
The partial or complete confinement of waves is ubiqui-
tous in nature and in wave-based technology. Examples 
include electrons bound to atoms and molecules, light 
confined in optical fibres and the partial confinement of 
sound in musical instruments. The allowed frequencies 
of oscillation are known as the wave spectrum.

To determine whether a wave can be perfectly con-
fined or not (that is, if a ‘bound state’ exists or not) in 
an open system, a simple criterion is to look at its fre-
quency. If the frequency is outside the continuous spec-
tral range spanned by the propagating waves, it can exist 
as a bound state because there is no pathway for it to 
radiate away. Conversely, a wave state with the frequency 
inside the continuous spectrum can only be a ‘resonance’ 
that leaks and radiates out to infinity. This is the conven-
tional wisdom described in many books. A bound state 
in the continuum (BIC) is an exception to this conven-
tional wisdom: it lies inside the continuum and coexists 
with extended waves, but it remains perfectly confined 
without any radiation. BICs are found in a wide range of 
material systems through confinement mechanisms that 
are fundamentally different from those of conventional 
bound states.

The general picture is clear from the spectrum and 
the spatial profile of the modes (FIG. 1). More specifi-
cally, consider waves that oscillate in a sinusoidal way 
as e−iωt in time t and at angular frequency ω. Extended 
states (blue; FIG.1) exist across a continuous range of 
frequencies. Outside this continuum lie discrete levels 
of conventional bound states (green; FIG.1) that have 
no access to radiation channels; this is the case for 
the bound electrons of an atom (at negative energies),  

the guided modes of an optical fibre (below the light 
line) and the defect modes in a bandgap. Inside the 
continuum, resonances (orange; FIG.1) may be found 
that locally resemble a bound state but in fact couple 
to the extended waves and leak out; they can be associ-
ated with a complex frequency, ω = ω0 – iγ, in which the 
real part ω0 is the resonance frequency and the imagi-
nary part γ represents the leakage rate. This complex 
frequency is defined rigorously as the eigenvalue of the 
wave equation with outgoing boundary conditions1,2. In 
addition to these familiar wave states, there is the less 
known possibility of BICs (red; FIG.1) that reside inside 
the continuum but remain perfectly localized with no 
leakage, namely γ = 0. In a scattering experiment, waves 
coming in from infinity can excite the resonances, 
causing a rapid variation in the phase and amplitude 
of the scattered waves within a spectral linewidth of 2γ. 
However, such waves cannot excite BICs, because BICs 
are completely decoupled from the radiating waves and 
are invisible in this sense. Therefore, a BIC can be con-
sidered as a resonance with zero leakage and zero line-
width (γ = 0; or infinite quality factor Q = ω0/2γ). BICs 
are sometimes referred to as embedded eigenvalues or 
embedded trapped modes.

In 1929, BICs were proposed by von Neumann and 
Wigner3. As an example, von Neumann and Wigner 
mathematically constructed a 3D potential extending 
to infinity and oscillating in a way that was tailored to 
support an electronic BIC. This type of BIC-supporting 
system is rather artificial and has never been realized. 
However, since this initial proposal, other mechanisms 
leading to BICs have been identified in different material 
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Abstract | Bound states in the continuum (BICs) are waves that remain localized even though 
they coexist with a continuous spectrum of radiating waves that can carry energy away.  
Their very existence defies conventional wisdom. Although BICs were first proposed in 
quantum mechanics, they are a general wave phenomenon and have since been identified  
in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids.  
These states have been studied in a wide range of material systems, such as piezoelectric 
materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, 
graphene and topological insulators. In this Review, we describe recent developments in this 
field with an emphasis on the physical mechanisms that lead to BICs across seemingly very 
different materials and types of waves. We also discuss experimental realizations, existing 
applications and directions for future work.
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systems, many of which have been observed in experi-
ments in electromagnetic, acoustic and water waves. In 
recent years, photonic structures have emerged as a par-
ticularly attractive platform owing to the ability to tailor 
the material and structure, which is often impossible in 
quantum systems. The unique properties of BICs have 
led to numerous applications, including lasers, sensors, 
filters and low-loss fibres, with many more possible uses 
proposed and yet to be implemented.

Most theoretically proposed and all experimen-
tally observed BICs are realized in extended structures 
because, in most wave systems, BICs are forbidden in 
compact structures (BOX 1). Among the extended struc-
tures that support BICs, many are uniform or periodic 
in one or more directions (for example, x and y), and the 
BIC is localized only in the other directions (for example, 
z). In such systems, the concept of BICs requires careful 
definition. More specifically, because translational sym-
metry conserves the wave vector, k// = (kx, ky), a state is 
considered a BIC when it exists inside the continuous 
spectrum of modes at the same k// but remains localized 
and does not radiate in the z direction. These BICs are 
typically found at isolated wave vectors.

In this Review, we present the concepts and physical 
mechanisms that unify BICs across various material sys-
tems and in different types of waves, focusing on exper-
imental studies and applications. First, we describe BICs 
protected by symmetry and separability; second, we dis-
cuss BICs achieved through parameter tuning (with cou-
pled resonances or with a single resonance); and third, we 
describe BICs built with inverse construction (for example, 
potential, hopping rate or shape engineering). We con-
clude with the existing and emerging applications of BICs.

Bound states due to symmetry or separability
The simplest places to find BICs are in systems in which 
the coupling of certain resonances to the radiation 
modes are forbidden by symmetry or separability.

