applied field this must also be taken into account.
In case of a linear background magnetic media, if vparticle is the susceptibility of the
particle and vbacground is the susceptibility of the background, the modified form of
the force becomes [1–7]

~F ¼ V
l0

vparticle � vbackground
� �

~B � r� �
~B: ð6:7cÞ

As seen from (6.7c) the presence of a linear magnetic background media can
have a significant effect on the force due to interaction with an external field. In the
case where that particle and background are of opposite types of linear media, the
force on the particle can be enhanced over the force of the particle given by (6.7b).
When the particle and background are of the same type of media, the force can be
decreased or even reversed from the force on the particle given in (6.7b). These
results can have interesting effects on the dynamics of the particle.
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Case of Ferromagnetic Particles
For ferromagnetic materials the relationship between the magnetization and mag-
netic field is not quite as simple as that of linear media. In general, the relationship
is not linear but is highly nonlinear so that

B
* ¼ ~Bð~HÞ ð6:8Þ

exhibits a hysteresis loop of the form shown in Fig. 6.1. Specifically, the hysteresis
loop is a multiple valued function and the behaviors of the system under small
changes in ~H depends on where the initial configuration of the system is on the
curve and on the past history of the system.

For a permanently magnetized particle, the particle energy in a magnetic field is
given by a formula which is well known in electrodynamics and statistical physics.
The particle energy in an applied magnetic induction is expressed as [1–7]

U ¼ �~m �~B; ð6:9aÞ

where m* is the dipole moment of the particle. The force on the particle is then given
by [1]

~F ¼ ð~m � rÞB* ð6:9bÞ

Notice that the energy in (6.9a) does not have the factor of 1
2 found in (6.6). This

difference is due to the dependence of the dipole moment of linear media particles
on the magnetic field. Consequently, the magnetization in the linear media is

Fig. 6.1 The form of a typical hysteresis curve for a permanent ferromagnetic particle
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directly proportional to the applied field whereas the magnetic moment of a fer-
romagnetic particle is almost independent of the applied field.

The differences in (6.7b) and (6.9b) in their applications are now treated. The
difference of the magnetostatic physics of paramagnetic, diamagnetic, and ferro-
magnetic are related to the properties of these equations for both uniform and
inhomogeneous applied magnetic fields. In the following, a focus is on nanoscience
applications.

6.1.2 Forces on Ferromagnetic Particles

The force on ferromagnetic particles is given by (6.9b). It is seen from this formula
that, in a non-uniform magnetic induction, the ferromagnetic particle experiences a
force pushing it from a region of weak magnetic induction to one of strong mag-
netic induction [1–7]. The force is also found to be proportional to the strength of
the magnetization of the particle and proportional to the strength of the applied
magnetic induction.

Due to the nature of the hysteresis curve, the magnetization of a ferromagnetic
particle is dependent on the applied field ~B. In nanoscience applications, however,
the applied field is often arranged so that the magnetic properties of the particle are
on a portion of the curve where the magnetization is relatively independent of
changes in the magnetic induction. This means that the particle magnetization is
stable and the force arises from changes in the magnetic induction with changes in
the spatial configuration of the particle-field system. In the following, the focus will
be on systems under these conditions.

In a uniform applied magnetic field the particle does not experience a net force,
but the permanent magnetic dipole of the particle experiences a torque. From the
energy in (6.9a) the torque is given by [1–7]

~s ¼ m* �~B ð6:10Þ

and is seen to rotate the dipole to become parallel to ~B.
The force and torque relations have been applied to a number of nanoscience

applications. These involve interesting designs in nano-mechanical systems and
machines that are first steps in exploring the possibilities of the technology. An
outline of recent efforts is now given.

Nano-particle Projectiles
A particular interesting set of experiments have recently been performed on the
design of micro particles that can be propelled through fluids as steered particles
[1–3]. In one experiment a 1.5 lm long rod was fabricated and driven along a
trajectory through a hydrogen peroxide solution. The rod was composed of a series
of metallic segments, layered along the length of the rod. Specifically, a series of
alternating segments of gold and magnetized nickel were ordered along the axis of
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the rod, and at one end of the rod was placed a cap composed as a layer of platinum
[1–7].

The purpose of the platinum cap was for it to act on the hydrogen peroxide
solution as a catalyst. In this capacity the platinum decomposed the hydrogen
peroxide of the solution, forming oxygen bubbles at the capped end of the rod. The
bubbles generated at the cap acted to propel the rod, making it into a type of
nano-rocket [1, 2].

The nickel layers of the rod were permanently magnetized, with the permanent
magnetic moment of each magnetic segment being parallel to all the others.
The direction of the magnetic moments of the segments were set perpendicular to
the axis of the rod. This created a total permanent magnetic moment normal to the
direction of motion of the rod as it was propelled by the peroxide engine [1–4].

In the presence of an applied uniform magnetic field the total magnetic moment
of the rod aligned along the applied field. This assure the rod would always move
perpendicular to the field. Consequently, by changing the direction of the field the
rod could be steered along a trajectory within the solution.

For the rod in this experiment 55 mT fields were used to guide the motion of the
rods through the fluid. The applied fields were always uniform so that the torque
force in (6.10) was the operable mechanism of magnetic control of the system
[1–3].

In a second experiment, a similar nano-rocket design was treated. In this
experiment the projectile was formulated as a rod of layers of silicone and cobalt
with one end of the projectile capped with platinum. The rod formed in this way
was 5 lm in length [1–3].

The propulsion was again provided by the catalysis of hydrogen peroxide by the
platinum, and the steering was accomplished with a uniform applied magnetic field.
For this experiment the applied magnetic induction was 5 mT [1–3].

Both of these experiments are based on designs utilizing uniform magnetic fields
and the steering is accomplished by changing the direction of the applied field.
Additional important mechanisms in nano-mechanics involve forces derived from
spatially dependent fields and time-dependent fields.

Systems Involving Time-Dependent Fields
Some examples of the applications of time-dependent fields fall into two general
classes: One of these uses the fields to directly generate motion of particles through
magnetic forces and the other uses the fields to generate heat. While some appli-
cations are based solely on steering the projectile motion of particles through
mechanical means, others are based on the generation of heat in the nano-particles
or on combinations of the two approaches. These include important medical
applications.

Ferromagnetic particles have found some applications in cancer research. In
these techniques the interest is in the applications of time-dependent fields to
generate heat in the ferromagnetic particles. The heat arises from the work done on
the magnetic moment of the particle by the externally applied field [1–7]. The
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nano-particles provide a localized deleivery system for exacting medical
procedures.

Similar ideas based on the generation of heat in a particle have been involved in
some dynamic applications. Specifically, these are applications in which a particle
coated on one side by a permanent magnetic layer can be propelled by the heat
generated in the permanent magnet by an oscillating field. The directed heat from
the particle is the mechanism creating the motion [1–7].

Another example of particle motion generated by a time-dependent rotating
fields is based on ideas from the mobility of single cell organisms. Here the gen-
eration of heat is not a factor in the mobility, but the mechanical motion of a flagella
leads to the propulsion. Some of microorganisms move through the use of flagella
which function in a way as to thrust the organism through the fluid in which it lives.
These ideas can be directly translated into nanoscience applications [1–7].

If the nano-rods discussed earlier are bent and not uniformly straight, it is
possible to apply a rotating field to rotate the nano-rod in space. The rotational
motion can be used to propel the system. Coupled with a peroxide motor this design
can be used to propel the particle through a fluid in one direction using the peroxide
motor or in an opposite sense using the rotational motor [1, 2].

A magnetic propulsion can also be achieved by attaching a permanently mag-
netized ferromagnetic particle to a helix tail. Using a time-dependent rotating field
the dipole moment of the magnetized particle can be rotated in space [1]. The
rotation of the particle translates into a rotation of the helix which then acts similar
to a propeller on a ship. This provides a linear translation of the total structure [1].

6.1.3 Forces on Paramagnetic Particles

An interesting effect of the interaction of a uniform applied magnetic induction on
paramagnetic particles is related to their dynamical orientation. The interaction of
the particles with the field leads to an orienting response of the particles to the field.
The particular orientation of the particle with respect to the applied field depends on
the details of the geometry of the particles and the nature of the susceptibility tensor
of the particular medium employed in the particle design [1–7].

For example, in some recent experiments elliptical particles of a paramagnetic
material are cover on one side by platinum. In the dynamics of the particle, the
platinum is used as a propellant. Putting the side coated particles in a hydrogen
peroxide solution activates a peroxide engine through the catalyzed generation of
oxygen. The oxygen expelled from the platinum surface then acts to propel the
particle through space [1, 4].

From (6.7c) it is found that the application of an external magnetic field to the
particles can orient them, with their induced dipole moments directed in space
relative to the direction of the magnetic induction vector. The oriented particles will
then move in a fashion directed by the applied field and the clever design of the
particle geometry and susceptibility tensor [1–7].
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In the case that the applied fields are inhomogeneous, a net magnetic force is
exerted on the particles. This force is given by (6.7c). Such types of forces from
inhomogeneous fields have been applied, for example, to deposit ions on gel plates
and surfaces. They have also been used in the steering of paramagnetic particles
along the magnetic boundaries of garnet films, and in the separation of particles of
varying size distributions that are suspended in fluid media. The paramagnetic
properties of bacteria and other microorganisms can also be used to manipulate and
direct their motions through their fluid environments [1, 5, 7].

All of these effects are based on the fact that for v[ 0 in (6.7b) or
vparticle � vbackground
� �

[ 0 in (6.7c). From these equations, it is found that param-
agnet particles are attracted by regions of high magnetic fields and repelled by
regions of low magnetic fields. As well as these regions of attractions and repul-
sions, the particles are also oriented in space by the torque created by the relative
orientations of the magnetic field and the dipole moment vectors [1].

In addition to static inhomogeneous fields time-dependent field effects have been
used in the treatment of suspensions of nano-particles. In particular, a rotating
magnetic field arrangement has be used to assemble a rotating chain composed of
linked paramagnetic particles [1].

6.1.4 Forces on Diamagnetic Particles

As with paramagnetic particles a uniform applied magnetic induction on diamag-
netic particles is an orienting mechanism. This has been used for the alignment of
diamagnetic molecules and in some biological studies. In particular, an interesting
study has been made on the organism Paramecium Caudatum [1, 5]. This is a
self-propelled single celled organism which moves randomly through its fluid
environment. It has been shown that the diamagnetic properties of the organism can
be used to steer the direction in which is the organism travels within a fluid [1–7].
The orienting effect occurred from fields of 3 T.

Another example from biology is the deformation effects on liposome structure
due to diamagnetic orientation of its constituent molecules. Some of these defor-
mations are found to exhibit important changes with changing temperatures at fixed
magnetic fields.

In inhomogeneous magnetic fields the force on nano-particles is given by (6.7b)
or (6.7c). In these interaction for v\0 in (6.7b) or vparticle � vbackground

� �
\0 in

(6.7c) so that diamagnetic particles are attracted by regions of low magnetic fields
and repelled by regions of high magnetic fields [1]. As well as these regions of
attractions and repulsions, the particles are also oriented in space by the torque
created by the relative orientations of the magnetic field and the dipole moment
vectors.

The repulsion of diamagnetic particles from regions of high magnetic fields has
been used as a levitating device. A diamagnetic particle can be suspended by a
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magnetic pole. In this case the magnetic force pushing the particle upward must be
equal and opposite the gravitational force attracting the particle downward [1].

Such interactions have been used in demonstrations of the levitation supercon-
ducting particles and in the separation of nanoparticles of varying sizes which are
suspended in a fluid. Outside the realm of nanoscience there are some additional
interesting applications of diamagnetic levitation. One example is in transportation
technology. In this area the levitation effects as applied to superconductors have
been proposed as part of the technology in the design of super-trains. In a less
technologically important second example, the diamagnetic force has been used to
levitate frogs. Frogs are of a particular physiological type which cause them to
exhibit a high degree of diamagnetism [1, 7].

Time-dependent magnetic fields have also been applied in the study of dia-
magnetism. These have found applications in, e.g., the orientation of nylon fibers
[1–7].

In the next subsections, the focus will be turned to the application of electric
fields to manipulate nano-particles and to trap atoms for applications in quantum
optics. This will be followed by discussions of the application of intense laser
beams in the manipulation of nano-particles. The laser trapping employs a number
of phenomena in electrodynamics to realize a device known as the optical tweezer
[13–20]. These technologies all involve the use of applied electromagnetic fields to
control the motion of particles.

6.2 Electric Forces for the Manipulation of Nanoparticles

A similar manipulation of nanoparticles to that found from the application of
magnetic fields can be obtained in the application of electric fields to nanoparticles.
The reason for this is that the mathematics of the two systems display an isomor-
phism so that much of the theory in the early treatment of magnetic forces can be
taken over to the study of electric systems [8–10].

For example, the electric field energy density, u ¼ 1
2 eE

2, is mathematically very
similar to that of the magnetic field energy density, u ¼ 1

2
1
lB

2. Likewise, for par-
ticles with electric dipole moments,~p, the interaction energy in the presence of an
external electric field is U ¼ �p �~E whereas the interaction energy of a magnetic
dipole ~m in external magnetic induction is U ¼ �m* �~B. The torque experience by
an electric dipole moments, ~p, is ~s ¼~p�~E while that on a magnetic dipole ~m is
~s ¼ m* �~B.

In both electric and magnetic systems the force acting on a particle in the
presence of these fields is obtained as a spatial gradient of the energy of interaction
of the particles with the fields. Consequently, the effects of uniform, inhomoge-
neous, and time-dependent electric fields are similar to those found in the earlier
discussions of magnetic interactions [8–10].

6.1 Magnetic Forces for the Manipulation of Nanoparticles 395



Some recent application of the electric force in nanoscience and microbiology
include: The generation of forces on bacteria and viruses that can be used to
manipulate and separate them from one another, the self-assembly of nanosctruc-
tures for device applications, applications in the design of biological and chemical
sensors, modification of particle motion within nano-channels and capillaries, and
in the applications of dielectrophoretic forces used to separate molecular species
from one another [8–10].

6.3 Ion Traps Based on Electric Forces: Paul and Penning
Traps

In the earlier discussions of this Chapter a focus has been on the manipulation of
particles through the application of magnetic and electric fields [11, 12]. Another
application of electric fields, however, is in the design of field configurations which
can trap ions. Such a trapping configuration is used to suspend individual isolated
ions or isolated interacting groups of ions in a background of vacuum. This allows
them to be studied spectroscopically and forms the basis of the investigation of
many of the fundamental properties of quantum mechanics. These studies offer tests
of the properties that distinguishes the nature of quantum mechanical systems from
those of classical mechanical systems and have been used to develop an under-
standing of many of the early paradoxes of quantum theory. In the following, some
of the most basic elements of the theory of ion trapping are presented.

6.3.1 Earnshaw’s Theorem

The first thing to point out is that it is impossible to trap an ion in three dimensions
using a static configuration of electric fields. This restriction is known as
Earnshaw’s theorem and can be seen from an applications of the Laplace equation
for the electrostatic potential / and the relationship of the electrostatic potential to
the electric potential energy V. Specifically, Laplace’s equation states that [11]

r2/ ¼ 0 ð6:11aÞ

and the electric potential energy of a charge q in / is given by

V ¼ q/ ð6:11bÞ

To trap an ion about the origin of coordinates in three-dimensional space, the
electrostatic potential, /, at the origin of coordinates would need to be at a mini-
mum for q[ 0 or a maximum for q\0. In particular, consider a polynomial
solution of (6.11a) of the form [11]
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/ðx; y; zÞ ¼ /0

r20
ax2 þ by2 þ cz2
� �

; ð6:12Þ

where /0 and r0 are constant with units of energy and distance, respectively. This
gives a general expression for the behavior of the electrostatic potential near the
origin in terms of the set of coefficients ða; b; cÞ. For a minimum of (6.12) the
ða; b; cÞ must all be positive while for a maximum ða; b; cÞ must all be negative.

The set of coefficients ða; b; cÞ are then determined to make (6.12) a solution of
Laplace’s equation. This places a set of restrictions on the set ða; b; cÞ from the
theory of electrostatics which limits the ability of (6.12) to represent a minimum or
a maximum [11].

In particular, substituting (6.12) into (6.11a) it follows that [11]

aþ bþ c ¼ 0: ð6:13Þ

In order for (6.13) to have a non-zero solution at least one of the set ða; b; cÞ of
coefficient must differ in sign from the others. This is inconsistent with (6.12)
exhibiting a minimum or maximum at the origin of coordinates. Consequently, a
solution for a trapping potential centered about the origin of coordinates does not
exist.

6.3.2 Time-Dependent Potentials

While a static trapping potential does not exist as a solution of the Laplace equation,
it is possible to modify the potential in (6.12) to make a trapping potential.
Specifically, a modification of (6.12) involving the addition of a time-dependence
can result in an electric potential that will trap ions, localizing them about the
origin [11].

To understand how this works consider a specific solution of (6.13) given
by [11]

ða; b; cÞ ¼ ð1; 1;�2Þ: ð6:14Þ

Entered into (6.12) the electrostatic potential in terms of these coefficients
becomes [11]

/ðx; y; zÞ ¼ /0

r20
x2 þ y2 � 2z2
� �

¼ /0

r20
q2 � 2z2
� �

;

ð6:15Þ
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where the cylindrical coordinate q2 ¼ x2 þ y2 has been introduced. From (6.11),
(6.12) and the relation of the force to the electric potential energy, the force on the
charge q is [11]

~Fðx; y; zÞ ¼ �2q
/0

r20
x̂iþ ŷj� 2zk̂
� �

: ð6:16Þ

From (6.16) it is found that, in the case that q /0
r20

[ 0, the force is attractive and

harmonic about the origin in the x-y plane but repulsive from the origin along the
z-axis. In the case that q /0

r20
\ 0, however, the force is attractive and harmonic about

the origin along the z-axis but repulsive from the origin in the x-y plane. Neither of
these two cases allows the particle to be trapped three-dimensionally about the
origin of coordinates.

While the two cases considered do not independently confine the particles, if
they were intermittently applied over alternating periods of time, they might suc-
ceed in confine the particle. In this case they would act similar to how two
ping-pong player confine the ping-pong ball to the game table. This turns out to be
the case for a time mixture of the two cases discussed above [11, 12].

To generate such a time-dependent potential, consider the case in (6.15) and
(6.16) that /0 is time-dependent and of the form

/0ðtÞ ¼ U0 þV0 cos Xt: ð6:17Þ

This represents such a time-dependent transition between the two cases
involving harmonic attraction in the x-y plane followed by harmonic attraction
along the z-axis. From Newton’s laws and (6.16) it then follows that the particles
motion obeys the dynamical equation [11]

m
d2

dt2
x̂iþ ŷjþ zk̂
� � ¼ ~Fðx; y; zÞ ¼ �2q

/0ðtÞ
r20

x̂iþ ŷj� 2zk̂
� �

: ð6:18Þ

The solutions of (6.18) are now studied with the intent of determining the
conditions for finding tightly localized solutions about the origin of coordinates.
This search is facilitated as (6.18) can be transformed into one of the standard
equations of mathematical physics.

To see the trapping behavior in (6.18), (6.18) can be rewritten into the form of a
standard Mathieu equation. The Mathieu equation is a classic equation of mathe-
matical physics, and its solutions have been well studied and are under certain
conditions known to yield trapped solutions. In particular, under a change of
variables, (6.18) takes the form [11]
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d2u

dn2
þ au � 2qu cosð2nÞ½ �u ¼ 0: ð6:19Þ

where u ¼ x; y; z, n ¼ Xt=2, and

ax ¼ ay ¼ 8qU0

mr20X
2 ¼ � az

2
;

qx ¼ qy ¼ � 4qV0

mr20X
2 ¼ � qz

2
:

ð6:20Þ

To realize the trap configuration U0;V0ð Þ are chosen so that (6.19) and (6.20)
represent bounded solutions about the origin of coordinates in all three spatial
directions. These can be worked out from the tabulated results and solutions of the
Mathieu equation [11].

6.3.3 Paul and Penning Traps

The above results describe the binding of an ion in a Paul trap. The trapping
mechanism comes solely from the application of electric fields. It is also possible to
design traps that involve an arrangement of electric and magnetic fields.

Another type of trap of interest is the Penning trap which relies on the appli-
cation of a magnetic field for the formation of a three-dimensional trapping effect.
In the Penning trap an electric field confines the particles harmonically along one
axis in space and a combination of electric field along with a uniform magnetic field
parallel to the axis of harmonic motion confines the particles in the plane perpen-
dicular to the harmonic axis.

Both of these types of traps can be formulated based on designs involving
electrode plates in the form of hyperbolic shaped caps or cylindrical forms gen-
erated from hyperbolas rotated about and external axis. As discussed, the Penning
trap also requires the presence of a uniform applied magnetic field. For the details of
the Penning trap theory and the experimental realizations of the Penning and Paul
traps the reader is referred to the literature.

As a final note: The above discussions have focused on traps that can be used to
isolate single ions. In some applications it is of interest to isolate a linear array of
interacting ions. A modification of the Paul trap known as a linear radio frequency
trap can be used in studies of these types of systems.

For this type of traps the three dimensional potential in (6.15) is replaced by a
two dimensional form /ðx; yÞ ¼ U0�V0 cosXt

r20
x2 � y2ð Þ and the linear array of ions is

set out along the z-axis. End caps at DC potentials can be places along the z-axis to
stabilize the ion array, fixing it stationary on the z-axis.
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Arrays formed in this manner have been a focus in spectroscopy and in some
quantum computer schemes. The reader is referred to the literature for further
details [11, 12].

6.4 Optical Tweezer

Another important interaction is that between beams of focused laser light and
dielectric particles [13–20]. The physics of this system forms the basis for the
design of an optical device known as an optical tweezer. This is a device which
employs the focused laser beam to trap a dielectric particle within a region located
near the focus of the beam. The principle operating in the trapping effect is the
binding of the particle due to an interaction energy that exists between the particle
and the applied light in the laser beam. The binding in this interaction is a harmonic
force centered at a point within the focus of the beam. Essentially, then, the force on
the particle is a result of the gradient of the energy density of the focused laser
beam.

This can be a useful effect, for example, in biology where cells suspended in a
fluid can be fixed in space and held for examination. Similarly, any other type of
dielectric nanoparticle can be trapped and held for study by an optical tweezer [13–
20].

The optical tweezer effect arises in the interaction of particles with laser beams
over a wide range of wavelengths of light. The physics of the trapping, however,
requires different approaches for its study, depending on the ratio of the lengths
scale characterizing the particle as compared to the wavelength of the light. As
examples, two limits will be considered in the following for the consideration of
spherical nanoparticles. For the case that the radius of the particle is much greater
than the wavelength of the light, an approach based on geometric optics can be
made. For the case that the radius of the particle is much smaller than the wave-
length of the light, an approach based on a dipole approximation for the particle is
made [13–20].

In the following, after some preliminary remarks on the momentum carried by
electromagnetic fields, both of these limits will be treated. This will be followed by
a discussion of some of the applications of the optical tweezer to the nanosciences.

6.4.1 Momentum Considerations

In both wavelength limits of the optical tweezer to be studied, the energy and force
on particles arising from interaction with an electromagnetic field are important
considerations. In particular, as light travels between to different media it not only
carries energy with it, but it also carries momentum between the two media. This
can show up as a mechanical force acting between the two media. To see this, it is
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necessary to consider the Poynting vector and its relationship to the momentum
carried by light.

In classical electrodynamics the radiation pressure exerted on a surface is known
to be simply related to the Poynting vector of the radiation, where in terms of the
radiation fields ~E and ~H the Poynting vector is given by [13]

~S ¼ ~E � ~H ð6:21Þ

In particular, for the system in (6.21) the radiation pressure carried by the fields is
given by

~P ¼ 1
cm

~E � ~H ð6:22Þ

where cm is the speed of light in the medium in which it is traveling.
Both (6.21) and (6.22) are standard results in classical electrodynamics, but they

can also be expressed in terms of quantum mechanics considerations. The quantum
mechanical approach treats the motion of individual photons propagating in the
system, and the momentum and energy processes in the system arise from a study
of the dynamics of each of the photons as it moves between media in the system.
Viewed in this regard, a description in terms of the motion of photons provides a
deeper understand of the tweezer effect than that offered in classical
electrodynamics.

Looking at the dynamics of particles and light from the standpoint of the
quantum theory of light, the momentum carried by a plane wave (photon) of light
with a wave vector ~k is [13]

~p ¼ �h~k: ð6:23Þ

In this view, as the photon moves through an optical media it carries with it a
momentum which it transfers from one part of the system to another during the
course of its journey. As a simple example of this process, (6.23) then represents the
momentum transferred to an object upon its absorption of the photon in question.

A second important example of photon transfer of momentum is the case of the
reflection of light. In the case that the plane wave is incident on a perfect reflecting
surface, it is not absorbed but its trajectory is reversed. Upon reflection of the light
from the surface, the surface then acquires a net momentum

~ps ¼ 2�h~k ð6:24Þ

transferred to it.
The magnitude of the momentum transferred to the surface, denoted Dp, can

then be related to the energy of the light by applying Planck’s relation in quantum
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electrodynamics and the x ¼ cmk, dispersion relation of light in the medium. This
gives

Dp ¼ ps ¼ 2
�hx
cm

¼ 2
DE
cm

: ð6:25Þ

where DE ¼ �hx: is the energy of the plane wave of light in terms of its frequency.
The magnitude of the force transferred to a perfect reflecting surface is given by

the impulse [13]

F ¼ dp
dt

¼ lim
Dt!0

Dp
Dt

¼ 2
1
cm

dE
dt

¼ 2
1
cm

P: ð6:26Þ

where P is the power carried in the plane wave. Dividing both sides of (6.26) by an
area in the plane normal to~k gives the relation for the momentum per area sec to the
energy per area sec obtained in (6.21) and (6.22) for light reflected at normal
incidence from a perfect reflecting surface.

An important point of the quantum treatment is that the momentum transfer as
light passes through a surface can be obtained in terms of the photon wave vector
passed through the interface between two media. In particular, consider a photon as
it passes through an interface at normal incidence between two different dielectric
media. If the wave vector of the incident photon is~k, the reflected photon is �~k, and
the refracted photon is~k, then the momentum transferred between the incident and
refraction media can be expressed in terms of these and the reflection and trans-
mission amplitudes of the problem. This is the general problem in which the light is
partially transmitted and partially reflected at the interface it is incident upon.

Specifically, for a normal incident wave with momentum

D~pI ¼ �h~k ð6:27aÞ

incident on a planar interface, the momentum carried in the transmitted wave [13] is

D~pT ¼ �h~kT ð6:27aÞ

where T is the transmission coefficient of the surface between the two media. By the
same reasoning, the momentum of the reflected wave from the surface is

D~pR ¼ ��h~kR ð6:27bÞ

where R is the reflection coefficient and Rþ T ¼ 1.
The sum of the momentums of the transmitted and reflected waves and the

mechanical momentum given to the media must equal the incident momentum
delivered in the incident wave. In the following these momentum considerations
will be used to study the momentum transferred by light to a slab and to a spherical
particle.
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6.4.2 Momentum Consideration of Light Incident on Slabs
and Spherical Particles in the Geometric Optics Limit

In the case of light at normal incidence on an infinite slab of a lossless dielectric
medium, the total momentum impulse transferred to the slab can be determined in
terms of wave vector considerations. To understand this determination, consider the
schematic drawing in Fig. 6.2a. The figure represents a dielectric, lossless, slab
surrounded on both of its siders by vacuum, and the light is incident normal to the
slab surfaces.

In the drawing, the incident and reflected rays of light on the slab as well as the
transmitted light through the slab are shown. The total momentum delivered to
the slab by these rays is obtained by considering the momentum change imparted to
the slab by the light at each of its two surfaces.

The momentum carried to the slab by the normal incident wave is

D~pI ¼ �h~k: ð6:28Þ

Upon interacting with the surface the incident wave transfers momentum to the
wave reflected from the slab and the wave transmitted by the slab as well as
providing a momentum to the slab itself [13].

The momentum given to the slab then follows from the conservation of
momentum for the system of fields and the slab [13]. This is expressed as

Fig. 6.2 Ray optics schematic for: a light at normal incidence on the slab as it is reflected and
transmitted through the slab, b the lowest order transmission process for an incident ray
transmitted by a spherical dielectric particle
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ðT � RÞ�h~kþ~S
h i

� �h~k ¼ 0 ð6:29Þ

where~S is the momentum of the slab. The terms in the brackets are the momentum
of the system after the incident wave interacts with the surface and �h~k is the
momentum of the incident wave.

From (6.28) and (6.29) it follows that the momentum to the slab is obtained from

~S ¼ �h~kþðR� TÞ�h~k: ð6:30Þ

Considering the result in (6.30) it is found that both of the limits of photon
absorption and photon reflection in (6.23) and (6.24) are seen to be given by (6.30).
In addition, (6.30) holds as well for all elastic processes involving the slab.

The slab problem gives an idea of the balancing of momenta between the various
slab surfaces, but it is not of interest for technological applications. A problem of
more technological interest is that of a spherical particle interacting with an incident
light. This is a practical example of how light can be used to manipulate and
position a nano-particle, illustrating many of the principles involved in the tweezer
technology.

Another case of direct interest to optical tweezers is that of a uniform incident
plane wave of light incident on a spherical dielectric particle. A schematic figure for
the problem is given in Fig. 6.2b. For the considerations, the particle is assumed to
have a radius much larger that the wavelength of light. As a consequence, then, of
the plane wave nature of the radiation and the size of the wavelength compared to
the particle radius, the treatment of the light in the system is essentially a problem in
the geometric, ray optics, limit.

Figure 6.2b shows one of the ray optics trajectories of light in the system. It
indicates an incident ray on the sphere which is refracted by the sphere, exiting the
sphere as a transmitted wave at an angle to the optical axis. For this case, the
transmitted momentum in the plane normal to the optical axis does not, as was
found in (6.30) for the case of the flat surfaces at normal incidence, sum to zero.

Unlike the rays considered in the infinite slab problem, the ray shown in
Fig. 6.2b now imparts a net momentum to the particle in the plane perpendicular to
the optical axis. The reason for this is that the dielectric sphere has curved surfaces
which bend the flow of light through space. In the sphere problem, the motion of
light is a two-dimensional motion. This is unlike the case of the dielectric slab in
which the light had only a one-dimensional motion.

For the dielectric slab the incident, reflected, and refracted waves all moved
parallel to the same axes in space. Consequently, all of the momentum in the system
flowed along the optical axis [13]. Now the sphere alters the net momentum of the
ray of light shown in Fig. 6.2b, and by conservation of momentum the momentum
of the sphere must in turn be changed. The momentum change of the sphere allows
it to be moved in the plane perpendicular to the optical axis. This forms the basis of
the optical tweezer application.
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The ray in the drawing in Fig. 6.2b imparts a net momentum to the particle in the
plane perpendicular to the optical axis. If the total radiation incident on the sphere is
a plane wave of uniform intensity in the plane perpendicular to the optical axis,
however, the total momentum from all the incident rays must be treated. In par-
ticular, rays related to one another by rotational symmetry about the optical axis
will have components of the momenta in the plane perpendicular to that axis which
add so as to cancel one another. Consequently, the sphere will experience no net
force in the plane perpendicular to the optical axis.

If the incident beam of light on the spherical particle, however, is not of uniform
intensity in the plane perpendicular to the optical axis, the cancelation of rays
related by rotational symmetry about the optical axis will not be complete. This
follows because while the sphere has rotational symmetry about the optical axis the
illuminating beam itself lacks this symmetry. Consequently, the sphere experiences
a net force in the plane perpendicular to the optical axis.

It should be noted in these discussions that an infinite set of higher order
refractions and reflections within the sphere have been omitted. These higher order
effects are seen, for example, in the multiple bows observed from the rainbow
phenomenon and arise from the multiple transmits of light within the individual
water droplets. Only the most dominant, leading order, scattering of light entered
into the earlier discussions based on Fig. 6.2b. In the full treatment of the illumi-
nated dielectric sphere all of these higher order effects are summed over to obtain
the detailed result for the total force on the sphere from its interaction with the laser
beam.

Upon making this detailed analysis it is generally found that for an application of
a focused laser beam the dielectric particle experiences a harmonic force pulling the
particle to the most intense point of the focused beam. The particle, then, becomes
fixed near the focus experiencing a harmonic restoring force acting about the optical
axis in the plane perpendicular to the axis [13].

An illustration of these features, for the geometric optics problem considered in
Fig. 6.2b, is now made by presenting the results from some recent numerical
simulation studies [13]. The simulations were performed on a system involving an
optical tweezer in the form of a Gaussian laser beam which is applied to an oil drop.

As an example of the tweezer force in the ray optics limit, some numerical
simulation results are presented in Fig. 6.3 [13] for a study of the force exerted on
an oil drop by a Gaussian laser beam. The plot is given of the force in the plane
perpendicular to the optical axis of the beam on an oil drop of radius a = 1 lm
suspended in water. The light for the optical tweezer was of wavelength
k = 832 nm incident on the droplet as a Gaussian beam of a width r = 1.2 mm and
with a power of Pl = 4.8 mW.

In Fig. 6.3 a harmonic force is observed with typical force of order of tenths of
pN. For the simulation, the plane of the force is near the focus of the laser beam, and
Dx is a measure of the displacement of the drop from the center of the beam. The
results show the degree of trapping that can be achieved by a laser beam.
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6.4.3 Force on a Dielectric Sphere When the Wavelength
of Light Is Large Compared to the Sphere Radius

The second limit that will be treated here is that in which the wavelength of the light
is much greater than the typical length scale of the particle being manipulated. For
these consideration it is assumed that the dielectric particle is formed of a homo-
geneous isotropic medium, and the wavelength of the light is long enough that the
particle can be treated as interacting with a uniform electric field with a harmonic
variation in time [13].

Considering a dielectric particle of radius a and dielectric constant K suspended
in a fluid medium, it is a standard result from electrodynamics that the dipole
moment, ~p, induced by the applied electric field, ~E, is related to the field by [13]

~p ¼ K � 1
Kþ 2

a3~E ð6:31Þ

where

K ¼ e
em

ð6:32Þ

with e the permittivity of the dielectric sphere and em the permittivity of the sus-
pending medium.

Treating the particle as a point dipole, the potential energy of interaction with the
polarizing field of the suspended dipole is [13]

Fig. 6.3 Plot of the force
versus the displacement from
the optical axis of the laser
beam in the plane
perpendicular to the optical
axis. The results are from a
computer simulation study
presented in [13]. Reproduced
with permission from [13],
with the permission of the
American Association of
Physics Teachers
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U ¼ �~p � E*: ð6:33Þ

The force and torque on the dipole are then related to the spatial derivatives of the
interaction energy with

~F ¼ �rU ¼ r ~p �~E� � ð6:34Þ

Using (6.31) the force can be written solely in terms of the applied electric field
as

~F ¼ K � 1
Kþ 2

a3rE2: ð6:35Þ

From this is it is seen that the force is related to the energy in the applied electric
field. For paramagnetic particles the force is directed towards the region of
increasing field intensity, but for diamagnetic particles the force is directed away
from the region of increasing field intensity.

Consequently, the systems of interest for the application of (6.35) are param-
agnetic particles. These will be attracted to the intensity maximum at the focus of
the laser beam. The force in the plane perpendicular to the optical axis (denoted by
~Fjj as it is parallel to the plane perpendicular to the optical axis) is given by [13]

~Fjj ¼ K � 1
Kþ 2

a3
@E2

@xjj
; ð6:36Þ

and the stiffness of the harmonic force is

jjj ¼ � @Fjj
@xjj

� 	
equilibrium

¼ �K � 1
Kþ 2

a3
@2E2

@x2jj equilibrium

: ð6:37Þ

Here the equilibrium position is on the optical axis of the focused beam, and this is
the axis on which the derivatives in (6.37) is evaluated.

The important result from the application of (6.35) and (6.37) are: Dielectric
particles are pushed towards the focal point of the focused laser beam. This sets the
particle interacted with to be located in a plane perpendicular to the optical axis of
the beam and near its focal point. Within the plane the particle experiences a
harmonic force of attraction towards the optical axis of the laser beam.

Some important uses of the optical tweezer technology include [13–20]: The
trapping, transporting, and patterning of nanoparticles for particle manipulation and
assembly. These can be important in the building of devices and ordered patterns.
A variety of applications of interest in biological studies include the use of trapping
effects on bacteria, viruses, and even DNA. Ideas of tweezer technology have also
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been found to be of use in studies of molecular motors and the properties of DNA
and membranes [13–20].

6.5 Casimir Effect and Casimir Forces

Another important effect that enters into problems of nano-science is the interaction
between surfaces, known as the Casimir effect [21–28]. This involves the genera-
tion of a quantum mechanical force between surfaces that is operative at nanoscales.
The Casimir force is a particular component of inter surface forces arising from the
Heisenberg uncertainty principle. In particular, it comes purely from the presence of
vacuum fluctuations found in the quantum electrodynamic fields of the physical
system. These fluctuations are present in the system both at zero and non-zero
temperatures [21–28].

As a consequence of its origins in quantum fluctuations, the Casimir force is not
present in classical electrodynamics nor does it have an analogy in the typical
interactions between surfaces as treated in classical theory. For example, the force
from the Casimir effect does not come from a classical charge distribution or
polarization on the surfaces, but it arises from the nature of the quantized elec-
tromagnetic modes of the system. It is always present within the physical system,
even at zero temperatures, as a very short range interaction operative at the length
scales of nano-science applications.

The source of the force is from the influence of surface boundary conditions on
the quantized modes of the electromagnetic fields in the space containing the
surfaces [21–28]. Ultimately the restrictions on the fields at the surfaces modify the
zero point energy of the electromagnetic modes. It changes the modes so that their
zero point energy differs from the zero point energy of the quantized fields in
infinite free space. In practice, the force on a surface is then related to the change in
the zero point energy of the system under slight perturbations acting on the surfaces
being considered.

The relation of the Casimir force to the changes in the zero point energy of the
system has recently become of great interest in the study of quantum field theory
and nano-science. In the earliest work on quantum theory, it was once thought that
the zero point energy in quantum field theory had no physical manifestations. This
has proved not to be the case as evidenced by a number of other different physical
manifestations of the presence of the vacuum in relativity and high energy physics.
In the development of the theory of the vacuum, however, the Casimir effect was
the first indication of the importance of the vacuum fluctuations [21–28].

Another problem in the development of quantum theory involving the zero point
energy was that of the nature of the vacuum itself. In particular, the zero point
energy of the universe was found to be infinite. This did not present an over-
whelming difficulty to quantum field theory because the zero point energy did not
enter into the measurement of physically important properties of the system. As the
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infinity did not enter into the calculation of the interesting physics of the system, it
was initially just ignored [21–28].

However, it can be shown that changes in the boundary conditions between two
systems can result in a finite well defined change is the zero point energy between
the two systems. This is the case even though the total zero point energy of each of
the two systems taken separately is infinite.

Before proceeding to an explanation of the of the Casimir theory [21], it should
be noted that some analogies of the Casimir force are found in classical physics. In
classical physics, there are examples in which classical fluctuations can mediate a
force between surfaces. The fluctuations in classical systems, however, are not
caused by a zero point energy arising from the Heisenberg uncertainty principle.

An example from fluid mechanics is the force between two surfaces separated by
water. In the presence of wave motion in the water a force is found between the
surfaces. Specifically, this is an effect that can draw two ships together that are
parked close to one another in water. The fluctuations in the water are the source of
the attraction, based on a similar argument as that used in the study of the Casimir
force. Similar effects arise in other classical media at non-zero temperatures. These
all have an origin in the temperature fluctuations present in the system.

In the following, a simple theory of the Casimir force between two perfectly
conducting plates is discussed [21]. This is followed by discussions of applications
to nanoscience.

6.5.1 Theory of Casimir Effect

An example of the Casimir effect and the associated Casimir force is provided by
the solution of a basic problem in quantum electrodynamics [21–28]. For these
considerations, the easiest Casimir problem to treat is that of the force between two
parallel perfect conducting plates that are surrounded by vacuum. The development
of the theory involves the study of the electromagnetic modes of the system and
their vacuum energy as a function of the plate separation. The zero temperature
treatment of the parallel plate problem just outlined is the focus of the theoretical
presentation in this section.

The problem of the perfect conducting plates illustrates many of the essential
points of consideration in the development of the Casimir effect. Complications to
its applications to technology involve the treatment of real metals, dielectrics,
systems of general surface geometry, and the introduction of temperature effects.
Consequently, following this discussion of the perfect conducting plates some
generalizations that have been made to handle variations to other case of techno-
logical interest will be indicated [21–28].

Two Parallel Perfect Conducting Plates
Consider two parallel perfect conducting plates that are separated by a distance
a and surrounded by vacuum. A schematic representation of the system is given in
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Fig. 6.4a. The system is studied at zero temperature so that the only energy outside
of the plates is the zero point energy of the electromagnetic fields within the regions
of vacuum. The energy in the perfect conducting plates is not of interest to the
problem as the electromagnetic fields are excluded from entering the plates. Aside
from the boundary conditions the fields experience no interactions with the interior
media contained within the plates.