Symmetry-protected BICs. When a system exhibits a 
reflection or rotational symmetry, modes of different 
symmetry classes completely decouple. It is common 
to find a bound state of one symmetry class embedded 
in the continuous spectrum of another symmetry class, 
and their coupling is forbidden as long as the symmetry 
is preserved.

The simplest example concerns sound waves in air, 
with a plate placed along the centreline of an acoustic 
waveguide (FIG. 2a). The fluctuation of air pressure, p, 
follows the scalar Helmholtz equation with Neumann 
boundary condition ∂p/∂n = 0 on the surfaces of the walls 
and of the plate, where n is the direction normal to the 
surface. The waveguide supports a continuum of waves 
propagating in the x direction that are either even or odd 
under mirror reflection in the y direction; the odd modes 
(red; FIG. 2a, middle panel) require at least one oscillation 
in the y direction and only exist above a cut-off frequency, 
πcs/h, where cs is the speed of sound and h is the width of 
the waveguide. The plate respects the mirror symmetry 
and, as a result, modes localized near it are also even or 
odd in the y direction, and an odd mode below the cut off 
is guaranteed to be a bound state despite being embedded 
in the continuum of even extended modes (FIG. 2a). Parker 
first measured4 and analysed5 such modes using a cascade 
of parallel plates in a wind tunnel. These modes can be 
excited from the near field and are audible with a steth-
oscope placed near the plates. This plate‑in‑waveguide 
system has been studied by others6–8, and obstacles with 
arbitrary symmetric shapes have also been considered9. 
It should be noted that obstacles that are infinitesimally 
thin and parallel to the waveguide are decoupled from the 
fundamental waveguide mode even without mirror-in‑y 
symmetry10–13.

Similar symmetry-protected bound states exist in 
canals as surface water waves14–20, in quantum wires21–23, or 
for electrons in potential surfaces with antisymmetric cou-
plings24. A common setup is a 1D waveguide or lattice array 
that supports a continuum of even‑in‑y extended states, 
with two defects attached symmetrically above and below 
this array to create an odd‑in‑y defect bound state. This 
configuration has been explored with the defects com-
prising single-mode optical waveguides25–28, mechanically 
coupled beads29,30, quantum dots31–41, graphene flakes42,43, 
ring structures37,44,45 or impurity atoms46,47. Experimental 
realizations are demonstrated in two of these studies27,28, 
both using coupled optical waveguides. When the mirror 
symmetry is broken, the bound state turns into a leaky 
resonance. In one example, the mirror symmetry is broken 
by bending the defect waveguides, which allows coupling 
light into and out of the would‑be BIC27. In another case, 
a temperature gradient changes the refractive index of the 
material and breaks the mirror symmetry, which induces 
radiation in a controllable manner28 (FIG. 2b).

Symmetry-protected BICs also exist in periodic 
structures: for example, a photonic crystal (PhC) slab48 
comprising a square array of cylindrical holes etched 
into a dielectric material (FIG. 2c). Because of the perio
dicity in the x and y directions, the photonic modes can 
be labelled by k// = (kx, ky). When the 180° rotational sym-
metry around the z axis (C2) is preserved (for example, 

Figure 1 | Illustration of a BIC. In an open system, the frequency spectrum consists of  
a continuum or several continua of spatially extended states (blue) and discrete levels  
of bound states (green) that carry no outgoing flux. The spatial localization of the bound 
states is a consequence of a confining structure or potential (black dashed line). States 
inside the continuous spectrum typically couple to the extended waves and radiate, 
becoming leaky resonances (orange). Bound states in the continuum (BICs; red) are 
special states that lie inside the continuum but remain localized with no radiation.
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at k// = (0, 0), commonly known as the Γ point), even 
and odd modes with respect to C2 are decoupled. At 
frequencies below the diffraction limit of ωc = 2πc/na 
(where a is the periodicity, n is the refractive index of 
the surrounding medium and c is the vacuum speed of 
light), the only radiating states are plane waves in the 
normal direction (z) with the electric and magnetic field 
vectors being odd under C2; therefore, any even mode at 
the Γ point is a BIC. Away from the Γ point, these states 
start to couple to radiation, because they are no longer 
protected by C2. This disappearance of radiation has 
been observed in early experiments on periodic metal-
lic grids49, documented in theoretical studies on PhC 
slabs50–56 and measured quantitatively from the Q of reso-
nances in large-area PhC slabs57 (FIG. 2c). The suppressed 
radiation has also been characterized in the lasing pat-
tern of 1D periodic gratings58,59. Such photonic BICs are 
commonly realized in silicon photonics and with III–V 
semiconductors, and have found applications in lasers, 
sensors and filters (see the last section).

In crystal acoustics, symmetry-protected BICs exist 
as the surface acoustic wave (SAW) in anisotropic solids, 
such as piezoelectric materials. This phenomenon can be 
used to enhance performance beyond the typical limit of 
bulk materials. For example, the phase velocity, V = ω/|k//|, 
of a SAW is limited to the speed of the slowest bulk wave, 
otherwise it becomes a leaky resonance. However, along 
high-symmetry directions, symmetry may decouple the 
SAW from the bulk waves, turning the resonance into 
a supersonic but perfectly confined SAW60–64, allow-
ing higher phase velocity than the bulk limit. A related 
example exists in optics in uniform slabs with anisotropic  
permittivity and permeability tensors65.

Separable BICs. Separability can also be exploited to 
construct BICs. For example, consider a 2D system with 
a Hamiltonian of the form

H = Hx(x) + Hy(y) 	 (1)

where Hx acts only on the x variable and Hy acts only 
on the y variable. It is possible to separately solve 
the 1D eigen-problems HxΨx

(n)(x) = Ex
(n)Ψx

(n)(x) and 
HyΨy

(m)(y) = Ey
(m)Ψy

(m)(y). If Ψx
(n)(x) and Ψy

(m)(y) are 
bound states of the 1D problems, their product wave-
function, Ψx

(n)(x)Ψy
(m)(y), is bound in both dimen-

sions and will remain localized even if its eigenvalue, 
Ex

(n) + Ey
(m), lies within the continuous spectrum of the 

extended states for the 2D Hamiltonian; coupling to 
the extended states is forbidden by separability. This 
type of BIC was first proposed by Robnik66, and sub-
sequently studied in other quantum systems67–69 and 
in Maxwell’s equation in 2D70–73. So far, separable BICs 
have not been observed experimentally, but there are 
promising examples in several material systems, includ-
ing photorefractive medium, optical traps for cold atoms 
and certain lattices described by tight-binding models74.

Bound states through parameter tuning
When the number of radiation channels is small, tuning 
the parameters of the system may be enough to com-
pletely suppress radiation into all channels. Generally, 
if radiation is characterized by N degrees of freedom, at 
least N parameters need to be tuned to achieve a BIC. 
In many cases, this suppression can be interpreted as an 
interference effect in which two or more radiating com-
ponents cancel each other. We describe three different 
scenarios in the following subsections.

Fabry–Pérot BICs (coupled resonances). A resonant 
structure coupled to a single radiation channel is known 
to cause unity reflection near the resonance frequency, 
ω0, when there are no other losses. This is because the 
direct transmission and the resonant radiation interfere 
and completely cancel each other75. Two such resonant 
structures can act as a pair of perfect mirrors that trap 
waves in between them. BICs are formed when the 
resonance frequency or the spacing, d, between the 
two structures is tuned to make the round-trip phase 
shifts add up to an integer multiple of 2π (FIG. 3a). This 
structure is equivalent to a Fabry–Pérot cavity formed 
between two resonant reflectors.

Temporal coupled-mode theory76 provides a simple 
tool to model such BICs. In the absence of external driv-
ing sources, the two resonance amplitudes A = (A1, A2)T 
evolve in time as i∂A/∂t = HA with Hamiltonian77–79

 H = – iγκ
κω0
ω0 eiψ

eiψ1
1 	 (2)

where κ is the near-field coupling between the two reso-
nators, γ is the radiation rate of the individual resonances 
and ψ = kd is the propagation phase shift between the 
two resonators, where k is the transverse wavenumber 
(FIG. 3a). The two eigenvalues of H are

ω± = ω0 ± κ – iγ(1 ± eiψ) 	 (3)

Box 1 | Non-existence of single-particle BICs in compact structures

Most structures supporting bound states in the continuum (BICs) extend to infinity 
in at least one direction. This is because BICs are generally forbidden in compact 
structures for single-particle-like systems.

Consider a 3D compact optical structure in air, characterized by its permittivity ε(r) 
and permeability μ(r), with R as the radius of a sphere that encloses the structure. 
Outside the bounding sphere ε(r) = μ(r) = 1; therefore, the electric (E) and magnetic (H) 
fields follow the Helmholtz equation and can be expanded in spherical harmonics and 
spherical Hankel functions with wavenumber k = ω/c. A bound state must have no 
radiating far field, but every term in the expansion carries an outgoing Poynting flux, 
and hence, all terms must be zero, meaning that E and H must both vanish for |r| > R. If 
ε(r) and μ(r) are neither infinite nor zero anywhere, continuity of the fields requires E 
and H to be zero everywhere in space, and as a result, such a bound state cannot 
exist254. The same argument applies to a 1D or 2D system.

This non-existence theorem does not exclude compact BICs when the material has 
ε = ±∞, μ = ±∞, ε = 0 or μ = 0, which can act as hard walls that spatially separate the 
bound state from the extended ones. Examples with ε = 0 have been proposed251,254,255 
but are difficult to realize because typically the loss Im(ε) is significant at the plasma 
frequency of a metal, where Re(ε) = 0.

The same argument applies to the single-particle Schrödinger equation. For an 
electron with a non-vanishing effective mass (m; the m = 0 case is studied in REF. 256) 
in a compact and finite potential (V(r) = 0 for |r| > R, and V(r) ≠ ±∞ everywhere), a 
bound state with positive energy E > 0 cannot exist. Similarly, this non-existence 
theorem can be applied to acoustic waves in air and to linearized water waves in 
constant-depth (z‑independent) structures, because both systems are described by 
the Helmholtz equation. However, this theorem does not apply to water waves in 
structures with z dependence80, which follow the Laplace equation instead.
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When ψ is an integer multiple of π (namely, when the 
round trip phase shift is an integer multiple of 2π), one of 
the two eigenmodes becomes more lossy with twice the 
original decay rate, and the other eigenmode becomes a 
BIC with a purely real eigenfrequency.

Fabry–Pérot BICs are commonly found in systems 
with two identical resonances coupled to a single radi-
ation channel. They exist in water waves between two 
obstacles80–85, as first proposed by McIver80 — these are 
sometimes called sloshing trapped modes86. In quantum 
mechanics, they are found in impurity pairs in a wave-
guide20,87, in time-dependent double-barrier structures88, 
in quantum dot pairs connected to a wire89–93, in double 
metal chains on a metal substrate94 or in double wave-
guide bends95. In photonics, Fabry–Pérot BICs exist in 
structures ranging from stacked PhC slabs96–98 and dou-
ble gratings99,100, to off-channel resonant defects con-
nected to a waveguide or waveguide array25,27,45,77,101,102. 
Such BICs have also been studied in acoustic cavities103. 
A unique property of Fabry–Pérot BICs is that the two 
resonators interact strongly through radiation even 
when they are far apart. These long-range interactions 
have been studied in cavities or qubits coupled through 
a waveguide104–106 and for two leaky solitons coupled 
through free-space radiation107.