In order to determine the zero point energy of the fields, the electromagnetic
modes in the regions of vacuum must be computed. These modes are free space
propagating modes subject to the boundary conditions that the electric field van-
ishes within the perfect conducting planes.

As a simplification of the treatment of the parallel plate system, it is best to
proceed by initially considering the fields between the two perfect conducting plates
which are separated by the distance a. Once these fields and their zero point energy
are determined, the solution of the total system of the parallel plates within the three
regions of vacuum is obtained as a composition from the initial considerations.

The two infinite perfect conducting plates in Fig. 6.4a are located at x ¼ 0 and
x ¼ a where they set a requirement on the electromagnetic fields that the electric
field components vanish on these planes. As a result of this, the modal free space
solutions for the electric fields between the plates are of the form [21]

~Eðx; y; zÞ ¼ ~Em;n;p sin
mp
a

x

 �

exp i
2np
Ly

yþ 2pp
Lz

z

� �� 
ð6:38Þ

where the solutions are defined over the region 0\x\a, � Ly
2 \y\ Ly

2 , and

� Lz
2 \z\ Lz

2 .
In (6.38) periodic boundary conditions have been applied over the region of the

y-z plane in limit Ly; Lz ! 1. Consequently, for the totality of the boundary
conditions, m ranges over the positive integers, accounting for the perfect con-
duction of the plates. In addition, n and p run over all of the integers, accounting for
the periodic boundary conditions in the y-z plane.

Fig. 6.4 Schematic drawing of: a two parallel perfect conducting parallel plates and b the
addition of a third perfect conducting plate to the configuration of two plates in Fig. 6.4a
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With this notation the wave vector components of the modal solutions in the y-
z plane are then represented as

ky; kz
� � ¼ 2np

Ly
;
2pp
Lz

� 	
: ð6:39Þ

Adopting this notation, (6.38) then becomes

~Eðx; y; zÞ ¼ ~Em;n;p sin
mp
a

x

 �

exp i kyyþ kzz
� �� �

: ð6:40Þ

Consequently, in vacuum the dispersion relation of the modes between the plates
is given by [21]

xm;n;p ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a


 �2
þ k2y þ k2z

r
: ð6:41Þ

This form employs the standard frequency-wave vector relation in free space.
Essentially, it is a statement that the phase velocity of each mode is equal to the
speed of light in vacuum.

In the quantum mechanical treatment of light, the dispersion relation in (6.41) is
very important in determining the energy contained in each electromagnetic mode.
Specifically, from a fundamental result in quantum electrodynamics it is known that
the energy of a mode of frequency x is related to its frequency by [21]

E ¼ nph þ 1
2

� 	
�hx ð6:42Þ

where nph is the number of photons present in the system. Equation (6.42) is a
statement that the excitation of each mode of the system is that of a quantum
mechanical harmonic oscillator.

At zero temperature each mode of the electromagnetic fields is in its lowest
energy state. Since in this limit there are no photons in the system, in terms of (6.42)
this occurs when nph ¼ 0. However, the mode still has a net energy arising from the
factor of one-half in (6.42). This remaining modal energy in (6.42) is known as the
zero point energy.

Considering all of the modes of the form in (6.41) for the region between the two
parallel plates gives a total zero point energy of the form

Etotal ¼ 1
2

X
m;n;p

�hxm;n;p ð6:43Þ

In the limit that Ly; Lz ! 1, (6.43) can be rewritten in terms of integrals over the
wave vectors in the y-z plane. This yields an expression for the energy per area
measured in the y-z plane given by [21]
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Etotal

LyLz
¼ �hc

2

X
m

2

ð2pÞ2
ZZ

dkydkz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a


 �2
þ k2y þ k2z

r

¼ �h
2
c
2p

X
m

2
Z1
0

dkjjkjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a


 �2
þ k2jj

r ð6:44Þ

where

k2jj ¼ k2y þ k2z : ð6:45Þ

Notice that an account has been made in (6.44) for the two polarizations of light,
and in the second line of (6.44) a change to polar coordinates has been made in the
integration in the y-z plane. This simplifies the considerations of the zero point
energy in the following discussions.

In (6.44) the integral in kjj is readily seen to be infinite so that the zero point
energy per area between the plates is infinite. This infinity arises from the extreme
short wavelength modes (i.e., the kjj ! 1 modes) that occur in the mathematics.
The divergence is well known to the study of field theories where it is termed as an
ultraviolet catastrophe. It is a property of many field theories and standard renor-
malization procedures exist for dealing with these types of infinities. In the fol-
lowing one of these approaches shall be employed to understand the properties of
the zero point energy given by (6.44).

The idea of the renormalization procedure is to introduce a parameterized factor
into the integrand in (6.44) as a multiplicative term. The factor is chosen such that
for most wavelengths it is unity but at very small wavelengths it goes rapidly to
zero. This essentially cuts out of the system short wavelength modes in a controlled
parameterized way. Varying the control parameter allows one to understand the
nature and importance of the small wavelength modes to the behavior of the system.

Applying these ideas to the system in (6.44), the integral in (6.44) can be
rewritten as [21]

Etotal

LyLz
¼ �h

2
c
p

X
m

Z1
0

dkjjkjj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
a


 �2
þ k2jj

r
e
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
að Þ2 þ k2jj

q

¼ �h
2
c
p

X
m

� d
dn

Z1
0

dkjjkjje
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
að Þ2 þ k2jj

q
:

ð6:46Þ

Here a factor of e
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
að Þ2 þ k2jj

q
has been introduced into the integrand for n[ 0 a

small parameter which in the limit that n ! 0 reduces (6.46) to (6.44).
In (6.46) the main effect of the exponential factor is that it is zero for the short

wavelength modes. As a consequence, it removes these from contributing to the
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integral in (6.46). The factor n is also chosen so that the exponential has no effect on
the intermediate to long range modes. The exponential form then introduces a cutoff
parameter into the problem which can be varied at will.

The introduction of a cutoff factor in (6.46) is reasonable from a physical
standpoint. Modes of arbitrarily large wave vector are also modes of arbitrarily
large energy. At some point on the energy scale it seems physically unreasonable
that such modes should be included in the considerations of the system.

Generally, applying the ideas of renormalization, (6.46) is evaluated for arbitrary
n[ 0. The resulting expression for (6.46) is separated into terms containing
divergent factors in n ! 0 and terms in which such divergent factors in n ! 0 are
absent. It is usually found that the terms involving divergent factors in n ! 0 do not
enter into the physically measureable properties obtained from (6.46).

The measurable physics of the system, consequently, resides in the terms in
which divergent factors in n ! 0 are absent. In the following this will be seen,
specifically, to be the case for the changes in the zero point energy associated with
changes in the boundary conditions of the electromagnetic fields of the system
studied.

In order to obtain a closed algebraic form for (6.46) it is necessary to evaluate the
integral [21]

Z1
0

dkjjkjje
�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp
að Þ2 þ k2jj

q
: ð6:47Þ

This can be done based on the application of the following two identities [21]

d
dk

e�n
ffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
¼ �n

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p e�n
ffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
ð6:48aÞ

and

d
dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
e�n

ffiffiffiffiffiffiffiffiffiffi
b2 þ k2

ph i
¼ �nke�n

ffiffiffiffiffiffiffiffiffiffi
b2 þ k2

p
þ kffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ k2
p e�n

ffiffiffiffiffiffiffiffiffiffi
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From these two it is found that
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This identity relates the integrand in (6.47) to a total derivative and, consequently,
greatly simplifies the evaluation of the integral.

Applying (6.49) in the evaluation of (6.47) then gives [21]
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This expresses the integral in terms of a closed form algebraic expression
involving n.

The results for the zero point energy can now be assembled in terms of the above
relationships. From (6.50) and the far right hand expression in (6.46) the zero point
energy per area in the y-z plane becomes
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This gives an expression for the zero point energy in terms of a number of sums
over integers and exponentials.

The sums in (6.51), however, are much easier to handle if (6.51) is rewritten
using a derivative notation. In this way it can be put into the form [21]
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Now only one infinite series need be summed.
From the identity [21]

X
m
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1� e�c

ð6:53Þ

where m runs over zero and the positive integers. Using this identity in (6.52), the
zero point energy in (6.52) is given by [21]
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now expressed in terms of closed form well known functions.
In the limit that n ! 0 some terms in (6.54) will be divergent and some will not.

To make this separation, it is useful to use the following expansion in small n[ 0
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From this it follows that [21]
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Combining (6.55) and (6.56) in (6.54), the zero point energy per area between
the two parallel plates takes the form of a Laurent series expansion in n. It is given
by the specific form [21]
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For the limit n ! 0 of the series in (6.57) the first two terms are found to
diverge, and the resulting divergence adds an infinite contribution to the zero point
energy. This should be expected from the original considerations of the divergent
integral in (6.44). Now, however, the nature of the divergence can be studied as a
function of the cutoff parameter n.

In the limit that n ! 0, however, the third term in (6.57) is a constant inde-
pendent of n ! 0, and the remaining terms of the series all go to zero. It shall be
seen later that the third term in (6.57), which is a constant independent of n, is the
important term in determining the Casimir force acting between the two plates.
Before this conclusion can be reached, considerations of the system outside of the
region between the plates must be made. In particular, the regions of vacuum
outside that contained between the plates also have an important effect on the forces
experienced by the parallel plates, and considerations must be extended to these.

To determine the force on the right hand plate in Fig. 6.4a it is important to
realize that the plate interacts with two regions of vacuum. One is to the left of the
plate and the other is to the right of the plate. The net force on the right hand plate is
then obtained as the total contribution from these two regions of vacuum.

To simplify the treatment of determining the force on the right hand plate in
Fig. 6.4a, consider the system in Fig. 6.4b. Here two parallel plates are again
located at x ¼ 0 and x ¼ a, but a third perfect conducting plate is now introduced at
x ¼ L. In the limit that L ! 1, however, the system in Fig. 6.4b is seen to reduce
to that in Fig. 6.4a.

A study of the system in Fig. 6.4b facilitates arriving at a result for the problem
in Fig. 6.4a. Specifically, it allows for the determination of the force on the plate at
x ¼ a based on the earlier presented calculations for the zero point energy between
the plates in Fig. 6.4a. In the discussions of the force on the plate at x ¼ a it is,
consequently, useful to determine the force in the context of the system in
Fig. 6.4b.

For these considerations the following approach is taken: First a calculation of
the force on the plate at x ¼ a are made for finite L. The result for the system in
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Fig. 6.4a is then found by taking the L ! 1 limit at the end of the calculations
made in the system of Fig. 6.4b.

Consider the vacuum zero point energy for the system in Fig. 6.4b. Of particular
importance for determining the force on the plate at x ¼ a is the treatment of the net
zero point energy in the regions of vacuum to the right and to the left of the plate at
x ¼ a. The net zero point energy in these two regions is the sum of that in the region
0\ x\ a and that in the region a\ x\ L.

Between the plates at x ¼ 0 and at x ¼ a the zero point energy of this region is
still given by (6.57). This follows from the nature of the perfect conducting
boundary conditions at the plates. It is a consequence of the separation of space in
four isolated regions by the three plates in Fig. 6.1b and their perfect conducting
boundary conditions [21].

Following this reasoning, in the region of vacuum between x ¼ a and x ¼ L the
zero point energy can be obtained applying the exact same arguments as used in
obtaining (6.57). In this manner it is found that in a\x\L the zero point energy is
[21]
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Alternatively, (6.58) can be directly obtained from (6.57) by replacing the variable
a in (6.57) with L� a.

Summing (6.57) and (6.58) gives the total zero point energy within the region
0\x\a and a\x\L. Doing this the resultant sum is given by [21]
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From (6.59) the total zero point energy is found to be represented in terms of a
series in the variables a and L.

An important point to note in (6.59) is that the terms that become infinite as
n ! 0 do not depend on the plate separation, a. This allows for a determination of
the force on the plate at x ¼ a in terms of the derivative of the zero point energy
with respect to a.

Upon doing this to determine the force on the plate no infinity is found to occur
in the result. Taking the derivative, in the limit that L ! 1, the pressure on the
x ¼ a plate is [21]

P ¼ � d
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ET
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From (6.60) it is seen that the pressure on the plate is negative so that the plates
at x ¼ 0 and x ¼ a are attracted to one another. In addition, the 1

a4 dependence on
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the plate separation indicates that the force is very short ranged. This signifies that
the interaction is essentially limited to the length scales of nanoscience phenomena.

As an illustration of the restrictive nature of the Casimir interaction. Consider a
particular numerical example. For two 1 � 1 cm plates separated from one another
by 1 lm the Casimir force from (6.60) is 0.013 dynes. This is a small interaction
which would quickly decay away with increasing distance. Another way of looking
at this is that for this separation the pressure on the plates is of the order of
atmospheric pressure [21].

The earlier calculations all deal with zero temperature systems. This is an
extreme limit which highlights the unusual nature of the Casimir interaction. Some
increase in the force associated with field fluctuations between the two plates is
observed with an enhancement of the electromagnetic fluctuations in the system.
For example, such an increase can be accomplished by introducing a non-zero
temperature to the problem. The thermal fluctuations generated in the system
themselves have a total energy. Like the energy of the zero point fluctuations,
the energy of the thermal fluctuations depends on the boundary conditions of the
system. These type of temperature effects and some related effects arising in the
presence of dielectrics are now discussed.

Effects of Temperature and Dielectrics
The force generated by the thermal fluctuations of the system in Fig. 6.4a are now
addressed. This is followed by additional examples of modifications to the physics
of the system that can affect the Casimir interaction. Finally, some applications to
nano-science are discussed.

As the temperature of the system is increased, thermal fluctuations begin to enter
into the regions of vacuum in Fig. 6.4. In particular, the photon occupancy, nph, in
(6.42) is no longer zero but increases to have an average positive value. For this the
occupancy of the photons is determined by the Planck distribution and the boundary
condition dependent frequencies of the electromagnetic modes in the system.
Consequently, the energy of the photonic fields is changed from that of the
zero-point energy as well as are the forces they exert on the perfect conducting
plates in Fig. 6.4.

At finite temperatures, the fluctuations in the vacuum contributing to the total
vacuum energy are now of two types. The first type is the zero-point fluctuations of
the earlier considerations in (6.38) through (6.60). To these, upon introduction
of temperature effects, are added the fluctuations contributing to a non-zero average
of the photon occupation, nph. The calculations for the force between two plates
now proceed similar to those of the zero temperature Casimir effect but with the
introduction of the Planck distribution of photon modes in the additional energy
terms arising from the nph in (6.42).

The pressure on the plates follows similarly from the derivative of the total
energy with respect to a. In this way, considered to lowest order in the temperature,
it is found that the first temperature correction to (6.60) is of the form [21–31]
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This is valid at low temperature or for short plate separation distances a.
From (6.61) it is seen in this limit that as the temperature increases the pressure

increases rapidly as the fourth power of the temperature. This is to be expected as
the energy in the fluctuating fields increases rapidly with increasing temperature.
Consequently, the thermal fluctuations should quickly overwhelm the fluctuations
of the zero-point motion. This must be the case as the zero-point fluctuations,
themselves, remain constant with changes in the temperature.

In the opposite limit of high temperatures or large plate separation distances the
pressure on the plates is given by [21, 32]

P ¼ � f 3ð Þ
4pba3

: ð6:62Þ

which is expressed in terms of the zeta function fð3Þ. The pressure in (6.62) is
found to be proportional to the temperature. This is reasonable as in the classical
limit the field energy is proportional to the temperature.

Another question of interest in the study of Casimir problems is the effect on the
Casimir force brought about by the introduction of a dielectric medium between the
perfect conducting plates. In the idealized case of a medium with a constant fre-
quency independent dielectric constant, e[ 0, the generalization is simple. The
force between perfect conducting plates separated by a distance a is generalized
from (6.61) to have the form [21–31]

P ¼ � p2�hc

240
ffiffiffi
e
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q
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: ð6:63Þ

As in the case of vacuum between the plates, the force in the presence of a dielectric
is attractive with the same rapid variation in the separation distance of the plates.

From (6.63) it is seen that for dielectric constants greater than one, the force on
the plates is found to decrease with increasing values of the dielectric constant. This
dependence of the force on the dielectric and its ability to decrease the Casimir
force can be of significance in the study of nano- and micro-machines and other
such electromechanical systems. In these type of devices, which are of interested to
nanoscience, the Casimir force can become a factor affecting device performance.

In another consideration, the case has been treated in which the metal plates in
Fig. 6.4a are characterized by a frequency dependent dielectric constant of the form
of a Drude dielectric response. This type of response is found in systems with free
conduction electrons or ions. It characterizes the response found in metals, ionic
media, and plasmas.
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The Drude dielectric response has a general form [21–31]

eðxÞ ¼ 1� x2
p

x2 ð6:64Þ

where xp is the plasma frequency of the free carriers given by

x2
p ¼

4pe2N
m

ð6:65Þ

in which N is the number density of free charged carriers in the medium, and m is
the carrier mass.

For plates with the Drude response of the form in (6.64) an application of the
ideas in the derivation of (6.60) yields a pressure on the two plates separated by
a. In this way the pressure on the plates in Fig. 6.4a is given for 2pc

xpa
� 1 by [29]
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where d ¼ 1
�hxp

. It is seen that the frequency dependent dielectric (similar to the

results for the constant frequency dielectric media) decreases the attractive pressure
acting between the two plates.

In all of the systems consider above the Casimir force has been found to exhibit
an attraction between the two perfect conducting plates. A recent interesting study,
however, has shown that in some cases the Casimir force between two parallel
planar surfaces can be repulsive rather than attractive [26–28]. In particular,
Kenneth et al. [28] have shown that the zero temperature Casimir force between a
planar perfect conducting surface and a parallel planar surface of infinite perme-
ability material experiences a repulsive Casimir interaction. Similarly, a repulse
Casimir interaction is also found between parallel surfaces of two infinite perme-
ability materials. These examples of Casimir repulsion have important implications
for the design of metamaterials which exhibit the appropriate surface characteristics.

In line with earlier remarks, the adjustment and reversal of the Casimir force has
important applications in the nanoscience of mechanical devices. At nanoscales the
functioning of mechanical mechanisms can be affected by the Casimir force. As an
example, attractive forces between the surfaces of such devices result in the phe-
nomena known as ‘stiction’. This is the sticking together of the nano-surfaces
arising from their attraction and can act to jam their mechanical operations.

The decrease or reversal of the Casimir force interaction can be of benefit in the
design of such nanoscale devices. For the details of nanoelectromechanical systems
(NEMS) and microelectromechanical systems (MEMS) and other mechanical
properties associated with nanoscience the reader is referred to the literature
[21–31].
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Chapter 7
Lasers

In this chapter some basic discussion is presented about principles of laser operations
and various types of lasers that are of interest in nanoscience applications [1–4].
Only an outline of the fundamentals of laser operation are presented as a quick
review, and for more details the reader should consult the literature. In line with the
focus of this book on systems commonly studied in nanoscience, discussions of
vertical column lasers, spasers, and other types of nanoscience based lasers are
presented. These considerations again are not meant to be comprehensive.

First a model is presented which explains many of the aspects of laser operation
in terms of principles of nonlinear dynamics [1, 2]. This should act as a review,
offering a simplified presentation of some of the basic aspects of laser operation. In
this approach, the model chosen for consideration represents laser operation as a
phase transition which is dependent on the power supplied to a media acting as a
light source. The source media converts the power supplied into the generation of
light.

Below a certain input power threshold, the light outputted from the media of the
laser system is emitted from the laser as a regular incoherent light source. It displays
no phase coherence and no amplification properties.

Above the laser power threshold, however, the nonlinearity of the system allows
for a transformation causing the system to act like a laser. In this region of oper-
ation, an amplified coherent light is outputted from the laser.

While the phase transition model illustrations many of the basic feature
encountered in the physics of lasers, it ignores quantum mechanical considerations
which are a foundation for a complete understanding of the laser system. For a
complete treatment of lasers, a full quantum field theory treatment is needed. This
would be too much of a diversion at this point so that for such a treatment the reader
is referred to one of the many texts available on the subject.

Following the discussions of the basic operation of the laser the focus will turn to
the medium acting as a light source [3, 4]. Two basic sources of great importance to
nanoscience applications are the heterojunction light source and surface plasmon
light sources. Both of these types of sources will be discussed as well as some of
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their basic applications. In particular, a brief review will be presented to understand
the principles of operation of vertical column lasers and of the spaser. Some con-
siderations of the laser threshold will also be made as well as discussions of the
development of so-called zero threshold lasers.

7.1 A Simplified Model of Laser Operation

In this section, a general outline will be given of some of the basic features of laser
operation. An extremely simplified discussion is presented of a model displaying
many of the elementary features of a lasing system. It is meant as a brief intro-
duction or review of some of the most salient features of the topic. The presentation
does this within the context of a grossly simplified system which nevertheless
provides an illustration of the mechanics of general laser operation. In most
applications, however, the model must be generalized with the introduction of the
detailed properties of the specific system being considered. In addition, the methods
of quantum field theory must be used in a proper theoretical development of the
topic.

A simple model that is an aid in understanding the basic operation of lasers is
provided by considering a system of N identical atoms interacting with external
electromagnetic fields [1, 2]. To facilitate the treatment, it is also assumed in the
discussions that, in the absence of the external fields, the atoms do not interact with
one another. As an additional simplifying point, the atoms themselves are each
regarded as essentially having three energy levels with a single electron transi-
tioning between these various atomic energy levels.

Such considerations of the proposed model can ultimately be extended to treat an
arbitrarily defined electronic media. The assumptions outlined, however, form quite
general considerations, illustrating the essential processes in many types of lasing
systems. The complexities of the interactions in real systems are needed, however,
to determine in detail the precise features of the lasing in a given system, but these
do not change the basic ideas of the simple lasing process.

In the following the simple laser model is treated in order to obtain a general feel
for laser operation. After this treatment, the discussions of lasers are applied to a
qualitative treatment of the operation of semiconductor lasers and spasers.
Semiconductor lasers are of great importance, forming a basis of many optoelec-
tronic technological applications. They are a focus of many experimental investi-
gations of the properties of the nanophotonic systems discussed in this book.
Spasers are a more recent development which allows for the coherent generation of
surface plasmon-polaritons into plasmonic circuits. This is another important
development in nanoscience technology.
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7.1.1 Statistical Properties of the N Atom System

In order to develop an understand the statistical nature of the energy level occu-
pancy and the electromagnetic transitions between excited states of the atoms, first
consider a system composed of two level atoms. Each atom has a ground state
energy, E0, and an excited state energy, E1. (See Fig. 7.1 for a schematic of this
system.)

A single atomic electron on each atom is shuttled between the energy levels of
the atom through interaction with the electromagnetic fields. For this system of
atoms and electromagnetic waves in thermal equilibrium, the number of atoms in
excited states is N1 and the number of ground state atoms is N0 so that the total
number of atoms N ¼ N0 þN1.

From statistical physics [1–3], the Boltzmann weight

p0 ¼ e�bE0 ð7:1aÞ

is the relative probability that one of the atoms of the system is in its ground state,
and

p1 ¼ e�bE1 ð7:1bÞ

is the relative probability of the same atom being in its excited state. In terms of
these weights it then follows that the absolute probabilities for a given atom to be in
the ground or the excited state are

P0 ¼ e�bE0

e�bE0 þ e�bE1
; ð7:2aÞ

Fig. 7.1 Schematic of: a two level atom with ground state energy, E0, and excited state, E1, and
b three level atom with ground state energy, E0, and excited states, E1, E2 with E2 [E1
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and

P1 ¼ e�bE1

e�bE0 þ e�bE1
; ð7:2bÞ

respectively.
Using the probabilities in (7.2), it is found that for a system of N atoms that the

number of atoms N0 and N1, respectively, in their ground and excited states are
related to one another through the temperature of the system. In particular, their
ratio is given by [1–3]

N1

N0
¼ e�b E1�E0ð Þ: ð7:3Þ

In statistical equilibrium the electron in a given atom is transferred between the
ground and excited state through an interaction with the electromagnetic fields. The
electrons in all of the atoms do this in such a way that the probability distributions
in (7.1) and (7.2) are maintained. This means that in thermal equilibrium the rate at
which an electron transitions from the excited state to the ground state must equal
the rate at which it transitions form the ground state to the excited state. Otherwise
the average occupancy of the two states would change with time, and this would not
represent an equilibrium situation. The rates of these two types of transitions are
well known form kinetic theory.

In kinetic theory it is shown that for a fixed volume system the rate of transition,
R0!1, of the electrons in a system of N atoms from the ground states to the excited
states is given by [1, 2]

R0!1 ¼ BN0n m01ð Þ; ð7:4Þ

where n m01ð Þ is the number of photons in the system having the energy of the
transition (i.e., m01 ¼ E1�E0

h ), B[ 0 is a frequency dependent constant of propor-

tionality, and R0!1 is in units of sð Þ�1.
The expression is a common type of rate expression for binary collision pro-

cesses, and it should be noted that the expression for the rate, R0!1, is essential the
same as that used in chemistry for the study of chemical reactions in which two
reactants combine to form a single final product.

Going in the other direction, for a fixed volume system the rate of transition,
R1!0, of the system electrons from the excited states to the ground states of the N
atoms is given by

R1!0 ¼ N1f n m01ð Þ½ �: ð7:5Þ

where f n mð Þ½ � is a function of n mð Þ. The determination of the function f n mð Þ½ � is next
addressed.
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Applying the conditions for equilibrium, the transition rates in (7.4) and (7.5) are
equated to yield the relationship

BN0n m01ð Þ ¼ N1f n m01ð Þ½ �: ð7:6Þ

From (7.6), upon using (7.3), it is found that a solution for f n mð Þ½ � is of the form

f n m01ð Þ½ � ¼ Beb E1�E0ð Þn m01ð Þ ¼ Bebhm01n m01ð Þ: ð7:7Þ

In the result in (7.7) the number of electromagnetic modes, n mð Þ, are related to
the density of electromagnetic states, q mð Þ, by

n mð Þ ¼ q mð Þdm: ð7:8Þ

The Planck distribution of the density of electromagnetic modes in statistical
equilibrium, q mð Þ, entering into (7.7) and (7.8) is a standard result of the statistical
physics of the electromagnetic fields. There it is shown that the Planck distribution
has the form [1, 2]

q mð Þ ¼ C
1

exp bhmð Þ � 1
; ð7:9Þ

where in (7.9) the coefficient C[ 0 depends on the geometry of the system, e.g.,
C ¼ 8phm3

c3 in three dimensions.
From (7.5), (7.7) and (7.9) it then follows that [1, 3]

f n mð Þ½ � ¼ CB 1þ 1
exp bhmð Þ � 1

� �
dm

¼ B Cdmþ n mð Þ½ �:
ð7:10Þ

and, consequently,

R1!0 ¼ BN1CdmþBN1n m01ð Þ: ð7:11Þ

As with (7.4), (7.11) is similar to a transition rate found in chemistry for the
study of chemical reactions in which a single compound dissociates into two
compounds. The equality of (7.4) and (7.11) is similar to the condition used in the
determination of the chemical equilibrium for two chemical reactants combining
into a single product.

Unlike the rate of transition in (7.4) from the ground state to the excited state
which consists of a single term, the rate of transition in (7.11) from the excited state
to the ground state consists of a sum of two different terms. The terms in the sum in
(7.11) represent two distinctly different types of processes. These differences will
now be discussed.
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The single process in R0!1 involves the product of the number of ground state
atoms and the number of photons present in the system. It describes processes in
which the transitions of the ground states to the excited states are induced by an
absorptive interaction with the photons present.

The two processes involved in R1!0, however, are distinctly different from one
another. The second term on the right of (7.11) depends on both the number of
atoms in the excited state and the number of photons in the system so that the
photons are actively involved in mediating the transition. These processes are
known as stimulated emission processes and involve the addition of a photon to the
system. Mathematically they are similar to the absorption processes represented in
(7.4) as they do not occur if photons are not already present in the system.

The first term on the right of (7.11), on the other hand, depends only on the
number of atoms in the excited states so that the transitions to the ground state can
occur even in the absence of photons in the system. These processes are known as
spontaneous emission processes. They add a photon to the system but do not
require the assistance of a photon already in the system in order to make the
transition.

One of the basic ideas of the operation of a laser is to use the dependence of the
R0!1 and R1!0 on N0 and N1, respectively, to generate a surge of photons from the
system. Specifically, if the ratio N1

N0
in the system is increased from its equilibrium

value, N1
N0

¼ e�b E1�E0ð Þ, the excess excited states will decay to the ground state and,
in the process, dump an excess of photons into the system. This is due to the
increase in R1!0

R0!1
arising from the increase in N1

N0
. A consequence of the increase in

these ratios is that the rate of photon emission in the system is increased over the
rate of photon absorption. The basic laser mechanism arising from these consid-
erations will now be discussed [1, 3].

7.1.2 Laser Mechanism

To use these population related rate changes most effectively in the discussion of
lasers it is best to treat a system of N isolated atoms with three energy levels
E2 [E1 [E0. Again, in this model each atom is considered to have a single
electron that can transition between the three energy levels by means of interactions
with the electromagnetic fields [1, 3]. The probabilities of finding the electrons in
the various energy levels is given by the Boltzmann weights.

The idea for the operation of this system as a laser is to pump the individual
atoms away from their equilibrium configuration. For example, pumping the atoms
of the system with radiation for which hm02 ¼ E2 � E0 causes the electrons in the
ground states to transition to the E2 excited states. This creates a population
imbalance in the system of N atoms.

In the pumped system, the number of atoms in their E2 excited states is increased
over that in the equilibrium system. Once the system is pumped into a
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nonequilibrium configuration the next step is to apply radiation for which
hm12 ¼ E2 � E1. By means of this radiation, the pumped atoms can by stimulated
emission be sent to the state, E1.

This last process dumps photons of frequency m12 into the system, enhancing the
number of m12 modes present in the system. The photons dumped in the stimulated
emission process eventually show up in the laser output. This is one of a number of
configurations of pumping and stimulated emission that can be used to generate a
laser output [1, 3].

For example, it should be noted that in some systems electrons have very short
lifetimes for the decay from the E2 to the E1 states. In these systems hm02 ¼ E2 � E0

radiation is used to populate the E2 level which then rapidly decays to the E1 state.
If E1 has a slow transition rate it can act as the pumped state which develops an
enhanced population from that in the system at equilibrium. Applying hm01 ¼
E1 � E0 can then stimulate the transition of E1 to E0 with the consequent dump of
m01 photons into the system. This is another process in which the photons dumped
in the stimulated emission process eventually show up in the laser output.

The development of a pumped state with an increased population over its
equilibrium population is not the only condition necessary for laser operation. There
is also a condition on the electromagnetic field used to stimulate the emission of the
coherent laser light that is outputted by the laser.

The generation of a coherent output is done by putting the N pumped atoms in a
Fabry-Perot resonator. This is a cavity resonator which has a series of resonant
electromagnetic modes formed by its reflective walls and which surrounds the N
atoms of the lasing medium. One of the walls of the cavity must be partially
transparent so that the coherent light generated in the cavity is outputted as the
output light from the laser.

The function of the cavity is to support the coherent mode generated from the N
atoms as one of its resonant modes. This mode is used to stimulate the coherent
dumping from the excess excited states of the atoms from their pumped excited
states, creating the intense coherent output of light emitted from the partially
transmitting wall of the resonant cavity.

In the following some simple considerations based on nonlinear dynamics are
used to give a basic operational understanding of laser functions. These consider-
ations are focused on modeling the rate of changes in the atomic energy level
occupancies and the photons generated in the stimulated generation of coherent
light, using the discussion provided earlier.

The details of the nature of the coherent field generated by the laser and the
relationship between the coherent fields and atoms used to generate them in the
system are not treated in this approach. The development of a coherent output from
the resonant cavity is a topic of quantum electrodynamics and cannot be fully
treated in an approach based on classical electrodynamics. For this the reader is
referred to more advanced treatment of the subject.
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Transition Processes in the Three Level System
To develop a simple nonlinear model of the laser based on atomic and photon
transition and generation rates, begin with the various transition rates, Ra!b,
between states a and b for the atom-photon system in the earlier discussions. This is
done for the three-level model of the single electron atom with E2 [E1 [E0 [1, 3].
(See Fig. 7.1b for a schematic of the three-level atom.)

Following the earlier discussions of the three-level system, E0 is the ground state
of the system and E2 is the level to be pumped [1, 3]. The rate of transition from the
ground state to the excited state E2 is

R0!2 ¼ BpN0np ð7:12Þ

where N0 is the number of atoms with energy E0, np is the number of pumping
photons of energy hm ¼ E2 � E0, and Bp [ 0 is the rate coefficient. As in (7.4) the
transition rate is proportional to the product of the numbers of the reactants, N0 and
np, that combine to form the final pumped states.

Once the atoms have been pumped, the stimulated emission of the excited state
E2 can be treated. This is the focus of the next considerations for the system.

Consider the system of N2 pumped atoms having their electrons in the energy
level E2. At the time the system is in this pumped state the Fabry-Perot resonator
has within it a number, ns, of photons of energy hms ¼ E2 � E1 interacting with the
electrons in the pumped level E2. These photons are available to act as agents of
stimulated emission, inducing transitions of the electron from the E2 to the E1

levels.
During the transition process of the simulated emission, the ns photons generate

more hms ¼ E2 � E1 photons causing ns to increase. From simple kinetics, the
manner in which ns changes in time is described by the rate equation [1, 3]

dns
dt

¼ BsnsN2 � ans: ð7:13Þ

The first term on the right of the equality describes the stimulated emission
transition rate from E2 to E1 generating additional hms ¼ E2 � E1 photons and
increasing ns. The coefficient Bs [ 0 is the rate coefficient for this reaction path. In
addition, to the stimulated emission processes, the laser also has losses due to the
photons emitted in the laser beam and due to dissipation. The second term on the
right of (7.13) represents these losses in the hms ¼ E2 � E1 photon population of the
cavity.

The effects on the photon population of the second term in (7.13) are seen by
considering the case of (7.13) in which Bs ¼ 0. In this limit the solution of (7.13) is
in the form of an exponential decay given by

ns tð Þ ¼ e�at: ð7:14Þ
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Equation (7.14) is the standard form associated with changes in a population
made by simple dissipative processes. The losses represented by these processes
contribute to the rate coefficient, a, and include: the removal of radiation from the
cavity as it passes through the partially transmitting wall of the Fabry-Perot cavity,
energy losses due to joule dissipation in the mirror and lasing medium, and
spontaneous emission processes which are also in the system and are described by
the transition rates

R2!1 ¼ BsN2Csdm ð7:15aÞ

and

R2!0 ¼ Bs0N2Cs0dm ð7:15bÞ

Equations (7.15a) and (7.15b) are based on the form for the spontaneous
emission transition rate (i.e., transitions per second) described in the second term on
the right of (7.11). In these expressions he coefficients Bs;Bs0 ;Cs;Cs0 [ 0.

From (7.13) it is seen that in the case that N2 ¼ 0 the number of photons in ns
only decreases in time, i.e., there is no lasing or amplification in the resonator
cavity. It is known, however, that as N2 increases from zero the N atom system
eventually does, at some point, exhibit lasing. The point at which the power
pumping into the E2 states starts the system to lase is known as the threshold of the
laser. It is a very important aspect of laser operations and the factors determining
are now addressed [1, 3].

Lasing Equation and Fix-Point Solutions
Let N�

2 be the number of atoms required to be in the pumped state for lasing to
begin. In the following N�

2 and the behavior of the system in the neighborhood of
N�
2 are estimated. The approach used is reminiscent of the Landau theory of a

second order phase transition, and, indeed, the beginning of lasing in the system is a
second order phase transition. In these considerations, the object is to understand
the nonlinear dynamics of (7.13) in the vicinity of the lasing transition [1].

Consider the system in the absence of stimulated emission and let the number of
pumped atoms for this case be N20. Once stimulated emission is introduced into the
system the number of N2 modes in the system is decrease from N20. To model this
decrease, assume that the pumped modes are approximated by

N2 tð Þ � N20 � bns: ð7:16Þ

where ns are the number of photons available to generated spontaneous emission
processes.

In (7.16) the second term on the right represents a decrease in the pumped modes
due to decay through stimulated transitions, and the coefficient b[ 0 relates this
loss to the number of modes ns or the intensity of the of the fields stimulating the
transitions. Under these considerations (7.13) becomes [1]
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dns
dt

¼ Bsns N20 � bns½ � � ans

¼ BsN20 � a½ �ns � bBsn
2
s :

ð7:17Þ

The dynamics of the system in (7.17) contains the description of the lasing
process. To understand this, the solutions of (7.17) are now studied. The nature of
these solutions are qualitatively discussed in terms of the functioning of the laser
operations which they describe.

Equation (7.17) is a well know equation of nonlinear dynamics. To begin the
study of its solutions, it is good to determine the dns

dt ¼ 0 fixed points of the system.
At these points the system does not change in time.

Denoting the fixed-point solutions of (7.17) by n0s , the values of n0s are deter-
mined as solutions of

BsN20 � a½ �n0s � bBs n0s
� �2¼ 0: ð7:18Þ

The stationary solutions are then found to be [1]

n0s ¼ 0 ð7:19Þ

and

n0s ¼
BsN20 � a

bBs
: ð7:20Þ

Examining the results in (7.19) and (7.20), a variety of behaviors are found in the
system. In particular, (7.19) is the case in which there are no photons available to
induce stimulated emissions. As shall be seen in the following, this is not of interest
for laser operation.

On the other hand, for positive n0s (7.20) represents the case in which photons are
available to induce stimulated emissions in the system, and it appears at this point
that the system is self-sustaining. This is the condition for laser operation.

These three points are now described and discussed in detail as well as the
behavior of the system in the neighborhood of three fix-points. At the end of these
consideration an expression for the laser threshold will be obtained in terms of the
various transition rates discussed earlier.

Behaviors Near the Fix-Points
The three configurations of the solutions in (7.19) and (7.20) are the following [1]:

1. When BsN20 � a ¼ 0 both solutions of (7.19) and (7.20) for the fixed point of n0s
coalesce and are located at n0s ¼ 0. From (7.17) the time derivative at general ns
is then given by
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dns
dt

¼ �bBsn
2
s : ð7:21aÞ

Considering this equation there are three possible initial conditions of ns to be
treated. These are initial states of n0s ¼ 0, n0s [ 0, and n0s\0.

If the system is initially at the two coalesced ns tð Þ ¼ 0 fixed points, then from
(7.21a) it follows that dns

dt ¼ 0 always. The solutions for n0s tð Þ are zero and
constant in time, with the consequence that no light is ever present in the system.

If ns tð Þ[ 0 it follows from (7.21a) that dnsdt \0 so that as time progresses ns tð Þ
always decreases as it travels towards the n0s ¼ 0 fixed point. Consequently, the
system undergoes a relaxation to the fixed point of the system, and in the end
state there are no photons in the system.

In the case of ns tð Þ\0 the system would have a negative occupancy of
photons which is not physically of interest. It is not possible to have a negative
photonic occupancy in the system so that this case will not be considered.

It is seen from these discussions of (7.21a) that the system always approaches
the n0s ¼ 0 fixed point. This is the state in which no photons are available to
induce spontaneous emissions. In this configuration, the system is acting as a
light source with an intensity of light which is being dissipated away through
photons leaving the system and by losses within the materials of the cavity and
lasing medium.

2. When BsN20 � a ¼ D\0 only the n02 ¼ 0 fixed point in (7.19) is of interest.
This follows as the non-zero fixed point in (7.20) is negative. This is an
unphysical condition, and, consequently, not of interest in the following
considerations.
From (7.17) it follows that

dns
dt

¼ Dns � bBsn
2
s ð7:21bÞ

and for ns tð Þ[ 0 the righthand side is always less than zero. It follows that as
time progresses ns tð Þ[ 0 always decreases as it travels towards the n0s ¼ 0 fixed
point. The ns tð Þ\0 case, again, is not physically interesting.
In this case of the system, as earlier with that in case 1, the n0s ¼ 0 fixed point is
always approached. No photons are available to induce spontaneous emissions.
In this way, the system is acting as a light source with an intensity of light
dissipated away through photons leaving the system and by losses within the
materials of the cavity and lasing medium.

3. When BsN20 � a ¼ D[ 0 both (7.19) and (7.20) are physical fixed points of the
system. From a treatment of the fix point in (7.20) in this limit follows the lasing
transition.

7.1 A Simplified Model of Laser Operation 433



From (7.17) it follows that [1]

dns
dt

¼ Dns � bBsn
2
s : ð7:21cÞ

This can be rewritten into the form

dns
dt

¼ bBs n0s � ns
� �

ns: ð7:21dÞ

where n0s ¼ D
bBs

is the nonzero fixed point.

It is readily seen that for ns [ n0s ,
dns
dt \0 and ns tð Þ travels uniformly to the

n0s ¼ D
bBs

fixed point. In addition, for 0\ns\n0s ,
dns
dt [ 0 and again ns tð Þ travels

uniformly to the n0s ¼ D
bBs

fixed point. Initial conditions in both of these regions are
found to display a relaxation to the non-zero fixed point.