The same principle applies when a single resonant 
structure is next to a perfectly reflecting boundary, such 
as a hard wall, lattice termination or a PhC with a band-
gap. For example, Fabry–Pérot BICs exist on the surface 
of a photonic crystal108 and in a semi-infinite 1D lattice 
with a side-coupled defect, which has been predicted109 
and then experimentally realized110 using coupled optical 
waveguides (FIG. 3b). This principle can be extended to 
polar or spherical coordinates111,112.

Friedrich–Wintgen BICs (coupled resonances). The 
intuitive unity-reflection explanation of Fabry–Pérot 
BICs applies when the two resonators are far apart. 
However, equation 3 shows that a BIC can arise even 
with no separation (d = 0). In other words, two reso-
nances at the same location can lead to a BIC through 
interference of radiation — unity reflection is not a 
requirement.

In temporal coupled-mode theory, when two reso
nances reside in the same cavity and are coupled to 
the same radiation channel, the resonance amplitudes 
evolve with the Hamiltonian113,114

H = – i
κ

κω1

ω2

γ1

γ2

√γ1γ2

√γ1γ2

	 (4)

Figure 2 | Symmetry-protected bound states. a | An acoustic waveguide with an obstructing plate (black) placed at the 
centre. An odd bound state exists at the same frequency as an even extended state but cannot couple to it. Measuring the 
sound pressure near the plate reveals the bound state (bottom panel)6. b | A coupled-waveguide system with two defects 
placed symmetrically parallel to a linear array, which supports a similar odd bound state. The propagation constant, βz, has 
the role of frequency. A temperature gradient can break the mirror symmetry by the thermo-optic effect and turn the 
bound state into a leaky resonance (bottom panel)28. c | A photonic crystal (PhC) slab with a 180° rotational symmetry 
around the z axis (C2). At the Γ point, modes that are even under C2 cannot radiate because plane waves in the normal 
direction are odd under C2. Away from the normal direction, the bound states become leaky with finite quality factors (Qs), 
as confirmed by reflectivity measurements (bottom panel)57. πcs/h, cut-off frequency (where cs is the sound speed and h is 
the width of the waveguide); 2πc/na, diffraction limit (where c is the vacuum speed of light, n is the refractive index of the 
surrounding medium and a is periodicity); a.u., arbitrary units; Ex,y, z, the x, y and z components of the electric field; h, 
height; Hz, the z component of the magnetic field; Qtot, total quality factor; TE1,2, first and second transverse-electric-like 
modes; TM1,4, first and fourth transverse-magnetic-like modes; ω, angular frequency.
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Here, we consider the scenario in which the two reso-
nances can have different resonance frequencies, ω1,2, and 
different radiation rates, γ1,2. The two resonances radiate 
into the same channel, and hence, interference of radia-
tion gives rise to the via-the-continuum coupling term 
√γ1γ2. As a result, when

κ (γ1
 – γ2) = √γ1γ2 (ω1

 – ω2)  	 (5)

one eigenvalue becomes purely real and turns into a BIC 
and the other eigenvalue becomes more lossy. This type of 
BIC is named after those who first derived equation 5 —  
Friedrich and Wintgen115. Note that when κ = 0 or when 
γ1 = γ2, the BIC is obtained at ω1 = ω2; therefore, when κ ≈ 0 
or γ1 ≈ γ2, Friedrich–Wintgen BICs occur near the fre-
quency crossings of the uncoupled resonances. Generally, 
these BICs are possible when the number of resonances 
exceeds the number of radiation channels116,117, but the 
required number of tuning parameters also grows with 
the number of radiation channels.

The first examples of Friedrich–Wintgen BICs were 
proposed in atoms and molecules118,119, and their effects 
have been observed experimentally as a suppressed auto-
ionization in certain doubly excited Rydberg states of 
barium120. More recently, these BICs have been studied 
in continuum shell models121, cold-atom collisions122, 2D 
topological insulators with a defect123, and for quantum 
graphs124, quantum billiards125 or impurity atoms126,127 
attached to waveguides. In acoustics, they have been 
studied in multiresonant cavities103,128. In optics, they have 
been studied in multiresonant dielectric objects in micro-
wave waveguides129,130 and as ‘dark state lasers’ (REF. 131).

Single-resonance parametric BICs. The preceding exam-
ples relate to two (or more) coupled resonances whose 
radiations cancel to produce BICs. Meanwhile, a sin-
gle resonance can also evolve into a BIC when enough 
parameters are tuned. The physical picture is similar to 
the preceding examples; here, the single resonance itself 

can be thought of as arising from two (or more) sets of 
waves, and the radiation of the constituting waves can be 
tuned to cancel each other.