On the other hand, the case 0[ ns;
dns
dt \0 is not of physical interest. It will not

be considered further here.
In the physical cases of the system, the n0s ¼ D

bBs
fixed point is always approa-

ched. This is the state in which photons are available to induce spontaneous
emissions, and the system is maintaining itself as a steady state source of intense
light. That is, it is acting as a steady state lasing source.

The systems first begins to lase when D ¼ BsN20 � a passes through zero,
heading along its positive D[ 0 trajectory. This condition occurs for

N20 ¼ a
Bs

ð7:22Þ

which is the population of the pumped E2 level at the threshold of the laser.
To develop a more concise understanding of the solutions discussed above and

their relation to the fix-points of (7.17), it is helpful to rewrite the equation in a nicer
format. In particular, (7.17) can be rewritten in the form [1, 2]

dns
dtr

¼ n0 � ns½ �ns ð7:23aÞ

where

n0 ¼ N20

b
� a
bBs

ð7:23bÞ

and the time variable is renormalized to the form tr ¼ bBst. This allows for a
detailed illustration of the properties of the system solely in terms of the reduced
variable n0.
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In this regard, in Fig. 7.2 some plots of dns
dtr

as a function of ns from (7.23) are
presented for the three cases of nonlinear laser dynamics treated earlier. For case 1
the parabolic function only intersects the abscissa at ns ¼ 0, and no lasing occurs.
Similarly, for case 2 the only non-negative intersection of the function with the
abscissa is at ns ¼ 0 and again no lasing occurs. In both of these cases the system
has not attained the lasing threshold and the power feed into the system to pump the
atoms does not sustain the system.

For case 3, the physical solutions of the system approach the stable fixed point of
the system at n0s ¼ D

bBs
. The laser threshold is first attained at D ¼ 0 for which at this

point N20 ¼ a
Bs
. In addition, at the nonzero fixed-point, (7.23) yields an expression

for N20 given by

N20 ¼ bn0 þ a
Bs

: ð7:24Þ

The laser threshold in this simple model is found in (7.24) to depend on the loss
coefficient, a, and the gain coefficient, Bs, in (7.13). Much technological effort in
laser engineering has gone into lowering the power needed to create the N20

threshold level of pumping in the laser medium.

7.2 Semiconductor Lasers

An important light source in nanoscience applications is based on heterojunctions
formed between two different types of semiconducting materials [3, 4].
Heterojunctions have become popular in engineering applications as they are based
on widely studied semiconductor technologies and offer many degrees of freedom
for potential design purposes. In this regard, semiconductors have formed the basis
of an extensive industry where they have been developed in the designs of diodes,

Fig. 7.2 Plot of dns
dtr

versus ns for: a cases 1 and 2 in which there is only a physical solution at the
fixed point ns ¼ 0 and b case 3 in which there also is a non-zero physical fix-point that is an
attractor
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transistors, and a variety of other devices and electronic circuitry. They also have
been shown to function with high efficiency and exhibit the durable properties
needed in effective component formulations. Of a great significance, they operate
effectively at frequencies commonly used in many technological and fiber optics
applications.

In the following, some of the basics of semiconductor junctions operated as light
sources in laser applications will be presented [3, 4]. These topics will be addressed
at a qualitative level to give an idea of the functioning of heterojunctions, and the
emphasis will be on basic operating principles. More advanced treatments can
readily be encountered in the extensive existing literature on these topics.

After this brief outline, the discussions will culminate in a treatment of the
application of heterojunctions to interesting recent applications in the design of
vertical column heterojunction lasers. These types of lasers have been a focus in the
design of efficient low threshold lasers and have been offered for a number of other
applications in nanoscience.

In the study of semiconductor junctions there are two types of junctions. The
first type is a homojunction and the second type is a heterojunction. The homo-
junction is formed by doping an otherwise homogeneous material with small
concentrations of two different types of impurity atoms. This is done so that a
planar interface is formed between the regions of two different types of doping. On
one side of the interface the material contains p-type (acceptor) impurities, and on
the other side the material contains n-type (donor) impurities. In the p material the
current carried by the medium is due to the motion of holes, while in the n material
the current carried by the medium is due to the motion of electrons [3].

The second type of junction is a heterojunction. This is formed as an interface
arrangement involving two different materials. Typically, in laser designs, two
planar interfaces are formed to make a sandwich of the two different materials. At
the center of the sandwich is one type of semiconductor medium and on the two
sides of the center material is a second type of material. The second type of material
on one side of the sandwich is p doped and the second type of material on the other
side of the sandwich is n doped. The material at the center of the sandwich need not
be doped.

For the heterojunction design the two different types of materials used must have
similar lattice parameters. This is so that a relaxed interface can be created between
the three layers forming the junction and for the structural stability and uniformity
of the electrical properties of the junction. In this arrangement, the p and n doping is
small and has little effect on the lattice parameters of the materials being doped.

7.2.1 Homojunctions

To understand the basis of the operation of a homojunction consider the n-p
junction shown schematically in Fig. 7.3. The homojunction portrayed is the
simplest type of junction, and it is formed at the interface developed between
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differently doped versions of the same material. Since the dopants are generally at
very small concentrations the junction can be created by diffusion of the impurities
into the materials or by deposition techniques [3].

In the figure, such a junction is illustrated for the case in which on one side of the
interface the medium has p type impurities and on the other side is n type impu-
rities. Ultimately, in discussions of the junctions in the context of circuit applica-
tions, the interest is on electric currents traveling perpendicular to the interfaces. For
these applications, the junction is found to exhibit a variety of rectification and light
generating properties associated with the flow of electrical currents.

To the left side of the interface in Fig. 7.3 is the p material in which the current is
carried by holes and to the right side of the interface is the n material in which the
current is carried by electrons. Due to osmosis effects acting on the carriers in the
two materials, the holes on the left of the interface will tend to diffuse into the n
material on the right of the interface and the electrons on the right of the interface
will tend to diffuse into the p material on the left of the interface [3].

A consequence of this is that a plane of positive charge develops to the right of
the interface and a plane of negative charge is developed on the left of the interface.
These planes are indicated on the figure by the + and − signs positioned on the

Fig. 7.3 a n-p homojunction, b relation of bulk band structures, c forward biased circuit, and
d reversed biased circuit
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respective sides of the interface plane. For the moment, a focus will be on con-
siderations of the factors responsible for the development of the two charged planes.
These planes are important factors which are responsible for the technological
applications of the junction so that the mechanisms affecting them must be
understood.

The reason that planes of charge are developed on the adjacent sides of the
interface is due to a balance of osmotic and electrostatic forces. As the charges are
driven across the interface by the process of osmosis, an electrostatic interaction
develops between the planes of + and − charges formed at the sides of the interface.
The electrostatic interactions oppose the osmotic pressures so that eventually a
balance is reached between these two factors.

An equilibrium is ultimately established between the charge densities at the two
planes of charge, and this distribution of charges generates a change in the electrical
potential between the n and p doped materials. Alteration of the opposing forces of
osmotic pressure and electrostatic forces by the means of external interactions with
the system then becomes the source of a variety of important applications.

In addition, the proximity of electrons and holes generated near the interface
between the p and n media allows for the generation of light through the mechanism
of recombination. This is the processes in which the electron and hole charges
neutralize some of the donor or acceptor ions in their respective media around the
vicinity of the p-n junction interface. Essentially the holes in the valence band are
filled by electrons from the conduction and in the transition a photon is created.
A photon of characteristic radiation from the recombination is emitted in the course
of the process [3].

The process of electron hole recombination is the basis of LED’s that are
developed through the application of junction technology. In these applications, the
light originates in the neighborhood of the interfaces where populations of both
electrons and holes are present and injected into the p and n media, respectively.

The electric potential associated with the two planes can be calculated because
these planes represent the only net accumulation of charge within the system. All
other regions of the n and p materials are charge neutral. Consequently, the change
in the electric potential in going from the negative charged plane on the p side of the
interface to the positively charged plane on the n side of the interface is a constant
/0 [ 0. This means that the difference in electric potential in going from the bulk of
the p material to the bulk of the n material is /0.

The change in electric potential at the interface, represented by /0, is seen to
shift the potential energy of the electrons in the bulk of the n material by [3]

U0 ¼ �e/0: ð7:25Þ

(Note that here the charged of the negatively charged electron is represented by
�e.) Specifically, the energies of the electrons in the n material for /0 ¼ 0 are for
/0 6¼ 0 shifted in potential energy by U0 ¼ �e/0. This has important consequences
for the electron and hole states in the n and p type materials of the junction
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materials. As shall be seen the potential energy in (7.25) shifts the energy bands of
the n and p materials relative to one another.

The value of /0 is related to an important difference in the band structure of the
media separated by the junction interface. In this regard, it is known form statistical
physics that at equilibrium the chemical potential of the junction system must be
constant over the junction materials. However, in the p material the chemical
potential is close to the lower edge of the semiconductor stop band, while in the n
material the chemical potential is close to the upper edge of the semiconductor stop
band. For the chemical potential to be a constant over the junction, the bulk band
structure of the n type of material must be shifted downward relative to that of the p
type materials.

Consequently, for the chemical potential to be constant over the media of the
junction, the arrangement of Fig. 7.3b is required between the bulk of the two
materials. The bands of the n material are shifted by U0 ¼ �e/0 relative to those in
the p material. In this regard, the electrostatics and statistical physics of the media
match together.

Now consider connecting the junction to a battery. How will the addition of the
external potential change the equilibrium at the junction interface? Since the n-p
junction can be connected to the battery in two different way, there are two different
cases of the battery-junction system to be treated.

First consider the case that a battery of potential V is connected with the positive
terminal attached to the p material and the negative terminal attached to the n
material. (This is schematically shown in Fig. 7.3c.) In this arrangement, the
potential of the n material relative to the p material changes from /0 to /0 � V , and
the potential energy changes from (7.25) to [3]

U0 ¼ �e/0 þ eV : ð7:26Þ

Here it is assumed that the drop of the batteries potential across the junction
occurs solely at the interface between the p and n materials. This is generally a very
good assumption.

The shift in (7.26) between the band structures of the p and n materials is seen to
decrease the offset of these band structures. The net effect is to readjust the offset
between the band structure of the two media, making them look the same. This
readjustment, pushing the bands back into alignment, upsets the flows of osmotic
and electrostatically induced current providing for the equilibrium configuration of
the system. Changes to these processes now are such as to facilitate a net flow of
electrons in the n bulk to pass to the p material. As a result, a complete net steady
state flow of charge is established through the circuit.

It should be noted in this regard that the conduction electrons are distributed over
the energy levels of the conduction band due to thermal effects. An upward shift of
the bands of the n material facilitates the passage of thermally excited electrons to
the p materials. Likewise, thermally excited holes from the p material are facilitated
in flowing through the circuit. The effect on both the electron and hole flows are
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dramatically changed in this configuration, known as forward biasing of the
junction.

In the reversed configuration, the battery is now connected with the negative
terminal applied to the p material and the positive terminal applied to the n material.
(This is shown schematically in Fig. 7.3d.) Here the relative potential between the
bulk p and n materials is given by

U0 ¼ �e/0 � eV ; ð7:27Þ

and the shift widens the separation offset between the band edges in the p and n.
Now the offset of the band structures within the two media is enhanced. However,
the net effects on the currents arising from osmosis and electrostatic effects is much
smaller than in the case of forward biasing. The resulting current generated in the
circuit is much less than in the forward biased system.

The difference between the forward and reverse biasing is shown in the typical
nonlinear current versus voltage curve shown in Fig. 7.4. Applications of the curve
are found in various diode and transistor technologies where the difference in the
forward and reversed biased currents are a source of a variety of switching and
rectification application.

7.2.2 Heterojunctions

The function of the heterojunction is in many ways similar to that of the homo-
junction [3]. There are, however, some important differences. The most import of
these differences involves the band structure of the two types of materials used in

Fig. 7.4 Qualitative current
versus voltage relationship for
the p-n junction
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the heterojunction design. This difference is very important in the development of
laser applications, particularly in the generation of pumped systems. In the fol-
lowing brief discussions, the focus will be on the commonly used heterojunction
design materials of GaAs and GaAlAs.

In application of the heterojunction as a source of light in laser designs, it is
useful to consider a system of three materials separated by two planar interfaces.
Unlike the homojunction interface discussed earlier, this is a type of semiconductor
sandwich. However, as with the homojunction the current flow in the system is
again perpendicular to the interfaces. Of the two materials utilized in the sandwich
design, the two outer layers of the junction are made of n doped GaAlAs and p
doped GaAlAs, while the material located between these is formed of GaAs.

The band structure of the three materials are shown schematically in Fig. 7.5. In
these band structures, the doping of the GaAlAs again has little effect on the relative
band structure so that these are represented as being the same on both sides of the
sandwiched GaAs layer. As with the homojunction, the doping offsets the band
structure of the n and p materials but otherwise has little effect on the differences
between the energy levels in the two systems. This offset property of the band
structures of the n and p materials is again a result of the uniformity of the chemical
potentials over the two materials forming the junction [3].

In the middle layer, the stop band of the GaAs is seen to be much less than that
of either of the GaAlAs layers. This is an important point as it allows for the
development of a region to trap electrons and holes in the GaAs layer. For example,
in the forward biased configuration of the junction (i.e., positive battery terminal
connected to the p material and negative battery terminal connected to the n
material), electrons will enter the GaAs layer and collect there. This is because
many electrons will not have sufficient energy to enter into the p medium and will
become localized to the GaAs layer. In a short time, the collected electrons will
thermalize into lower energy level conduction band states of the GaAs layer.
Similarly, holes enter the GaAs layer from the p material on the left of the GaAs
sandwich and will also become thermalized within the GaAs layer [3].

Fig. 7.5 Band structure in the bulk of the regions of GaAlAs-p, GaAs, and GaAlAs-n regions of a
heterojunction. In an application the current would flow in the direction normal to the planar
interfaces
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The two thermalized populations of electrons and holes in the GaAs layer are
now set to recombine and generate emitted photons. This recombination is the
mechanism of light generation in the heterojunction laser, and the motion of the
electrons and holes into this region sets the junction up for an emission process as
the thermalization into two populations are configured for recombination.

In the lasing process, the function of the GaAs layer is to collect and hold the
electrons and holes and to facilitate their recombination with the emission of a
photon. The GaAs also has an important property which allows the radiation
generated in the electron hole recombination processes to be tuned in frequency.
This comes from the quantum well nature of the GaAs layer.

In particular, the energy levels of the electrons and holed confined within the
GaAa layer are solutions of the Schrodinger equation subject to appropriate
boundary conditions at the layer surfaces. These boundary conditions affect the
energy levels of the electron and hole modes confined within the layer and intro-
duces a dependence of these energies on the width of the layer.

Due to the dependence of the energy density of electron states within the GaAs
layer on the width of the GaAs layer, the energy of the light emitted can be tuned to
generate a desired laser output. This is an aid in many design applications. In
addition, if a number of GaAs-GaAlAs layers are used to create a series of
heterojunction wells, the output efficiency of the sequence of heterojunctions can be
managed for an increased performance of the laser. The ability of tuning the light
emitted and controlling the efficiency of its generation are two great successes of the
heterojunction light source [3].

7.2.3 Vertical Cavity Surface Emitting Laser

A recent example of a laser system based on the heterojunction or arrays of
heterojunctions is the vertical cavity surface emitting laser [3]. In this type of
device, a sequence of layers is formed on a substrate by various successive depo-
sitions. Some of the depositions are made to form a heterojunction light source and
others are made to form a Bragg reflector to confine and control the emitted light
traveling through the layers [3]. These form the vertical column of the laser.

The first layers of the deposition are those of a distributed Bragg reflector. These
are part of the confining mechanism for light emitted through the interfaces of the
layered system. These are then followed by the heterojunction or heterojunctions
which generates the light in the system. This is the region of the active media of the
laser. A final arrangement of layers is another sequence forming a second region of
a distributed Bragg reflector. The totality of the layers represents a heterojunction
light source surrounded by Bragg layers which confine the light passing through the
layer interfaces.

In addition to the structure made normal to the substrate surfaces, a photonic
crystal patterning can also be applied parallel to the plane of the substrate surfaces.
The photonic crystal pattern is designed to help modulate the light flow in the
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planes parallel to the substrate surfaces. In regard of the layering and photonic
crystal, the distributed Bragg reflectors modulate the flow of light normal to the
substrate surface and the photonic crystal controls motion in the plane of the layers.
In this arrangement, the vertical column of layered materials forming the hetero-
junction and Bragg reflectors is surrounded by the confining media forming the
photonic crystal.

In the laser design, the layering is arranged into a column sitting on the substrate,
and the light emitted from the laser is outputted in one direction normal to the
surfaces of the layers. Consequently, the important component of light emitted from
the junctions is that generated normal to the junction interface. In most of the
systems studied to date, the layers are generally formed of materials so that the light
generated in the laser is at frequencies useful in fiber optics technologies. As a
result, in the majority of applications, these types of laser devices have found uses
in fiber optics and in communication systems for data transmission over fiber optics
[3].

As an important point, the vertical cavity surface emitting laser designs facilitate
the lowering of the threshold of operation of the laser. Aside from their applications
in fiber optics technology, this is one of their features of current interest.
Particularly, the incorporation of photonic crystal in the laser design is intended to
be an aid in achieving this lowering of the lasing threshold and the increase of
device efficiency. These techniques are helpful in the goal to create highly efficient
so-called zero threshold lasers, and the reader is referred to the literature for further
details of these applications [3].

7.3 Spasers

Another type of laser device that can be important to nanoscience technologies is
the spaser [4]. Spaser stands for surface plasmon amplification by stimulated
emission of radiation, and it involves the creation of an output of amplified coherent
surface plasmon-polaritons. In contrast, the laser involves the creation of an output
of amplified coherent light. Both of these devices have applications in nanoscience,
but the spaser has a focus on plasmonic technologies.

The direct generation of surface plasmon-polaritons on a surface can be of
importance in study of plasmonic circuits and in the operation of plasmonic devices.
In such systems, the indirect introduction of surface plasmons onto a surface by
means of the coupling of a laser output into the surface plasmon-polariton modes can
often be inefficient. In most cases, it more effective to avoid intermediary process and
to introduce surface plasmons by means of spacers [4].

The principles for the operation of a spaser are very close to those of a laser. An
example of a simple spaser geometry is a nano-spherical shell which is either coated
with or encloses a layer of quantum dots. In this arrangement, the nano-shell
supports surface plasmon-polaritons modes and acts as a resonator for these modes.
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The quantum dots are the active media for the generation of the surface
plasmon-polaritons. Consequently, the two components central to the spaser
operation are the nano-resonator and the quantum dots.

First consider the operation of the quantum dots. In the spaser operation an
excited state of independent electrons and holes is introduced into the quantum
dots. These then relax to form bound excitons with energies near those of the
surface plasmon-polariton modes of the nano-resonators. As the excited exciton
states of the quantum dots return to the ground state they radiate into the surface
plasmon-polariton modes of the nano-resonators [4].

The second component of the spaser is the nano-resonator. This receives the
energy from the excitons formed in the quantum dot and performs the stimulated
emission function of the resonator in the laser. In this case, however, the amplified
radiation is that generated in the surface plasmon-polaritons of the resonator modes.

As is seen, the spaser differs from the laser in the nature of the modes outputted
from the device. The surface plasmon-polaritons outputted from the spaser are a
combination of electromagnetic modes and modes of the dielectric. In addition, the
surface plasmon-polaritons are based on different type of resonator principles from
those of the optical laser resonator. Particularly, the wavelengths of the surface
plasmon-polariton resonators involve smaller wavelength excitations than those
typically handled by laser resonators. Laser resonators require length along the axis
of the emission of radiation that are multiples of half-wavelengths of the light being
emitted. This means that nano-particles can perform the resonator function in spaser
designs [4].
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Chapter 8
Near Field Microscopy

In the following, some of the basic considerations at the foundation of near field
microscopy are presented [1–5]. Near field microscopy is a new form of microscopy
which was first proposed in 1928 as a means of increasing microscope resolution
over that available by traditional techniques of far field microscopes. In this regard,
it offers great potential applications both in nanoscience and in the study of
biological materials. It has taken many years to realize the ideas of near field
microscopy into functioning devices, but since the 1980s near field microscopy has
developed into a recognized laboratory technique. Recently, a Nobel Prize has been
awarded based on the applications of near field microscope techniques.

Microscopy can be roughly divided into two basic methodologies [1–10]. These
include far field and near field microscopy. The older technique of far field
microscopy is formulated on systems involving designs based primarily on focusing
arrays of lenses. In far field microscopy, light from an object, located several
wavelengths away from the collecting aperture of the microscopy, is focused by the
microscope into an image. This is accomplished through the interaction of light
generated at the object with the lenses of the device. In this way, ultimately the light
is steered to form an image of the original object which approximates the features
found within the object.

In the study of systems based on far field techniques several factors contribute to
the successful application of the microscopy. Specific questions affecting the use-
fulness of the microscopy involve the quality and the magnification of the images
generated by the system. Regarding these considerations, it is found that to suc-
cessfully relate information about the nature of the object, the microscope must
form a clear, detailed, image of the system. This must be done on length scales
relevant to the level of detail at which the object needs to be understood.

An important aspect of the image formation properties of the lenses in far field
systems is, then, the resolution of the features of the image created by the system.
To understand in detail the factors affecting the image resolution, it is helpful to
treat an object as a collection of points in space. The question of the resolution of
the system is then one of how close together two points can be separated in the
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object and still show up as distinct point in the image generated by the microscope.
As shall be seen, in the case of the far field microscope this property is essentially
limited by the diffractive nature of light.

The object of a lens system can be regarded as formed as a collection of points
sources of radiation, but in terms of a far field image of the optical system these
points are really spread out in space. That is they are not resolved as points but as
localized distributions of intensity. Due to the lens apertures of the system and the
nature of the modes of light that can be collected by the microscope, a point sources
of radiation is imaged by the system in the form of little diffraction patterns. To
understand in more detail how this difference comes about consider the difference
between geometric and wave optics.

In the theory of geometric optics, the wave nature of light is ignored.
Consequently, under the considerations of geometric optics each point of an object
is ultimately projected by the lens system into a point of the image generated by the
optics. This is done through the geometric mapping of the object into the image on
a point by point basis [11].

In a more precise treatment, however, light travels through the far field system
by Huygen’s principle as a sum of phase generated processes [11]. This accounts
for the diffractive effects of light. It is ultimately the reason why the imagen formed
by a point in the object shows up in the image as a little diffraction pattern rather
than a perfect point. The transfer of light through the microscope is a process of
Fourier transfer which is only approximated by the transfer entailed in geometric
optics.

Due to the diffraction effects, whether two object points can be distinguished
from one another on the image formed by the microscope depends on the diffraction
patterns they create on that image. After being mapped through the system the two
points show up as two diffraction patterns which must be distinguished on the
image. It is generally found in optical systems that the separation distance needed to
distinguish between two points in the image is half of the wavelength of the
radiation being used in the imaging. Consequently, this is a natural limitation of the
ability of a far field microscope to form a detailed image. This limitation is removed
in the consideration of a near field microscope which shall next be discussed.

The technique of near field microscopy, unlike that of far field microscopy, is
intimately tied to the study of surface and evanescent electromagnetic waves [1–
10]. It is a method in which the most important fields in the measurement process
include the evanescent waves near the surface of the object. Typically, the probe
forming the collection device of the microscope must be located at a distance from
the object surface which is less than a wavelength. This is different from the case of
the far field microscope which collects light that has traveled a distance of many
wavelengths from the object.

In the following, after a discussion of evanescent waves, the basic ideas of near
field microscopy will be introduced. These involve the applications of probes to
determine the localized field intensities at a measuring surface. In practical
implementations, many variations on this type of light collection system are
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encountered. In the presentation, a focus is on how near field techniques allow for
the increased resolution over that obtained in far field microscopes. A brief review
is then presented of some recent experiments based on the near field microscope.

8.1 Evanescent Waves

In order to understand the importance of evanescent waves in the subwavelength
imaging of the surface properties, consider the propagation of electromagnetic
waves in a vacuum region above a surface which is planar on average [1–5]. (See
the schematic is Fig. 8.1a.) The average surface is the x-y plane and separates a
region of vacuum above the interface from a region of dielectric media located
below the interface. The idea is to collect information about the surface properties
from the radiation received from the surface.

The waves in the vacuum region, used in the imaging of the surface properties,
have two basic forms. These include waves that propagate away for the surface and
waves that decay evanescently away from the surface. The propagating waves are
the waves that are studied in far field optics while the evanescent waves generally
decay to zero before entering the far field microscope. Both the propagating and
evanescent waves carry information about the surface properties, and this accounts
for the less than perfect resolution of far field microscopes.

The difference in the propagating and evanescent waves is now discussed. In
particular, it is shown that these two types of waves carry different information
about the Fourier components of the surface properties. Consequently, to develop a
complete understand of the surface both components of information need to be
gathered in an effective microscopy of the surface. The near field microscopy
techniques used to develop a more complete set of information about the surface are
the topic in the remainder of this chapter.

The first form of radiation from the surface is that of a propagating plane wave.
This is given by

~E x; y; z; tð Þ ¼ ~E0 exp i kxxþ kyyþ kzz� x
c
t

� �h i
: ð8:1Þ

Here the wave vector component for propagation away from the surface is char-
acterized by kz [ 0 which is written in terms of the frequency and other wave
vector components as

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
� k2x � k2y

r
: ð8:2aÞ
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A consequence of (8.2a) is that the inequality

k2x þ k2y\
x2

c2
ð8:2bÞ

Fig. 8.1 Schematic figures:
a the interface between the
semi-infinite
vacuum-dielectric media,
b the scattering of surface
waves from a dielectric sphere
in close proximity to a planar
vacuum-dielectric interface.
In b the dielectric sphere
above the surface is of radius,
a, and has a dipole moment,
p. An image of the dipole
sphere above the surface is
located below the surface and
has an image dipole moment
p0. Evanescent
electromagnetic surface
waves on the planar surface
are scattered by the dielectric
sphere and its image into bulk
waves in the two media
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must hold in order to have a real z-component of the wave vector. It is important to
note from this that the requirements of a propagating wave are seen to have a
fundamental limitation on the x-y Fourier components that can be radiate from the
surface. This restriction is posed by the inequality in (8.2b).

To understand this, consider the imaging properties of the waves propagating
away from the surface. Specifically of interest is the ability of the propagating
waves to care information about the surface and to relate this to the image formed
by the microscope. For these considerations, the surface structure properties can be
described by functions of the form f x; yð Þ and their representation by Fourier series.
In this format, the surface properties take the general two-dimensional form

f x; yð Þ ¼
Z

d2kf̂ kx; ky
� �

ei kxxþ kyyð Þ; ð8:3Þ

and, for an accurate representation of the property f x; yð Þ, all its Fourier components
must be used by the microscope in the creation of the image.

It should be noted, from (8.1) through (8.3), that if the propagating electro-

magnetic wave is to efficiently carry off information regarding the ei kxxþ kyyð Þ
component in (8.3), the condition

k2x þ k2y\
x2

c2
ð8:4Þ

must be satisfied. This is a restriction on the ability of the propagating waves to
carry information from the surface in far field microscopy.

In the case that the condition in (8.4) is not satisfied, the surface information
remains localized about the interface. As a result, surface features with lengths less
than

Ls ¼ 2p
x=c

¼ k ð8:5Þ

will not be accurately represented in the image generated by a far field microscope.
This is a consequence of the fact that the far field microscope only images the
information carried to it over distances of many wavelengths by waves propagating
from the object surface.

The second type of electromagnetic solution at the surface is the evanescent
waves. These are of a form given by

~E x; y; z; tð Þ ¼ ~E0 exp i kxxþ kyy� x
c
t

� �
� kzz

h i
: ð8:6Þ

They represent fields moving along the interface but with components that decay
away from the surface. In (8.6) the exponential decay of the fields away from the
surface is characterized by a real kz given by
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kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y �

x2

c2

r
: ð8:7Þ

Consequently, the condition on kz in (8.6) and (8.7) so that the wave is localized
on the interface is that k2x þ k2y [

x2

c2 . If this condition does not hold, (8.6) reverts to
the propagating wave solutions in (8.1) and (8.2). While the solution in (8.1) and
(8.2) is the focus of far-field microscopy, the second type of solution in (8.6) and
(8.7) is the focus of near field microscopy.

The reason for the need of a microscopy based on the evanescent waves in (8.6)
and (8.7) is that they are waves containing the short length scale information about
the interface. These evanescent waves uniquely contain information which char-
acterizes surface features on lengths, l, satisfying

l \ Ls ¼ k: ð8:8Þ

Schemes of near field microscopy, then, focus on the extraction of the infor-
mation contained in the evanescent waves localized about the interface as well as
the standardly treated long wavelengths of far field optics.

An important way of accessing the information in the surface modes is based on
the scattering of evanescent waves by a feature placed on or near the surface to be
imaged. This is the basis of near field microscopy.

In this regard, in earlier discussions of plasmonics it was shown that surface
plasmon-polaritons were bound electromagnetic modes at the planar interface
between two media. There they were shown to propagate along and to be localized
at the interface. It was also discussed how a perturbation on the interface could
scatter the surface plasmon-polaritons into waves propagating away from the
interface. The scattering converts the evanescent surface waves into propagating
waves which move away from the interface. These propagating waves, created from
the scattering of evanescent waves, can carry the information contained within the
evanescent waves so as to be received in the far field.

These type of studies of the scattering of surface waves will now be revisited as
an introduction to techniques of near field optics. They provide a basis of the
scanning probe technology upon which near field microscopy is based, the details
of which will be addressed later.

8.2 Model of a Surface Probe

In near field microscopy, the idea is to place some type of probe or scattering
feature within a wavelength of the surface. The probe or feature causes a transition
of the evanescent fields on the surface into scattered propagating fields which are
then picked up in the far field. There are a variety of different arrangement that can
be made to accomplish this scattering and to collect the resulting propagating fields.
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As the probe or feature is scanned across the surface the variation in the collected
scattering must be interpreted to arrive at an understanding of the nature of the
surface properties generating the collected fields.

A simple model of this process can be given in terms of a sphere of dielectric
placed above a surface. The dielectric sphere is intended to model a probe or
scattering feature which is meant to transform the information in the evanescent
fields to propagating modes in the far field. This model will now be discussed in
terms of it scattering properties.

In Fig. 8.1b a schematic of the scattering problem is considered [3]. The planar
interface is between vacuum (above the interface) and a dielectric medium of
dielectric constant e (below the interface). Above the interface in the region of
vacuum is a dielectric sphere of radius, a, and polarizability, a. The center of the
sphere is located a distance r[ a from the surface so that z ¼ r � a is the distance
from the bottom of the sphere to the surface. In the following considerations, the
scattering interaction in the system of an electric field E applied normal to the
interface is treated in the quasi-static approximation [3].

The problem is solved based on the method of images. The applied electric field,
in its leading order interaction, induces a polarization in the spherical dielectric
which is given by [3]

p ¼ aE: ð8:9Þ

The induced dipole in turn generates a dipole field given at the nearest point of
the adjacent surface by the expression

Edipole rð Þ ¼ p
2pr3

: ð8:10Þ

In the quasi-static limit an image dipole is induced by the dipole fields from the
generated dipole in (8.9). The form of the image dipole is given in terms of the
induced dipole in the vacuum by [3]

p0 ¼ e� 1
eþ 1

p ¼ bp ð8:11Þ

and is located with its center at a perpendicular distance r below the surface. In the
formation of the imaging dipole, the vectors of the dipole above the surface and its
image below the surface are opposite to one another. Furthermore, the image is
chosen so that the fields of the dipoles above the surface and the semi-infinite media
below the interface are given as the sum of the fields from the dipole above the
surface and its image below the surface.

This process of induction can be continued on as the fields from the image dipole
contribute to the dipole moment induce in the sphere located in vacuum, and the
subsequently affected moment of the sphere in vacuum changes the fields at the
image. A whole series of perturbations generated in this way then needs to be
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summed and taken into account. In this manner, it is found that the total induce
moment of the sphere in vacuum becomes [3]

p ¼ a

1� ab
16p zþ að Þ3

E: ð8:12Þ

An electric field is found to arise from the induced dipole above the surface and
its imagine in the dielectric medium below the surface. It is found that the effective
fields from these two dipole sources can be represented by a field arising from an
effective dipole located on the interface. In this way, the sum of the two dipoles
represented by spheres in Fig. 8.1b is, to leading order, an effective dipole at the
surface given by

peff ¼ aeff E ð8:13Þ

where the effective polarizability is given by [3]

aeff ¼ a 1þ bð Þ
1� ab

16p zþ að Þ3
: ð8:14Þ

The effective polarization, peff, generated as a response to the applied electric
field, E, is the origin of the far field dipole radiation entering the system in the form
of bulk propagating scattered fields. In this generation, the electric field E driving
the effective polarization can be composed of both incident propagating fields and
surface evanescent waves. As a result, the effects from evanescent waves are only
part of the source of the generated fields.

In an ideal microscopy, however, the evanescent waves would be a predominant
source of the effective polarization. Consequently, a number of techniques have
been introduced to enhance the components of the scattered field that originate in
the surface evanescent waves. This is to improve the performance of the near field
microscope, separating out from it effects not related to the evanescent waves.
These techniques will be mentioned later.

Some additional considerations regarding the coupling between surface and the
incident fields are also needed in understanding the application of the above results.
Two types of scattering processes occur as the incident wave encounters the surface
and dielectric sphere. In a first type of scattering the incident fields of the light
couple to a larger region of the surface surrounding the sub-region containing the
induced dipole. Consequently, a component of the scattering is from the dielectric
mismatch at the interface along with surface structure that is present at the interface.

A second scattering component is related to the smaller region of the effective
dipole composed from the sphere in vacuum and the image of the induced dipole.
A number of techniques have been developed to make a separation of these two
different contributions in the generation of bulk waves leaving the interface.
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This lets the features with small length scales to become easier to identify from
those features arising from the scattering of propagating waves.

In the development of a near field microscope an effective design must be
employed which emphasized the processes involving evanescent waves in the
generation of the bulk waves scattered from the surface. This allows for the
identification of the subwavelength features of the surface. In addition, a focus must
be on these interactions at the position of the surface probe. The variety of other
phenomena mention in the earlier paragraphs must be minimized for an effective
result in the determination of surface properties [3].

8.3 First Proposal by Synge

The earliest proposed system of near field microscopy, based on some of the
features of the scattering problem in Fig. 8.1, was put forth by Synge in 1928 [1–5,
12, 13]. The idea of Synge was to make a system for the measurement of surface
properties that involved the surface to be measure, a light source, and an opaque
screen pierced by a subwavelength hole. A schematic of the measuring configu-
ration is shown in Fig. 8.2.

During the measurement process the screen is kept at a constant separation from
the mean surface and is sequentially moved over the plane of the surface in order
to make a series of measurements. A fundamental requirement of these

Fig. 8.2 Synge’s method: The screen and the surface are separated by a distance which is less
than a wavelength of the radiation emitted by the source, and the aperture in the screen has a
subwavelength diameter
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measurements is that the separation between the screen and the mean surface must
be less than a wavelength of the measuring light originating in the light source.
This is needed so that evanescent waves emitted from the subwavelength hole in
the screen can be efficiently coupled into the surface interaction required for the
microscopy of the surface. It represented a major problem in the implementation of
Synge’s ideas [12, 13].

The smaller the separation between the screen and surface, the greater is the
concentration of evanescent waves in the region between the screen and surface. As
shall be discussed, this enhancement of evanescent waves is a fundamental basis
effecting the quality of the near field microscopy. The development of means for the
subwavelength positioning of the screen and surface is, in fact, the primary reason
near field microscope took fifty years from its initial proposal to develop.

In the course of the sequential processes, a measurement is first made at one
positioning of the screen. Following this the screen is moved to another position
over the mean surface at which another measurement is performed. Results from
each of these measurements is recorded and correlated with the positions on the
mean surface at which each of the measurements was made. This generates a map
of recorded measurement made over the plane of the mean surface.

For each of the measurement, light is incident on the screen from a source at the
top of the schematic figure. Upon encountering the screen most of the light is
reflected and absorbed, but a small portion is passed by the screen and sent on to the
surface of the sample. This component of light is composed of a mixture of waves
that are propagating waves and/or evanescent waves that leave the screen to interact
with the surface being measured.

The light passed by the screen interacts with the surface, and the light resulting
from this interaction is ultimately collected by a device which records its intensity.
The measured intensity creates what is essentially a pixel of light with an intensity
determined by the properties of the surface being measured. The surface properties
recorded through their effect on the light detected include: the surface profile, the
physical and chemical properties of the materials forming the surface, and the
properties of the surface plasmon-polariton modes at the surface.

Following an intensity measurement of the pixel the screen is moved parallel to
the mean surface and another pixel measurement is made. This is done throughout
the entire surface and the pixel intensities are recorded, forming an intensity map
over the region of the sample that is being investigated. It then remains to interpret
the map of pixel intensities and correlate these with the physical property of the
surface that is of interest.

In the Synge approach the conversion of the evanescent waves passing the
subwavelength aperture to bulk far field modes provides the subwavelength reso-
lution of the microscopy. These evanescent waves contain the small wavelength
components need for the accurate image the surface features. However, as with the
considerations of the model in Fig. 8.1b, the signal received in the formation of the
pixels has origins in both evanescent and propagating components [1–5, 12].

As noted earlier, the emphasis of the microscope should be on intensities with
origins in the evanescent components. These contain the measurement of the small
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wavelengths features and must somehow be separated from those of the longer
wavelengths which are a type of noise in the microscopy.

Another important feature of the outlined technique is that the resolution of the
surface features is governed by the size of the aperture in the screen. In this regard,
the ability to make apertures which can be much less than the half-wavelength
limitation of far field microscopy is very important. In the near field system
diffraction is not so much a problem as that the operation is based on the presence
of evanescent waves, and the resolution of the near field microscope is essentially
the diameter of the subwavelength aperture it is based upon.

8.4 Subsequent Realizations

In the realizations of the near field technique made since its proposal, the movable
screen is often replaced by a scattering tip or a tapered fiber optics waveguide with a
metallic coating applied over its length. (See Fig. 8.3 for a schematic of these
components.) The idea is to pass the scattering tip or tapered waveguide over the
surface as a probe of the surface, and the difference between the probes is that the
tip is a scattering site whereas the tapered guide is a light pipe which emits or
collects radiation at its tip. Similar to the screen with an aperture, the probes are
positioned to be within less than a wavelength of light from the surface being
imaged. The readings from the probes are then make sequentially to form an
intensity map over the surface [1–10, 12].

Fig. 8.3 Two types of
probes. In a the probe is a
scattering tip and in b the
probe is a tapered fiber
waveguide with a metal
sheath. In some cases fiber
waveguide probes are made
without the metal cladding
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In the case of the scattering tip an arrangement similar to that of an atomic force
microscope is often made in guiding the tip over the surface. Specifically, an atomic
force microscope is designed to measure the profile of the surface by using an
electronic feedback arrangement. This mechanism maintains a constant separation
distance between the probe and the surface being measured. In the near field
microscope, the same feedback mechanism can be used in scanning the microscope
tip of the near field system so that it maintains a fix height from the surface. The
light scattered by the tip is then collected in the formation of the pixel profile of the
surface properties [1–5].

For the measurements made with the scattering tip, light can be incident on the
surface-tip system from above or below the surface. The collection of the scattered
light can also be made from above or below the surface. No matter the configuration
chosen, as with the original proposal made by Synge, the resolution of the tapered
waveguide tips is fixed by the aperture of the tip. Such types of system have been
used in a variety of near field arrangements and systems and have achieved reso-
lutions even at the level of molecular scales [1–5, 10].

As another example, a collection device is based on waveguides. In one
waveguide configuration, the tapered waveguide is a source of radiation passed
within a wavelength of the surface. This is the case employing a waveguide without
the metal cladding. In this mode of operation, the tapered waveguide replaces the
subwavelength hole within the screen in the original proposal of Synge. The pixels
are then formed by this method in the same way as in Synge’s screen system. The
system, however, can also be reversed and operated so that light form the surface is
collected by the tapered waveguide. This collected light is then used to make a pixel
and the resolution of the microscope is again set by the subwavelength aperture.

In the case of the tapered waveguide with the metal coating, the waveguide can
act either as a source or collector of the scattered light in the system. In some cases,
however, it can be both the source and collector of the light interacting with the
surface. In all the examples considered, the emission and collection of the tapered
waveguide is made at the tip of the waveguide which is left without a metal
covering. Only the cylindrical sides of the waveguide fiber are cover with metal.

Another method proposed by Synge that can be of application is a near field
microscopy developed by placing a dielectric particle on the surface. In this
method, the particle would act as a scattering site for the formation of a pixel. By
moving the particle, a pixel map of the surface is then formed. The physics oper-
ating here is very similar to the scattering problem treated in Fig. 8.1b.

As a final important note about the near field techniques, it should be pointed out
that they can also be applied to a variety of spectroscopic methodologies. These
include the inelastic events arising in various Raman and fluorescent spectro-
scopies. The near field application enables for the local study of structures which
emit signals based on the inelastic transitions arising from these types of spectro-
scopic transitions. Such features can then be mapped over the surface of the sample
just as the structure and compositional features of the surface are revealed by the
elastic counterpart of near field microscopy [1–10].
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8.5 An Experimental Result

As an example of some experimental results, in Fig. 8.4 results are shown from [1]
for the imaging of a grating using atomic force microscopy and three variations of
the near field optical techniques.

In Fig. 8.4a, b the atomic force microscopy of the grating surface is shown.
Specifically, Fig. 8.4b shows a plot of the profile height of the surfaces as a function
of distance along the line indicated in white in Fig. 8.4a. The grating was etched in
a glass surface and was formed with a period of 383 nm and a step height of 8 nm.

A scanning near field microscope results for the imaging of the grating are
presented in Fig. 8.4c [1]. In this figure the imaging is made with a probe con-
figuration at a constant height of 1 nm. Similar results are presented in Fig. 8.4d, e,
shown for constant probe height at a few nm and at 100 nm, respectively. From
these figures, it is found that the resolution of the scanning near field microscope is
strongly dependent on the separation of the probe from the surface. The closer the
probe is positioned to the surface, the better is the image formed [1].

An example from biology of the interesting application of near field microscopy
is in recent development of fluorescence microscopes for the study of biological
materials [14]. These rely on the fluorescent response of biological materials and/or
stains applied to these materials to develop the images of subwavelength features in
these materials. In Fig. 8.5 are presented some microscopic studies of human cells
and those of other organisms studied by these means. The focus of the study was to
apply various processing techniques to enhance the resolution of images obtained
by near-field techniques. For the details the reader is referred to the original liter-
ature [14].

Further results are available in the literature for both physical [1–8, 10] and
biological samples [1–5, 9]. These include microscopy result based on the elastic
scattering of light as well as applications of florescent and Raman spectroscopy
effects in these systems.

Fig. 8.4 Scanning near field microscope results compared to results from a study of atomic force
microscopy of a grating etched on a glass surface. The results in: a and b are for the atomic force
microscope. The results in c–e are from a near field microscope with heights of 1 nm, several nm,
and 100 nm, respectively. The results are taken from [1]. Reproduced from [1] with permission of
AIP Publishing
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As a final point it should be noted that subwavelength resolution has also been
achieved using techniques based on photonic crystals [15] and metamaterials
[16, 17]. Some of these techniques have been discussed in earlier chapters. In
addition, the techniques of near field microscopy have recently been extended to
acoustic microscopy where they have achieved resolutions on the scale of
nanometers [18].
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Chapter 9
Nonlinear Optics

In this chapter some of the basic ideas of nonlinear optics are presented as they
apply to nanoscience [1–24]. The presentation is aimed at giving an introduction to
a few important phenomena that are found to be useful to technology. In this regard,
a particular focus is on photonic crystal applications as these systems have been
most addressed in the recent literature. Nevertheless, the topic is much broader than
this, and, as an aid to the interested reader, some applications of nonlinearity in
other areas of nanoscience are briefly mentioned.

Nonlinear optics covers a great variety of topics and is responsible for the
explanation of a large number of different optical phenomena [25–28]. There are,
however, two general types of phenomena that have drawn most of the recent
attention in the study of nano-systems. These are phenomena arising from Kerr
nonlinearity and phenomena arising from the generation of second harmonics of
radiation.

Kerr nonlinearity is a property, found in many nonlinear optical materials, in
which the material exhibits an index of refraction that is dependent on the intensity
of the electric field applied to it [1, 25–28]. The effect is small and usually requires
the application of intense light such as that generated in lasers for its observation.
Depending on the particular medium under consideration, increasing the intensity
of the electric field applied to a material can either increase or decrease its refractive
index.

By changing the index of refraction through the application of an external field
intensity, Kerr nonlinearity has been a focus in the design of various switching
devices. The idea is based on configuring an optical device in which small changes
of the refractive index of a component can redirect or turn on and off a particular
response of the system. Proposals of various optical diodes and transistors have
been made based on this type of switching effect.

Another effect of Kerr nonlinear systems is that they can support soliton-like
excitation modes [1, 28]. These are new types of modes that exist solely due to the
nonlinearity of the system, and they are not present in linear systems. The basic type
of solitons are bright solitons, dark solitons, and grey solitons.
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A soliton is formed in a system of nonlinear media as an excitation having a field
intensity pattern that causes a particular change in the index of refraction of the
media [1, 28]. The change of the index of refraction is made in such a way as to
self-consistently support the field pattern of the soliton excitation. In this scheme,
then, the field modifies the index of refraction which in turn leads to a variation of
the index of refraction of the system supporting the modifying field.

A consequence of this is that a soliton intensity pulse can be supported in a
nonlinear system. This type of pulse excitation is known as a bright soliton.
Similarly, under the proper conditions an intensity dip can be supported in a
nonlinear system. This type of soliton excitation then travels in the system as a
pulse of decrease in field intensity. If the dip gives a drop in intensity going to zero,
the soliton is a dark soliton. In the case that the dip is a drop in intensity going to a
non-zero intensity minimum, the soliton is a grey soliton [1, 28].

These types of intensity pulses and dips can have a variety of technological
applications. They have been a focus of recent considerations in the context of fiber
optics and in photonic crystal wave guides.

The second phenomenon of nonlinear optics to be treated here is second har-
monic generation of light [1–28]. This is a nonlinear phenomenon in which a
fundamental of light inputted into the nonlinear media has an outputted component
generated at twice the frequency of the fundamental. It has a number of techno-
logical applications and a number of technological problems to be overcome in its
generation.

As an elementary focus on these two types of nonlinearity, they shall both be
discussed in the context of one-dimensional optical systems. This allows for a
simple analytic treatment which illustrates the basic theory of the systems being
considered. Higher dimensional systems usually required computer simulation
methods which give a poorer illustration of the physics involved. A brief review
will be made of some of the literature regarding higher dimensional systems treated
by simulation methods.

In the following, first a treatment will be given of a one-dimensional (layered)
photonic crystal composed of Kerr nonlinear optical media. A theory of the
properties of the excitations in the system will be discussed with a particular focus
on the new soliton modes. This will be followed by considerations of the generation
of second harmonic of radiation within a nonlinear media and some indications of
how photonic crystal and other nanoscience systems can be used as an aid in the
efficient generation of second harmonics of radiation.

9.1 Photonic Crystal Composed of Kerr Media

In the following section discussions are presented of the physical properties of
photonic crystals formed of Kerr nonlinear media. This is done using
one-dimensional models of photonic crystals in which the system is formed as a
periodic array of dielectric layers. The one-dimensional models are simple enough
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that they can be treated analytically. At the same time, they exhibit many of the
important properties of photonic crystals in higher dimensions. In addition, they are
often of interest from a technological standpoint in the design of optical diodes,
transistors, and optical coatings.

As in the case of one-dimensional photonic crystals composed of linear media
(see Chap. 2), the solutions of the electrodynamics of one-dimensional photonic
crystals composed of Kerr nonlinear media can be written in terms of the individual
solutions within each of the slabs of the layering. In this process, the individual
solutions obtained in each of the layers are matched to one another by applying
appropriate electromagnetic boundary conditions at the interfaces between adjacent
slabs. The total solution for the electrodynamics of the photonic crystal is then
given by the piecewise matching of these individual slab solutions [1, 28–33].

Applying this procedure along the complete layering generates a system of
algebraic equations relating the field amplitude coefficients between adjacent
interfaces of the dielectric slabs to one another. The resulting set of difference
equations is often easily solved to obtain a variety of scattering and standing wave
solutions for the electrodynamics of the system. In many systems the relation
between the coefficients of adjacent interfaces are expressed as matrix equations so
that, consequently, the procedure is often referred to as the transfer matrix method.

In the following discussions the transfer matrix method will be used to study the
electrodynamics of one-dimensional photonic crystals of Kerr nonlinear media for
electromagnetic waves that are propagating in the system incident normal to the
slab surfaces [29, 30, 32, 34]. Due to the dependence of the Kerr index of refraction
on the intensity of the electric field, the electromagnetic dispersion relation and
scattering interactions in the layered system are found to be dependent on the
amplitude of the electromagnetic waves. This, however, does not affect the energy
conservation of the waves as it is easily shown that the energy is conserved under
refractive interactions at the interfaces of Kerr media and other Kerr or linear media.

The transfer matrix method arises from a consideration of a single slab or layer
of dielectric medium. Consequently, in the following, single slab treatments will be
given which are appropriate for both linear media or Kerr media slabs [1, 29, 30,
32–34]. For these discussions, the slab surfaces are taken to be in the x-y plane and
the direction of normal incidence on the slab surfaces is the z-axis. (See Fig. 9.1 for
a schematic of the slab surrounded by vacuum.) The electric and magnetic field
vectors of the wave solutions are taken to be polarized in the x-y plane. To begin the
discussions, consider a single slab with surfaces located at z ¼ zm and z ¼ zmþ 1.
The matrix is considered to have an unspecified index of refraction which is
allowed to be position dependent.

Within the slab the electric field amplitudes obey a Helmholtz equation of the
form [1, 29, 30, 34]

d2Em

dz2
þ x2

c2
n2ðzÞEm ¼ 0 ð9:1Þ
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where nðzÞ is the index of refraction and x is the mode frequency. The Helmholtz
equation is a second order differential equation so that it has a solution with the
general form

Em ¼ Em z;Am1;Am2ð Þ ð9:2Þ

where Am1 and Am2 are two integration constant which are to be fixed by the
boundary conditions.

As an example of (9.1) and (9.2), consider the case in which the slab is com-
posed of linear medium of constant refractive index n. In this limit the field within
the slab is given by the form [1]

Fig. 9.1 A single dielectric slab with surfaces at z ¼ zm and z ¼ zmþ 1
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Em ¼ Am;1eikz þAm;2e�ikz; ð9:3Þ

where k ¼ n x
c . Similarly, in the vacuum to the left of the slab the fields are of the

form

Em�1 ¼ Am�1;1eik0z þAm�1;2e�ik0z ð9:4Þ

where k0 ¼ x
c , and in the region of vacuum to the right of the slab the field is given

by

Emþ 1 ¼ Amþ 1;1eik0z þAmþ 1;2e�ik0z: ð9:5Þ

Each of these solutions exhibit the general form of (9.2).
Now consider the case of the linear medium slab with solutions given in (9.3)–

(9.5) and determine how the amplitude coefficients in the two vacuum regions are
related to one another. The boundary conditions at the interface between the slab
and each of the vacuum regions are that the electric field and the z-derivative of the
electric field are continuous at the interface. Matching the solutions in both vacuum
regions with the solutions within the slab, the coefficients in the vacuum to the left
of the slab can be related to those in the vacuum on the right of the slab. In this way
a matrix equation form [18] is generated.

The resulting matrix relation can be written as [1]

MðmÞ11
MðmÞ21

MðmÞ12
MðmÞ22

�����
����� Am�1;1

Am�1;2

����
���� ¼ Amþ 1;1

Amþ 1;2

����
���� ð9:6Þ

where the matrix elements MðmÞi;j for i; j ¼ 1; 2 are association with the slab
labeled m and are written in terms of the dielectric parameters and the positions of
the two surfaces of the slab [11, 12, 18, 35, 36]. For the linear dielectric medium the
Mi;j are expressed in terms of algebras involving plane wave forms.

In the case of the general system in (9.1) and (9.2) the problem is a little more
complicated. Now the coefficients Am�1;1;Am�1;2

� �
are related to Amþ 1;1;Amþ 1;2

� �
by two relationships obtained from the boundary conditions. Given these two
relationships, however, a complete solution of the electrodynamics of many inter-
esting problems can be easily written down. The procedure is essentially the same
as that used in the treatment of systems based on (9.6).

As an important example of such a transfer matrix problem, consider the scat-
tering of an electromagnetic plane wave incident on a finite photonic crystal lay-
ering of slabs. In this example, the solution for a plane wave at normal incidence
from the left on a finite array of slabs N is studied. The object of the discussions is
to obtain the scattered and reflected wave components of the system.
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To generate the solution start at the right hand edge of the layering, considering
the slab on the far right of the array. In the region on the right of this slab there is
only a transmitted wave. This transmitted wave is given by the form [1]

Emþ 1 ¼ teik0z: ð9:7Þ

where t is the transmission amplitude of the wave. In particular, it is seen from (9.7)
that in the region of vacuum to the right of the array the field only propagates away
from the layers and to the right.

Given the form of the scattered solution in (9.7) it only remains to apply the
transfer matrix method to obtain the other scattering amplitudes along the chain. In
this process one moves towards the left on the array of slabs, relating the sets of
amplitudes Am�1;1;Am�1;2

� �
; Amþ 1;1;Amþ 1;2
� �

to each other and to the amplitude
t. In this way, eventually all of the coefficients in the layering can be given in terms
of t.

At the far left of the array, to the left of the left most slab in the finite layering,
the vacuum fields are of the form [1]

Em�1 ¼ ieik0z þ re�ik0z ð9:8Þ

where i and r are the amplitudes of the incident and reflected waves, respectively.
Again, applying the boundary conditions expresses i and r in terms of t.

From (9.7) and (9.8) and field amplitudes the reflection coefficient is given by

R ¼ r
i

�� ��2 and the transmission coefficient is given by T ¼ t
i

�� ��2. As an expression of
energy conservation, it can be generally shown that for a real index of refraction
that Rþ T ¼ 1. This is true for both linear and Kerr nonlinear media and the
processes outline above are essentially the same for both linear and nonlinear
models.

A variety of problems have been handled using one-dimensional models of
linear and nonlinear media based on the discussions outlined above [12, 18]. Not
only do many of the solutions have practical applications, but often they have exact
solutions illustrating physical principles found in the qualitative properties of much
more complex, higher dimensional systems.

Examples of such nonlinear properties illustrated by layered media models
include: (a) band structures [1, 25–28] with renormalized band structures and gap
soliton modes, (b) bound state impurity problems at stop band frequencies [1, 27],
reminiscent of those observed in semi-conductor electronics [1, 25–28], displaying
impurity energy levels dependent on the intensity of the fields at the impurity site,
(c) optical properties which exhibit bistability behaviors, e.g., bistability of some of
the transmission and dispersion properties of the modes of the system [1, 25–28],
and (d) various types of properties related to disorders in the one-dimensional array
[1]. In addition, Kerr nonlinearity in one-dimensional systems has also, in its own
right, been of technological application in the development of optical switches [1,
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25–28] and optical diodes [28] for opto-electric circuits. For the details of these
treatments the reader is referred to the literature.

In the following the transfer matrix techniques outline above will be applied to
problems involving finite layered media. In particular, some discussion of the
transmission and reflection properties of finite layers and coatings at dielectric
interfaces and mirror surfaces will be presented. These provide important illustra-
tions of the general features of photonic crystals involving nonlinear dielectric
media, including the dispersive properties of the electromagnetic excitations and the
nature of soliton solutions. In addition, many of the properties of infinite photonic
crystals are seen to be approximated by these finite structures which are in their own
right of significant technological interest.

9.1.1 Model of Finite Kerr Nonlinear Layers: Scattering
Properties

The problem of the scattering of a normal incident plane wave from a finite layering
of a one-dimensional photonic crystal composed of Kerr nonlinear media illustrates
many of the basic feature of general photonic crystals formed of Kerr nonlinear
media [1, 29, 30, 34]. These include the basic properties of the band structure of the
system and of the different classes of new types of soliton modes present in non-
linear media.

In this regard, it is often found that even a system with a relatively small number
of layers displays the essential features of an infinite photonic crystal and, conse-
quently, provides a good study of these properties. Aside from the illustrative use of
one-dimensional models, they also have potential as models of technologically
important finite systems, i.e., the properties of small number of layerings can in
their own right have important technological applications in the design of coatings
at the interface of two different optical media.

In the following, finite layerings of photonic crystal will be investigated in the
context of coatings. First a treatment of a coating that transmits the incident radi-
ation from a region on one side of the coating to a transmitted wave in a propa-
gating medium on the other side of the coating will be treated. Following this a
second type of coating which is placed on a perfect conducting mirror will be
treated. In both systems a focus will be on the wave functions of soliton-like
excitations within the coating materials and the conditions on the Kerr media that
are required for the soliton modes to exist.

In the first model, a finite one-dimensional photonic crystal is composed as a
system of five identical Kerr medium slabs that are separated by four vacuum slabs.
Each of the separating vacuum slabs is of the same width as one of the Kerr slabs,
and the entire finite array is surrounded by vacuum. (An illustration of this
geometry is shown in the schematic diagram in Fig. 9.2a.)
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In terms of the slab thickness, d, the slabs of Kerr nonlinear medium are located
in the regions [34]

ð2m� 1Þd\z\2md ð9:9Þ

for m ¼ 1; 2; 3; 4; 5. The vacuum slabs separating the Kerr slabs are located in the
regions

2md\z\ð2mþ 1Þd ð9:10aÞ

for m ¼ 0; 1; 2; 3; 4. Outside the finite layering, within the regions z\ d and,
z [ 10d, are two semi-infinite regions of vacuum. The layering is infinite and
translationally invariant in the x-y plane.

In the second model, the layering of five Kerr medium slabs separated by vac-
uum slabs is interfaced on the right with a perfect conducting mirror. The right most
Kerr slab is chosen to be half the width of the other Kerr slabs of the coating and
shares and interface with the perfect conducting mirror. This arrangement is shown
schematically in Fig. 9.2b and mathematically the positions of the Kerr medium
slabs are given by [34]

Fig. 9.2 Schematic drawing
of a coating consisting of five
Kerr slabs each of thickness
d separated by four vacuum
layers each of thickness
d. Two coating models are
illustrated: a a free standing
coating surrounded by
vacuum and b a coating
applied on its right to a perfect
conducting mirror and
interfaced to the left of the
coating with vacuum. The
horizontal line in both a and
b is the z-axis and the slab
surfaces are parallel to the
x-y plane
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9d\z\9:5d; ð9:10bÞ

ð2m� 1Þd\z\2md ð9:10cÞ

for m ¼ 1; 2; 3; 4, with the vacuum slabs located in the regions

2md\z\ð2mþ 1Þd ð9:10dÞ

for m ¼ 1; 2; 3; 4. The region z \ d is vacuum and the perfect conducting mirror is
placed at z ¼ 9:5d.

As seen from the above geometries, the first model has a full scattering solution
with incident, reflected, and transmitted waves. The second model, however, has
only incident and reflected waves. While the transmission and reflection coefficients
and the associated wave functions excited within the barrier are a focus of the first
model, the discussions of the second model will focus on the wave functions
excited within the coating media and how these correlate with the band structure of
the photonic crystal coating.

In the scattering problems now considered for both systems, a plane wave of
light at infinity is normal incident from the left of the coatings. In the first model,
transmission anomalies are found to be associated with the resonant excitation of
soliton modes within the coatings at stop band frequencies. These types of modes
are referred to as gap soliton modes. In the second model, resonantly excited gap
soliton modes can be excited by the incident fields within the coating medium.
These modes show up physically as intense field enhancements associated with
bright solitons. Such field enhancements can have important technological appli-
cations [34].

The electric fields in both models are waves propagating along the z-axis at
normal incidence to the slab interfaces. They are solutions of the Helmholtz
equations for propagation in vacuum and in the Kerr medium. These are solved and
matched together by boundary conditions at the interfaces of the two different types
of media.

The electromagnetic plane waves in the regions of vacuum have a dispersion
relation k0 ¼ x=c, with electric fields that are solutions of the vacuum Helmholtz
equation given by [1, 29, 30, 34]

d2E
dz2

þ k20E ¼ 0: ð9:11Þ

The solutions of (9.11) are then expressed in standard from as a linear combination
of sin k0zð Þ and cos k0zð Þ functions.

In the region of Kerr dielectric, the index of refraction is dependent on the
intensity of the electric field. This introduces the problem of determining a correct
form for modeling the field dependence of the nonlinear refractive media. Such
models can be complex, involving index of refraction tensors and tensor relations
between the field components. Nevertheless, in a general treatment a scalar index of
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refraction, involving a simple second order relationship in the field amplitude, often
suffices to provide a semi-quantitative understand of Kerr media systems.

The nature of the field dependence of Kerr media has been studied in many
experimental systems and has been explained by theoretical considerations based
on first principles treatments of the field interactions with materials. From these
considerations a standard expression to represent the square of the index of
refraction of Kerr media in discussions of the Helmholtz equation is often taken to
be given by the form [1, 29, 30, 34]

n2Kerr ¼ n2 1þ k Ej j2
j k

: ð9:12aÞ

Here k is the Kerr parameter and n is the zero field (linear medium) limit of the Kerr
index of refraction. In experimental systems, the Kerr parameter is very small so
that the Kerr nonlinearity is generally a perturbation to the electrodynamics of
problems involving Kerr medium.

Equation (9.12a) is the simplest form of a field dependent refractive index which
models the properties of a Kerr nonlinear medium. In general, real systems tend to
be more complicated, having dielectrics represented by tensors as well as tensor
Kerr parameters. Saturation effects may also come to play. For a more detained
consideration of these aspects and for a theoretical discussion of the dielectric
model in (9.12a), the reader is referred to the literature. Here (9.12a) will be studied
as a representation of a Kerr medium which yields a solvable Helmholtz problem.

The electromagnetic solutions in the region of Kerr media described by (9.12a)
have electric fields obtained from the Helmholtz equation of the form [1, 29, 30, 34]

d2E
dz2

þ n2k20 1þ k Ej j2
h i

E ¼ 0: ð9:12bÞ

In the k ! 0 limit of the Kerr refractive index, the wavenumber k ¼ nx=c ¼ nk0,
where n is the linear part (i.e., the low power limit) of the Kerr index of refraction.
This wavenumber then characterizes the weak field behavior of the Kerr medium,
and outside this region, nonlinear effects become important. As with (9.11) an exact
solution of (9.12b) can be obtained, and it shall be shown later that the solutions of
(9.12b) are explicitly written in terms of Jacobi elliptic functions.

For the treatment of the boundary conditions in the two problems under con-
sideration, it should be noted that: At the dielectric-vacuum interfaces in Fig. 9.2a, b,
the boundary conditions connecting the solutions of (9.11) and (9.12b) are that both
E and dE

dz are continuous functions. However, in the case of the system in Fig. 9.2b
one interface is between a Kerr medium slab and a perfect conducting mirror. At this
interface the electric field solution obtained from (9.12b) vanishes at the perfect
conducting mirror.

First consider the case in Fig. 9.2a of a transmitting coating. In this geometry the
layered coating is surrounded by vacuum so that to the left of the array the incident
and reflected waves can be written in the form [1, 34]
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E ¼ E0 eik0z þ r0e�ik0z
� �

; ð9:13Þ

and to the right of the array the transmitted wave is given by

E ¼ t0E0eik0z: ð9:14Þ

In the general solution, these fields must be matched by boundary conditions to the
left most and right most Kerr medium slabs of the coating.

The solutions for the electric fields within the slabs forming the layers of the
coating are obtained from (9.11) and (9.12). Inside both types of slabs of the coating
media the electric field solutions obtained from (9.11) and (9.12) are found to take
the general form [1, 29, 30, 34]

E ¼ E0eðzÞei/ðzÞ: ð9:15Þ

In (9.15) both of eðzÞ and /ðzÞ are real and E0 in (9.13) through (9.15) is the
amplitude of the electric field component of the incident electromagnetic wave. For
the general solution, the slab solutions must be connected with one another and with
the field solutions in the surrounding vacuum.

To obtain the solution of the coating problem, the forms of the fields in (9.13)
through (9.15) must be substituted into (9.11) and (9.12). (See [29, 30] for the
detains of this.) Upon applying the boundary conditions, three equations for eðzÞ
and /ðzÞ are obtained for each of the slabs of the array.

In both the vacuum and Kerr media slabs the following relationships hold [1, 29,
30, 34]

d/
dz

¼ W
I

ð9:16aÞ

where

IðzÞ ¼ e2ðzÞ ð9:16bÞ

and

W ¼ k0 t0j j2: ð9:16cÞ

Note in (9.16) that W is a constant throughout the layering of the coating and is
fixed by the amplitude of the transmitted wave. In addition, it is seen that (9.16a)
determines the phase variation in each of the slabs of the coating.

In addition to the variation of the phases in each slab of the coating, the
amplitude eðzÞ variation in each slab must be obtained. From the same substitution
used to obtain (9.16) it is found for the case of the vacuum slabs that IðzÞ ¼ e2ðzÞ is
obtained as a solution of [1, 29, 30, 34]
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1
4

dI
dz

� �2

þW2 þ k20I
2 ¼ AlI: ð9:17aÞ

Here Al is an integration constant which is used to match the boundary conditions at
the slab interfaces. In general, the constants Alf g are different for each vacuum slab
of the finite array but are related to each other between the various different slabs of
the coating.

The differential equation in (9.17a) for the vacuum slabs can be rewritten in
terms of an equation involving an integral. The resulting integral relationship is
given by the indefinite integral form [1, 29, 30, 34]

Z
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AlI �W2 � k20I
2

p dI ¼ �2zþCl; ð9:17bÞ

where Cl is an integration constant. The integral in (9.17b) can be evaluated in
terms of elementary functions giving the functional relationship

� 1
k0

sin�1 Al � 2k20Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
l � 4W2k20

p
 !

¼ �2zþCl: ð9:17cÞ

In the case of the Kerr medium slabs, the earlier substitutions used to obtain
(9.16) yield the Kerr media Helmholtz equations of the form [1, 29, 30, 34]

1
4

dI
dz

� �2

þW2 þ n2k20I
2 þ 1

2
n2k20~kI

3 ¼ AnlI: ð9:18aÞ

where Anl is an integration constant and ~k ¼ k E0j j2 measures the strength of the
Kerr nonlinearity. The constants Anlf g are used to match the boundary conditions
and, consequently, are generally different for each Kerr slab of the coating array.

Again, the differential equation in (9.18a) can be converted into an integral
relationship expressed asZ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AnlI � k2I2 � 1

2 k
2~kI3 �W2

q dI ¼ �2zþCnl; ð9:18bÞ

where Cnl is an integration constant. The indefinite integral in (9.18b) is evaluated
in terms of Jacobian elliptic functions. For this rendering, the reader is referred to
the literature for the details [29–34].

The constant W, defined in (9.16c), is set by matching boundary conditions
across the coating array and, consequently, this also sets the transmitted wave
amplitude. In this way the transmission coefficient, T ¼ t0j j2, for the transfer of
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light through the of the array in Fig. 9.1a is ultimately determined. In addition, it is
seen from (9.15) that the field intensity EðzÞj j2 is given by

EðzÞj j2/ IðzÞ ¼ e2ðzÞ; ð9:19Þ

so that IðzÞ will be used in the later discussions as a dimensionless indicator of the
intensity of the fields within the slab.

In the treatment of the problem in Fig. 9.2b for the perfect mirror the solutions
generally follow as above with an exception to one of the boundary conditions. In
particular, the electromagnetic wave is reflected from the perfect reflecting mirror.
Consequently, there is not transmitted wave component so that W ¼ 0, and at the
perfect conducting mirror E ¼ 0. As a result of these changes dE

dz at the mirror
surface is now used as a parameter which is set to match boundary conditions over
the array of slabs.

Numerical Examples of the Two Coating Models

As an illustration of the two models, the above theoretical results have been
evaluated for some numerical examples [34]. In these investigations, both models in
Fig. 9.2a, b have been treated for a system of five Kerr nonlinear media slabs to
determine their properties of transmission, reflection, and the nature of the soliton
wave functions resonantly excited in the coating media. First some results are
presented for the transmission coating model in Fig. 9.2a. These are followed by a
presentation of results for the mirror coating model in Fig. 9.2b.

In Fig. 9.3 results are presented for the transmission properties of the model in
Fig. 9.2a. Specifically, the plot in Fig. 9.3 is of the transmission coefficient of the
coating versus the linear part of the Kerr refractive index, n, for an incident wave
with a fixed k0d ¼ 1:5 [34]. Results are shown for two cases of the transmission
coating: In Fig. 9.3a the plots are for the linear media limit of the system, in which
~k ¼ 0:0. Consequently, all of the medium in the slabs is linear dielectric media. For
a comparison with these results, in Fig. 9.3b a similar plot is presented for a system
in the case of a Kerr nonlinear medium with ~k ¼ 0:008. For the plot in Fig. 9.3b the
transmission coefficient is again presented as a function of the linear part of the Kerr
refractive index, n, for an incident wave with a fixed k0d ¼ 1:5. Many of the feature
found in the two plots are similar, but there are some important differences.

In these plots it is seen that, as n is varied, the transmission passes through a
series of stop and pass bands, i.e., regions of near zero and near unit transmission
[34]. The stop and pass bands of the finite layering compare well with the stop and
pass bands in the photonic crystal composed of an infinite number of slabs.
In the infinite photonic crystal, the stop bands occur in the regions of:
1:0540\ n\ 1:2340; 2:6110\ n\ 3:8755, and for 4:4965\ n\ 6:0805.
Outside these bands are the pass band regions.

It is also generally found that, in a comparison of Fig. 9.3a, b, the nonlinearity
has a small effect on the pass and stop bands observed. In addition to this, within the
stop band regions of both the linear and nonlinear coatings the wave functions
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located in the coating media are much smaller in amplitude than those found in the
pass band solutions.

A difference in the pass band structure is, however, observed between
Fig. 9.3a, b. This is found in a band of transmission states that is roughly located
within the regions 3:29\ n\ 3:52 and 4:67\ n. The transmission in these bands
is associated with soliton modes that are excited within stop bands. These soliton
modes are only present in the system in Fig. 9.3b which has a Kerr nonlinearity and
are absent from the linear media system in Fig. 9.3a. The soliton solutions in the
nonlinear coating are located within the stop band of the linear system and are
found to have larger wavefunction amplitudes than their corresponding linear media
wavefunctions counterparts.

In order to see the nature of the pulse soliton modes in the new bands found
within stop bands of the Kerr coating, it is necessary to plot the wave functions of
the excitations associated with the observed transmission enhancements. Results for
the field intensities of gap soliton excitations in both of the regions 3:25\ n\ 3:52
and 4:67\ n are now discussed [34].

Fig. 9.3 The Transmission
Coefficient versus n for: a an
array of linear dielectric
media and vacuum slabs for
the geometry in Fig. 9.2a and
b an array for the geometry in
Fig. 9.2a with dielectric slabs
formed of Kerr medium
characterized by ~k ¼ 0:008.
In both plots k0d ¼ 1:5 and
there are five dielectric slabs
forming the coating
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In Fig. 9.4 results for the wave function field intensity, IðzÞ, versus position
within the barrier are presented for representative solitons in the system shown in
Fig. 9.3b [34]. The results shown in the figures are for solitons that exist in the
system for the parameters: (a) ~k ¼ 0:008 and n ¼ 3:2932 in the lowest stop band
shown in Fig. 9.3b and (b) ~k ¼ 0:008 and n ¼ 4:6748 in the next higher stop band
shown in Fig. 9.3b. The values of ~k and n in both of the plots in Fig. 9.4 were
selected at the point of maximum transmission in the new soliton bands. Both sets
of parameter values are located in the two regions, mentioned earlier in the
discussions of Fig. 9.3b, of enhanced transmission anomaly arising from the Kerr
nonlinear medium, and these modes are absent from the linear media system in
Fig. 9.3a.

For the plots in Fig. 9.4 of IðzÞ versus position inside the barrier of five Kerr
slabs separated by vacuum, the slabs forming the coatings are located within the

Fig. 9.4 Plot of IðzÞ versus
k0z for a coating of five Kerr
slabs for: a ~k ¼ 0:008 and
n ¼ 3:2932 in the lowest stop
band, b ~k ¼ 0:008 and n ¼
4:6748 in the next higher stop
band. In these plots the
dielectric slabs of the coating
are located between
1:5� k0z� 15:0 [34]
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region 1:5� k0z� 15, and the middle of the coating region is located at
k0zð Þmiddle¼ 8:25. In the case of both of the wave functions in Fig. 9.4, it is seen
that the fields of the pulses are highly concentration within the center of the slabs
[34].

Compared to the incident and transmitted field intensities the intensity at the
center of the coating is much greater. In this regard, it is of interest to note that the
presence of such highly concentrated fields has a number of possible technological
applications which will be discussed later. First, however, some discussion of the
wave functions associated with the mirror problem will be given.

The mirror system in Fig. 9.2b has only a reflected wave, but the presence of
gaps soliton modes can still be found in the physical properties observed in the
mirror coating. In particular, the band structure effects of the periodic coating are
such that the fields penetrating the coating and reflected from the mirror are small
within the coating for stop band modes and large within the coating for pass band
excitations. Consequently, the field intensities of the modes in the coating are
significantly affected by the stop and pass bands of the photonic crystal structure.
This is also seen to be the case with the new pass band of soliton modes [34]. The
soliton solution wave functions are found to exhibit an intensity increase over the
corresponding stop band modes found in the linear limit of the coating.

The enhancement of the fields is particular prominent for the resonant excitation
of soliton modes within the coating. As an illustration of this, consider the five Kerr
layer coating in Fig. 9.2b at the condition for a gap soliton to be resonantly excited
within the system. An example of a soliton intensity profiles under these conditions
is presented in Fig. 9.5.

In Fig. 9.5 the soliton wave function intensity, IðzÞ, versus k0z are shown for a
gap soliton resonantly excited by an incident field for which k0d ¼ 1:5 and for an
array with the parameters n ¼ 3:2997 and ~k ¼ 0:008. (See Fig. 9.3b.) To make a
spatial reference frame for the plot, the five Kerr dielectric slabs are located within
the region 1:5� k0z� 14:25 in the figure.

Fig. 9.5 Plot of the soliton
intensity fields IðzÞ versus k0z
for n ¼ 3:2997; ~k ¼ 0:008,
and for an incident field with
k0d ¼ 1:5. The figure show
the gap soliton pulse excited
in the band gap of the
photonic crystal coating on a
perfect conducting mirror [34]
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It is found in Fig. 9.5 that the intensity of the soliton is concentrated within the
region next to the mirror surface, where the mirror surface is located at
k0d ¼ 14:25. In general, the Kerr medium photonic crystal coating, consequently,
acts to enhance the fields in the coating from those of the incident amplitude at the
far left of the plot. Since the enhancement is found to be within a region close to the
mirror surface, it can have consequences for the development of surface enhanced
Raman spectroscopy. In such a scheme, molecules residing within the enhanced
fields will experience an increase spectroscopic coupling to the incident fields [1,
29, 30, 34].

9.2 Generation of Second Harmonics

The second type of nonlinear effect that will be treated here is the generation of
second harmonics of radiation [1, 16, 22–28, 35–41]. This is an optical effect in
which light at a fundamental frequency is applied to a nonlinear medium and in
response the medium generates an additional weak component of radiation at twice
the frequency of the fundamental. In the previous discussions, the Kerr nonlinearly
left the frequency of the light unchanged while altering the refractive properties of
the medium in a way which depended on the intensity of the light. Now in second
harmonic generation the frequency of light is doubled by its interaction with the
optical medium via mechanisms which also introduce complications in the
dynamics of the light generated within the nonlinear medium.

Second harmonic generation is a more problematic effect than the Kerr effect. It
occurs at a lower order of nonlinearity than the Kerr effect but involves more
crystalline asymmetry in the generating media than is required for the Kerr effect.
For a medium to exhibit the property of the generation of second harmonics it is
necessary that the crystal structure of the medium lacks inversion symmetry. In
addition, there are a variety of other symmetry limitations that come into play on the
generated radiation. These restrictions depend on the details of the crystal structure
and will not be discussed here so that the reader is referred to the literature for a
complete discussion of such symmetry considerations [25–28]. Here only the basic
properties are presented of a medium which is assumed to generate second
harmonics.

Second harmonic generation has a number of important applications in tech-
nology [1, 16, 22–24, 35–41]. In particular, there are a number of laser applications
where it is applied to generate second harmonics from the fundamental of a laser
output or from the laser itself. It is also important in a variety of optical diagnostics
technologies. In this regard, techniques of microscopy have been developed which
image biological systems [19, 23] and the properties of surfaces [24] based on the
use of their ability to generate second harmonics of radiation applied to them.

The origin of the effect is the nonlinearity of the optical medium in response to
an incident beam. Theoretically this is most often discussed in terms of the med-
ium’s time-dependent polarization response to the applied field. In this way, the
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polarization generated in the medium by the applied field can be represented as a
Fourier series composed of many different frequency harmonic components, i.e.,
many different frequency outputs which are multiples of the fundamental driving
frequency [1, 25–28]. The various multiples of the fundamental frequency of the
incident beam arise directly from the nonlinearity of the dynamics of the positive
and negative charges of the material, and it is generally found that the weak second
harmonic response of the system is the most dominant of the generated harmonics.

In this process of generation, the amplitude of the polarization response of a
frequency harmonic is generally found to decrease with the increasing difference of
the harmonic frequency from that of the applied fundamental frequency. As a result
of the vector nature of the polarization response and that of the applied fields, it
follows for the generated response that there are various symmetry considerations
that need to be taken into account in order to understand the polarization tensor and
response properties of the medium [25–28]. The asymmetry required for the second
harmonic response has already been noted, but restrictions apply for the generation
of all of the other harmonics. These in general are dependent on the tensor nature of
the polarization involved in their generation.

As a result, it is often found for nonlinear optical materials that aside from the
second harmonic terms there are many other possible frequency responses
involving other different mixings of the radiation fields applied to the material.
These higher harmonic responses are generally weaker than those of the second
harmonic fields. This is particularly evident in the application to the material of a
number of different radiation fields which often involve high orders of tensor
interactions between the various fields. In the introductory treatment of this chapter,
however, only second harmonic generation will be a consideration.

Aside from various crystal symmetry considerations that are important to the
efficient generation of second harmonics in an optical medium, there are a number
of engineering problems that naturally arise in the design of devices based on
second harmonic generating media. These difficulties are found in the basic physics
considerations involved in the generation of a harmonic waves throughout the
spatial extent of a generating material.

In particular, the waves generated throughout the medium have phases which
can add constructively and destructively to provide the total wave outputted by the
generating device. A problem then arises as to how to extract the maximum
intensity of the second harmonic fields from the sum of these phase additive
processes.

Some of the problems associated with these phases questions can be solved
through the applications of photonic crystals and metamaterials. Consequently, a
technological interest in the application of engineered materials in second harmonic
generation involves the application of photonics crystals and metamaterials to
enhance the generation of second harmonics [22–24, 37–41]. These artificial
materials are the focus here along with how they are employed to offer reliable,
intense, sources of such radiations.

In this regard, both photonic crystals and metamaterials provide useful tools in
the solution of problems involving spatial generation of waves throughout a
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medium. This problem is often referred to as the phase matching problem in the
generation of second harmonics. It is a basic design consideration in devices meant
to provide for the generation of second harmonics and has had a long history
involving a variety considerations based in classical optics [1, 25–28].

In the following, first some elementary considerations of second harmonic
generation will be presented along with a basic mathematical statement of the phase
matching problem. Following these discussions a basic presentation is given of the
applications of photonic crystals and metamaterials which are used to circumvent
the phase matching problem [1, 22–24, 37–41].

9.2.1 Basics of Second Harmonic Generation and the Phase
Matching Problem

To begin with, a general discussion of the equations for the generation of second
harmonics in a uniform nonlinear medium is outlined [1, 25–28]. These equations
are then developed to understand the second harmonic response of a uniform
homogeneous medium to an applied radiation field, and to show how the phase
matching problem arises.

For these considerations the Maxwell curl equations in a uniform polarizable
medium are written in the form [1]

r�~E ¼ � @~B
@t

; ð9:20aÞ

r �~B ¼ l0
@~D
@t

: ð9:20bÞ

Here the electric displacement field ~D ¼ e0~Eþ~P is expressed in terms of the
electric field and the electric polarization, ~P.

In terms of the displacement field (9.20b) can, consequently, be rewritten as [1,
25–28]

r�~B ¼ l0e0
@~E
@t

þ l0
@~P
@t

; ð9:20cÞ

where the polarization response of the medium is separated out to the righthand side
of the equation. It describes the material science of how the dielectric medium
interacts with the applied electric field.

In (9.20c) the polarization vector ~P contains the response of the dielectric
medium to an applied electric field. This response consists both of linear response
terms, having a linear dependence on the electric field, and of nonlinear response
terms, which depend on higher order tensor powers of the electric field.
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The responses of the system driven by the linear components of the polarization,
then, represent the topic of standard treatments in traditional classical optical sys-
tems. It only involves frequency terms at the fundamental frequency of the incident
applied field. These are topics that were a primary interest before the development
of intense laser fields which could generate field intensities sufficient to excite a
nonlinear dielectric response from the system involving frequencies different from
the fundamental.

The nonlinear parts of ~P include terms which are responsible for the generation
of the frequency responses of the system that differ from the fundamental frequency
of the applied electric field. In particular, some of these terms are responsible for the
second harmonic response of the generating medium as well as some of the weaker
effects related to higher order harmonics developed in the medium.

In addition, some of the nonlinear terms, however, also renormalize the dielectric
response of the system at the fundamental frequency applied to the medium. These
are, for example, responsible for the Kerr effect in which the index of refraction is
found to be dependent on the intensity of the applied electric field.