BICs tuned from a single resonance have been pre-
dicted and realized in a PhC slab132, as shown in FIG. 4a. At 
wave vectors away from k// = (0, 0), modes above the light 
line (ω > |k//|c/n) radiate and form leaky resonances54. 
When the PhC slab has C2 symmetry, up–down mirror 
symmetry and time-reversal symmetry, the number of 
radiation channels is reduced132. At a generic k point along 
the Γ‑to‑X direction, the resonance turns into a bound 
state, as shown by the diverging radiative quality factor, 
Qr (FIG. 4a). Qr can be determined through the reflectiv-
ity spectrum132, or through the photocurrent spectrum 
by embedding a detector in the slab133. Such BICs also 
exist in a linear periodic array of rectangles134,135, cylin-
ders136 or spheres137, and related BICs have been found 
in time-periodic systems138. It is possible to analyse them 
through spatial coupled-wave theory139. With the mode 
expansion method, one can solve for the BICs efficiently 
and also reveal which sets of waves interfere to cancel the 
radiation134,135,140. Although these BICs are not guaranteed 
to exist by symmetry, when they do exist they are robust 
to small changes in the system parameters, and their gen-
eration, evolution and annihilation follow strict rules that 
can be understood through the concept of topological 
charges141, which also governs other types of BICs (BOX 2). 
These BICs can be described as ‘topologically protected’ 
and are known to exist generically if the system param-
eters (for example, the lattice spacing and thickness of 
the PhC) can be varied over a sufficient range. The topo
logical protection of BICs in a periodic structure has been 
studied in quantum Hall insulators142 (BOX 2).

Single-resonance parametric BICs can also exist in 
non-periodic structures, as shown theoretically in acous-
tic and water waveguides with an obstacle143–148, in quan-
tum waveguides with impurities149–151 or bends95,152,153, 
for mechanically coupled beads29,30 and mechanical res-
onators154, and in optics for a low-index waveguide on a 
high-index membrane155.

These types of BICs also manifest themselves through 
other types of SAWs in anisotropic solids. For example, 
it was predicted156,157 that on the (001) plane of GaAs, the 
leaky SAWs become true surface waves (that is, no leakage 
into the bulk) at a propagation direction of ϕ ≈ 33° (where 
ϕ is the angle from the [100] direction), in addition to 
the more well-known symmetry-protected SAW at the 
[110] direction of ϕ = 45° (FIG. 4b). The reduced attenu-
ation near ϕ ≈ 33° was observed experimentally158,159. 
Such SAWs exist in other solids160–168 and are sometimes 
called secluded supersonic SAWs161. With a periodic 
mass loading on the surface, secluded supersonic SAWs 
may also be found in isotropic solids169–171. This type of 
acoustic BIC was first reported in a piezoelectric material, 
LiNbO3 (REF. 172), and has been used in supersonic SAW 
devices173–176 (see the last section).

Bound states from inverse construction
Instead of looking for the presence of BICs in a given 
system, the problem can be turned around; if starting 
with a desired BIC, it is possible to design a system that 

Figure 3 | Fabry–Pérot BICs. a | A schematic illustration of the Fabry–Pérot bound state 
in the continuum (BIC). Two identical resonances radiate into the same radiation channel, 
and each resonance acts as a perfect reflector at the resonance frequency, ω0; therefore, 
waves can be trapped in between the two resonances when the round-trip phase shift is 
an integer multiple of 2π. b | Realization of a Fabry–Pérot BIC in a semi-infinite coupled 
waveguide array, in which the defect waveguide (F) and its mirror image with respect to 
the end are the two resonances. γ, radiation rate; ψ = kd, propagation phase shift between 
two resonators (where k is the transverse wavenumber and d is distance). Part b is 
adapted with permission from REF. 110, American Physical Society. 
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can support this bound state and the continuous spec-
trum containing it. This inverse construction is achieved 
by engineering the potential, the hopping rate or the 
boundary shape of the structure.

Potential engineering. The first proposal of BICs by von 
Neumann and Wigner was based on potential engineer-
ing3. For a desired BIC with wave function Ψ and energy 
E > 0, the corresponding potential V can be determined 
by rewriting the Schrödinger equation (in reduced units):

– ∇2Ψ + VΨ = EΨ → V = E + 
∇2Ψ
2Ψ2

1
 	 (6)

Ψ and E must be chosen appropriately so that the result-
ing V vanishes at infinity (to support the continuum) 
and is well defined everywhere. There are many possi-
ble solutions. The example given by von Neumann and 

Wigner is Ψ(r) = f(r)sin(kr)/kr with f(r) = [A2 + (2kr – sin
(2kr))2]−1, which has an energy E = k2/2 embedded in the 
continuum E ≥ 0. This bound wave function and the cor-
responding potential V(r) from equation 6 is shown in 
FIG. 5a for A = 25, k = √8  and E = 4 (note that REF. 3 con-
tains an algebraic mistake177,178). More examples can be 
found in REF. 178, and this procedure has been general-
ized to non-local potentials179 and lattice systems180,181. 
From a mathematical point of view, this inverse con-
struction is closely related to the inverse spectral theory 
of the Schrödinger operator182 and the Gel’fand–Levitan 
formalism of the inverse scattering problem, which 
can also be used to construct potentials supporting a 
finite183–186 or even infinite number of BICs182,187.

A related approach uses the Darboux transforma-
tion188 that is commonly used in supersymmetric (SUSY) 
quantum mechanics to generate a family of potentials 
that share the same spectrum. This transformation 
can be applied to a free-particle extended state to yield 
a different potential in which the corresponding state 
keeps its positive energy (remaining in the continuum) 
but becomes spatially localized189–191. In some cases, 
this SUSY method is equivalent to the von Neumann–
Wigner approach and the Gel’fand–Levitan approach192. 
The SUSY method has been applied to generate BICs in 
point interaction systems193, periodic Lamé potentials194 
and photonic crystals195. The SUSY method has also 
been extended to non-Hermitian systems with material 
gain and loss, in which BICs are found below, above and 
at an exceptional point196–204.