The linear terms in ~P contribute to the renormalization of the optical response of
the medium at the fundamental frequency of the system. This is familiar from the
optics of linear media. In addition, the linear response also affects the propagation
of the fields of the second harmonic generated as well as those of any higher
harmonics that may be present in the medium. The mathematics involved in the
study of the linear and nonlinear polarization are now addressed.

Consider the evaluation of (9.20c) for the fundamental frequency fields and for
the second harmonic fields generated by the action of the nonlinearity on the
fundamental fields. For the discussions, an incident fundamental harmonic wave
will be considered to interact with a uniform homogeneous isotropic medium to
generate a second harmonic wave. The nonlinear interaction of the medium will be
considered small so that only the leading order nonlinear corrections on the fields
will be considered. This is found to be a good approximation in the study of most
nonlinear optical systems.

Under these considerations, (9.20c) is found to decouple into two equations. The
first equation describes the behavior of the fundamental frequency applied to the
medium. The second equation accounts for the fields generated at twice the fun-
damental frequency.

In this way from (9.20a) and (9.20c) it is found that the fundamental fields, ~E1,
occurring at frequency x satisfy the homogeneous Helmholtz equation

r2~E1 þ l0eðxÞx2~E1 ¼ 0: ð9:21aÞ

Here eðxÞ represents the response of the medium at the frequency of the funda-
mental applied field. It ultimately is related to the linear component of the polar-
ization of the medium. In particular, all of the waves propagating in the medium, to
leading order, will satisfy a linear medium homogeneous Helmholtz equation
similar to that in (9.21a).
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The small second harmonic fields, ~E2, that are generated from the fundamental
wave occur at frequency 2x and from (9.20) are found to satisfy an inhomogeneous
Helmholtz equation of the form

r2~E2 þ l0eð2xÞð2xÞ2~E2 ¼ �l0ð2xÞ2~P2x: ð9:21bÞ

In (9.21b), the ~P2x term on the right of the equation is the nonlinear component of
the polarization. It is the component of the polarization response generated in the
nonlinear medium and is the source of the second harmonic radiation that is gen-
erated within the medium.

The second harmonic response represented in ~P2x is dependent on the presence
of the fundamental applied field, and in the absence of the fundamental field no
second harmonic is present in the system. In this regard, the ~P2x response can
ultimately be shown to be related to the square of the fundamental field. Such a
dependence on the fundamental fields, in fact, accounts for the generation of a wave
at twice the fundamental frequency. In addition, it is found to also explain the
dependence of the intensity of the generated second harmonic wave on the intensity
of the fundamental wave.

Regarding the terms on the left hand side of (9.21b), the factor of eð2xÞ in the
second term of the sum renormalizes the free space permittivity at frequency 2x. It
comes from the linear part of the polarization vector response,~P, at the fundamental
driving frequency 2x. Consequently, the righthand side of (9.21b) gives the
Helmholtz equation for the leading order response of the system to an applied
polarization at the frequency 2x.

Experimentally as well as theoretical it can be shown that, for a nonlinear system
which generates a second harmonic, a simple model for the nonlinear polarization is
given by the form [1, 25–28]

~P2x ¼ ~E1 � ~dð2x;x;xÞ �~E1: ð9:22Þ

In this equation ~dð2x;x;xÞ is a third rank tensor which is subject to certain
important symmetry considerations that have been extensively discussed in the
literature of nonlinear optics.

The formulations in (9.21) and (9.22) are now set to treat the dynamics of the
fundamental and the generation of second harmonics from the fundamental in a
second harmonic generating medium. In a simplified model based on these equa-
tions the origins of the problem of phase matching associated with the generation of
second harmonics can be explained.

The Problem of Phase Matching

In the following presentation, an aim of the discussions is to give a simplified
treatment of second harmonic generation, illustrating the origins of the ideas of
phase matching. Consequently, a simple one-dimensional geometry will be
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considered which provides the easies example of the mechanism of second har-
monic generation. An idealized version of polarization terms in (9.22) will also
ultimately be used in the development of the theory based on (9.21). The reader is
referred to the literature for the details of treatments focused on models based on
(9.22) which represent specific materials for purposes of technological applications
and for more complex geometries of the generating medium.

As an illustration of the phase matching problem associated with the generation
of second harmonic within a uniform medium, a simplified model of a system for
the generation and propagation treated in the context of a one-dimension system is
now discussed. Essentially what this model is meant to show is that as the fun-
damental wave propagates through and interacts with the nonlinear generating
medium, it gives rise at each point of the medium to an outputted second harmonic
wave.

As a consequence, the outputted wave causes the fundamental wave to decrease
in intensity. In addition, as the fundamental waves moves through the medium, its
energy loss is found to reappear in the generated second harmonic output of the
medium. This second harmonic generation is made throughout the extent of the
nonlinear medium and leads to various phase effects.

Since the generated second harmonic waves not only involve an amplitude but
also a phase, various processes of phase coherent addition of the second harmonic
fields occur throughout the generating medium. These phase additions are both
constructive and destructive in nature over the entire medium. Consequently, the
final wave emitted from the medium is found to be very sensitive to the totality of
the phase related processes throughout the entire medium. Only under very special
considerations do the constructive and destructive processes result in a total gen-
erated second harmonic wave of good intensity exiting the source device.

For a simple treatment illustrating these points, consider a planar interface
between vacuum and a second harmonic generating medium. The interface is taken
in the y-z plane with the x-axis perpendicular to the interface, located at x ¼ 0,
between the two semi-infinite media. (See Fig. 9.6 for a schematic.) On the left of
the interface is vacuum and a uniform nonlinear second harmonic generating
medium is to the right of the interface.

The incident electromagnetic plane wave of frequency x propagates along the
x-axis in the vacuum, moving towards the right. This is the fundamental wave
which enters the nonlinear medium and generates a second harmonic response.
Upon entering the nonlinear medium it is assumed that the nonlinearity of the
medium is very small so that it has little effect on the fundamental. Consequently,
the depletion of energy from the fundamental wave of frequency x is negligible as
it propagates into the nonlinear medium.

Under the assumption that there is no significant energy loss in the fundamental
wave, it follows from (9.21a) that the form of the solution for the fundamental wave
in the nonlinear medium is given by [1, 25–28]
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E1 ¼ E10ei kðxÞx�xt½ �: ð9:23Þ

In (9.23) the wave number kðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0eðxÞ

p
x is that of the fundamental wave of

frequency x, and the constant amplitude E10 in (9.23) is determined by the
boundary conditions for the dielectric mismatch at the interface. The field in (9.23)
is then a vector field which lies in the y-z plane.

In terms of the form of the solution in (9.23) for the fundamental harmonic wave,
(9.21b) for the generated second harmonic wave is written as [1, 25–28, 42]

@2E2

@x2
þ l0eð2xÞð2xÞ2E2 ¼ �l0ð2xÞ2dð2xÞ E10ð Þ2e2i kðxÞx�xt½ �: ð9:24Þ

In obtaining (9.24), the polarization generating the second harmonic radiation is
written in terms of the fundamental wave and expressed by the simple form
P2x ¼ dð2xÞ E10ð Þ2e2i kðxÞx�xt½ �. The vector of second harmonic polarization is also
taken parallel to the y-z plane and parallel to the polarization of the generated
second harmonic wave, E2. The coefficient of the polarization coupling for the

Fig. 9.6 Planar interface between a linear media and a nonlinear second harmonic generating
media
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second harmonic generation has also been assumed to be of a simple form which is
a constant throughout the nonlinear medium [42].

An approximate solution of (9.24) is obtained by assuming that E2 is of the form

E2 ¼ E20ðxÞei kð2xÞx�2xt½ �: ð9:25Þ

where kð2xÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0eð2xÞ

p
2x. Here the field envelop function E20ðxÞ is treated as

slowly varying in space over the wavelength of the plane wave which it multiplies.
In particular, in this regard a necessary condition on the spatial variation of the

envelope function is that @2E20
@x2

��� ���� kðxÞ @E20
@x

�� ��.
Under these conditions a substitution of (9.25) into the second spatial derivative

in (9.24) is approximately given by the form [1, 25–28]

@2E2

@x2
	 2ikð2xÞ @E20

@x
� k2ð2xÞE20


 �
ei kð2xÞ�2xt½ �: ð9:26Þ

Applying this in (9.24), it is found that [1, 25–28, 42]

@E20

@x
¼ � l02xdð2xÞ E10ð Þ2

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0eð2xÞ

p ei 2kðxÞ�kð2xÞ½ �x: ð9:27Þ

The problem of determining the spatial variation of the amplitude of the gen-
erated second harmonic wave in the semi-infinite nonlinear medium has now been
reduced to the integration of a first order differential equation. In the course of
the following discussion, the phase matching problem will be seen to arise on the
righthand side of (9.27) from the rapid variation of the complex exponential in the
x variable.

A direct integration of (9.27), subject to the boundary condition that E20ðx ¼ 0Þ
¼ 0 (i.e., the second harmonic wave only begins to be generated when the funda-
mental wave first encounter the surface of the semi-infinite nonlinear medium),
yields the position dependence of the amplitude of the generated second harmonic
wave. In general, it is seen from (9.27) that the relevant integral involved is of the
form [42]

Zx
0

ei 2kðxÞ�kð2xÞ½ �xdx: ð9:28Þ

For the case in which 2kðxÞ � kð2xÞ 6¼ 0 the integral in (9.28) is seen to display
an oscillatory behavior. In this behavior the integral exhibits successive waves of
constructive and destructive phase additions, resulting in an oscillating intensity
of the second harmonic wave output between two bounded limits. This is the heart
of the phase matching problem and represents a fundamental limitation on the
intensity of the second harmonic generated within the nonlinear medium. The focus
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of many optical designs for second harmonic systems is to maximize the results
from integrals of this form.

Notice, however, that in the case that

2kðxÞ ¼ kð2xÞ ð9:29aÞ

a good phase matching result can be achieved [1, 42]. Under this condition, solving
(9.27) for x[ 0 results in a linear growth of the amplitude of the second harmonic
wave. In particular, the integration of (9.27) yields [1, 25–28, 42]

E20ðxÞ ¼ � l02xdð2xÞ E10ð Þ2
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0eð2xÞ

p x; ð9:29bÞ

with the generated wave amplitude proportional to the distance away from the
interface.

In principle, the intensity of the second harmonic fields in (9.29) can increase
indefinitely. The result in (9.29), nevertheless, is based on the assumption that the
amplitude of the fundamental is a constant, and this is not the case as the energy
from the fundamental is transferred to the second harmonic field. A proper
accounting of this energy transfer provides a second limitation on the intensity of
the generated second harmonic that can ideally be achieved.

The preferred condition for generating an intense second harmonic source output
is to have a system which displays the linear growth with position obtained in
(9.29) as opposed to the oscillatory behavior in (9.28). In general, however, such a
phase matching condition requires a very precise set of conditions be placed on the
dielectric properties and dispersion relations of the fundamental and second har-
monics within the nonlinear system.

Many technological considerations are needed to fix the problems associated
with these type of phase matching considerations [1, 22, 24, 38–41]. Such treat-
ments of the phase problem involve a number of general geometric and material
science solutions, and the reader is referred to the literature for discussions based on
designs not involving photonic crystals and metamaterials. In the following solu-
tions focused on photonic crystals and metamaterials will be briefly reviewed.

9.2.2 Applications of Photonic Crystal and Metamaterials
to Second Harmonic Generation

Metamaterials [1, 24, 38–41] and photonic crystals [1, 16, 22, 35, 36] offer a variety
of methods which can be exploited in the design of enhancement mechanisms for
the generation of second harmonics. These technologies allow light to be manip-
ulated in new ways that are not available using traditional methods of optics. At
nanoscience length scales these features are found to reduce the effects of the phase
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matching problem or to enhance the generating fields at the fundamental frequency.
A brief outline of some of the more recent developments is given.

In this regard, meta-material mirrors have recently found applications [16, 22–24,
35–41] providing for a great enhancement of the second harmonics generated at
certain types of nano-technology basedmirror surfaces. In this technology the surface
of the mirror is formed in part from a layering of nanostructures. The nanostructures
employed are designed to be of smaller length scales than the wavelengths of the
fundamental and second harmonic of radiation generated at the mirror surface and are
arranged on the surface in the form of a metamaterial functioning as a quantum well
heterostructure [38].

In the second harmonic generation from this system, the mirror surface is
composed of a multi-quantum well semi-conductor heterostructure [38]. The
heterostructure is formed upon a metal (gold) substrate and has a periodic metal
(gold) patterning of facets opposite the substrate on the reflecting side of the mirror
surface. In its operation, a fundamental frequency of light is sent into the mirror at
normal incidence to the mirror surface.

A second harmonic is then generated in the heterostructure and subsequently is
reflected by the mirror in a direction normal to surface of the mirror. The mecha-
nism for enhancing the optical nonlinearity, which generates the enhanced second
harmonic, is based on the excitation of surface plasmons in the heterostructure
forming the mirror surface. In this regard, the mechanism is reminiscent of surface
enhanced spectroscopy.

In addition to the study of mirror surfaces, the use of metamaterials in the design
of bulk media exhibiting second harmonic generation properties has also been
pursued. A number of different designs based on split ring resonators and on
various types of nano-particles have been investigated [39–41].

Photonic crystals [1, 16, 35, 36] are another class of artificial materials that can
be engineered to facilitate the generation of second harmonics. It is often found that
correctly choosing the periodicity of the photonic crystal can be used to enhance the
second harmonic effects of the materials forming the photonic crystal. Unlike
metamaterials, photonic crystal systems operate on radiation for which the wave-
lengths of the fundamental and/or second harmonics are of the order of the smallest
translations of the photonic crystal lattice into itself.

Consequently, strong interactions of these radiations within the photonic crystal
can be used to guide and enhance their effects in the generation process [1, 16, 35,
36]. Mechanisms at play in the generation of second harmonics in the photonic
crystals arise from [1, 16, 35, 36]: (a) creating a periodic nonlinear response in the
system by periodically positioning the media generating the second harmonic fields
to enhance phase coherent additions of the generated fields, (b) formulating designs
involving a periodic dielectric in which the fundamental and/or second harmonic
strongly interact with the band structure effects of the photonic crystal to concen-
trate their interactions, or (c) designing photonic crystals to modify the density of
states via the Purcell effect in such a manner as to increase the efficiency of second
harmonic generation.

486 9 Nonlinear Optics



Two ideas form an operative basis in the application of photonic crystals to
second harmonic generation. In the first idea, it is realized that for second harmonic
generation in a uniform medium there are regions of the medium from which the
generated radiation adds constructively, and there are region of the medium from
which the radiation generated adds destructively. In this regard, a rough solution of
the problem is made by arranging a segmented array of second harmonic generating
slabs positioned in space so as to support an optimally efficient second harmonic
generation.

In one-dimension such an array is formed by slicing the uniform semi-infinite
slab up into a series of slabs of finite thickness positioned along the y-z plane.
Removing slabs at the proper periodic intervals, so that only a finite number of slabs
remain, can create an efficient generating structure. The slabs in the array are chosen
to remain in the array so that their generated fields add constructive. Such a finite
periodic array has been shown to easily be formulated to meet the above conditions
[1, 16, 35, 36].

A second approach is based on the ability of photonic crystals to modify the
electromagnetic density of states. This modification of the density of states of the
electromagnetic modes is known as the Purcell effect [1], and it has great effects on
the electrodynamic properties exhibited by a system. The importance of the Purcell
effect in this regard arises from the fact that transition processes which generate
electromagnetic waves are described by the Fermi Golden Rule. Processes
described by this rule are shown to be closely tied to the density of electromagnetic
states.

One of the consequences of the Fermi Golden Rule is that the rate of transition of
processes generating electromagnetic fields are related to the electromagnetic
density of states available into which the generated electromagnetic waves can
make a transition. Consequently, enhancing the density of states available to
transition into increases the rate of transition. For example, states immediately
above and below the stop bands of a photonic crystal have density of states that are
increased over the density of states in a uniform medium. This would increase the
rate of transition into these states. On the other hand, the density of states within a
stop band of the photonic crystal are zero and so in this case transitions into these
states are suppressed.

The idea of applying the ideas in the second method is to arrange for a system in
which the density of states is enhanced at both the fundamental and harmonic
frequencies. These enhancements would facilitate the generation of second har-
monics over that which occurs in the fields generated in a uniform medium [1, 16,
39–41] and for which the corresponding density of states are not enhanced.
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Chapter 10
Quantum Computers

A fundamental distinction between classical and quantum mechanical systems is
how the two theories treat the idea of probability [1–10]. Quantum mechanics is a
theory which has a fundamental basis in the ideas of probability and probability
distributions. This, however, is not so much the case with classical mechanics. It is
not necessary in classical discussions to introduce the ideas of probability distri-
butions for many important applications of the theory, nevertheless, the idea of
probability distribution can be introduced into the theory in a natural way. Since
probability is known to be an essential element in the understanding of quantum
theory, for a comparison of classical and quantum ideas it is necessary to view both
in the context of probability.

In classical mechanics the particles of a system are described by a set of gen-
eralized coordinates which are uniquely developed in time by Newton’s laws of
motion and the particle force laws. Even though in this formulation the coordinates
of the particles can be known at all times, it is often still useful to describe the
dynamics by a probability function. This can be done for any system of classical
particles and is often important as it allows for the treatment of the averaged
properties of the particles. For example, such a probability centered approach is a
basis in classical treatments of statistical mechanics and kinetic theory.

In these types of statistical formulations of classical mechanics, the probability
of finding a particle with a particular set of generalized coordinates is described by a
probability distribution. The time development of the system can be directly related
to changes in the particle distribution function that evolves in time according to the
classical equations of motion. In such a treatment of classical mechanics, then,
the focus of the study of mechanical systems is on the equations of motion and the
probability distribution of the particles. These represent the complete description of
the properties of the system in time and space.

A quantum mechanical treatment, on the other hand, represents the system from
a completely different viewpoint [1–10]. In quantum mechanics, the particles of a
system are described by a probability amplitude commonly known as a wave
function. In this view, the statistical properties of the system are related to a
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probability distribution which is the modulus squared of the probability amplitude.
Unlike classical mechanics, it is, however, the probability amplitude and not the
probability distribution that evolves in time in accord with the equations of motion
of the system.

The quantum probability amplitude evolves in time by a Schrodinger equation
based on a set of potentials representing the particle interactions [7, 8]. Unlike in the
classical theory the dynamics of the quantum mechanical probability distribution is
a manifestation of the dynamics of the probability amplitude. This introduces a
fundamental distinction in the nature of classical and quantum probability distri-
butions. Both theories treat properties that can be represented by probability dis-
tributions but the development of these distributions in time is quite different
between the two theories.

As a result, the behaviors of a system allowed in a description based on a
quantum probability distribution are more general than those of the same system
based on a classical mechanics description. Solely with the introduction of the
probability amplitude as an intermediary to the probability distribution of the
systems, the distribution displays a richer variety of possibilities and new types of
phenomena from those found in classical theories [1–10].

In the following, discussions will be presented focused on two new phenomena
found in quantum systems. These phenomena arise in regard to the difference in
quantum and classical probabilities as revealed by the Bell inequalities [1–3, 7] and
the properties of quantum entanglement [1–7].

The Bell inequalities are a set of relationships satisfied by classical probability
distributions [1–3]. The interesting aspect of these relationships is that they are not
always satisfied by quantum mechanical probability distributions. In the early
theoretical development of quantum theory, the inequalities provided one of the first
quantitative measures of the difference between the classical and quantum theories.
Since they were put forth it has been shown in a number of experiments that the
probabilities of naturally occurring systems do not in fact satisfy the Bell
inequalities. Consequently, systems in nature are not based on classical mechanical
descriptions.

In addition, discussions are presented of another important aspect of quantum
systems. This is the property of entanglement which is directly related to the
expanded set of wave functions and probabilities accessed by quantum mechanical
theories. Entanglement is a new property arising in quantum systems and was
originally closely related to a problem in the foundations of quantum theory.

Specifically, entanglement originally was the source for the discussions of the
Einstein-Podolsky-Rosen paradox [1–7]. This paradox was presented early on in
the development of quantum theory as a potential problem in the completeness of
the quantum description of nature and was related to the proposal of the need for
various hidden variables. In this viewpoint, quantum theory was not considered to
be a complete theory, and the hidden variables would enter into a more complete
theory of physical systems.
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The entanglement of quantum systems is an important new outlook in the
quantum mechanics of many body problems [4–7]. It was originally presented as a
paradoxical feature in, for example, cases of particle decay. In decays of some
systems an angular momentum conserving process occurs in which two identical
entangled particles of spin one-half are generated, traveling off in different
directions.

Consider such a decay into a system where the two particles are generated in a
singlet spin state. For such a state the measurement of the spin angular momentum
of one particle fixes the spin of the second particle as being opposite that of the first
particle, even though the two may be separated by a great distance. This appeared to
some physicists as a violation of relativistic mechanics and an indication that
quantum theory may be an incomplete description of nature.

Aside from its importance to the foundations of quantum theory, the entangle-
ment feature of quantum mechanical systems is at the heart of the ideas upon which
quantum computation is based. Entangled systems offer design applications for
parallel processing computational mechanisms and dense storage of information.
Entangled states are a recent focus in the attempt to design new types of computer
algorithms and mechanisms of information storage that are more efficient and
compact than those currently available based on conventional technologies [7–10].

Both the Bell inequality and entanglement aspects of quantum theory contribute
to the basis of quantum computation. They must be understood in order to grasp the
advantages of quantum mechanics in the design of more effective computers. After
a discussion of these foundations of quantum theory, the discussion of quantum
computation will begin.

In the presentation of the chapter, the focus will be on developing quantum
computers as they offer a new method of doing calculations that are based on the
difference in the probabilistic natures of classical and quantum mechanical systems
and offer many possible advantages over traditional classical mechanical techniques
of computation. At the basis of this are the entanglement features of quantum
mechanical systems which can be developed for performing massively parallel
computations run in novel nontraditional forms of computational algorithms. Such
computational techniques employ mechanisms designed specifically to function on
nano-systems. Furthermore, these types of parallelized calculations offer a potential
for the rapid calculation of things that are not approachable using the techniques of
traditional computers based on classical mechanic systems. The possibility of the
applications of these types of calculational features of quantum systems has been an
incentive for the investigation of a variety of systems for the development of
quantum computers.

In the following, after a treatment of the properties of quantum mechanical
systems that form a foundation for quantum computers, quantum computational
methods will be discussed. The chapter will end in a presentation of some illus-
trative examples of quantum computing algorithms.
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10.1 Bell’s Inequality

To understand the nature of the difference between classical and quantum proba-
bility distribution functions consider the conditional probabilities involving three
different random variables [1–3]. This is the smallest number of random variables
that can exhibit the nature of the difference between probabilities in classical and
quantum systems. First some discussions of the probabilities involving three dif-
ferent random variables will be treated for a classical system. This will be followed
by a discussion of three random variables modeled in a quantum system.

Consider three random variables S1; S2; S3f g representing different properties
exhibited by a classical mechanical system but that are similar in their nature [1–3].
In addition, as a further simplification which facilitates a comparison with quantum
mechanics systems, assume that the variables are binary taking on values from the
set 0; 1f g. Examples of such variables would be: rotations taken as clockwise
(denoted by 1) or anticlockwise (denoted by 0) about the i ¼ 1; 2; 3 axes, motions
in the positive (denoted by 1) or negative (denoted by 0) direction on the i ¼ 1; 2; 3
axes, etc. In the statistical description of the dynamics, the variables are random so
that their occurrence in the system is found to be distributed by a probability
function P S1; S2; S3ð Þ which is generated by the physics contained within the
dynamics.

As this is a problem in classical dynamics the fundamental properties of the
system are contained within the probability function and its time development. The
distribution function of the variables is then computed directly from the application
of Newton laws applied to the knowledge of the initial dynamical configuration.
Consequently, all of the average properties of the system are related to averages
weighted by P S1; S2; S3ð Þ as developed by the dynamics [1].

A particularly important aspect of the dynamics of the classical system is the
nature of the correlations between the random variables. In particular, S1; S2; S3f g
are random variables, but due to the interactions within the system they develop
statistical correlations between one another. These correlations represent the nature
of the dynamics and the degree to which the initial configuration of the system is
understood.

For example, from P S1; S2; S3ð Þ one can compute the probability that S1 ¼ S2 or
S1 ¼ S3, i.e., that the indicated variables have the same numerical value. Note that
this equality holds for the numerical values of the two different variables regardless
of the fact that the variables are defined about different axes in space. For example,
there may be two clockwise rotations in the system which occur about different axes
of rotations or two axis along which particles move in the positive direction. These
would have the same binary values while representing processes about different
axes.
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For the discussions presented later, denote these two probabilities as [1–3]

P0 S1 ¼ S2ð Þ ð10:1Þ

and

P0 S1 ¼ S3ð Þ; ð10:2Þ

respectively. These two defined functions then, specifically represent the respective
probability that S1 ¼ S2 and the probability that S1 ¼ S3 for the statistical distri-
bution P S1; S2; S3ð Þ. It shall now be shown in the following that a complete
understanding of the correlations of the random variables in the statistical distri-
bution can be developed in terms of two variable distributions of the type in (10.1)
and (10.2).

Some particular correlations of the random variables become important in
understanding the difference between classical and quantum correlations. The focus
in the following is to develop an inequality based on P0 S1 ¼ S2ð Þ, P0 S1 ¼ S3ð Þ, and
P0 S2 ¼ S3ð Þ. This inequality will be used to develop and understand the funda-
mental difference between classical mechanical and quantum mechanical proba-
bility distributions.

To this end begin by considering the correlations of the type presented in (10.1)
and (10.2), using them to determine the probability of finding systems satisfying
S1 ¼ S2 or S1 ¼ S3. Applying basic probability reasoning, this probability is given
by [1–3]

P0 S1 ¼ S2 or S1 ¼ S3ð Þ ¼ P0 S1 ¼ S2ð ÞþP S1 ¼ S3ð Þ � P S1 ¼ S2 ¼ S3ð Þ; ð10:3Þ

where P0 S1 ¼ S2 ¼ S3ð Þ is the probability that S1 ¼ S2 ¼ S3 in the system. The last
term on the right enters into (10.3) so as to remove the double counting of the
S1 ¼ S2 ¼ S3 erms present in both of the preceding two terms on the right.
Consequently, the probability P0 S1 ¼ S2 or S1 ¼ S3ð Þ does not involve a double or
over counting of states.

It then follows, denoting by P0 S1 6¼ S2 and S1 6¼ S3ð Þ the probability that S1 6¼
S2 and S1 6¼ S3 in the system, that [1–3]

P0 S1 ¼ S2orS1 ¼ S3ð ÞþP0 S1 6¼ S2andS1 6¼ S3ð Þ
¼ P0 S1 ¼ S2ð ÞþP S1 ¼ S3ð Þ � P S1 ¼ S2 ¼ S3ð Þ
þP0 S1 6¼ S2andS1 6¼ S3ð Þ ¼ 1;

ð10:4Þ

Equation (10.4) represents the statement that all configurations of the system are in
one or the other distributions summed on its far left hand side. Consequently, it
must follow from (10.4) that [1]
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P0 S1 ¼ S2ð ÞþP0 S1 ¼ S3ð ÞþP0 S1 6¼ S2 and S1 6¼ S3ð Þ� 1: ð10:5Þ

The first two terms involve the correlations P0 S1 ¼ S2ð Þ and P0 S1 ¼ S3ð Þ that are of
interest, and it will now be shown that the third term on the left hand side of the
inequality in (10.5) can be rewritten in terms of P0 S2 ¼ S3ð Þ.

To arrive at this further reduction in the inequality, note that the binary variables
S1; S2; S3f g can only take the values 0; 1f g. Consequently,

P0 S1 6¼ S2 and S1 6¼ S3ð Þ ¼ P0 S2 ¼ S3 and S1 6¼ S2ð Þ: ð10:6Þ

This is the statement that since neither S2 nor S3 can equal S1 and the variables in
the system can only take the values 0; 1f g, it must follow that S2 ¼ S3. In addition it
follows from (10.6) that [1–3]

P0 S2 ¼ S3ð Þ�P0 S2 ¼ S3 and S1 6¼ S2ð Þ: ð10:7Þ

Here (10.7) follows from relaxing the S1 6¼ S2 restriction in going from the right to
the left side of the inequality.

Finally, from (10.4)–(10.7) it follows that [1–3]

P0 S1 ¼ S2ð ÞþP0 S1 ¼ S3ð ÞþP0 S2 ¼ S3ð Þ� 1; ð10:8Þ

which represents a statement of the Bell inequality for the system discussed in
(10.1)–(10.8). This equation is fundamental to classical systems with binary
coordinates. It is, however, an inequality which is not satisfied by a similar two
level quantum system in which the probability distribution of the system is obtained
in terms of a probability amplitude.

As an example of a classical mechanical system that obeys the inequality in
(10.8), consider the problem of three coins. By tossing each of the three coins a
distribution of heads and tails is generated for each coin. In particular, for tosses of
the first coin of the system of three S1 ¼ 1 (heads) or 0 (tails). For tosses of the
second coin S2 ¼ 1 (heads) or 0 (tails), and from tosses of the third coin again
S3 ¼ 1 (heads) and 0 (tails). Computing the probabilities in (10.8) one finds for a
large sequence of coin tosses that P0 S1 ¼ S2ð Þ ¼ P0 S1 ¼ S3ð Þ ¼ P0 S2 ¼ S3ð Þ ¼ 1

2

so that P0 S1 ¼ S2ð ÞþP0 S1 ¼ S3ð ÞþP0 S2 ¼ S3ð Þ ¼ 3
2 [ 1. This demonstrates

(10.8) for the particular system of measurements made in tosses of the three coins.
Next these considerations will be made for a system involving three different
measurements on a quantum mechanical wave function.

The focus will now be towards demonstrating that the inequality in (10.8) fails in
a quantum system involving measurements on spin one-half particles. The com-
parison will provide a distinction between classical and quantum systems.

To understand the difference between classical and quantum probabilities,
consider the particular example of a set of two quantum mechanical spin one-half
particles. This provides the simplest case of a wave function illustrating the dif-
ference between classical and quantum mechanical probabilities. For the set of two
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particles the measurement of three different spin related properties, denoted by the
set of outcome values S1; S2; S3f g, will be defined. It will then be shown that the
wave function of the particles generates a probability distribution for the values
S1; S2; S3f g which does not obey the inequality in (10.8). This will provide a

contradiction between quantum and classical dynamics which distinguishes
between the two theories.

First some of the properties of spin will be reviewed. These will then be applied
directly in a study of two spin one-half particle wave functions as a test of (10.8) for
a quantum system.

First consider some properties of the wave functions of a single spin one-half
particle. For the particle the z-component of the spin one-half can be represented in
Dirac notation as 1j i for spin up and 0j i for spin down. The set 1j i; 0j if g forms a
complete orthonormal basis in the spin space of the particle. This, however, is not
the only basis available for the study of the particle as any set of functions related to
1j i; 0j if g by a unitary transformation also is an acceptable basis for the system.
Consequently, an equally good basis is provide by the set 10j i; 00j if g where the

primed basis are given by [1–3]

00j i ¼ 1
2
0j i þ

ffiffiffi
3

p

2
1j i

10j i ¼
ffiffiffi
3

p

2
0j i � 1

2
1j i

ð10:9aÞ

with

0j i ¼ 1
2 00j i þ

ffiffi
3

p
2 10j i

1j i ¼
ffiffi
3

p
2 00j i � 1

2 10j i : ð10:9bÞ

These basis states are orthogonal and normalized to unity, and they are related to
the unprimed basis by a unitary transformation.

Similarly, another possible set of basis states is offered by 100j i; 000j if g where the
double primed basis is related to the unprimed basis by

000j i ¼ 1
2
0j i �

ffiffiffi
3

p

2
1j i

100j i ¼
ffiffiffi
3

p

2
0j i þ 1

2
1j i

ð10:10aÞ

with

0j i ¼ 1
2 000j i þ

ffiffi
3

p
2 100j i

1j i ¼ �
ffiffi
3

p
2 000j i þ 1

2 100j i : ð10:10bÞ
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These basis states again are orthogonal and normalized to unity and related to the
unprimed basis by a unitary transformation. The dynamics of the spin can be treated
equally well in any of the three given basis choices.

Now in the unprimed, primed, and double primed bases it is possible to study the
measurements of the binary variables 1j i; 0j if g, 10j i; 00j if g, and 100j i; 000j if g as they
are statistically related to one another. A determination of the relative probability
distribution of these measurements can then be made within the context of (10.8).
This allows for an understanding of the correlated probabilities, providing for a
comparison with the identity in (10.8) for the classical probabilities. For this
comparison it is convenient to treat a two-particle wave function.

The two particle wave function that is of interest for this study is given by [1–7]

wj i ¼ 1ffiffiffi
2

p 0j i 0j i þ 1j i 1j i½ � ¼ 1ffiffiffi
2

p 00j i 00j i þ 10j i 10j i½ �

¼ 1ffiffiffi
2

p 000j i 000j i þ 100j i 100j i½ �:
ð10:11Þ

This involves two identical particles in a combination of the 1j i; 0j if g, 10j i; 00j if g,
or 100j i; 000j if g basis states. The second and third equalities in (10.11) can be shown
by using (10.9) and (10.10) to rewrite all of the wave functions in terms of the
1j i; 0j if g states.
Consequently, the form of the wave functions in (10.11) is invariant under

transformations between the three bases, i.e., it retains its form in all three bases.
This is very useful in computing the probabilities of finding the basis states as
components of the wave function.

The focus is next on looking at the nature of the probability distributions gen-
erated from the probability amplitudes in (10.11). A search will be made of three
random variables in the system which are distributed in the system so as to violate
the inequality in (10.8). This would represent a fundamental departure of the nature
of the quantum system from that found in classical mechanical systems.

Considering (10.8) for the description of the statistics represented by the wave
function in (10.11), define the random variable S1 by [1–7]

S1 ¼ 1
S1 ¼ 0

if
1j i
0j i : ð10:12Þ

This represents a measurement in the unprimed basis. Similarly for the other two
variables in (10.8) define [1–7]

S2 ¼ 1
S2 ¼ 0

if
10j i
00j i ; ð10:13Þ

and
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S3 ¼ 1
S3 ¼ 0

if
100j i
000j i : ð10:14Þ

where these variables are set to measure in the primed and double primed bases.
It is seen comparing (10.11)–(10.14) that the set of binary variables S1; S2; S3f g

represents a complete description of the wave functions in (10.11) as measured in
each of the three bases. This allows for the development of a probabilistic theory of
the three random binary variables that can then be compared within the context of
the inequality in (10.8).

The wave functions in (10.11) can be rewritten into mixed forms involving the
1j i; 0j if g, 10j i; 00j if g, or 100j i; 000j if g bases. For instance, in this way applying

(10.9b) and (10.10b) gives

wj i ¼ 1ffiffiffi
2

p 0j i 0j i þ 1j i 1j i½ � ¼ 1ffiffiffi
2

p 0j i 1
2

00j i þ
ffiffiffi
3

p
10j i

� ��

þ 1j i 1
2

ffiffiffi
3

p
00j i � 10j i

� ��
;

ð10:15aÞ

wj i ¼ 1ffiffiffi
2

p 0j i 0j i þ 1j i 1j i½ � ¼ 1ffiffiffi
2

p 0j i 1
2

000j i þ
ffiffiffi
3

p
100j i

� ��

þ 1j i 1
2

�
ffiffiffi
3

p
000j i þ 100j i

� ��
;

ð10:15bÞ

and

wj i ¼ 1

4
ffiffiffi
2

p 00j i þ
ffiffiffi
3

p
10j i

� �
000j i þ

ffiffiffi
3

p
100j i

� �
þ

ffiffiffi
3

p
00j i � 10j i

� �
�

ffiffiffi
3

p
000j i þ 100j i

� �h i
:

ð10:15cÞ

With these representations, the probability of finding the states S1 ¼ 1 and
S2 ¼ 1 in the system is obtained by projecting out 1j i 10j i from (10.15a). This gives
from (10.15a) [1–3]

P S1 ¼ S2 ¼ 1ð Þ ¼ 1h j 10h j wj ij j2¼ 1
8
: ð10:16aÞ

Similarly, it follows from (10.15a) that [1–3]

P S1 ¼ S2 ¼ 0ð Þ ¼ 0h j 00h j wj ij j2¼ 1
8
: ð10:16bÞ

and, consequently,
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P S1 ¼ S2ð Þ ¼ 1
4
: ð10:17Þ

By the same argument it follows from (10.15b) that

P S1 ¼ S3ð Þ ¼ 1
4
; ð10:18Þ

and from (10.15c) that

P S2 ¼ S3ð Þ ¼ 1
4
: ð10:19Þ

As a result in the quantum system

P0 S1 ¼ S2ð ÞþP S1 ¼ S3ð ÞþP0 S2 ¼ S3ð Þ ¼ 3
4
: ð10:20Þ

Comparing this with the result in (10.8) it is seen that the classical mechanical
relationship in (10.8) is violated in the particular spin system studied. This is an
essential difference between the classical and quantum mechanical probabilities,
arising from the fact that the fundamental element in quantum probabilities is the
wave function or probability amplitude whereas classical mechanics deals directly
with the probability distribution.

10.2 Entanglement and the Einstein-Podolsky-Rosen
Paper

Another important aspect of quantum probabilities as they relate to the wave-
function is the idea of entanglement and its connection to an early paper of Einstein,
Podolsky, and Rosen [1–7]. Entanglement in quantum mechanics arises from the
unusual nature of many-body wavefunctions as they are developed in quantum
theory. The ideas of the Einstein, Podolsky, and Rosen paper come from a conflict
with the qualitative properties found between classical mechanical and quantum
mechanical systems studied in many-body theory. These differences were originally
regarded as paradoxical in early treatments of quantum theory. In the following,
after a brief description of the features of entangled wavefunctions, the ideas of
Einstein, Podolsky, Rosen will be summarized. This will be followed by a dis-
cussion of some of the current theoretical measures and problems associated with
the measurement of entanglement.
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10.2.1 Nature of Entangled and Non-entangled State
Wavefunctions

Entangled states first occur in the theory of two identical particles. However, it is in
fact found that entangled states can exist in the wavefunctions of all systems of
more than one particle. The entanglement properties of two particle states are the
easiest to study and to offer an effective measurement procedure for quantifying
the degree of entanglement. That is why they will be the focus here. The study of
the entanglement of systems of higher numbers of particles and the measure of the
degree of entanglement in these wavefunctions is still problematic.

For these discussions, useful examples of multiple particle wavefunctions can be
composed from spinor states. In this formulation, a two-particle entangled wave-
function is composed from the inner product of two single spin one-halves.
Consequently, if the single spin states are denoted 1j i for spin up and 0j i for spin
down, the two particle states are composed as linear combinations of the inner
product states 1j i 1j i, 1j i 0j i, 0j i 1j i, and 0j i 0j i.

First consider the difference between an entangled and a non-entangle wave
function for the case of a system of two spins. A two particle wave function wj i for
particles with single spin coordinates 1j i for spin up and 0j i for spin down is said to
be a non-entangled wave function provided that [1–7]

wj i ¼ aj i bj i; ð10:21aÞ

where a ¼ 0; 1 and b ¼ 0; 1 denote the spin of the wave function for the single
particle states or

wj i ¼ a1 1j i þ a0 0j i½ � b1 1j i þ b0 0j i½ �; ð10:21bÞ

where a1j j2 þ a0j j2¼ 1 and b1j j2 þ b0j j2¼ 1. In this representation, then, in (10.21a)
a labels the first particle and b labels the second particle, respectively, and, simi-
larly, the first and second brackets on the left in (10.21b) represent the first and
second particles, respectively. In the second example, it is seen that the wave-
functions of the first and second particles are separately linear combinations of
different states of the same particle. In both cases the two particle wave function
separates into a product of a wavefunction of the first particle with that of the
second particle.

It is seen in the non-entangled state that the two particle wavefunction can be
factorized into the product of two single spin wavefunctions for each of the particles
composing the two particle wavefunction. As a result, the probability density
obtained from (10.21a) has the form

h~r1;~r2jwij j2¼ h~r1jaij j2 h~r2jbij j2 ð10:22Þ
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so that the two particle probability density is the product of two separate single
particle probability densities. Here ~r1h j and ~r2h j are the position states for the first
and second particle, and ~r1;~r2h j is the position of the two particles taken together. It
should also be noted that the wavefunction in (10.21b) displays a similar separation.
The two particle wavefunctions in (10.21) are not, however, the most general form
of the two-particle wavefunction.

Consider for example the following two particle wavefunctions:

wj i ¼ 1ffiffiffi
2

p 0j i 0j i þ 1j i 1j i½ �; ð10:23aÞ

wj i ¼ 1ffiffiffi
2

p 0j i 0j i � 1j i 1j i½ �; ð10:23bÞ

wj i ¼ 1ffiffiffi
2

p 0j i 1j i þ 1j i 0j i½ �; ð10:23cÞ

and

wj i ¼ 1ffiffiffi
2

p 0j i 1j i � 1j i 0j i½ �: ð10:23dÞ

These four two particle wavefunctions are known as the Bell states [1–7] for two
spin one-halves and are examples of entangled wavefunctions. The reason that they
are termed entangled is that they cannot be factorized into the product of two wave
functions each of which separately account for the probabilities of only the first or
only the second particle of the pair. Only non-entangled wavefunctions can be
rewritten so that their probability densities can be expressed as the product of a
probability distribution for the first spin times a probability distribution for the
second spin. This is the form developed earlier in (10.22).