Potential engineering allows for analytic solutions of 
BICs. However, the resulting potentials tend to be un
realistic — indeed, none have been realized experimen-
tally so far. In addition, perturbations generally reduce 
such BICs into ordinary resonances205,206.

Hopping rate engineering. A more experimentally rele-
vant construction is to engineer the hopping rate between 
nearest neighbours in a tight-binding lattice model. 
Such construction can be carried out through the SUSY 
transformation199,207 and has been demonstrated in a 
coupled optical waveguide array, in which the hopping 
rate is tuned by the distance between neighbouring wave-
guides208. Intuitively, this method can be understood as 
‘kinetic energy engineering’.

The array of coupled optical waveguides208 comprises 
a semi-infinite 1D lattice in which the on‑site energy is 
constant and the hopping rate, κn, between sites n and 
n + 1 follows (FIG. 5b):

n ≠ lN, 

n = lN, (l = 1,2,3,...) 

κn = 

κ

l
κ

β
l + 1

	 (7)

where N > 1 is an integer, β > 1/2 is an arbitrary real number 
and κ is the reference hopping rate. This system supports 
N – 1 BICs localized near the surface (n = 1). The particu-
lar case of N = 2 and β = 1 was experimentally realized 
with 40 evanescently coupled optical waveguides208. The 

Figure 4 | Single-resonance parametric BICs. a | Bound state in the continuum (BIC) 
from a single resonance in a photonic crystal (PhC) slab. The left panel is a schematic 
illustration of the system. The middle panel shows the photonic band structure. The leaky 
resonance turns into two BICs at wavevectors kx = 0 (due to symmetry) and kxa/2π ≈ 0.27 
(through tuning) as marked by red circles. The radiative quality factor, Qr, diverges to 
infinity at the two BICs, as shown by the experimental data (red crosses) and theory (blue 
line) in the right panel. b | BIC from the leaky surface acoustic wave (SAW) of GaAs. The 
left panel is a schematic illustration of the (001) surface of GaAs. The middle panel 
depicts the acoustic band structure. Radiation of the leaky SAW (orange line) vanishes at 
ϕ = 45° (due to symmetry) and at ϕ ≈ 33° (through tuning). The right panel shows the 
theoretical results of attenuation in log scale (blue line) and measured resonance 
linewidth in linear scale (red crosses). a, periodicity; a.u. arbitrary units; c, vacuum speed 
of light; V//, phase velocity; Im(V//), imaginary part of the phase velocity. Part a is from 
REF. 132, Nature Publishing Group. Part b is adapted with permission from REF. 157, 
American Institute of Physics, and from REF. 159, Elsevier.
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theoretical hopping rates, the BIC mode intensity, |cn|2, 
along with the experimentally measured intensity when 
light is launched from the first site are shown in FIG. 5b.

Boundary shape engineering. BICs can also arise from 
engineering the boundary shape of the structure. This 
method was first proposed in water waves, in a system 
involving two line sources placed at a certain distance 
apart on the water surface such that the propagation 
phase shift is π (REF. 80). Surface-wave radiations from 
the two sources cancel, resulting in a spatially confined 
mode profile. Then, the two line sources are replaced 
with two obstacles whose boundary shapes correspond 
to streamlines of the mode profile that contain the two 
sources. In this way, the mode profile in the original 
driven system is a BIC in the new undriven system with 
obstacles, because it satisfies the Neumann boundary 
condition on the obstacle surface, which is a property 
of the streamlines.

BICs constructed with two line sources or a ring of 
sources typically lead to the Fabry–Pérot type80,82,83,111,112 
as described earlier. But this procedure can be extended 
to more complex shapes209,210 and to free-floating rather 
than fixed obstacles211–213.

Applications of BICs and quasi-BICs
Lasing, sensing and filtering. Structures with BICs are 
natural high‑Q resonators, because the Qr is, in the ideal 
case, infinity. This makes them useful for many optical 

and photonic applications. In particular, the macroscopic 
size (on the centimetre scale or larger) and ease of fab-
rication make BICs in PhC slabs unique for large-area 
high-power applications such as lasers214–219, sensors220,221 
and filters222.

Many surface-emitting lasers are based on symmetry- 
protected BICs at the Γ point (FIG. 2c). This effect was 
first observed by the suppression of radiation into the 
normal direction in a surface-emitting distributed feed-
back laser with 1D periodicity58,59. This led to PhC sur-
face-emitting lasers (PCSELs) that lase through BICs 
with 2D periodicity214,215, followed by the realization 
of various lasing patterns216,217, lasing at the blue-violet  
wavelengths218 and lasing with organic molecules221. 
The suppressed radiation in the normal direction 
means that a PCSEL can have a low lasing threshold 
but also with a limited output power. Therefore, recent 
designs intentionally break the C2 symmetry to allow 
some radiation into the normal direction. For example, 
the air holes can be intentionally designed as triangular 
shapes to break the C2 symmetry (FIG. 6a,b); this led to219 
continuous-wave lasing at room temperature with 1.5 
watt output power and high beam quality (M2 ≤ 1.1), 
even though the threshold is still relatively low (FIG. 6c). 
In addition, PCSELs produce vector beams223,224 with 
the order numbers given by the topological charges 
of the BICs141 (BOX 2), which may find applications in 
super-resolution microscopy and in table-top particle 
accelerators (see REF. 225 for a review on vector beams).