As shall be seen later, the Bell wavefunctions involve a state of maximal
entanglement. The sense of the degree to which the Bell wavefunctions are
entangled can be seen from the following observations: For each spin in the Bell
wavefunction the probability of observing that spin in a spin up state is 1

2, and the
probability of observing the other spin in a spin down state is again 1

2.
Consequently, a measurement of the spin state of either of the two spins generates a
maximum information regarding the spins of the Bell states. Much more infor-
mation is arrived at on determining a measurement of a Bell state than, for example,
a non-entangled state such as wj i ¼ 1j i 1j i.
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10.2.2 Einstein, Podolsky, and Rosen

An interesting property associated with wavefunctions of the form given in (10.23)
comes from the measurement properties of the entangled states that they represent.
Consider, as an example, a measurement made on the wavefunction in (10.23c).

If the first particle of the pair is measured and found to be in a state of spin up,
the second particle must be in a state of spin down. Likewise, if the first particle is
in a state of spin down, the second particle must be in a state of spin up. In this way,
a measurement of one particle sets the value displayed by the other particle, and the
measurement of the first particle is a random probabilistic event.

This was viewed as paradoxical because two particles in different locations could
be viewed as acting instantaneously with one another in the determination of their
properties. However, as Bell’s work indicates the paradoxical behavior is, in fact
consistent with physical reality. Through many years the underlying entanglement
properties of the quantum mechanical wavefunctions have been proven experi-
mentally, and the reader is referred to the literature for a further discussion.

The degree to which wavefunctions represent non-entangled or entangled states
can be quantified. This quantification shall now be discussed in terms of the von
Neumann entropy and the entanglement entropy.

10.2.3 Measurements of Entanglement

An important measure of the information in a probabilistic system is the entropy of
the probability distribution [4–10]. This also applies to quantum mechanical sys-
tems where it is found that entropy can be used to characterize the nature of many
particle quantum wavefunctions. In particular, the entanglement entropy of the
probability distribution of non-entangled states and, consequently, the information
content of their wavefunctions are less than those of entangled states. The entan-
glement entropy then acts as a measure of the degree to which a system is entan-
gled. The focus in the subsequent discussions will be on the development of the
details of the application of entropy as a measure of entanglement.

The idea of entropy is very important in the study of probability and is a topic of
the general mathematics of probability and statistics. In the following it shall be
seen that the ideas of entropy can be applied to a variety of measures of statistically
distributed systems. These include both the von Neumann entropy and the entan-
glement entropy. For these applications, the formulation of the entropy of a system
is given in terms of the density matrix description of the system. The ideas of the
density matrix, entropy, and their applications in the determination of entanglement
are now reviewed.
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Density Matrix
An important construction in understanding the quantum mechanical properties of
systems is the density matrix. This plays an important part in characterizing the
nature of wavefunctions of a quantum mechanical system as well as the degree to
which a wavefunction is entangled. In the following a focus will be on exploring
these ideas for a two-particle or bipartite system.

To begin with, remember that the density matrix is written in terms of the
complete set of eigenfunctions of the system, nj if g. In the context of the later
discussions, it can be defined to be of the form [1–7]

~q ¼
X
n

qn;n nj i nh j ð10:24Þ

where the qn;n
� �

weight the nj i nh jf g and are the probabilities of occurrence of the
nj if g in the system. The weights are chosen so that the average of an operator

A ¼Pi;j ai;j ij i jh j in the system is written in terms of the density matrix as

Ah i ¼ tr Apð Þ ¼
X
n

an;nqn;n ð10:25Þ

where tr represents the trace over nj if g. Note that the qn;n
� �

may be chosen to
represent purely quantum mechanical averages, statistical mechanics averages,
averages related to instrumental measurements, etc.

Written in terms of a general orthonormal basis set n0j if g the density matrix
becomes [1–7]

~q ¼
X
n0;m0

X
n

n0j i n0h jqn;n nj i nh j m0j i m0h j

¼
X
n0;m0

n0j iq0n0;m0 m0h j
ð10:26Þ

where q0n0;m0 ¼Pn n0h jniqn;n nh jm0i. Consequently, the density matrix is only
diagonal in the basis of eigenvalues of the Hamiltonian of the system. It assumes a
more complex form in other bases.

For a system of two non-interacting spin one-half particles a complete set of
basis eigenstates states of the free particle Hamiltonian is

/1j i ¼ 1j i 1j i; /2j i ¼ 0j i 0j i; /3j i ¼ 1ffiffiffi
2

p 0j i 1j i þ 1j i 0j ið Þ; /4j i ¼ 1ffiffiffi
2

p 0j i 1j i � 1j i 0j ið Þ
	 


:

ð10:27Þ

Each of these four wave functions is a state of fixed quantum numbers of the total
spin and total z-component of the two spins. Consequently, any of these four states
can be taken as a pure state of the system with unique values of the quantum
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numbers of the system. The density matrix for the system in any of these pure
system eigenstates would then be, from (10.24), written in the form

qi ¼ /ij i /ih j ð10:28Þ

where i ¼ 1; 2; 3; 4.
A different type of state of the quantum system from pure states are mixed states.

These are states that arise including considerations apart from those of quantum
theory. For example, the system may involve statistical mechanics in its description
so that a statistical mechanical probability is assigned to the possible quantum states
in which the system may be found. Another example arises from the uncertainty in
setting the initial configuration of the quantum mechanical system being studied.
These states are, consequently, not simple pure wavefunctions of the system. As a
result of these additional consideration, the mixed states require more complex
density matrices than those encounter in pure states of the system.

As an example, consider a two-spin system that can occur in the state /1j i with a
statistical probability p1 and in a state /2j i with a statistical probability p2. Here the
two probabilities p1 þ p2 ¼ 1 are classical probabilities not related to the quantum
mechanics of the system. They arise as the state of the system is not well defined by
the quantum mechanics alone but represents a mix of states with different sets of
quantum numbers.

The density matrix for the mixed mode of the example is then written as [1–7]

q ¼ p1 /1j i /1h j þ p2 /2j i /2h j ð10:29aÞ

which can alternately be rewritten in the notation of the full four by four matrix
form

q ¼
p1 0 0 0
0 p2 0 0
0 0 0 0
0 0 0 0

��������

��������
ð10:29bÞ

Note that as a further example of the matrix formulation: For the case of the pure
state q2 ¼ /2j i /2h j, p1 ¼ 0 and p2 ¼ 1 in (10.29b), and for the case of the pure
state q1 ¼ /1j i /1h j, p1 ¼ 1 and p2 ¼ 0 in (10.29b).

It should be noted that for the pure state it follows from (10.28) that q2i ¼ qi. On
the other hand, however, from (10.29) it is found that for mixed states q2 6¼ q. This
is a general relationship that allows for a distinction between pure states and mixed
states. Nevertheless, a more useful relationship for quantifying the difference
between pure and mixed state wave functions follows from the mathematical study
of probability distributions. Specifically, this quantification involves the introduc-
tion of the concept of statistical entropy and it relationship to mixed and pure states.

The states encountered in the description of a physical systems then fall into
three different types. In pure states, the states can be classified into entangled and
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non-entangled states. Here the entangled states are those new states introduced in
the study of dynamics by the nature of quantum theory and are quantified by the
entanglement entropy. In addition, states of the system can be classified as mixed
states. In these states, other concepts of statistical physics enter aside from those of
quantum theory. These involve the von Neumann entropy.

Entropy
In the mathematical study of probability distributions an important question is how
much information is learned about a system upon making a measurement which
determines its state [4–6]. If the probability distribution of the system studied
ranges over a very narrow group of states exhibiting very similar properties, the
information derived from a measurement is not very great. On the other hand, if the
probability distribution of the system studied ranges over a very broad group of
states exhibiting very dissimilar properties, the information derived from a mea-
surement is very great.

A means of quantifying the information obtained from a measurement made on a
system characterized by a probability distribution is the entropy. The entropy of a
probability distribution P sið Þ generated over the distributed random variables sif g is
defined by [1–7]

S ¼ �
X
i

P sið Þ ln P sið Þ ð10:30Þ

where the sum is over all of the different realizations of the random system. Here
the set sif g can represent the spin values of a collection of particles or some other
array of values used to characterize each realized configuration possible to the
system. The sum is, then, over each of the i labeled different configurations. In
terms of the density matrices in (10.28) and (10.29) of the two-particle spin
one-halves this entropy becomes

S ¼ �tr q ln q½ � ð10:31Þ

As an example of the properties of the entropy of the two-spin system in (10.31)
note that for the pure state in (10.28) S ¼ 0. The zero entropy indicates that there is
no information content in the pure system. This makes sense as if the system is in
an eigenmode of the system the result of a measurement on the mode yields no new
information about the system. Since the properties of the eigenmode are completely
known, the lack of information output is indicated by the zero entropy.

For the mixed state wave function described in (10.29b), however, the situation
is quite different. Evaluation (10.31) for the density matrix in (10.29b) gives an
entropy of the form

S ¼ �p1 ln p1 � 1� p1ð Þ ln 1� p1ð Þ: ð10:32Þ

In Fig. 10.1 a plot is presented of S as a function of e ¼ p1.
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From the plot in Fig. 10.1 it is seen that, as expected, the entropy of the pure
states at e ¼ 0 and e ¼ 1 are zero. No information is gathered by measurements on
these states. Between these states are a range of mixed states. The information
gathered from measurements on these states varies with the degree of mixing of the
states.

At e ¼ 0:5 the wavefunctions contains equal amounts of the two eigenmodes
composing the wave function, and it is for this wavefunction that the most infor-
mation is gleaned upon performing a measurement on the wave function. At other
fractional values of e the mixture contains one of the eigenmodes of the system to a
greater or lesser extent that the other. Consequently, the result of a spin measure-
ment on the mixed state offers less of a surprise or less information regarding the
result of the measurement.

The entropy measured on the total density function of the system is the von
Neumann entropy, and it is essentially involved in measuring the amount of mixing
of the wavefunction represented by the density matrix. The larger the non-zero
entropy of the system the greater is the mixing of eigenstates in the wavefunction
representing the state of the system.

The next type of entropy that is important in characterizing the system is the
entanglement entropy. This type of entropy or information measurement quantifies
the degree to which a state of the system is entangled. This is a different type of
information than that from the von Neumann entropy which relates to the extent
that the wavefunction is formed as a mixture of eigenstates.

Remember that a non-entangled eigenstate of a system of multiple particles is
one that generates a probability distribution for the particles which is a product of
independent single particle probability distributions. For this type of eigenstate the
probability amplitude describing the state of the system also factorizes into a
product of independent probability amplitudes for each of the particles of the
system. The important new properties of quantum systems arise from the existence
of entangled wavefunctions which do not exhibit these types of factorization
properties.

Fig. 10.1 Plot of the von
Neumann entropy versus e ¼
p1 for the system in (10.29)
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The entanglement entropy is designed to measure the degree of entanglement of
the wavefunctions of the system. In the following, the considerations will be for a
two-particle spin one-half system. The question of how to quantify the entangle-
ment of systems with higher number of particles is still an open question.

One can see straightaway that if a non-entangled eigenstate of the form wj i ¼
uj i kj i is treated, it has a density matrix given by [1–7]

q ¼ uj i kj i kh j uh j: ð10:33Þ

On tracing out the kj i states of the second particle it is found that

q1 ¼ uj i uh j: ð10:34Þ

which is the density matrix of the pure state of the first particle. The reason for this
reduction is that the first and second particles obey distinct and independent
probability distributions.

The information content of the reduced density matrix in (10.34) can be com-
puted using the entropy defined in (10.31). This is done by replacing the density
matrix in (10.31) by the identification q ¼ q1 and taking the trace over the states of
the first particle of the pair. Computed in this way the entropy is known as the
entropy of entanglement or entanglement entropy.

In this way, the entropy of q1 is found to be S ¼ 0. Consequently, no new
information is gathered on the state as it is one of the two states described by an
isolated independent particle distribution. Similarly, all of the same information can
be extracted from (10.33) by tracing over the first particle instead of the second
particle.

Performing this trace one finds for the first particle that the reduce density matrix
is [1–7]

q2 ¼ kj i kh j: ð10:35Þ

Using (10.31) with q ¼ q2 again gives S ¼ 0. No new information is obtained from
the reduced density matrix of the non-entangled system. This, however, is not the
case if the two-particle wavefunction is entangled.

The reduction of the two-particle density matrix to a single particle density
matrix by tracing over the basis for one of the particles does not occur for two
particle density matrices involving entangled states. For example, consider an
eigenstate with a two-particle entangled wavefunction of the form [1–7]

wj i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� eð Þ2 þ e2

q 1� eð Þ uj i kj i þ e kj i uj i½ � ð10:36Þ

where 0� e� 1 and k uj i ¼ 0h . Now the density matrix is
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q ¼ wj i wh j: ð10:37Þ

so that tracing over the second particle variables gives

q1 ¼
1

1� eð Þ2 þ e2
1� eð Þ2 uj i uh j þ e2 kj i kh j

h i
ð10:38Þ

Applying the standard statement of entropy given in (10.31) but now on the
reduced density in (10.38) obtained by tracing over the second of the two particles
gives [1–7]

S ¼ �tr q1 ln q1½ �

¼ � 1� eð Þ2
1� eð Þ2 þ e2

ln
1� eð Þ2

1� eð Þ2 þ e2

" #

� e2

1� eð Þ2 þ e2
ln

e2

1� eð Þ2 þ e2

" # ð10:39Þ

Notice that for e ¼ 0 and e ¼ 1 (10.38) is a non-entangled state and the entropy is
zero. Otherwise, however, the entropy is non-zero and the state is entangled.
Specifically, for e ¼ 1

2 the system is maximally entangled. This is seen from
Fig. 10.2 where the entropy is plotted as a function of e.

In the case of the Bell states given in (10.23), each of the entangled states is a
maximum of the entanglement entropy. This is obtained from an application of the
methods used in (10.36)–(10.39) to the states in (10.23) and is at the point of
interest in the study of the Bell states. The entanglement properties of wavefunc-
tions involving more than two-particles is currently still a focus of research interests
and as such remains an open problem.

Fig. 10.2 Plot of the entropy
S in (10.39) versus e
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10.3 Quantum Information and Computing

In quantum information and quantum computing, information is stored and acted
upon in physical structures for which quantum effects are dominant [7–10]. Such
physical realizations are often taken to be composed of two level features, i.e., they
are systems formed as a collection of physical units that can each exist in two
different states. Examples of such materials are a collection of spin one-half par-
ticles, a collection of atoms or ions that can exist in a ground state-excited state
complex, light of various polarizations, Josephson junction arrays, etc.

The basic idea in forming these collects of binary units is that information can be
encoded into the array of physical units. This is done by reading the information
into the level occupancy distributed throughout the two-level units forming the
system. In this assignment, the two levels of the array are denoted by 1 and 0,
allowing them to represent the binary encoding of information that is the basis for
information handling in computer science. The read-in information can at some
later time be readout of the array or acted upon by a physical process so as to
change the information content within the array.

Not only can information be stored in arrays of two levels but it can also be
changed. This is accomplished through the application of various physical pro-
cesses which interaction with the two-level states. Such processes can be designed
to change the occupancies of the two-level states of the system and reconfigure
them into another collection of 1’s and 0’s from that of the initial read-in state.
Consequently, an important fundamental element in the design and implementation
of the quantum computer programs is the formulation of processes which give rise
to specific changes of the information content of the array of two levels.

In order to understand these basic ideas of quantum computing in more detail, it
is first necessary to consider some of the aspects of information in computers based
on classical mechanics [7–10]. The ideas of quantum computers are then seen as an
extension of classical computer ideas to take advantage of the phase coherence and
the unitary time evolution of quantum systems.

These two quantum properties allow for the development of algorithms for
quantum computing. In many instances quantum algorithms exhibit the great
advantage of quantum computers over those of classical computers. To this end, in
the following, some ideas of classical computers will be developed. After this a
development and comparison of the ideas of classical computation will be made
with quantum computer methods. At the end, some examples of problems which
benefit from quantum algorithms are presented.

10.3.1 Ideas of Classical Computers

The handling of information in classical computers is based on storing the infor-
mation in a pattern of 0’s and 1’s. In this design, a mechanism described by
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classical physics is employed as a basic unit of the computer and the computer is
composed as an array of such basic units. In its formulation the basic unit consists
of two states signifying the presence of 1 or 0 held in the memory of the computer
[7–10].

Each such unit for information storage in the classical computer is referred to as
a bit, and the computer must have many bits to effectively hold significant infor-
mation. In particular, a bit represents a bit of the total information to be stored, and
the information that can be held in a single bit is only one of 1 or 0. As shall be seen
later the classical bit is quite different from the unit of information storage (termed
the qubit) in a quantum computer [7–10].

A collection of complex information is stored in the classical computer by
assigning values to a large array of bits. This information can be either read out later
or subsequently used as input for a computation.

In the case that the information is input data for a calculation, the computer can
go further and act to modify the input data. For this modification, it uses classical
mechanical based processes to arrive at a final state of the information. This is then
the act of computation which is governed by an algorithm specifying how the
computer should change the inputted data.

As with the input data, the final state of information after a computation is stored
as an array of 1’s and 0’s. This information can then be outputted from the com-
puter as the answer of the particular processing task assigned on the initial data.

For the purposes of processing the inputted data only a limited number of
operations are available to the classical computer. These operations take the
sequence of 1’s and 0’s in the data and change them into other patterns of 1’s and
0’s. For processing of the data it can be shown that only two classes of basic types
of operations are needed. These involve operations which change the value of a
single entry of the input or operations which take two entries of the input and use
them to generate a resultant third value as an output. A vast sequential assembly of
such single and binary operations then constitute an algorithm for generating the
computer output.

Elaborate algorithms are written for the processing of the input into output data.
It can, however, be shown that the most complicated algorithm is only based on a
limited number of different basic standardized logic operations or gates. A general
algorithm is then the repetition over and over of these basic gates.

This is similar to the idea of biological processes based on the molecules of
DNA and RNA. These molecules are both formed as the repetition of a long
sequence of chemical units involving a limited number of chemical building blocks,
i.e., the amino acids. When put together as a sequenced chain both molecules
function as an algorithm for a molecular assembly process in the biological cell.
The resulting molecules act as a computer in the generation of other molecular
forms.

In the formulation of computer algorithms it can be shown that all calculations
that can be performed by a computer can be composed from three logic gates
[7–10]. These three important operations are the N-gate, the AND-gate, and the
OR-gate. Their function is similar to that of the molecular units of DNA and RNA
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in the biological system, specifically, to decompose the input data and reassemble it
into a useful output. In the following these three gates will be explained. After this
some examples of more complicated classical gates that can be expressed in terms
of them will be given.

The simplest logic gate of a classical computer is the N-gate [7–10]. It involves
an operation which deals with only a single value or bit of the inputted data. In this
sense the functioning of the N-gate is very simple. It just reverses the value of the
bit (which is either 1 or 0) that it is operating on (i.e., replacing it by 0 or 1). This
can be expressed in tabular form by the rule [8] (Table 10.1). If a is the input 0 or 1,
then b ¼ �a is the output 1 or 0, respectively. Note that in this formulation the bar
over the a indicates that the value of a is replace by its opposite value.

The next two gates of interest for classical computing involve operations
between two values or bits of the inputted data. These bits are then used to produce
a third bit as a contribution to the output. The two basic binary logic gates for these
types of operations are the AND- and the OR-gates [8].

The binary operation of the AND-gate is given in tabular form by [8]
(Table 10.2). Here the product is essentially the logic multiplication defined in
Boolean algebra. The table can alternately be viewed as a defined tabular operation
which functions as part of a scheme to generate more complex processes.

The final binary gate in the set of algorithm generating processes is the OR-gate.
This gate is represented by the logic operation given in tabular form by [8]
(Table 10.3). Here the addition is essentially the binary addition of Boolean algebra.
Again the table can be regarded as a rule yielding an essential component of the
formation of more complex algorithms.

Table 10.1 N-gate a b ¼ �a

0 1

1 0

Table 10.2 AND-gate a b c ¼ ab

0 0 0

0 1 0

1 0 0

1 1 1

Table 10.3 OR-gate a b c ¼ aþ b

0 0 0

0 1 1

1 0 1

1 1 1
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As an example of an algorithm composition from these three logic gates, consider
another important logic-gate operation which can be written in terms of the N-,
AND-, and OR-gates. A gate that shall be important later is the exclusive-or-gate.
This is often denoted as the XOR-gate. The table representing the XOR-gate is given
by [8] (Table 10.4). In terms of the Boolean addition and multiplication processes
and the N-gate defined earlier, the XOR table can be expressed as an algebraic form
in these gates. Specifically, it is found that

c ¼ a� b ¼ �abþ a�b: ð10:40Þ

The reproduction of the a� b-table then follows from an application of the
earlier discussed tabular rules.

The three logic-gates that form the basic units in algorithm composition display
an important characteristic of classical computation. Specifically, the execution of a
classical algorithm is inherently not reversible. Not all calculations can be reversed
in the sense that one can go from the output of the computer back to the input data
by taking a reversed sequence of the logic-gates.

In this regard, though the N-gate is a reversible operation, the other two AND
and OR-gates are not reversible. In the case of the N-gate, its reversibility follows
from the fact that [8]

a ¼ ��a: ð10:41aÞ

However from an inspection of the logic-gate tables it is seen that in the case of the
AND-gate [8]

c ¼ ab ¼ 0 ð10:41bÞ

and in the case of the OR-gate [8]

c ¼ aþ b ¼ 1 ð10:41cÞ

do not allow for a unique determination of a and b for the indicated values of c.
These two gates cannot be operated in reverse so that the operations of general
algorithms tend to be irreversible processes. As shall be seen later, this has con-
sequences in the compositional and thermodynamic properties of algorithms
implemented using classical gates.

Table 10.4 XOR-gate a b c ¼ a� b

0 0 0

0 1 1

1 0 1

1 1 0
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Returning to the composition of algorithms that transform input data to a set of
output data, consider such a general process in a little more detail. This will later be
used to reveal the essential differences between classical and quantum computation.

In the process of classical computation an input array of 1’s and 0’s is acted upon
by the computer to generate an output array of 1’s and 0’s. As a simple example of
such a process consider the reversible transformational process [8]

0; 1; 0; 0; 0; 1j j , 1; 0; 1; 1; 1; 0j j: ð10:42Þ

Here the input data is on the left of the , sign and the outputted data is on its right.
The sign , indicates all of the various algorithmic steps done by the computer to
change the input data into the output data.

In the present example one can see that each bit in the input data has been acted
upon by an N-gate to reverse its value. Consequently, the processes is reversible as
each N-gate application is reversible. As the net transformation is reversible and can
go either way, it is denoted by the ,.

As an example of an irreversible process consider the transformation [7, 8]

0; 1; 0j j ) 0; 0j j: ð10:43aÞ

Here the binary operation AND-gate has operated on the first two bits of the input
to produce the first entry of the output. The AND-gate is known to be irreversible so
that the operation in (10.43a) cannot be inverted. In this regard, for example, the
transformation [7, 8]

1; 0; 0j j ) 0; 0j j: ð10:43bÞ

leads through the application of the AND-gate on the first two bits to the same
output data. The inputs in (10.43a) and (10.43b) are completely different but,
nevertheless, yield the same output.

Another interesting feature of (10.43) is that the final 0 in the input and output is
left unchanged by the transformation. This can occur in certain computations which
use a value of one of the inputs as an indicator or control of the operation to be
performed. For example, the 0 in the last place of the input in (10.43) may be used
to indicate that the output of the binary action on the first two bits of the input is
computed using the AND-gate.

Assume then that if a 1 occurs in the last entry of the input, the AND-gate
operation in (10.43a) and (10.43b) is replaced by the OR.-gate. Here again the 1 is
acting as a control to indicate the action to be performed. In this case one would
find [7, 8]

0; 1; 1j j ) 1; 1j j ð10:43cÞ

and
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1; 0; 1j j ) 1; 1j j: ð10:43dÞ

where the first two bits on the left determine the first bit on the right through the
application of the OR-gate. The last bit remains unchanged as a control.

The results in (10.43) indicate how the application of a binary process may differ
depending on the nature of a control statement. In addition, it should be noted that
all of the processes in (10.43), due to the irreversible nature of the AND and
OR-gates, are irreversible.

As another example of a computational process that will be helpful in under-
standing the potential power of quantum computation, consider computations that
have a final output or answer that is in the form of a yes or no statement about the
data inputted into the computer algorithm. For example, given a function of the
form [7]

y ¼ f ðxÞ; ð10:44Þ

an interest may be in determining if x is a value for which f xð Þ[ 0, whether or not
f ðxÞ is an even or odd function, whether or not f ðxÞ is a periodic function, etc. All of
these questions have yes or no answers and, consequently, 1 or 0 data outputs.

Since the values of x can be represented in the base 2 by a string of 1 and 0, it
becomes necessary to design an algorithm in which a string of 1 and 0 are inputted,
and the values 1 and 0 for yes and no are outputted. This is represented in a typical
irreversible process of the form [7, 8]

0; 1; 0; 1; 1; 0j j ) 1j j ð10:45aÞ

or

0; 1; 0; 0; 1; 0j j ) 0j j ð10:45bÞ

In classical computation the algorithm generally functions by going through a
sequence of x’s, computing their associated values of f xð Þ, and testing whether or
not the conditions on f xð Þ are met by the calculated value. The determination is
done in a loop type of process which is not cleaver but relies on brute sequential
computations to find an answer. On the whole, this can be very inefficient to realize
on a classical computer, even to the extent that it may not be practical to implement
with a finite CPU time.

Turning to quantum computation, it will be seen that quantum computations are
quite different than those in classical systems. To begin with, ideally quantum
computations are based on unitary, reversible, processes. Irreversibility, in fact, is
not part of the design of the quantum computer logic-gates but is a problem to be
overcome in quantum computers. In addition, due to the entanglement properties of
quantum mechanics, the nature of the quantum bit in quantum computing (known
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as the qubit) is different than the bit in classical computing. These feature will now
enter into the discussions as the treatment turns to an explanation of the basics of
quantum computing.

10.3.2 Quantum Computing

In quantum computing the basic unit of information storage is not the classical bit
but the quantum mechanical qubit [7–10]. Similar to the case of the classical
system, the 1’s and 0’s of the quantum computer data are denoted by the states of
two level units, and the computer medium is composed of an array of many such
individual units. The basic unit composing the array may be, for example, the spin
up and spin down state of a spin one-half particle, an excited state and ground state
of a trapped ion, the polarization of light, or any other component that can exist in
two different states. Due to the nature of quantum mechanics, however, the
two-level units in the quantum mechanical array exhibit completely different
properties from their classical mechanical counterparts.

Unlike classical mechanical systems, quantum mechanical systems can exist in a
linear combination of eigenstates. This is known as a superposition of basis states.
For example, if 1j i and 0j i are the wave functions of an orthonormal basis of a two
level quantum unit of the system, a wavefunction composed as a linear combination
of basis states of the unit may be composed as [7–10]

aj i ¼ a0 0j i þ a1 1j i ð10:46Þ

where a0 and a1 are complex numbers satisfying a0j j2 þ a1j j2¼ 1.
An array of the quantum system composed solely of basis states would look like,

e.g.,

0; 0; 1; 1; 0; 1; 0j i ¼ 0j i 0j i 1j i 1j i 0j i 1j i 0j i ð10:47Þ

where the righthand side of the equation represents a direct product of the wave
functions of an array of seven different quantum units, and the left-hand side is a
compact notation for the direct product defined on the right. This particular array is
essentially representing the sequence of 1’s and 0’s given in the classical data
portrayed by the data set [7–10]

0; 0; 1; 1; 0; 1; 0j j: ð10:48Þ

From (10.47) and (10.48) it is found that the classical representation of data by
1’s and 0’s is contained as a subset of the wave functions of an array of quantum
mechanical two level states. The particular subset of states must always be repre-
sented as a direct product involving only the orthonormal set 0j i; 1j if g of each of
the two-level units of the array. Furthermore, it must not involve linear combination
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of such direct product representations. Due to the possibility of forming wave
functions as linear combinations of quantum states, however, the available states for
storing data is much increased in the full quantum system from that of the classical
represented data just discussed.

When using the full set of quantum states of the two-level units forming the
array of the quantum system, the data array of the system is much extended from
the subset of classical-like states. In particular, the state in (10.47) can be gener-
alized to wave functions formed as linear combinations of basis states [7–10]. These
may be written in the general form

~a1; ~a2; ~a3; ~a4; ~a5; ~a6; ~a7j i ¼ ~a1j i ~a2j i ~a3j i ~a4j i ~a5j i ~a6j i ~a7j i: ð10:49aÞ

Here

~aij i ¼ ~ai;0 0ij i þ ~ai;1 1ij i for i ¼ 1; 2; . . .; 7 ð10:49bÞ

where ~ai;0
�� ��2 þ ~ai;1

�� ��2¼ 1, 0ij i; 1ij if g is the orthonormal set of the ith two-level unit
of the array, and the righthand side of (10.49a) again represents a direct product of
the quantum wave function of the seven different units forming the array. This state
is essentially a linear combination or superposition of many classical-like states of
the form in (10.47).

In addition, due to the nature of quantum dynamics, it is, in general, not possible
to change the data states of the quantum system [e.g., a data set such as the
classical-like state in (10.47)] without generating or dealing with wave functions
involving linear combinations of basis states such as those in (10.49). This is
because, in the ideal world of theoretical physics, the time evolution of the quantum
states is generated by unitary transformations.

The nature of these transformations constitutes another essential difference
between classical and quantum computers as unitary transforms only generate
reversible changes in the system. Consequently, quantum computations must be
accomplished through the application of a set of reversible processes, and the
algorithms of such computations must be reversible [7–10].

In this regard, however, note that in the real world the dynamical transformations
of quantum systems are generally a little less than unitary. This is because systems
in the real world exhibit losses arising from their interactions with the universe in
which they find themselves, including effects of thermodynamic fluctuations. In the
study of quantum computers, this difficulty (termed decoherence) is generally
regarded as a design problem to be overcome.

In particular, all computations made using algorithms generated by unitary
processes, must act over a time which is much shorter than the decoherence time [7,
8]. This is the time scale characterizing the length of the period of time over which
the system no longer appears to be unitary. The isolation of the quantum compu-
tation medium and the absolute characterization of the Hamiltonian of that medium
are then fundamental necessities for the study of such systems and the development
of computer algorithms to operate within them.
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Changes made to the input data during an ideal quantum computational process
involve the application of a set of unitary transformations to the wave function
characterizing the initial read in data. The unitary transforms for such time evo-
lutions are of a general form which, from basic quantum theory, is given by [7, 8]

U tf ; ti
�  ¼ exp �i

Ztf
ti

Hdt

0
@

1
A: ð10:50Þ

Here ti and tf are the initial and final times of the operation of the unitary trans-
formation and H is the Hamiltonian governing the dynamics of the system during
this period of time.

The time evolution of a state such as that given in (10.47) or (10.49) is then
obtained by acting on these initial value wave functions with U tf ; ti

� 
where H in

(10.50) is a Hamiltonian of the computing medium. This evolution is set up to
create the appropriate wave function changes during the ti ! tf time interval of its
application to represent various logic-gate operations of the system. As shall be
discussed later these logic-gate operations must be reversible as U tf ; ti

� 
is unitary.

The form of the Hamilton for the time evolution can and often, of necessity,
changes during the time evolution of the logic-gate operation. These changes are
brought about by the application to the computing medium of a series of various
external fields which interact with the medium. As an example, in a simple system
composed of a trapped ion, the occupancy of a ground state and an excited state has
the general qubit form given in (10.46). The trapped ion is an often studied system
in quantum optics, and its manipulation through the application of an external light
source is common knowledge, used as a basis of many aspects of optics and their
applications in technology.

By applying a beam of monochromatic light to the trapped ion system, a unitary
transform of the form [7, 8]

a0; a1ð Þ ! a00; a
0
1

�  ð10:51Þ

can be made on the qubit. During the process, described in (10.51), the original
coefficients a0 and a1 are changed by the unitary transform to turn them into the

primed coordinates a00 and a01 where a00
�� ��2 þ a01

�� ��2¼ 1. Using various pulses of light
applied during specific time intervals a wide range of unitary transformations of the
single qubit can be made.

For an array of N trapped and isolated ions which can be separately or pairwise
interacted with by external light sources, it is possible to perform adjustments on the
state occupancy of the ion qubits composing the array. Under these processes,
the adjustments can be formulated so as to generate basic logic-gate operations on
the qubit wave functions of the array. Algorithms are then created as a sequential
application of these logic-gate operations to the array.
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In the following it will be shown that computations based on the applications of
unitary transforms to data expressed in the general state format of (10.49) display a
number of advantages over classical computations such as those discussed in the
previous subsection. Before these advantages are presented, along with examples of
algorithms of quantum computation, a treatment of the logic-gates that enter into
quantum computation will be given. Due to the difference in the nature of reversible
and irreversible computation, these quantum gates are quite different from the
classical logic gates upon which classical computation is based.

Quantum Logic-Gates
A primary difference between the logic-gates of classical and quantum computers is
that the logical operations of quantum computers must be invertible, i.e., it should
be possible to determine the input of the gate given its output [7–10]. This requires
that the number of qubits of the input data should equal the number of qubits in the
output data. In addition, the number of qubits acted upon by a quantum logic-gate
should be the same as the number of qubits output by the logic-gate. This has
consequences in the table of these reversible logic-gates.

To understand the operation of some of the fundamental logic-gates arising in
quantum computation, the operation of these gates will be considered on a data
array of the form [7–10]

~a1; ~a2; . . .; ~aN�1; ~aNj i ¼ ~a1j i ~a2j i. . . ~aN�1j i ~aNj i: ð10:52Þ

This is a generalization of the direct product defined in (10.49) to the case of N
qubits.

N-Gate
The simplest unitary logic-gate operation to treat is the N-gate which is described
by the logic table [7, 8] (Table 10.5).

This is the same N-gate Table as mentioned in the context of classical compu-
tation. Nevertheless, the N-gate is reversible so that it can be described by a
quantum mechanical process where it ultimately takes the form of a unitary
operator.

Consider the N-gate operation as it is applied to the ith ket in the direct product in
(10.52). The ket it operates on has the form ~aij i ¼ ~ai;0 0ij i þ ~ai;1 1ij i which was
originally given in (10.49b). The unitary operator generating the N-gate transfor-
mation on ~aij i takes 1ij i into 0ij i and 0ij i into 1ij i and is given by ~Ni defined as [7, 8]

Table 10.5 N-gate a b ¼ �a

0 1

1 0
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~Ni ¼ 1ij i 0ih j þ 0ij i 1ih j: ð10:53Þ

It is readily seen that ~N þ
i

~Ni ¼ ~Ni ~N þ
i ¼ 1 so that the operator is unitary and only

operates on one of the kets in the direct product wave function.
Consequently, in terms of the ith ket

~Ni ~aij i ¼ ~ai;0 1ij i þ ~ai;1 0ij i ð10:54Þ

where the other kets in (10.52) have been ignored as the N-gate does not affect
them. In the case that ~ai;0; ~ai;1

�  ¼ 1; 0ð Þ or ~ai;0; ~ai;1
�  ¼ 0; 1ð Þ the ith ket reduces to

a classical-like state, and the N-gate operation in (10.53) and (10.54) takes the form
familiar from the discussions of the classical computation N-gate.

CN-Gate
Next consider a logic-gate that involves two of the kets in (10.52). Let these two
kets be the ith and jth kets in the direct product wave function. For these two kets
consider as an example an application of the control-not or CN-gate. This has the
logic table [7, 8] (Table 10.6).

In the application of the table, ai will refer to the initial value of the ith ket and bi
will refer to the initial value of the jth ket. Similarly, af will refer to the final value
of the ith ket and bf will refer to the final value of the jth ket.

The unitary operator representing the CN-gate logic table is then given by the
operator [8]

CNi;j ¼ 0i; 0j
�� �

0i; 0j
� ��þ 0i; 1j

�� �
0i; 1j
� ��þ 1i; 1j

�� �
1i; 0j
� ��þ 1i; 0j

�� �
1i; 1j
� ��: ð10:55Þ

In this notation, proceeding from left to right on the righthand side of (10.55)
represents the operations of the rows of the logic table going from the top to the
bottom of the table. Appling the CN operator to the ~aij i ~aj

�� � kets in (10.52) it is
found that [8]

CNi;j ~ai;j i ~aj
�� � ¼ CNi;j ~ai; ~aj

�� �
¼ ai;0aj;0 0i; 0j

�� �þ ~ai;0~aj;1 0i; 1j
�� �

þ ~ai;1~aj;0 1i; 1j
�� �þ ~ai;1~aj;1 1i; 0j

�� �
:

ð10:56Þ

Table 10.6 CN-gate ai bi af bf
0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0
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Note that the other kets have been omitted in (10.56) as the CN has no effect on
them. In addition, the transformation is seen to be unitary as

CNi;j CNi;j
� þ¼ CNi;j

� þ
CNi;j ¼ 1, and it is also Hermitian as CNð Þþ¼ CN.

CNN-Gate
An example of a logic-gate that operates on three qubits is the control-not-not or
CNN-gate. The logic table of the CNN-gate is given by [8] (Table 10.7).

Consider now the effects of the CNN-gate as it operates on the ith, jth, and kth
kets in (10.52). As in the previous discussions the other kets forming the state in
(10.52) will be ignored in the following as they remain unchanged by the proposed
application of the CNN-gate. For the proposed application of the table, ai will refer
to the initial value of the ith ket, bi will refer to the initial value of the jth ket, and ci
will refer to the initial value of the kth ket. Similarly, af will refer to the final value
of the ith ket, bf will refer to the final value of the jth ket, and cf will refer to the
final value of the kth ket.

The unitary operator that represents the changes in the ith, jth, and kth kets in
(10.52) coming from the application of the CNN-gate Table is given by the form [8]

CNNi;j;k ¼ 0i; 0j; 0k
�� �

0i; 0j; 0k
� ��þ 0i; 0j; 1k

�� �
0i; 0j; 1k
� ��

þ 0i; 1j; 0k
�� �

0i; 1j; 0k
� ��þ 0i; 1j; 1k

�� �
0i; 1j; 1k
� ��

þ 1i; 0j; 0k
�� �

1i; 0j; 0k
� ��þ 1i; 0j; 1k

�� �
1i; 0j; 1k
� ��

þ 1i; 1j; 1k
�� �

1i; 1j; 0k
� ��þ 1i; 1j; 0k

�� �
1i; 1j; 1k
� ��:

ð10:57Þ

The CNN-gate is, as with the earlier examples of reversible logic-gates, found to be
unitary and Hermitian.

Universal-Gates
In addition, the CNN-gate is an example of a universal gate. This means that all of
the other logic gates involving two or less qubit operations can be obtained from it.
For example, in the case that it is specified that ai ¼ 1 always, the CNN table
reduces to the logic table [8] (Table 10.8).

Table 10.7 CNN-gate ai bi ci af bf cf
0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
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If, as ai ¼ 1 always, the af column in the resulting table is ignored, it is found
that the table reduces to [8] (Table 10.9) which is just the table of the CN-gate.
Consequently, the operator in (10.57) reduces to [8]

CNNi;j;k ¼ 1i; 0j; 0k
�� �

1i; 0j; 0k
� ��þ 1i; 0j; 1k

�� �
1i; 0j; 1k
� ��

þ 1i; 1j; 1k
�� �

11; 1j; 0k
� ��þ 1i; 1j; 0k

�� �
1i; 1j; 1k
� ��: ð10:58Þ

which is the CNj;k operator [8].
In the case of the CNN-gate Table in which ci ¼ 0 always, the resulting table is

[8] (Table 10.10). Notice that in the table af ¼ ai and bf ¼ bi so these two states
remain unchanged by the operation, but cf ¼ aibi. Consequently, the table is a
representation of an AND-gate. In the operator representation it follows that [8]

CNNi;j;k ¼ 0i; 0j; 0k
�� �

0i; 0j; 0k
� ��þ 0i; 1j; 0k

�� �
0i; 1j; 0k
� ��

þ 1i; 0j; 0k
�� �

1i; 0j; 0k
� ��þ 1i; 1j; 1k

�� �
11; 1j; 0k
� ��; ð10:59Þ

where it is seen that the values of the ith and jth kets are always set to remain
unchanged by the operator.

Universal F-Gate
Another example of a universal gate is the Fredkin or F-gate which is a
control-exchange-gate. The table for the F-gate is given by [8] (Table 10.11)

Table 10.8 Reduced
CNN-gate

bi ci af bf cf
0 0 1 0 0

0 1 1 0 1

1 0 1 1 1

1 1 1 1 0

Table 10.9 CN-gate formed
from reduction of a CNN-gate

bi ci bf cf
0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 10.10 Reduced
CNN-gate

ai bi af bf cf
0 0 0 0 0

0 1 0 1 0

1 0 1 0 0

1 1 1 1 1
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and the F-gate operator is [8]

Fi;j;k ¼ 0i; 0j; 0k
�� �

0i; 0j; 0k
� ��þ 0i; 0j; 1k

�� �
0i; 0j; 1k
� ��

þ 0i; 1j; 0k
�� �

0i; 1j; 0k
� ��þ 0i; 1j; 1k

�� �
0i; 1j; 1k
� ��

þ 1i; 0j; 0k
�� �

1i; 0j; 0k
� ��þ 1i; 0j; 1k

�� �
1i; 1j; 0k
� ��

þ 1i; 1j; 0k
�� �

11; 0j; 1k
� ��þ 1i; 1j; 1k

�� �
1i; 1j; 1k
� ��:

ð10:60Þ

As with the CNN gate, it is found that by making certain fixed input assignments to
the F-gate, the F-gate can be readily converted to exhibit a variety of one and two
qubit gates [8].

Walsh-Hadamard-Gate
A final important unitary transformation for the implementation of quantum com-
puter algorithms is the Walsh-Hadamard or H-gate. This is a unitary transformation
which operates upon a single qubit and is best expressed in operator notation. The
Walsh-Hadamard operator applied on the ith qubit in (10.52) has the form [8]

~Hi ¼ 1ffiffiffi
2

p 0ij i 0ih j þ 0ij i 1ih j þ 1ij i 0ih j � 1ij i 1ih jf g: ð10:61Þ

It has the interesting and very useful property that applied to the members of the
orthonormal basis 0ij i; 1ij if g it yields [8]

~Hi 0ij i ¼ 1ffiffiffi
2

p 0ij i þ 1ij i½ � ð10:62aÞ

and

~Hi 1ij i ¼ 1ffiffiffi
2

p 0ij i � 1ij i½ �: ð10:62bÞ

Table 10.11 F-gate ai bi ci af bf cf
0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 1 0

1 1 0 1 0 1

1 1 1 1 1 1
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The H-operator is seen to transform the elements of the orthogonal basis into
wave functions which are equally weighted linear combinations of basis states. The
result of the operation is a superposition wave function composed of equal weights
of the different possible basis states of the system. It can be implemented experi-
mental, for example, in a system of trapped ions by applying a pulse of light which
mixes the eigenstates of the ions, taking each ion from a pure eigenstate to an
equally weighted linear combination of its two eigenstates.

This can be useful in creating an initial set of linear combinations of states of the
system, starting from an ordered ground state of the array of qubits. In this process,
the ground state of the array of ions can be set through the operation to be com-
posed as a superposition wave function representing an array of uniformly com-
bined possible eigenstates of the system [8]

~H1 ~H2. . . ~HN 01; 02; . . .; 0Nj i ¼ h1j i h2j i. . . hNj i: ð10:63Þ

where hij i ¼ 1ffiffi
2

p 0ij i þ 1ij i½ �. The state created in (10.63) contains every possible

configuration in the set 01; 02; . . .; 0Nj i; 11; 02; . . .; 0Nj if , 01; 12; . . .; 0Nj i; . . .; j
11; 12; . . .; 1Nig that are available involving the various 0ij i; 1ij if g ground
state-excited state basis of the N qubit array.

As an illustration of how the various logic gates developed in this section can be
applied to perform an actual quantum calculation, two important algorithms for
quantum computing will now be discussed. These involve preparing an initial state
to be used in the computation, acting on it with an algorithmic sequence of logical
operations, and finally reading out the final answer arising from the data represented
by the initially prepared state. The best way to understand the basic ideas of
quantum computation is to see how such algorithms operate and to develop an idea
of how they can be more efficient than algorithms which are designed for classical
computers.

Quantum Computer Algorithms
To understand how such a linear combination of quantum states might facilitate
quantum computation, an example of a quantum algorithm based on unitary
logic-gates will be given. The problem to be solved by the algorithm is a contrived
problem meant to illustrate the advantages of quantum computation over classical
computation. It does this by displaying some of the basic techniques of quantum
computing that facilitate computation and which are not available in classical
computing.

Deutsch-Jozsa Algorithm
The problem to be considered was proposed early on in the study of quantum
computing and is known as the Deutsch-Jozsa problem. It involves a classification
of the values of a particular function defined over the complete set of N component
kets in the set [8]
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01; 02; . . .; 0Nj i; 11; 02; . . .; 0Nj i; 01; 12; . . .; 0Nj i; . . .; 11; 12; . . .; 1Nj if g: ð10:64Þ

Specifically, if the N-kets of the complete set in (10.64) are denoted by [7, 8]

~xj i ¼ x1; x2; . . .; xNj i ¼ x1j i x2j i. . . xNj i ð10:65Þ

where each of the xi ¼ 0 or 1 for i ¼ 1; 2; 3; . . .;N, then a function f x1; x2; . . .; xNð Þ
is defined over the ket arguments taking either the value 0 or 1.

The function f x1; x2; . . .; xNð Þ is essentially a black box that is contrived so that it
can exhibit either of two types of behaviors when applied to each of the kets in
(10.64) [7]. In the first type of behavior, f x1; x2; . . .; xNð Þ ¼ 1 for all of the kets in
(10.64), and the function is referred to as being a constant function.

For the second type of behavior, f x1; x2; . . .; xNð Þ ¼ 1 for only half the kets in
(10.64) and consequently f x1; x2; . . .; xNð Þ ¼ 0 for the other half of the kets in
(10.64) [7]. Furthermore, for the second type of function it is unknown which of the
N-kets give either of these two values. Functions exhibiting this second type of
behavior are known as balanced functions.

In the Deutsch-Jozsa problem the reader is given the black box function but is
not told which of the two types of functions the box represents. It is only known that
the box must be one of the two types previously mentioned. The problem left to the
reader is to apply a quantum computer to find out which of the two functions the
black box represents. Is the function a constant or a balanced function?

Using methods of classical computation, the problem becomes one of succes-
sively reading in the different x1; x2; . . .; xNð Þ sets of values and recording the values
of the function f x1; x2; . . .; xNð Þ outputted from each of the inputted values. In this
process, there are 2N different values that could be read into f x1; x2; . . .; xNð Þ. It is
known, however, that only one-half plus one of the set of different x1; x2; . . .; xNð Þ
need to be read into f x1; x2; . . .; xNð Þ to completely test the behavior of the function.
This follows as for the balanced function half of the set of inputs give 0 and half
give 1. Consequently, the classical computer requires 2N�1 þ 1 tests to make the
determination between the two types of functions that could be in the black box.

The test on the black box function using classical computers is seen to be a brute
force endeavor, involving an extensive computational effort. A considerable speed
up of the process, however, is made available to the effort by the application of
processes involving quantum effects. Essential to this speed up are the ideas
of wave functions represented as mixtures of eigenstates and the development of
quantum algorithms as unitary transformations. As a comparison, these ideas of
quantum computation will now be applied to the study of the Deutsch-Jozsa
problem.

Now try to speed up the computation up by using the ideas of quantum com-
puting. One way to increase the rate of computation is (instead of sequentially
substituting pure states of the form of (10.64) as input into the quantum computer)
to introduce a data set as a wavefunction which is an equally weighted sum of all
basis states. This is an equally mixed wave function of the basis states and is formed
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as a linear combination of the states in (10.64). The quantum computer has an
important feature that it can operate on the superposition wave function input with
the logic-gate operations discussed earlier. This is different from the classical
computer which can only operate on one of the pure state inputs of the system,
contained within the set in (10.64), at a time.

In its operation the quantum computer processes the superposition wave function
input by sequentially applying logic gates of the quantum algorithm to the input. At
the end of this processing the result of the calculation shows up as a superposition
wave function of output answers contained in the output data from the quantum
computer algorithm. Whereas the classical computer sequentially applies the logic
gates of its classical algorithm to one input state to obtain one output, the quantum
computer applies essential the same logic processes to the wave function mixture of
many different input states to obtain a superposition wave function of many output
states. In this sense, the quantum computer does many things at once while the
classical system does only one thing at a time.

The beginning of the quantum computer processes is then to create a superpo-
sition wave function of input data upon which the computer is to work. In this
superposition wave function it is important that each of the input states in the set in
(10.64) is represented with equal probability in the input data and is equally pro-
cessed by the computer algorithm. This assures an output of equally mixed answer
states within the output data.

To create a superposition wave function input state that is a linear sum of equally
weighted states from the set in (10.64) the H-gate in (10.61)–(10.63) can be used.
The H-gate takes states that are pure basis eigenstates of the system and generates
an equal weighed superposition wave function of them. This is true for any of the
states in (10.64) as can be readily seen from (10.61)–(10.63). Most quantum
computations, however, begin by setting up a superposition wave function based on
the application of the H-gate to the ground state of the system forming the com-
puter. This particular application of the H-gate is shown in (10.63) and will be used
in the following discussions.

To generate a superposition wave function from the ground state of the system in
(10.64) it follows from (10.63) that for the N-ket system [7]

~H1 ~H2. . . ~HN 01; 02; . . .; 0Nj i ¼ h1j i h2j i. . . hNj i ¼ h1; h2; . . .; hNj i ð10:66Þ

where hij i ¼ 1ffiffi
2

p 0ij i þ 1ij i½ �. The application of the H-gates in (10.66) is found to

assure an equal mixture of all of the states contained within the set of (10.64). This
can be seen by multiplying out the right hand side of (10.66), resulting in the sum
[7]

h1; h2; . . .; hNj i ¼ 1ffiffiffi
2

p
� �N

01; 02; . . .; 0Nj i þ 11; 02; . . .; 0Nj if

þ � � � þ 11; 12; . . .; 1Nj ig
ð10:67Þ
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The result in (10.67) is an equal weighted mixed sum of all of the input states in
(10.64).

It is now evident from the mathematical structure of the input data that the
classical computer operates on the single states in (10.64), but the quantum com-
puter operates on each of the sum of the superposed single states in (10.67). In this
sense the quantum computer is a type of parallel processor.

A discussion is now given of how the superposition wave function input data is
processed for the Deutsch-Jozsa problem. This is followed by an explanation of
how the answer is extracted from the superposition wave function state outputted by
the quantum computer.

As with all quantum computer processing of the input data, the calculation on
the initial data for the Deutsch-Jozsa problem proceeds by a sequence of unitary
transformations to generate an output data set. A consequence of this is that more
basis states than the N-ket states in (10.64) and (10.67) are needed for the calcu-
lation. The N-ket states in (10.64) and (10.67) are an orthonormal basis that handles
the input data, but there is more data in the system than just the input data. In
particular, there must also be room in the basis of orthonormal states in which to
develop and store the output data. This requires an expansion of the dimension of
the basis of ket states handled in the computation. The expansion is required in
order to make room for the 0’s and 1’s of the output data.

The value of the outputted function f x1; x2; . . .; xNð Þ is a 0 or a 1 so that at a
minimum the state vectors in (10.64) and (10.67) must be increased to accom-
modate an additional qubit of output information. Making this adjustment the basis
set for performing the calculation is increased from the complete set of N-kets in
(10.64) to become a complete set of N + 1 kets. This complete set of orthonormal
N + 1-kets is given by [7]

01; 02; . . .; 0N ; 0Nþ 1j i; 11; 02; . . .; 0N ; 0Nþ 1j i; 01; 12; . . .; 0N ; 0Nþ 1j i;f
. . .; 11; 12; . . .; 1N ; 1Nþ 1j ig: ð10:68Þ

In the following it shall be shown that the set of states in (10.68) is, in fact, the
basis of complete states that is needed for the quantum computational determination
of the nature of f x1; x2; . . .; xNð Þ. In particular, it will be seen that the outputted state
of the system consists of a listing of N qubits of the input data plus a qubit of data
containing the answer. This comes about due to fact that the quantum processes are
all unitary operations. Consequently, the quantum computer operates in the space of
N + 1-kets forming the basis of the quantum mechanical space including both the
input and output data.

The set of unitary operations which process the input data into the output in the
space of N + 1-kets are then a set of Nþ 1ð Þ � Nþ 1ð Þ unitary matrices which are
used to realize the quantum computer algorithm that is used to generate the computer
solution. For this processing on the basis set of (10.68), the first N left entries are
loaded with input data and the right most entry is arranged to receive the output data
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generated by the program. The first N left entries are very important at the beginning
of the calculation and the last entry is most significant at the end of the calculation.

To start the calculation a set of superposition wave function input data as well as
a superposition wavefunction initial state for the placement of the output data must
be developed. The generation of a superposition wavefunction was done earlier in
(10.66) and (10.67) for the N ket input data states and now this must be generalized
to the N + 1 ket in (10.68). The generalization is almost a direct extension of that in
(10.66) but with a slight modification which helps extract the final answer from the
outputted state.

In the generalization of (10.66) for an N-ket to the N + 1-ket the superposition
state system is set to [7]

~H1 ~H2. . . ~HN ~HNþ 1 01; 02; . . .; 0N ; 1Nþ 1j i
¼ h1j i h2j i. . .. . . hNj i ~hNþ 1

�� � ¼ h1; h2; . . .; hN ; ~hNþ 1

�� � ð10:69aÞ

where

hij i ¼ 1ffiffiffi
2

p 0ij i þ 1ij i½ � ð10:69bÞ

for i ¼ 1; 2; . . .;N, and

~hNþ 1

�� � ¼ 1ffiffiffi
2

p 0ij i � 1ij i½ � ð10:69cÞ

assure the equal mixture of states from (10.68). Notice that the N + 1 entry in the
ket on the left side of the equality in (10.69a) is a 1 whereas all of the other entries
are 0. This choice will be seen later to facilitate the construction of the outputted
state in the algorithmic processing of the inputted ket. Generated in this manner the
ket on the right side of the equality in (10.69a) is still an equal weighted super-
position wave function of the basis set in (10.68).

Multiplying out the result in (10.69), the sum of equal weighted input-output
eigenstates of the system is then [7]

h1; h2; . . .; hN ; ~hNþ 1

�� � ¼ 1ffiffiffi
2

p
� �Nþ 1

01; 02; . . .; 0N ; 0N þ 1j i þ 11; 02; . . .; 0N ; 0Nþ 1j if

þ � � � � 11; 12; . . .; 1N ; 1Nþ 1j ig:
ð10:70Þ

In (10.70) the weighting of each of the basis states is equal so that again each of
the inputs is treated equally during the calculation. This provides for a series of
parallel processing calculations dealing with each of the 2Nþ 1 pure input eigen-
states. In addition, there is a sign difference between some of the weights. This
difference gives rise to an interference between the states generated in the
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calculation of the superposition wave function output data. It will be useful in
extracting the final answer to the question of whether or not the function
f x1; x2; . . .; xNð Þ is a constant or balanced function.

Given the initial configuration of mixed wave function states, the calculation
proceeds by devising a unitary process which operates on the superposition wave
function initial state of input data to convert it to a superposition wave function
output state. Schematically this is represented by [7]

h1; h2; . . .; hN ; ~hNþ 1
�� � !Process

h1; h2; . . .; hN ; ~h
0
Nþ 1

�� � ð10:71Þ

During the development of this process each of the pure eigenstates found in the
superposition wave function input is transformed by an algorithm composed from
quantum logic-gates to generate an answer for that particular input. The inputted
data shows up in both the inputted and outputted data sets.

To understand the general nature of the process involved in the calculation,
consider both sides of (10.71) written in terms of the orthonormal basis in (10.68).
From (10.70) and (10.71) it is seen that [7]

1ffiffiffi
2

p
� �Nþ 1

01; 02; . . .. . .; 0N ; 0Nþ 1j i þ 11; 02; . . .; 0N ; 0Nþ 1j if

þ � � � � 11; 12; . . .; 1N ; 1Nþ 1j ig !Process 1ffiffiffi
2

p
� �Nþ 1

c1 01; 02; . . .; 0N ; 00Nþ 1

�� ��
þ c2 11; 02; . . .; 0N ; 00N þ 1

�� ��þ � � � þ c2N þ 1 11; 12; . . .; 1N ; 10Nþ 1

�� ��
:

ð10:72Þ

where cif g are the coefficients of a unitary transformation arising from the com-
putational algorithm.

The transformation that allows for the determination of the nature of
f x1; x2; . . .; xNð Þ can be obtained by choosing a unitary algorithmic process to
operate on the input data and generate the cif g [7]. This unitary process will be
shown to involve the application to the input data of an exclusive-or
(XOR) logic-gate similar to that discussed above (10.40). The XOR operation of
interest will now be discussed, followed by a presentation which shows how it is
employed in creating the unitary process that generates an answer to the question of
whether f x1; x2; . . .; xNð Þ is constant or balanced.

To understand the processing operation going on in (10.72) it is helpful to shift
the focus of the treatment from the superposition wave function states in (10.71)
and (10.72) and consider the working of the processing operation at the level of the
individual basis states in (10.68). In this way, the processing operation can be
discussed in terms of an operation based on XOR logic-gate applications. For these
discussions, the orthonormal states of the set defined in (10.68) are denoted by the
general form
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~x; yN þ 1j i ¼ x1; x2; . . .; xN ; yNþ 1j i ð10:73Þ

where~x represents the set of 0’s and 1’s for the N-kets of input data and yNþ 1 is the
0 or 1 in the ket reserved for the output data.

In terms of the notation of (10.73) the left hand side of (10.71) and (10.72)
becomes [7]

h1; h2; . . .; hN ; ~hNþ 1
�� � ¼ 1ffiffiffi

2
p
� �Nþ 1X

~x

~x; 0Nþ 1j i � ~x; 1Nþ 1j if g: ð10:74Þ

Here the negative sign between the two terms in the bracket comes from the H-gate
operations in (10.69) which is used to create the entanglement of the input data
associated with the N + 1-ket. The sum in (10.74) is over the 2N different states of~x
for the N-kets of input data.

Focusing on the individual members of the basis set in (10.68) and their general
form in (10.73), the process that can be used to solve the problem involves a trans-
formation which takes the last entry,yN þ 1, of the N + 1-kets and converts it to the
output data entry yNþ 1 � f ~xð Þ. Here� is the exclusive-or (XOR) operation defined in
the table above (10.40). In tabular form the outlined process is given by [7]
(Table 10.12).

Applying the yNþ 1 � f ~xð Þ transformation to the N + 1-kets of the entangled
input state represented in (10.74) yields the processed output state [7]

h1; h2; . . .; hN ; ~h
0
Nþ 1

�� � ¼ 1ffiffiffi
2

p
� �Nþ 1X

~x

~x; 0N þ 1 � f ~xð Þj i � ~x; 1N þ 1 � f ~xð Þj if g:

ð10:75Þ

Considering the expression in the brackets in (10.75) and applying the results for
yNþ 1 � f ~xð Þ from the table below (10.75) to the kets in the sum on the right in
(10.75), it is found that

~x; 0Nþ 1 � f ~xð Þj i � ~x; 1Nþ 1 � f ~xð Þj i ¼ �1ð Þf ~xð Þ ~x; 0Nþ 1j i � ~x; 1Nþ 1j if g ð10:76aÞ

The identity in (10.76a) can be checked using the XOR table for yNþ 1 � f ~xð Þ and
the fact that f ~xð Þ and yNþ 1 � f ~xð Þ only take the values 0 and 1.

Table 10.12 Multiplication
table for the Deutsch-Jozsa
algorithm

yN þ 1 f ~xð Þ yN þ 1 � f ~xð Þ
0 0 0

0 1 1

1 0 1

1 1 0
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To confirm the identity in (10.76a) first consider the cases for which f ~xð Þ ¼ 0. It
then follows from the left hand side of (10.76a) that [7]

~x; 0N þ 1 � f ~xð Þj i � ~x; 1Nþ 1 � f ~xð Þj i ¼ ~xj i 0N þ 1 � 0Nþ 1j i � 1Nþ 1 � 0Nþ 1j i½ �
¼ ~xj i 0Nþ 1j i � 1Nþ 1j i½ � ¼ �1ð Þf ~xð Þ x; 0Nþ 1j i � x; 1N þ 1j if g

ð10:76bÞ

In the same way, for the case in which f ~xð Þ ¼ 1 it follows from the left hand side of
(10.76a) that

~x; 0N þ 1 � f ~xð Þj i � ~x; 1Nþ 1 � f ~xð Þj i ¼ ~xj i 0N þ 1 � 1Nþ 1j i � 1Nþ 1 � 1Nþ 1j i½ �
¼ ~xj i 1Nþ 1j i � 0Nþ 1j i½ � ¼ �1ð Þf ~xð Þ x; 0Nþ 1j i � x; 1N þ 1j if g:

ð10:76cÞ

Applying (10.76a) in (10.75) it is found that (10.75) can be rewritten in the form
[7]

h1; h2; . . .; hN ; ~h
0
Nþ 1

�� � ¼ 1ffiffiffi
2

p
� �Nþ 1X

~x

�1ð Þf ~xð Þ ~x; 0Nþ 1j i � ~x; 1N þ 1j if g ð10:77Þ

This expresses the processed result from the application of the logic-gate in terms of
the complete orthonormal basis set in (10.68).

It is interesting to note that the expressions for the wave function in (10.74)
before the transformation and the wave function in (10.77) after the transformation
are both normalized to one. This is a consequence of the unitary nature of the
transform that was applied in going from (10.74) to (10.77). It is an indication that,
since these two wave functions are related by a unitary transformation, there is a
quantum mechanical process that will transform the two wave functions into each
other.

In this regard, it should be noted that the physical process to be applied to make
the unitary transformation is not discussed here. It is only noted that as the process
is represented by a unitary transformation it should be feasible in a quantum system.
The physical details of the unitary transformation process will depend on the
physical system upon which the quantum computer is realized.

The processing of the state in (10.77) is not over as yet. An additional trans-
formation must be performed on the superposition wave function before the answer
to the problem can be extracted from the quantum computer. Specifically, the
application of another H-gate operation is needed.

For the next step in the processing of the wave function a set of H-gate trans-
formations is applied to the~x kets on left hand side of (10.77). Specifically, H-gate
transformations are applied to each of the first N kets of the N + 1-ket wave
function so that [7]
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~H1 ~H2. . . ~HN h1; h2; . . .; hN ; ~h
0
N þ 1

�� �
¼ 1ffiffiffi

2
p
� �Nþ 1X

~x

�1ð Þf ~xð Þ ~H1 ~H2. . . ~HN ~x; 0Nþ 1j i � ~x; 1N þ 1j if g

¼ 1ffiffiffi
2

p
� �Nþ 1X

~x

�1ð Þf ~xð Þ ~H1 ~H2. . . ~HN ~xj i 0Nþ 1j i � 1Nþ 1j if g:

ð10:78Þ

Focusing on the action of the H-gates on the N kets forming ~xj i it follows that

~H1 ~H2. . . ~HN ~xj i ¼ ~H1 x1j i~H2 x2j i. . . ~HN xnj i

¼ 1ffiffiffi
2

p
� �N

01j i þ �1ð Þx1 11j i½ � 02j i þ �1ð Þx2 12j i½ �. . . 0Nj i þ �1ð ÞxN 1Nj i½ �:

ð10:79Þ

Upon multiplying out the product of kets on the far right of (10.79) and introducing
the notation zi ¼ 0i or 1i for i ¼ 1; 2; . . .;N, (10.79) is rewritten as [7]

~H1 ~H2. . . ~HN ~xj i ¼ 1ffiffiffi
2

p
� �NX1

z1¼0

X1
z2¼0

. . .
X1
zN¼0

�1ð Þ~x�~z z1j i z2j i. . . zNj i

¼ 1ffiffiffi
2

p
� �NX

~z

�1ð Þ~x�~z~zj i
ð10:80Þ

where~x �~z ¼ x1z1 þ x2z2 þ � � � þ xNzN and the sum over z* on the far right is over
the complete set of 2N states of z*.

Substituting the result in (10.80) into (10.78) yields [7]

~H1 ~H2. . .. . . ~HN h1; h2; . . .; hN ; ~h
0
Nþ 1

�� � ¼ h01; h
0
2; . . .; h

0
N ; h

0
Nþ 1

�� �
¼ 1ffiffiffi

2
p
� �Nþ 1X

~x

�1ð Þf ~xð Þ ~H1 ~H2. . . ~HN ~xj i 0Nþ 1j i � 1Nþ 1j if g

¼ 1

2N
ffiffiffi
2

p
X
~x

�1ð Þf ~xð ÞX
~z

�1ð Þ~x�~z~zj i 0Nþ 1j i � 1N þ 1j if g

¼ 1

2N
ffiffiffi
2

p
X
~x;~z

�1ð Þf ~xð Þþ~x�~z~zj i 0Nþ 1j i � 1Nþ 1j if g:

ð10:81Þ

Again it is seen that the normalization of the wave function is one so that the net
transformation of the state is unitary. It can be performed in a quantum mechanical
system.
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The processed state in (10.81) can now be used to extract the answer to the
problem regarding the nature of the function, f ~xð Þ. To determine the nature of f ~xð Þ
it is only needed to measure the states of the first N kets of the system, i.e., the state
of ~zj i. If ~zj i ¼ 01; 02; . . .; 0Nj i so that all of the first N kets are in the ground state,
then f ~xð Þ is a constant function. Otherwise, f ~xð Þ is a balanced function.

This is seen from a consideration of the final state of the processed wave
function generated in (10.81)

h01; h
0
2; . . .; h

0
N ;

~h0Nþ 1

�� �
¼ 1

2N
ffiffiffi
2

p
X
~x;~z

�1ð Þf ~xð Þþ~x�~z~zj i 0Nþ 1j i � 1Nþ 1j if g: ð10:82Þ

The relative amplitude for measuring the state ~zj i ¼ 01; 02; . . .; 0Nj i in the wave
function in (10.82) is

01; 02; . . .. . .. . .; 0Nh h01; h
0
2; . . .; h

0
N ;

~h0Nþ 1

�� �
¼ 1

2N
ffiffiffi
2

p
X
~x;~z

�1ð Þf ~xð Þþ~x�~z 01; 02; . . .; 0Nh ~zj i 0Nþ 1j i � 1N þ 1j if g

¼ 1

2N
ffiffiffi
2

p
X
~x

�1ð Þf ~xð Þ 0Nþ 1j i � 1Nþ 1j if g:

ð10:83Þ

Consequently, the amplitude for observing the state ~zj i ¼ 01; 02; . . .; 0Nj i in the
wave function reduces to [7]

1

2N
ffiffiffi
2

p
X
~x

�1ð Þf ~xð Þ: ð10:84Þ

In the case that f ~xð Þ is a constant function (i.e., f ~xð Þ ¼ 0 or 1) the sum in (10.84) is
non-zero. However, in the case that f ~xð Þ is a balanced function (i.e., f ~xð Þ ¼ 0 for
half the of values of ~xf g ¼ 0 and f ~xð Þ ¼ 1 for the other half of the values of ~xf g)
the sum in (10.84) is zero.

The problem of determining whether or not f ~xð Þ is constant or balanced reduces
to measuring the occupancy of the first N kets of the output. If these kets are all in
the ground state, 01; 02; . . .; 0Nj i, the function is a constant function. If the kets are
not in the ground state, 01; 02; . . .; 0Nj i, the function is a balanced function.

As a simple example, the above algorithm will be discussed for the specific case
of N = 1. This provides a useful illustration of the general functioning of the
algorithm [7].

In this example the function f xð Þ involves a single variable x which can take the
values 0 or 1. A constant function then has f 0ð Þ ¼ f ð1Þ ¼ 0 or 1, and a balanced
function has f 0ð Þ ¼ 0 and f 1ð Þ ¼ 1 or f 0ð Þ ¼ 1 and f 1ð Þ ¼ 0. The computation
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begins with the initial state in which the first ket is in the ground state and the
second ket is in the excited state so that [7]

0j i 1j i ð10:85Þ

where 0j i holds the input data and 1j i will contain the output data.
The state in (10.85) is first acted upon by two H-gates, one acting on the first ket

and the second acting on the second ket. Consequently, under this action

~H 0j i~H 1j i ¼ 1ffiffiffi
2

p 0j i þ 1j i½ � 1ffiffiffi
2

p 0j i � 1j i½ �

¼ 1
2
0j i 0j i � 1j i½ � þ 1

2
1j i 0j i � 1j i½ �:

ð10:86Þ

The application of the two H-gates is followed by the logic-gate operation involving
the yN þ 1 � f ~xð Þ XOR table below (10.75).

Applying the XOR operation to (10.86) yields [7]

1
2
0j i 0j i � 1j i½ � þ 1

2
1j i 0j i � 1j i½ � !XOR�gate 1

2
0j i 0� f 0ð Þj i � 1� f 0ð Þj i½ �

þ 1
2
1j i 0� f 1ð Þj i � 1� f 1ð Þj i½ �:

ð10:87Þ

Considering the first term in the sum on the righthand side: For f 0ð Þ ¼ 1

1
2
0j i 0� f 0ð Þj i � 1� f 0ð Þj i½ � ¼ 1

2
0j i 1j i � 0j i½ � ¼ 1

2
�1ð Þf 0ð Þ 0j i 0j i � 1j i½ �;

ð10:88aÞ

and for f 0ð Þ ¼ 0

1
2
0j i 0� f 0ð Þj i � 1� f 0ð Þj i½ � ¼ 1

2
0j i 0j i � 1j i½ � ¼ 1

2
�1ð Þf 0ð Þ 0j i 0j i � 1j i½ �:

ð10:88bÞ

Similarly, considering the second term in the sum on the righthand side: For
f 1ð Þ ¼ 1

1
2
1j i 0� f 1ð Þj i � 1� f 1ð Þj i½ � ¼ 1

2
1j i 1j i � 0j i½ � ¼ 1

2
�1ð Þf 1ð Þ 1j i 0j i � 1j i½ �;

ð10:88cÞ

and for f 1ð Þ ¼ 0
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1
2
1j i 0� f 1ð Þj i � 1� f 1ð Þj i½ � ¼ 1

2
1j i 0j i � 1j i½ � ¼ 1

2
�1ð Þf 1ð Þ 1j i 0j i � 1j i½ �:

ð10:88dÞ

Combining the results in (10.87) and (10.88), it follows that

1
2
0j i 0j i � 1j i½ � þ 1

2
1j i 0j i � 1j i½ � !XOR�gate 1

2
�1ð Þf 0ð Þ 0j i 0j i � 1j i½ � þ 1

2
�1ð Þf 1ð Þ 1j i 0j i � 1j i½ �

¼ 1ffiffiffi
2

p �1ð Þf 0ð Þ 0j i þ �1ð Þf 1ð Þ 1j i
h i 1ffiffiffi

2
p 0j i � 1j i½ �:

ð10:89Þ

The calculation is finalized by applying an H-gate transformation to the left-hand
qubits in the direct product in (10.87). From this application, it follows that

1ffiffiffi
2

p �1ð Þf 0ð Þ 0j i þ �1ð Þf 1ð Þ 1j i
h i 1ffiffiffi

2
p 0j i � 1j i½ � !H�gate

1
2

�1ð Þf 0ð Þ þ �1ð Þf 1ð Þ
� �

0j i þ �1ð Þf 0ð Þ� �1ð Þf 1ð Þ
� �

1j i
h i 1ffiffiffi

2
p 0j i � 1j i½ �:

ð10:90Þ

The probability amplitude of finding the first ket in the 0j i state is

1
2

�1ð Þf 0ð Þ þ 1
2

�1ð Þf 1ð Þ ð10:91Þ

The probability of the system of two qubits to be in the 0j i state is 1 if the system is
constant and 0 if the system is balanced. By making one measurement the problem
is resolved.

The preceding gives a rather contrived example of a mathematics problem which
can be resolved on a quantum computer [7]. It is an example of a problem which
can be solved quicker on a quantum computer than by an algorithm working on a
classical computer, and this is the essential point of the exercise. All of the pro-
cesses involved is the discussions are by necessity unitary processes, and how these
unitary processes are to be implemented must be considered for each type of
quantum computer system devised for the purposes of computation.

The unitary nature of the algorithm implies that such processes can be imple-
mented in a quantum system as quantum systems evolve in a unitary way. In their
formulations, the algorithms themselves are seen to arise from cleaver applications
of the ideas of quantum mechanics and the probabilities obtained in the collapse of
the final state wave functions.

The chapter will conclude with another, perhaps more realistic, problem which
can be of practical importance. This will show that not all quantum algorithms focus
on academic questions. It will also involve discussions of the treatment of Fourier
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series defined on discrete lattices [7, 8]. These types of treatments occur commonly
in many branches of physics and engineering.

Period of a Periodic Function
The problem of interest is that of the determination of the period of a periodic
function which is defined on a lattice. This is another example of a problem which
benefits from the parallel computations that are done by applying a quantum
computer algorithm on an initially superposed wave function state of input data. It
also illustrates an example of the ideas of probability as they enter into the final step
of collapsing the output wave function in order to determine the answer from a
quantum computation. Before this type of study can be addressed, however, it is
helpful to have some discussion of the properties of Fourier series.

Consider a function f xð Þ defined over a one-dimensional lattice with sites
xi ¼ Dxð Þif g for i ¼ 0; 1; . . .; 2N � 1 representing a set of 2N points on the x-axis.

Start initially by focusing the considerations on the set xi ¼ Dxð Þif g of lattice
positions in the direct lattice and the relationship of these lattice positions to a set of
plane wave states in wave vector or k-space. In this association, the direct space set
of lattice points can be expressed as a Fourier series in the orthonormal basis set of
plane waves in k-space. Once this relationship is obtained a program can be written
for f xð Þ defined over a one-dimensional lattice in either the direct lattice or the
k-space representation [7, 8].

Applying the theory of Fourier series to these two representations, it is found that
the direct space position, xn, is expressed as a series of plane waves in k-space given
by [7, 8]

xn ¼ 1
2N=2

X2N�1

~m¼0

e
i 2p
2Nð Þn~m~x~m ð10:92aÞ

where the k-space amplitude ~x~m of each plane wave is given in terms of xn by

~x~m ¼ 1
2N=2

X2N�1

n¼0

e
�i 2p

2Nð Þ~mnxn ð10:92bÞ

In (10.92) it is seen that the direct lattice space and k-space amplitudes of the
Fourier series are related to one another through unitary transformations.

As has been noted in the earlier discussions, the unitary nature of the transfor-
mation between these two different representations is ideal for a treatment of the
transformations in (10.92) by means of a quantum computing algorithm. It only
remains to associate the position variables and amplitudes of the wave vector sets in
(10.92) with the qubits of a quantum mechanical system in order to implement
quantum algorithms with which to process the position and k-space variables in the
quantum system.

To make the association between these two types of variables, it is important to
note that another way of representing the direct space position, xn, is in terms of

536 10 Quantum Computers



quantum kets nj i where n ¼ 0; 1; 2; . . .; 2N � 1 are the integer labels of the lattice
sites. In this representation, one can make the association of the direct lattice
position xn ¼ Dxð Þn with the quantum state Dx nj i, expressing the integer label of
the lattice site n with the nj i quantum ket. It remains only to associate the nj i kets
with the ground and excited states of the qubits of the quantum mechanical system
forming the quantum computer.

For this association, in particular, the ket nj i can be expresses as a direct product
state involving the orthonormal basis eigenstates 0j i; 1j if g of single qubits of the
quantum mechanical system. This is done using binary arithmetic. Specifically, any
decimal integer n can be realized as a sequence of 0’s and 1’s in a binary arithmetic
so that these 0’s and 1’s can be realized as a direct product sequence of the
0j i; 1j if g basis of the quantum qubits.
To see how this works out, remember that to express a decimal integer N in

terms of a binary integer representation,N must be written in the form [7]

N ¼
X
n

an2n ð10:93Þ

where n ¼ 0; 1; 2; 3; 4; . . . and an is constrained so that an ¼ 0 or 1. The binary
representation of N is then expressed as the 0’s and 1’s of the array of coefficients
. . .; an; an�1; an�2; . . .; a0ð Þ.
In this manner, for example,

7 ¼ 22 þ 21 þ 20 ð10:94aÞ

so that a2; a1; a0ð Þ ¼ 1; 1; 1ð Þ is the binary representation of the decimal number 7.
As another example consider the decimal number 6. To represent this in binary
notation, write

6 ¼ 22 þ 21 ð10:94bÞ

so that a2; a1; a0ð Þ ¼ 1; 1; 0ð Þ is the number 6 in binary format [8]. Using these
methods of translation, the resulting binary representations of the lattice site number
can then be expressed in a straightforward manner as the direct product of qubits
formed of ground and excited quantum states.

Consequently, in terms of a system composed of three qubits it follows that [8]

7j i ¼ 1j i 1j i 1j i ¼ 1; 1; 1j i ð10:95aÞ

and

6j i ¼ 1j i 1j i 0j i ¼ 1; 1; 0j i ð10:95bÞ

In (10.95) the ket on the far left represents a state of the system in the decimal
representation, and the other two terms on its right are in binary representations.
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The binary term in the center of the equality is written in detail in terms of the direct
product of three qubits, and the binary term on the far right in the equality is in an
abbreviated format. Notice that subscript site labels have been omitted on the 0’s
and 1’s to simplify the notation.

In this way any of the decimal kets nj i can be expressed in terms of a direct
product of binary qubit kets. This allows the problem to be performed in terms of
the ground and excited states of a qubit quantum system.

Similarly, in k-space, ~xm is expressed in terms of quantum kets ~mj i where
~m ¼ 0; 1; 2; . . .; 2N � 1 are the integer labels of the k-space lattice sites. One can
then make the k-space association ~xm ¼ Dxð Þ~m with the quantum state Dx ~mj i. In
this representation

nj i ¼ 1
2N=2

X2N�1

~m¼0

e
i 2p
2Nð Þn~m ~mj i ð10:96aÞ

where the associated inverse transformation is

~mj i ¼ 1
2N=2

X2N�1

n¼0

e
�i 2p

2Nð Þ~mn nj i: ð10:96bÞ

An explicit formula for the generation of the unitary transformations of the
Fourier series in (10.96) by the application of logic-gate operations can be given,
and the reader is referred to the literature for further discussions of these. Here it
should be assumed that, due to the unitary nature of the transformations, the
transformations can be realized by appropriate operations in a quantum computa-
tional system.

As an example of the unitary relationships in (10.96) consider their applications
on the quantum superposition wave function state composed of 3 qubits with a total
of 8 ¼ 23 possible orthonormal basis states for the total system. In direct lattice
space, this superposition wave function has the form

1ffiffiffi
8

p 0j i þ 1j i þ 2j i þ 3j i þ 4j i þ 5j i þ 6j i þ 7j if g

¼ 1ffiffiffi
8

p 0; 0; 0j i þ 0; 0; 1j i þ 0; 1; 0j i þ 0; 1; 1j if

þ 1; 0; 0j i þ 1; 0; 1j i þ 1; 1; 0j i þ 1; 1; 1j ig

ð10:97Þ

where the left-hand side of the equation is in the decimal representation and the
righthand side of the equations is in the binary representation.

As in earlier discussions of the constant-balanced function problem, the super-
position wave function state in (10.97) can easily be generated from the application
of three H-gate operations to a binary qubit of the form 0; 0; 0j i. In this way [7, 8]
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~H1 ~H2 ~H3 0; 0; 0j i ¼ 1ffiffiffi
8

p 0; 0; 0j i þ 0; 0; 1j i þ 0; 1; 0j i þ 0; 1; 1j i þ 1; 0; 0j if

þ 1; 0; 1j i þ 1; 1; 0j i þ 1; 1; 1j ig:
ð10:98Þ

Focusing on one particular ket in the mixed wave function in (10.98), an
example of the transformation between the direct and k-space lattices can be made.
For example, consider the direct space ket 6j i ¼ 1; 1; 0j i. From (10.96) this state of
the system can be expressed in terms of the k-space kets ~0

�� �; ~1
�� �; . . .; ~7

�� �� �
giving

the relationship

6j i ¼ 1ffiffiffi
8

p
X7
~m¼0

ei
2p
8ð Þ6~m ~mj i: ð10:99Þ

Transformations of the other kets in (10.98) follow directly as in (10.99) so that
(10.98) can easily be expressed either in a direct space or a k-space representation.

Given the preceding notation and transformations, the problem of determining
the period of a function defined on a direct lattice can now be formulated and solved
by a quantum computer algorithm. For these considerations, assume that f xð Þ is a
periodic function defined on a lattice of 2N direct lattice sites but that its periodicity
is not known. The determination of the periodicity of f xð Þ can be shown to follow
from a study involving the determination of both the direct and k-space represen-
tations of the function.

In the quantum algorithm, the solution of the periodic problem is obtained by
applying unitary transformations. Consequently, the kets required for the compu-
tations must be of a highly specific form. As in the algorithm studied in the earlier
computational example of the constant-balanced function problem, the kets oper-
ated on must hold both the input data needed to determine the value of the function
f xð Þ and the output form of the function obtained from that input data. The algo-
rithm works on the input data entries of the kets to change the entries of the kets
assigned to receive the function generated from that data to contain the values of the
outputted functions.