Box 2 | Topological nature of BICs

Perturbations typically turn a bound state in the continuum (BIC) into a leaky resonance. However, some BICs are 
protected topologically and cannot be removed except by large variations in the parameters of the system.

The topological nature of BICs can be understood through the robust BICs in photonic crystal (PhC) slabs, which are 
fundamentally 2D topological objects141 — vortices. For a general resonance in a PhC slab, the polarization direction of 
the far-field radiation is given by a 2D vector, E// = (Ex, Ey) (part a). BICs do not radiate; they exist at the crossing points 
between the nodal lines of Ex = 0 and those of Ey = 0. In the k space, the polarization vector forms a vortex around each BIC 
with a corresponding ‘topological charge’, q; a few examples (q = 1, −1 and −2) are shown in part b as well as the case with 
no BIC (q = 0). Once any crossing (BIC) occurs, large changes in the system parameters are required to remove it. 
Topological charges cannot suddenly disappear, because they are conserved and quantized quantities protected by 
boundary conditions257; therefore, a BIC of this type cannot be removed unless it is cancelled out with another BIC 
carrying the exact opposite topological charge.

The topological properties of BICs were also studied in electron systems with a 2D quantum Hall insulator placed on top 
of a 3D bulk normal insulator142. Under low-energy excitation, pure surface modes in the quantum Hall system were found 
at isolated k points, embedded in the continuum of the bulk modes of the normal insulator.

Recently, a unified picture of BICs as topological defects has been presented (unpublished observation, H. Zhou). This 
study shows that the sum of all topological charges carried by the BICs within the Brilluion zone is governed by a different 
topological invariant of the bands — Chern numbers258. The identification and design of BICs in other wave systems, such 
as polaritons, magnons and anyons, may be possible using this unified theorem.
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Another application lies in chemical and biological 
sensing, and particularly in optofluidic setups226. One 
sensing mechanism uses the shift of resonance fre-
quency to detect the change of refractive index in the sur-
roundings. Resonators with higher Qs enable narrower 
linewidths and higher sensitivity, and it is possible to 
directly visualize a single monolayer of proteins with the 
naked eye using the high‑Q resonances close to a BIC220. 
Another type of sensing relies on measuring fluorescence 
signals. More specifically, the spontaneous emission from 
organic molecules can be strongly enhanced and the 
angular distribution can be strongly modified near BICs 
in a PhC slab, leading to a total enhancement of angular 
fluorescence intensity by 6,300 times221. BICs have also 
permitted large-area narrow-band filters in the infrared 
regime222 as a consequence of their high and tunable Qs.

Supersonic surface acoustic wave devices. BICs in 
acoustic wave systems, such as the supersonic SAW on 
the surface of anisotropic solids (FIG. 4b), have enabled 
important devices such as supersonic SAW filters. A 
schematic setup comprising an interdigital transducer 
placed on a piezoelectric substrate is depicted in FIG. 6d. 
This device converts the input electric signal into an 
acoustic wave, which propagates as a SAW to the other 
side and reverts to an electric signal on the output side. 
In contrast to a regular subsonic SAW — the speed of 
which is limited by the speed of the bulk waves — a BIC 

allows propagation at a much faster supersonic speed 
(FIG. 6e), and can therefore be used as a supersonic SAW 
filter. The BIC and supersonic SAW are along a fixed 
direction (ϕ = 36° in FIG. 6f), because other directions are 
lossy. The spatial periodicity of the interdigital trans-
ducer determines |k//|, and the central angular frequency 
of the SAW filter is given by ω = |k//|V. A characteristic 
filtering spectrum176 using a supersonic SAW filter on 
Y–X cut LiTaO3 is shown in FIG. 6f. Supersonic SAW fil-
ters based on BICs are widely used in mobile phones and 
cordless phones, Bluetooth devices and delay lines173–175 
because of their low loss, high piezoelectric coupling, 
reasonable temperature stability, excellent accuracy and 
repeatability, and compatibility with photolithography227.

Guiding photons in gapless PhC fibres. PhC fibres can 
guide light in a low-index material through a photonic 
bandgap48, but the bandwidth is limited by the width 
of the bandgap. A type of hollow-core Kagome-lattice 
PhC fibre (FIG. 6g) can provide wave guiding inside the 
continuum without a bandgap228,229. Its mechanism — 
sometimes referred to as inhibited coupling — is a con-
sequence of the dissimilar azimuthal dependence of the 
core and cladding modes. More specifically, the core 
mode varies slowly with angle, but the cladding mode 
is oscillating quickly, as can be seen from the unit-cell 
mode (FIG. 6h). Although such fibre modes are not true 
BICs because there can be residual radiation, they ena-
ble broadband guidance in air and have found many 
applications, including multiple-octave frequency comb 
generations229 (FIG. 6i), all-fibre gas cells230,231 and Raman 
sensing232. In addition, by carefully engineering the core 
shape, the residual radiation of these quasi-BIC modes is 
reduced significantly to 17 dB km−1, which is comparable 
to photonic bandgap fibres233.

Outlook
As a general wave phenomenon, BICs arise through several  
distinct mechanisms and exist in a wide range of mat
erial systems. In this Review, we have described the main 
mechanisms with examples from atomic and molecular 
systems, quantum dots, electromagnetic waves, acoustic 
waves in air, water waves and elastic waves in solids.