In the absence of a superposition wave function, such a state ket containing a set
of inputted data and the outputted value of the function computed from that input
data is of the form

x; f xð Þj i ¼ xj i f xð Þj i: ð10:100Þ

Here the input data xj i is a ket composed as a direct product of N qubit eigenstates
each of which involves the orthogonal basis 0j i; 1j if g and the outputted f xð Þj i is a
ket containing the value of the function obtained from the evaluation of f xð Þ. The
f xð Þj i containing the outputted function, similar to the xj i input data ket, can be
expressed in binary notation using the ideas presented in (10.93)–(10.95) and the
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qubit eigenstates of the computer. Consequently, the kets in (10.100) involve only a
series of 0’s and 1’s in their arguments and represent eigenstates of the quantum
computer system.

The calculation begins by using an H-gate to generate a fully superposed wave
function state of input data and output state qubits to receive the answer. In par-
ticular, this is accomplished by the following application of H-gates [7, 8]

~H1 ~H2. . . ~HN 0; 0; 0; . . .; 0j i~HNþ 1. . . 1; 1; 1; 1;j i: ð10:101Þ

Here the ket of initial 0’s is being prepared to represent a fully superposed wave
function state of the input data, x. In this mixture, all possible input data sets are
represented and equally weighted in the superposition wave function input state. As
shall be seen later, each of these superposed eigenstates of the input data will be
used for the determination of the function value for that eigenstate value and the
generated value of the function is placed in the corresponding output part of the ket
corresponding to the input data.

The ket of initial 1’s in (10.101) is for the reception of the output values of
the function, f xð Þ. The superposition wave function of the kets reserved in
(10.101) for the answer is required in order to generated a complete set of quantum
states. It is necessary to have a complete orthonormal basis in which to define
unitary operations on the quantum system, i.e., completeness is a necessary
mathematical property of the Hilbert space.

Upon applying the H-gates to each of the single qubit kets in the direct products
in (10.101), it is found that for the action on a single qubit

~H 0j i ¼ 1ffiffiffi
2

p 0j i þ 1j i½ � ð10:102aÞ

and

~H 1j i ¼ 1ffiffiffi
2

p 0j i � 1j i½ �: ð10:102bÞ

The application of the H-gates in (10.101) and (10.102) then results in a super-
position wave function qubit state made ready to begin the calculation.
A consequence of the mixed nature of the wave function generated in (10.101) is
that the algorithms applied to the wave function state will result in a massive
parallel processed computer calculation.

The next step in the calculation involves an operation on each of the pure basis
states contained in the superposition wave function. A particular pure state in the
sum in (10.101) is of the general form

xj i yj i: ð10:103aÞ
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where the input data describing the direct space lattice xj i is a ket composed as a
direct product of N qubit eigenstates each of which involves the orthogonal basis
0j i; 1j if g and the yj i ket is a direct product of single eigenstate qubits reserved to

receive the value of the function obtained from the evaluation of f xð Þ.
Consequently, evaluating the function f xð Þ at the position xj i transforms the yj i ket
into the ket f xð Þj i of received function values.

This operation may be described as [7, 8]

xj i yj i !Operation
xj i f xð Þj i: ð10:103bÞ

where x represents a pure state composed of 0’s and 1’s and f xð Þ is the value of the
function evaluated for this input. Consequently, after performing the operation on
each of the kets in the sum of (10.101) the system is left in as state which is a
superposition wave function sum of states of the form of (10.103b) containing the
positions and corresponding function values. Following this transformation, the
resulting wave function is

1ffiffiffiffiffiffi
2N

p
X
x

xj i f xð Þj i: ð10:104Þ

Next the calculation switches to a focus on the state xj i. In particular, the
position state ket of the direct lattice is next transformed to the k-space represen-
tation. Under this process, from (10.92) it follows that

xj i !Process 1
2N=2

X2N�1

~k¼0

ei
2p
2N
~kx ~k
�� �: ð10:105Þ

Applying this to (10.104) it follows that the wave function is transformed to the
form [8]

1ffiffiffiffiffiffi
2N

p
X
x

xj i f xð Þj i ¼ 1
2N
X2N�1

x;~k¼0

ei
2p
2N
~kx ~k
�� � f xð Þj i

¼ 1
2N
X2N�1

x¼0

f xð Þj i
X2N�1

~k¼0

ei
2p
2N
x~k ~k
�� � !

:

ð10:106Þ

The form of the wave function in (10.106) is very useful in determining the period
of the function f xð Þ. Of particular importance for this determination are the phase

factors
P2N�1

~k¼0 ei
2p
2N
x~k ~k
�� � multiplying the states f xð Þj i. The importance of the phase

factors can be seen by considering the effects of a periodic function on the evaluation
of (10.106).

There are 2n lattice sites over which the function f xð Þ is defined so that if T is the
integer number of sites over which the function is periodic, then [7, 8]
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f xþ Tð Þ ¼ f xð Þ ð10:107aÞ

Consequently, applying (10.107) in (10.106) the various f xð Þj i kets for a periodic
function are related by

f xþ Tð Þj i ¼ f xð Þj i ð10:107bÞ

In the case of the periodic function of period T many of the function kets, f xð Þj i, in
(10.106) will be equal, and the complex coefficients of these identical kets will add
together.

Due to the relationship in (10.107b), the resulting phase coherence in the sub-
sequent ~k sums in (10.106) has the consequence that only terms satisfying the
conditions

~k ¼ 0;
2n

T
; 2

2N

T
; 3

2N

T
; . . .; T � 1ð Þ 2

N

T
ð10:108Þ

are present in the final wave function in (10.106). Terms not satisfying (10.108) are
absent from the wave function. From this fact a number of measurements can be
made involving the output states generated by the quantum algorithm, and these
measurements allow for the determination of the period of the function under study.

An example will illustrate the point. Consider, a lattice consisting of 23 points.
On such a lattice, periodic functions defined on the lattice will only have periods of
T ¼ 1; 2; 4; 8. Assume that f xð Þ is one of these periodic functions and you are asked
to determine its period from the discussed algorithm.

The superposition wave function state in (10.104), resulting after the application
of f xð Þ to the entangled input state from (10.101), is given by [8]

1ffiffiffi
8

p
X7
x¼0

xj i f xð Þj i ¼ 1ffiffiffi
8

p 0j i f 0ð Þj iþ 1j i f 1ð Þj iþ 2j i f 2ð Þj iþ 3j i f 3ð Þj if

þ 4j i f 4ð Þj iþ 5j i f 5ð Þj iþ 6j i f 6ð Þj iþ 7j i f 7ð Þj ig
ð10:109Þ

Following the earlier discussions, the entangled wave function in (10.109) is next
transformed to be represented in k-space.

Applying (10.106) to the system in (10.109) to make the k-space transformation
gives [8]

1ffiffiffi
8

p
X7
x¼0

xj i f xð Þj i ¼ 1
8

X7
x¼0

f xð Þj i
X7
~k¼0

ei
2p
8 x
~k ~k
�� � !

: ð10:110Þ

The resulting wave function in (10.110) is now in a ready form from which the
periodicity of the function can be revealed. It remains only to investigate the nature
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of the terms composing the total wave function of the system. This can be done by
collapsing the wave function through a measurement process.

As an example of determining the period of f xð Þ from (10.110) and the condi-
tions in (10.108), consider the form of the output wave function in (10.110) if the
unknown periodicity is in fact a period T ¼ 2 [8]. If this is the case, then it follows
that f 0ð Þ ¼ f 2ð Þ ¼ f 4ð Þ ¼ f 6ð Þ and f 1ð Þ ¼ f 3ð Þ ¼ f 5ð Þ ¼ f 7ð Þ.

From (10.108) it is seen that only ~k ¼ 0 and ~k ¼ 4 terms should be present in
(10.110). In fact, from (10.95) and the periodicity conditions of f xð Þ in the previous
paragraph, it follows from (10.110) that

1ffiffiffi
8

p
X7
x¼0

xj i f xð Þj i ¼ 1
2

0j i f 0ð Þj i þ f 1ð Þj i½ � þ 4j i f 0ð Þj i þ eip f 1ð Þj i� �� �
: ð10:111Þ

Consequently, the wave function in (10.111) is composed of two states of input
data. These are states of 0j i and 4j i. In the 0j i state the three binary qubits of the
input vector are all in the ground state so that

0j i ¼ 0; 0; 0j i: ð10:112aÞ

In the other 4j i state, the three binary qubits of the input vector have one qubit in an
excited state and the other two in ground states. Consequently, for the second state
[8]

4j i ¼ 1; 0; 0j i: ð10:112bÞ

It is important to note that a single measurement of the wave function in (10.111)
does not give the definitive answer regarding the periodicity, but multiple runs will
ultimately reveal the answer. This indicates the probabilistic nature of obtaining an
answer from a quantum computer. Answers with high probability, however, show
up in the system to the largest extent and are often all one needs to determine that
correct answer.

In quantum computing one must often devise an algorithm which gives a very
high probability of presenting the correct answer to a problem when the output wave
function is collapsed by a measurement. The success of the computation then relies
heavily on the formulation of cleaver algorithmic processes and is only useful as it
leads to much faster computations than those available from classical computers.
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Even parity, 189
Excitation of surface electromagnetic waves,

256
Excitons, 279
Expansions, 60
Experimental results, 222, 287
Experiments, 126
Exponential behavior, 183
Exponential spatial decay, 146
External magnetic fields, 386
Extraordinary modes, 378

Extraordinary optical transmission, 285, 286,
294, 300

Extraordinary optical transmission maxima,
290, 301

Extraordinary transmission features, 301
Extrema, 90, 91

F
Fabry-Perot

cavity, 431
resonance, 299
resonator, 4, 299

Far field
microscope, 449
systems, 445

Fermi golden rule, 5, 487
Feynman diagrams, 215
Fiber optics, 462
Fiber optics technologies, 443
Film surfaces, 223
Film thickness, 289
Final transmitted wave, 297
Finite aperture, 341
Finite difference time domain method, 68, 70,

76
Finite element method, 68, 89
Finite spatial extent, 77
Finite spatial region, 77
First Brillouin zone, 122, 198, 200
First order Raman scattering, 263
Fixed points, 432, 433
Flatter dispersion relations, 113
Flow

of electrical current, 327
of energy, 326

Focal point, 407
Focus, 13
Focused image, 342
Folded flat surface dispersion relation, 200
Food safety, 258
Force, 385, 389

on ferromagnetic particles, 391
Forensics, 258
Forward biased circuit, 437
Fourier

components, 13, 348
expansion, 101
series, 45, 100, 449, 538
transforms, 185, 191

Four particle correlations functions, 245
Frame, 78
Framing region, 78, 83
Fredkin or F-gate, 522
Free space, 134
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Frequency, 365
dependent dielectric constant, 190, 418, 419
dependent solutions, 52
harmonic, 478
independent dielectric, 174

Fully superposed wave function state, 540
Functional, 90
Functional integral, 90, 91
Fundamental

frequency fields, 480
limitation on the x-y Fourier components,

449
limitations, 341
wave, 482

G
GaAa layer, 442
Gap soliton

modes, 469
pulse, 476

Gaussian
beam, 405
laser beam, 405
random function, 205
random process, 239
random surface profile function, 224
random surface statistics, 229

Gauss-Legendre quadrature, 125
General diffuse scattering, 183
General functions, 100
Generalized coordinate, 265
General relativity, 358
General spatial functions, 123
Generated dipole, 451
Generation

of a harmonic, 478
of second harmonics, 462, 477, 487

Geometric optics, 344, 346
Gold particles, 41
Goodman, 236
Grating periodicity, 197
Grating problem, 197
Green’s function, 86, 121, 209, 210, 227, 242,

244, 367
method, 118, 142
pole, 212
problem, 124
propagators, 247

Grey solitons, 461
Groove waveguide, 275
Group theory

representation, 107
techniques, 117, 128

Group velocity, 374

Guided mode polarizers, 284

H
Half cylinder, 380
Half-integer lattice sites, 73
Hamilton, 518
Hamiltonian, 504
Hankel functions, 87
Harmonic oscillator equation, 172
Hartree-Fock treatment, 245
Heat generated, 273
Helmholtz equation, 89, 137, 463, 469, 480
Hermitian, 521
Heterojunction, 435, 440
H-gate, 526, 531, 534, 535, 540
Higher order satellite peaks, 253
High resolution lenses, 306
High temperatures, 418
Hilbert-Schmidt, 35
Hilbert-Schmidt theory, 36
Holden, A., 10
Hole channels, 297
Holographic interferometry, 238
Homogeneous algebraic equations, 323
Homogeneous medium, 305
Homojunction, 436
Huygen’s principle, 367, 446
Hybrid

nanoplasmonic waveguide, 283
plasmonic waveguide, 274, 276

Hydrogen peroxide solution, 392
Hyperbolic

dispersion relations, 375
materials, 307, 308
medium, 377
metamaterials, 375, 380

Hyperlenses, 380
Hysteresis curve, 390

I
Identical particles, 501
Image dipole, 451
Image formation properties, 445
Impurity, 137

geometries, 127
media array, 146
mode frequency, 131, 133
models, 129
modes, 132
mode solutions, 119
potential, 140, 141
replacement slab, 131

Incident and reflected waves, 63, 329, 330, 337
Incident fields, 79
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Incident wave
amplitudes, 154
boundary conditions, 79

Inequality, 495, 496
Infinite

arrays of site, 128
chain of harmonically coupled atoms, 292
cylinders, 113
dielectric cylinders, 110
photonic crystal, 58
slab, 403
system, 64

Information measurement, 507
Inhomogeneous differential equation, 119
Inner rectangular region, 78
Inner region, 78
Input-output eigenstates, 528
InSb, 169
Integral equation, 85, 124, 127, 142, 144, 185,

191
Intensity of the second harmonic, 485
Interface, 163, 168, 170, 191
Interface boundary conditions, 331
Interplanetary dust, 203
Into distinct polarizations, 110
Intrinsic localized mode, 155, 156
Inverse transformation, 538
Ionic crystal, 174
Ionic polarization, 172
Ion trapping, 396
Irreducible translation group, 128
Irreducible vertex, 215, 219
Irreducible vertex function, 214, 218
Irreversible process, 515
Iterative interaction, 215
Iterative series, 216

J
Joule losses, 358

K
Kerr

effect, 18
impurity, 155
media, 470
medium slabs, 472
nonlinearity, 18, 283, 461
nonlinear media, 154, 468
parameter, 470

Kramer-Kronig relations, 343
Kretschmann geometry, 277
K-space representation, 536, 541

L
Ladder and maximally crossed

diagram approximations, 247
diagrams, 230

Ladder approximation, 216, 248
Ladder diagrams, 232
Landau theory, 431
Laplace equations, 184, 185, 190
Larmor formula, 261
Laser, 64, 423

designs, 94
operation, 424
power threshold, 423
threshold, 432, 435
trapping, 395

Lattice translation, 44
Layer coating, 67
Layered and nanowire hyperbolic composite

media, 378
Layered hyperbolic metamaterial, 380
Layerings, 373
LC resonant circuit, 309
Leaky

modes, 197
waves, 197

LED’s, 438
Length scale information, 450
Lens system, 346, 356
Levitate frogs, 395
Levitation superconducting particles, 395
Lifetime effects, 183
Lifetimes of the surface waves, 256
Light diffusely transmitted, 222, 252
Limiting form of the dispersion relation, 168
Linear

dielectric response, 173
growth of the amplitude, 485
media waveguide, 156

Liposome structure, 394
Localized

applications, 280
orthogonal basis, 136
pulse, 135
pulse-like Wannier functions, 134
surface wave functions, 202
Wannier function basis, 135

Logic-gate, 511, 519, 520
operations, 518

Logic table, 520, 521
Longer range contributions, 254
Longitudinal

and transverse mode frequencies, 177
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electromagnetic modes, 174
optical modes, 171
wave, 42

Long range
fluctuations, 202
terms, 256

Long range surface plasmon-polariton
guided mode, 274
wave guide, 274

Lorentz
formulae, 364
gauge, 359
transformation, 363

Lorentzian
function, 219
peak, 234
peaks enhancements, 249
resonances, 260

Loss mechanisms, 312
Lowest order model solution, 296
Low temperature, 418
LRC

circuit, 308
electromagnetic oscillator circuit, 311
oscillator circuit, 312

Lyddane-Sach-Teller relation, 177

M
Magnesium fluoride spacer, 281
Magnetic

conductivity, 70, 80, 82
currents, 70
dipoles, 387
field, 74, 75
moment, 314
particle, 388
properties, 82
resonators, 321
susceptibility, 387, 388

Magneto inductive waves, 310
Magnification, 341
Material losses, 343
Mathematical techniques, 2
Mathieu equation, 398
Matrix

eigenvalue problem, 103, 105, 108, 121,
195

equation, 88, 89, 193
Maximally crossed

contributions, 218
diagram approximation, 247
diagrams, 219, 232, 233

Maximally entangled, 509

Maximum frequency mode, 77
Maxwell

curl equations, 479
equations, 29, 39, 69, 85, 119
Garnett, 31

Measurement of entanglement, 500
Mechanism of the transmission enhancement,

287
Medical

applications, 392
diagnostics, 258

Memory and time-reversed
memory peaks, 253
memory effects, 253

Metal-dielectric, 161
Metal film, 284, 290
Metal-Insulator-Metal based laser, 280
Metal-Insulator-Metal waveguide cavity, 280
Metamaterial, 2, 8, 14, 15, 29, 305–308, 312,

343, 370, 372, 458, 485
shell, 370
technology, 307, 322, 358

Metal oxides and nitrides, 273
Metal-vacuum interface, 203
Metal wedge waveguide, 274
Method of moments, 68, 85
Methods of Green’s functions, 117
Micro Electro Mechanical Systems (MEMS),

419
Microorganisms, 393
Microscope tip, 456
Mirror, 64, 67

coating model, 473
problem, 476

Mission of normal incident light, 286
Mixed mode, 505
Modal

dispersion relation, 58
free space solutions, 410
solutions, 121, 411

Molecular polarizability, 264
Momentum, 401

carried by electromagnetic fields, 400
transferred, 401

Multiple
aligned spheres, 268
excitation processes, 263
reflections and transmission, 354
scattering, 238

contributions, 253
correlations, 254
terms, 208

soliton, 20
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N
Nano

circuits, 373
laser, 281
optical device, 1
particle, 279, 444
particle based spaser, 279
photonics, 1
resonator, 444
sciences, 1
wire, 276, 284

plasmonic waveguides, 282
waveguide, 274

Nano Electro Mechanical Systems (NEMS),
419

Near field
microscope, 446
microscopy, 445, 454

Near infrared, 258
Negative index

effects, 313
material, 324
media, 326, 328, 332–335, 337, 339, 349,

352, 354
metamaterials, 321
of refraction, 12, 306, 339
of refraction medium, 369

Negative permeability, 318, 319
Negative refractive

index, 317
materials, 314
media, 331, 363, 372

media, 357
New refractive response, 10
Newton laws, 494
N-gate, 512, 519
Non-entangled

eigenstate, 508
state, 509

Nonlinear
current versus voltage curve, 440
effects, 18
polarization, 481

Non-zero
physical fix-point, 435
temperature, 409, 417

Normal component, 164
NOT gate, 282
N-p and p-n semiconductor junctions, 339, 341
N qubit array, 524
N type impurities, 437

O
Object, 341

Odd parity, 189
Omega type geometric structures, 320
Ometric optics problem, 405
One-dimensional

lattice, 536
layered media, 52
(layered) photonic crystal, 462
models, 466, 467
motion, 321
periodic dielectric, 49
photonic crystal, 60–62, 64, 93, 128
Poynting vector, 324
tight binding model, 293
wave vector, 324

One- or two-dimensional medium, 201
One way boundary layer, 82
One way boundary layer method, 84
Operational mechanism, 280
Operator, 522
Opposition effect, 203
Optical

circuits, 4, 94
device technology, 306
diodes, 20
glory, 159
multiplexers, 7
nonlinearity, 154
sensors, 64
switches, 20
transistor, 20
tweezer, 385, 395, 400, 404, 405

Optics
of positive indexed materials, 342
of the lens, 344
technologies, 8

OR-gate, 512–514
Orthogonality, 122

of the Wannier functions, 137
relation, 122

Orthonormal basis, 529
Otto geometry, 277
Outputted functions, 539
Overlapping poles, 216

P
Paints and coating, 203
Pair correlations, 224
Parabolic approximation, 141
Paradoxes of quantum theory, 396
Paradoxical behavior, 503
Parallel perfect conducting parallel plates, 410
Parallel processed computer calculation, 540
Paramagnetic and diamagnetic media, 387
Paramagnetic or diamagnetic response, 310
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Paramagnetic particles, 393, 394, 407
Paramagnetism, diamagnetism, or

ferromagnetism, 386
Paramecium caudatum, 394
Particle

energy, 389
wavefunctions, 501

Pass band
modes, 130
structure, 130

Paul trap, 399
Pendry, J.B., 10
Penning trap, The, 399
Perfect

conducting boundary conditions, 416
conducting plates, 103, 409
conducting surface, 66
conductor, 85
conductor mirror, 66
image, 342
lens, 13, 328, 344, 345, 348
matching layer, 70, 80
mirror, 473
reflecting mirror, 65
reflecting surface, 402

Perfectly Match Layer (PML), 70, 82
Period, 539
Periodic

boundary conditions, 59, 410
dielectric, 4
envelops, 49
function, 98, 515, 536, 542
grating, 200
interface, 189
lattice, 46
layered medium, 50
layering, 54, 56
media, 44, 46
patterning, 284
patterns, 286
properties, 195
surface profile function, 189
symmetry, 191

Periodically patterned holes, 285
Periodicity, 542
Permanent ferromagnetic particle, 390
Peroxide engine, 392
Perturbation, 322
Phase

coherence, 222
difference, 313
factors, 541
information, 202
matching, 21, 481

matching problem, 479
of the induced current, 310
shift, 348

Photon
absorption, 404, 428
reflection, 404

Photonic
band structure, 97, 114
crystal, 3, 29, 93, 106, 191, 307, 374, 375,

458, 478, 486, 487
fiber, 8, 95
lattice, 106
pattern, 442
patterning, 8
slabs, 111
technology, 5, 357
waveguides, 128, 144

metamaterials, 478
Photoresist methods, 203
Physical fixed points, 433
Pixel measurement, 454
Planar dielectric-metal or semiconductor

interface, 165
Planar interface, 329, 336
Planar vacuum-InSb n-doped semiconductor

interface, 169
Planck distribution, 427
Plane wave, 104, 322

amplitudes, 173
method, 96
solutions, 323, 324

Plasma frequency, 166, 419
Plasmon excitations, 170
Plasmonics, 15, 159, 450

circuitry, 284
circuits, 270
laser, 276, 277
of metamaterial surfaces, 160
slot waveguide, 274, 275
switches, 276
waveguides, 271, 272, 277

Plasmon-polariton, 169, 301
guided modes, 273
mechanism, 289

Plasmon resonances in the range 400-1000 nm
of the visible, 258

Plasmon surface shape resonances, 184
Platinum, 393
Plyaniline-eneraldine, 268
P material, 437
P-n junction, 327, 438, 440
Point dipole, 344, 358, 406
Poisson distribution, 237

of speckle intensities, 236
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Polarization, 166, 267
beam splitters, 283
response, 267
vector, 261, 479

Poles, 212
Poly(3-hexylthiophene), 268
Positive and negative index materials, 10
Positive index of refraction, 12
Positive to a negative indexed medium, 350
Potential energy, 315
Power loss formula, 314
Power radiated, 371
Power splitter, 283
Poynting vector, 12, 63, 210, 225, 262, 321,

324, 326, 332, 333, 337, 358, 361, 362,
367, 368, 401

P-polarization, 240
P-polarized, 240

light, 224
wave, 206

Pressure, 416
Prism coupling, 277
Probability, 491, 494, 495, 499

amplitude, 491, 498
density, 502
distributions, 491, 506

Probe or scattering feature, 450
Probes, 455
Profile function, 204
Prominent backscattering peaks, 222
Propagating plane wave, 447
Propagating waves, 347, 350
Propagation distance, 160
Pulse, 325, 340
Pulse propagating, 325
Pumped state, 429
Purcell effect, 95
Pure state, 540

Q
Quadrature methods, 187
Quantum

computer, 493, 526, 527, 535, 543
computer schemes, 400
computing, 510, 516
dotes, 279
dynamics, 517
entanglement, 492
information, 510
mechanical harmonic oscillator, 411
numbers, 505
probabilities, 496
theory of light, 401

Quasi-static limit, 32, 39, 40, 184, 197

Quasi-static surface shape resonances, 187
Qubit, 511, 519, 543

R
Radiating charged particle, 367
Radiation

emitted, 377
field, 372, 380
pattern, 372
pressure, 401

Radiative losses, 273
Rainbow effects, 159
Raman

inelastic processes, 263
interactions, 263
processes, 258
scattering, 261
side bands, 263
spectroscopy, 260, 264, 266

Random
profile functions, 205
rough and grating systems, 184
variables, 494
walk treatment, 237

Randomly rough
interfaces, 201
surface, 200, 268
vaccum-metal surface, 204

Rate
of computation, 525
of decay of an excited atom, 381
of transition, 426

Rayleigh
focusing criteria, 342
hypothesis, 225
scattering, 262

Rayleigh and Thomson, 259
Realizations of the near field technique, 455
Reduced density, 509
Reduced density matrix, 508
Reflected

and transmitted component, 290
light, 243
pulse, 340
wave amplitudes, 154

Reflection
amplitude, 207, 226
and transmission, 354
and transmission coefficients, 63
coefficient, 298, 299, 466
symmetry, 177

Reflective medium, 165
Refracted rays, 344
Refracted wave, 331
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Refraction, 347
of light, 10, 11, 335
problem, 332, 334, 341

Refractive properties, 10, 12
Relative transmission amplitude, 354
Removal of a cylinder, 126
Renormalization, 413
Replaced photonic crystal cylinder, 143
Replacement cylinder impurity, 126
Resonance, 313

frequency, 311, 315
properties, 306

Resonant
cavity, 278
frequency, 310, 315
interaction, 311
response, 174
scattering states, 132

Resonators, 11
Retardation effects, 189
Retroreflectance enhancement, 202
Retroreflectance of light, 221
Reversed biased circuit, 437
Reversible operation, 513
Ring resonator waveguides, 281
Rough interface, 202, 210, 212
Roughness dependence of SERS intensity, 269
Rough surface, 220, 266
Rough surface reflection and transmission

coefficients, 238

S
Scalar field, 90
Scanning near field microscope, 457
Scattered field, 452
Scattered speckle field, 238
Scattering

amplitude, 241
of surface waves, 448
potential, 248
problem, 295
surface, 87, 214
transition coefficient, 296
transmission, 223

Schrodinger equations, 139
Schurig, D., 10
Screen, 453, 454
Second harmonic

fields, 481
generation, 18, 21, 306
generation schemes, 306
of radiation generated at the mirror surface,

486
polarization, 483

response, 482
wave, 485

Second order phase transition, 431
Second surface, 297
Self-assembly processes, 385
Semiconductor, 3

disk, 281
heterostructure, 486
junctions, 436
lasers, 424
nano-wire, 278

Semi-infinite
metal, 228
vacuum-dielectric, 448
waveguide, 149

Sensors, 15, 306
Sequence of transmissions and reflections, 300
SERS spectra of emeraldine base, 270
Shadowing effects, 203
Silver surface, 204
Simulation of optical effects found in general

relatively, 306
Single

aperture, 285
C-shape structure, 320
dielectric slab, 464
elementary excitation, 265
impurities, 130
impurity problem, 121
molecules, 258
particle Green’s function, 211, 212
site impurity, 117, 145, 147
site problem, 124
slab, 463
slab impurity, 128
solitons, 20
sphere, 268
waveguide designs, 270

Sky blue coloration, 43
Slab, 182, 344, 372

geometry, 7
of materials, 201
photonic crystals, 94
replacement problem, 132
systems, 177

Small conductivity expressions, 325
Smallest repeat distance, 189
Smallest translation vectors, 44
Small grating amplitude, 195
Smith, D.R., 10
Snell’s law, 9, 10, 338, 344
Soliton solution, 476
Solutions, 111
Solvability conditions, 125
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Source and observer frames, 364
Source of gain, 278
Space-time lattice, 72, 75
Spaser, 17, 278, 424, 443

design, 279
operation, 279, 444

Spatial decay, 150
Spatial periodicity, 51
Specifically, 348
Speckle

correlation function, 252, 253
correlator, 254
imagining, 238
metrology, 238
pattern, 237, 241, 243, 244
phenomenon, 236
photography, 238

Spectroscopic methodologies, 456
Spectroscopic transitions, 456
Spectroscopy, 400
Sphere, 267
Spherical dielectric particle, 403
Split ring, 319
Split ring resonator, 308, 310–312, 315, 317,

319
S-polarization component of light, 224
S-polarized component, 206
S-polarized plane wave, 240
Spontaneous emission processes, 431
Spontaneous emissions, 433, 434
Square lattice

array, 290
pattern of holes, 291
photonic crystal, 107
photonic crystal array, 108

S-shape resonator, 320
Standard general form, 120
Statistical equilibrium, 426
Statistical mechanical probability, 505
Statistical properties, 236
Statistics of the speckle of light, 256
Stewart, W., 10
Stimulated emission process, 429
Stimulated emission transition rate, 430
Stokes and anti-Stokes lines, 265
Stop band, 149

frequency, 145
technology, 96

Strong localization, 202
Submicron-donut resonator, 283
Subwavelength, 284

features, 306, 308

hole, 286, 301, 453
imaging, 447
interaction, 271
penetration holes, 300
properties, 269

Super-cell units, 129
Superposition state system, 528
Superposition wave function state, 542
Surface bumps, 183
Surface current, 86, 87, 88
Surface electromagnetic

modes, 168
waves, 189, 238, 248, 328
waves in technology, 257

Surface emitting lasers, 7
Surface enhanced Raman scattering, 160
Surface Enhanced Raman Spectroscopy

(SERS), 17, 257, 477
Surface enhancement of the Raman effect, 266
Surface gratings, 183
Surface imperfection, 160
Surface plasmonic excitations, 278
Surface plasmon-polarition, 15, 17, 163, 285,

294, 301, 444
branch, 170
logic gates, 281
modes, 175
multiplexers and routers, 276
waves, 295

Surface plasmons, 191, 200
Surface profile, 268, 454
Surface profile function, 184, 189, 192, 198,

239
Surface properties, 447
Surface roughness, 183, 209

profile function, 242
Surface shape resonance, 184, 187, 188

frequencies, 197
modes, 184

Surface wave, 175, 176
boundary conditions, 161
modes, 280

Switching and rectification application, 440
Symmetric

and antisymmetric modes, 181
matrix, 105
matrix problem, 89
modes, 178
solutions, 179

Symmetries, 186
Synge, 453, 456
Synge’s screen system, 456
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Systems displaying enhanced transmission
effects, 306

T
Tangential components, 164
Target, 79
Techniques of microscopy, 477
Technological applications, 257
Telecommunications, 64
TE modal equations, 72
Thermal effects, 439
Thermal equilibrium, 425
Thermal fluctuations, 417
Thin film, 222, 223, 226, 247, 252, 286, 294
Thin film approximations, 227
Thin film modes, 229
Thin metal film with a rough upper surface,

235
Thomson scattering, 262
Threat detection, 258
Three dimensional array, 319
Three dimensional photonic crystals, 95
Three level atom, 425
Three-level model, 430
Time-dependent fields, 392
Time-dependent potential, 398
Time-independent problems, 89
T-matrix, 208, 226, 228

equations, 225
series, 209
treatment, 213

TM modes, 72, 75
TM system of equations, 80
TM wave, 81
Total diffuse scattering, 219
Total elastic scattering cross section, 262
Total induce moment, 452
Total power radiated, 370
Total reflection amplitude, 355
Total scattering cross section, 262
Total transmission, 300
Transfer matrix, 56, 57, 130

method, 463
problem, 465

Transfers momentum, 403
Transformation, 536
Transistor, 284
Transition amplitudes, 298
Transition rate, 430, 431
Translation, 136
Translational symmetry, 46, 48, 137, 170, 206,

334, 338
Transmission, 229

amplitude, 296, 349, 351

and reflection amplitude, 298, 353
and reflection properties, 20
coating model, 473
coefficient, 157, 232, 299, 466, 474
efficiency, 286
enhancements, 474
intensity, 287, 288
maxima, 288
of different polarizations, 271
peaks, 288
study, 131, 132
surface, 295

Transmission amplitude at the left surface of
the lens can be evaluated using, The,
348

Transmitted and reflected waves, 402
Transmitted evanescent waves, 352
Transmitted wave, 63, 331, 332, 338, 339, 466
Transmitted wave amplitudes, 154
Transmitted wave boundary conditions, 130
Transmitting coating, 470
Transport processes, 218
Transport properties, 375
Transverse optical phonon modes, 171
Transverse phonon modes, 171
Trapezoidal rule, 73
Trapped ion system, 518
Trapping, 398
Trapping effects on bacteria, viruses, and even

DNA, 407
Trapping of individual ions, 385
Trapping potential, 397
Triangle lattice, 113
Triangle lattice photonic crystal, 113, 115
Tri-diagonal matrix, 196
Truncated triangle lattice photonic crystal, 116
Truncated two-dimensional periodic dielectric

medium, 97
Tunable lasers, 278
Tweezer force, 405
Two- and three- dimensional super-arrays, 128
Two C split ring resonator, 320
Two dimensional

lattice, 45
photonic crystal, 94, 118, 120, 137, 142
position vectors, 98
scattering problem, 85
system, 71, 77

Two-dimension photonic crystal, 7
Two elementary excitations, 266
Two level atom, 425
Two-level units, 516, 517
Two parallel perfect conducting plates, 409
Two particle correlations functions, 245
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Two-particle Green’s function, 211–213, 216,
249

Two-particle wave function, 498, 502
Two-spin system, 505, 506
Two surface plasmons, 215
Two waveguides, 153
Type I and Type II media, 379
Type I hyperbolic materials, 378
Type I hyperbolic metamaterial, 376
Type II hyperbolic materials, 378
Type II hyperbolic metamaterial, 376

U
Ultra-violet, 258
Ultraviolet catastrophe, 412
Uniform homogeneous medium, 48
Uniform mode, 296
Uniform semi-infinite slab, 487
Unitary transformation, 518, 529
Universal gate, 521
Upper band, 374
U-shape geometries, 320

V
Vacuum, 370
Vacuum-InSb interface, 176
Vacuum-metal interface, 188, 204
Vacuum slabs, 472
Variational problem, 89
Variation of the phases, 471
Versus the speckle intensity, 237
Vertex contribution, 218
Vertical cavity surface emitting laser, 442
Vertical column heterojunction lasers, 436
Vertical column lasers, spasers, 423
V-groove channel waveguide, 274
Vibrational polarization modes, 171
Von Neumann entropy, 503, 507

W
Walsh-Hadamard or H-gate, 523

Wannier basis functions, 136
Wannier function, 133, 134

expansion, 138
and difference equation techniques, 96

Wave amplitude, 356
Wave function, 496, 499, 533, 541
Wave function probe, 201
Waveguide, 5, 15, 150, 153, 270, 456

channel, 7, 146, 152, 272
geometries, 273, 274
impurity, 150
problem, 147, 155
with impurities, and networks of

waveguides, 144
Wave vector, 367, 368
Weak Anderson localization, 202
Weak localization contributions, 234
Weak localization effects, 218, 232, 247
Weakly rough surface profile, 191
Weakly rough surfaces, 207
Weight function, 87
Whispering gallery cavity based laser, 280
Wire cavity, 278

X
XOR-gate, 513
XOR operation, 529, 530, 534
XOR table, 530

Y
Youngs, I., 10
Y-splitter, 283
Y-type structure, 281

Z
Zero permittivities, 368

permeability, 372
point energy, 410–412, 408, 414, 416
temperature, 409
temperature systems, 417

558 Index


	Preface
	Contents
	1 Introduction
	1.1 Mathematical Preliminaries and Examples of Specific Techniques
	1.2 Photonic Crystals
	1.3 Metamaterials
	1.4 Plasmonics
	1.5 Nonlinear Properties of Nano-optical Systems
	1.6 Forces
	1.7 Near-Field Microscopy
	1.8 Quantum Computers
	1.9 The Focus of the Book
	References

	2 Mathematical Preliminaries
	2.1 Dielectric Properties of Composites and Photonic Crystals
	2.1.1 General Theory for Composites

	2.2 General Theory for Periodic Media
	2.3 Finite Difference Time Domain Simulations, Method of Moments, and Finite Element Simulation
	2.3.1 Computer Simulation Methods

	References

	3 Photonic Crystals
	3.1 Plane Wave Expansion Methods for the Determination of Photonic Crystal Band Structures
	3.2 Green’s Function Method for Impurity Modes in Photonic Crystals
	3.3 Method of Wannier Functions
	3.4 Photonic Crystal Waveguides: Analytical Models
	References

	4 Plasmonics
	4.1 Surface Plasmon-Polaritons on a Planar Interface
	4.1.1 Example of a Dielectric-Metal or Semiconductor Interface
	4.1.2 Example of a Dielectric-Dielectric Interface
	4.1.3 Example of a Metallic Slab in Vacuum

	4.2 Surface Plasmon-Polariton Modes for Shape Resonances, Gratings, and Light Scattering from Rough Surfaces
	4.2.1 Shape Resonances
	4.2.2 Scattering from Gratings
	4.2.3 Scattering from Rough Surfaces
	4.2.4 Surface Plasmon-Polariton Modes for Light Scattering from Thin Films with Rough Surfaces
	4.2.5 Speckle Correlations in the Reflection and Transmission of Light Through a Thin Film

	4.3 Some Application of Plasmon-Polaritons
	4.3.1 Surface Enhanced Raman Spectroscopy
	4.3.2 Subwavelength Properties in Light-Guiding, Spasers, and Plasmonic Circuitry
	4.3.3 Plasmonic Subwavelength Enhanced Transmission of Light

	References

	5 Metamaterials
	5.1 Basic Properties of Metamaterials
	5.1.1 Properties of Split Ring Resonators and Split Ring Resonator Arrays
	5.1.2 Negative Refractive Index Metamaterials
	5.1.3 Refraction Between Positive and Negative Index Media

	5.2 Perfect Lens
	5.2.1 Ideas of the Perfect Lens
	5.2.2 Other Applications of Positive–Negative Refractive Properties

	5.3 Radiation in a Negative Indexed Medium
	5.3.1 Doppler Effect
	5.3.2 Cherenkov Radiation

	5.4 Application of Metamaterials in Antenna Design
	5.5 Photonic Crystal Solutions to the Negative Refractive Index Problem and Hyperbolic Materials
	5.5.1 Photonic Crystals
	5.5.2 Hyperbolic Materials

	References

	6 Force
	6.1 Magnetic Forces for the Manipulation of Nanoparticles
	6.1.1 Review of Magnetostatics
	6.1.2 Forces on Ferromagnetic Particles
	6.1.3 Forces on Paramagnetic Particles
	6.1.4 Forces on Diamagnetic Particles

	6.2 Electric Forces for the Manipulation of Nanoparticles
	6.3 Ion Traps Based on Electric Forces: Paul and Penning Traps
	6.3.1 Earnshaw’s Theorem
	6.3.2 Time-Dependent Potentials
	6.3.3 Paul and Penning Traps

	6.4 Optical Tweezer
	6.4.1 Momentum Considerations
	6.4.2 Momentum Consideration of Light Incident on Slabs and Spherical Particles in the Geometric Optics Limit
	6.4.3 Force on a Dielectric Sphere When the Wavelength of Light Is Large Compared to the Sphere Radius

	6.5 Casimir Effect and Casimir Forces
	6.5.1 Theory of Casimir Effect

	References

	7 Lasers
	7.1 A Simplified Model of Laser Operation
	7.1.1 Statistical Properties of the N Atom System
	7.1.2 Laser Mechanism

	7.2 Semiconductor Lasers
	7.2.1 Homojunctions
	7.2.2 Heterojunctions
	7.2.3 Vertical Cavity Surface Emitting Laser

	7.3 Spasers
	References

	8 Near Field Microscopy
	8.1 Evanescent Waves
	8.2 Model of a Surface Probe
	8.3 First Proposal by Synge
	8.4 Subsequent Realizations
	8.5 An Experimental Result
	References

	9 Nonlinear Optics
	9.1 Photonic Crystal Composed of Kerr Media
	9.1.1 Model of Finite Kerr Nonlinear Layers: Scattering Properties

	9.2 Generation of Second Harmonics
	9.2.1 Basics of Second Harmonic Generation and the Phase Matching Problem
	9.2.2 Applications of Photonic Crystal and Metamaterials to Second Harmonic Generation

	References

	10 Quantum Computers
	10.1 Bell’s Inequality
	10.2 Entanglement and the Einstein-Podolsky-Rosen Paper
	10.2.1 Nature of Entangled and Non-entangled State Wavefunctions
	10.2.2 Einstein, Podolsky, and Rosen
	10.2.3 Measurements of Entanglement

	10.3 Quantum Information and Computing
	10.3.1 Ideas of Classical Computers
	10.3.2 Quantum Computing

	References

	Index