We have not covered all possible mechanisms. For 
example, BICs in systems with chiral symmetry234 are 
distinct from the symmetry-protected BICs. In some 
two-particle Hubbard models, there are bound states 
that can move into and out of the continuum contin-
uously235–238; the confinement requires no parame-
ter tuning and has been credited to integrability236. 
Systems with a perfectly flat band can support localized 
states239,240. Localization can be induced with strong gain 
and/or loss: for example, in a defect site with high loss241 
and in the bulk200,202,242,243 or on the surface244 of pari-
ty-time symmetric systems. The latter has been realized 
in a synthetic photonic lattice245. There may also be more 
constructions not yet discovered.

Even though the very first proposal3 and many subse-
quent studies pointed to the existance of BICs in quantum 
systems, there have not been any conclusive observations 
of a quantum BIC except for the suppressed linewidth 

Figure 5 | A BIC through inverse construction. a | The bound state in the continuum 
(BIC) proposed by von Neumann and Wigner3. A potential (left panel) is engineered to 
support a localized electron wave function (right panel) with its energy embedded in 
the continuous spectrum of extended states. b | Construction of a BIC by engineering 
the hopping rates in a semi-infinite lattice system. The hopping rates κn (top left panel) 
follow equation 7 to support a bound state (bottom left panel) at βz = 0, embedded in 
the continuum of the extended states (−2κ ≤ βz ≤2κ). This BIC is experimentally realized 
in an array of coupled optical waveguides (top right panel); light launched at one end 
of the array excites the BIC, which propagates along the waveguides. The 
corresponding intensity image is shown in the bottom right image. βz, propagation 
constant; |cn

|2, BIC mode intensity; E, energy; Ψ(r), wave function; V(r), potential 
function; Vmax, maximum potential. Part b is adapted with permission from REF. 208, 
American Physical Society.
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in Rydberg atoms120. Many researchers mistakenly cite 
REF. 246 as an experimental realization of a quantum BIC, 
but this study concerns a positive-energy defect state 
with energy in the bandgap created by a superlattice, not 
a BIC. A quantum BIC has been claimed in a study on 
multiple quantum wells247; however, data indicate a finite 
leakage rate and no evidence for localization. The dif-
ficulty arises from the relatively few control parameters 

and the large number of decay pathways in quantum 
systems. Therefore, the realization of a quantum BIC 
remains a challenge.

Optical systems provide a clean and versatile plat-
form for realizing different types of BICs27,28,49,57,110,132,  

208,245, because of nanofabrication technologies that ena-
ble the creation of customized photonic structures. An 
optical BIC exhibits an ultrahigh Q — its Qr is technically 

Figure 6 | Applications of BICs and quasi-BICs. a–c | Photonic crystal surface-emitting lasers (PCSELs). Schematic 
representation of the experimental setup (part a). The lasing mode is a quasi-bound state in the continuum (BIC) because 
the 180° rotational symmetry of the photonic crystal (PhC) is broken by the triangular air-hole shapes evident in part b. 
The input–output curve of the PCSEL operating under room-temperature continuous-wave condition demonstrates a 
low threshold and a high output power (part c). d–f | Supersonic surface acoustic wave (SAW) filters. Schematic 
illustration of the setup: two interdigital transducers are placed on a piezoelectric substrate along the direction of the 
acoustic BIC (part d). A comparison between the phase velocities of supersonic and subsonic SAWs on Y–X cut LiTaO3 
(part e). A BIC appears at ϕ = 36°, which can be used as a supersonic SAW filter with its characteristic transmission 
spectrum shown in part f. g–i | Guiding photons without bandgaps. Scanning electron microscope images of a 
hollow-core Kagome-lattice PhC fibre are in shown in part g. Photonic guiding in such fibres uses quasi-BICs relying on 
the ‘inhibited coupling’ between the core and cladding modes, which can be understood from the dissimilar behaviours 
of the core and unit-cell modes along the azimuthal direction (part h). Part i is an image and spectrum showing the 
generation and guidance of a three-octave spectral comb using the quasi-BICs in such fibres. a.u., arbitrary units;  
MQWs, multiple quantum wells. Parts a–c are from REF. 219, Nature Publishing Group. Part e is adapted with permission 
from REF. 227, Academic Press (Elsevier). Part f is adapted with permission from REF. 176, © 2002 IEEE. Parts g–i are 
adapted with permission from REF. 229, AAAS.
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infinity — which can increase the interaction time 
between light and matter by orders of magnitude. In 
addition to the high‑Q applications described above, 
there are many more opportunities in, for example, non-
linearity enhancement and quantum optical applications 
that have not been explored. The long-range interactions 
in Fabry–Pérot BICs may be useful for nanophotonic cir-
cuits104 and for quantum information processing105,106. It 
has also been proposed that the light intensity may act as 
a tuning parameter in nonlinear materials, which may 
enable robust BICs248, tunable channel dropping249, light 
storage and release250,251, and frequency comb genera-
tion252. Finally, it was shown that particle statistics can be 
used to modify properties of BICs253.

Considering the many types of BICs, a natural ques-
tion is whether a common concept underlies them 
all other than the vanishing of coupling to radiation 
through interference. To this end, the topological inter-
pretation of BICs (see BOX 2 and REFS 141,142) seems 
promising. The topological arguments may guide the 
discovery of BICs and new ways to trap waves, which 
may also exist in quasi-particle systems such as mag-
nons, polaritons, polarons and anyons. Because BICs 
defy conventional wisdom and provide new ways to 
confine waves, their realization in different material 
systems are certain to provide even more surprises and 
advances in both fundamental physics and technological  
applications.
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