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Topology is a branch of mathematics that deals with 
highly robust conserved quantities that do not change 
when physical objects are continuously deformed, no 

matter how much. For example, the number of holes (or han-
dles) of a complex connected surface can be characterized by 
its genus. This topological index does not change as the surface 
is deformed without introducing any cuts. Therefore, it can be 
thought of as being topologically robust. It is not surprising 
that topology finds a welcoming home in physics, which has 
a rich tradition (going back to Emmy Noether’s theorem) of 
appealing to conserved quantities such as energy, momen-
tum, angular momentum and many others. It is easy to see, 
however, how topological indices are more robust than, for 
example, angular momentum: the class of deformations that 
preserve topological indices is much broader than that pre-
serving angular momentum. For example, the stringent con-
dition for the conservation of the angular momentum is that 
the system remains rotationally invariant.

The sea change occurred in the 1980s, when it was realized1,2 that 
topological invariants can be introduced for single-particle electron 
states of a two-dimensional electron gas (2DEG) in a combined 
periodic potential and out-of-plane magnetic field. These integer 
topological indices (known as Chern numbers) originate from the 
quantum nature of the electrons, specifically from their wave-like 
behaviour in the periodic potential of the lattice. The electron’s 
propagation through the lattice is described by its wavefunction 
ψ(x;p), where x is the real-space coordinate and p is the Bloch quasi-
momentum in a periodic lattice. As the Bloch wavenumber is adia-
batically changed within the Brillouin zone of the crystalline lattice, 
its wavefunction acquires a geometrical phase3 γ (also known as the 
Berry phase) that cannot be uniquely defined as a function of x and 
p in the topologically non-trivial propagation bands. Therefore, a 
set of quantities, the Berry connection A (the gradient of γ) and 
the Berry curvature Ω (the momentum-space curl of A), which are, 
respectively, the reciprocal-space equivalents of the vector potential 
and magnetic field, can be defined (Box 1).

The Chern number can then be introduced as a quantized 
(that is, integer) flux of the Berry curvature through the Brillouin 
zone; it characterizes the phase accumulation of the geometrical 
wave γ as the Bloch wavenumber makes a full circle around the 
Brillouin zone. While such accumulation of what is commonly 
known as the Berry phase3 can occur even in one dimension4, 
the most common and widely studied physical systems are two 
dimensional. Thus, the key feature of all continuous topological 

phases is that their topological indices are related to the behav-
iour of the wavefunctions in the reciprocal space. And, even 
though an external magnetic field is sufficient for producing 
non-trivial topological phases in a 2DEG, it was quickly discov-
ered that it is not necessary.

Other types of interaction2,5,6, such as spin–orbit coupling, can 
also give rise to topological phases separated by an insulating 
bandgap. The conservation of another discrete degree of free-
dom, the valley, was also recently shown7,8 to produce yet another 
type of a topological phase, which is responsible for the emerg-
ing field of valleytronics9–11. But regardless of the nature and 
dimensionality of topological phases, they share a remarkable 
property: the emergence of robust bandgap-spanning edge states 
that exist at the domain wall separating two distinct topologi-
cal phases (one of which could be a vacuum) that are character-
ized by different Chern numbers. In condensed-matter physics, 
the existence of such robust edge states is responsible for a wide 
range of exotic phenomena, such as the quantum Hall effects, 
spin-polarized12 and valley-polarized10 currents, and many oth-
ers. The resulting topological systems have the unique property 
of being insulating in the bulk and conducting at their interfaces 
owing to presence of chiral one-way or helical spin-polarized 
edge states. What makes these states particularly interesting is 
their topologically protected robustness to the presence of a wide 
class of impurities and defects.

It should not be surprising that many of the quantum topologi-
cal effects found in condensed-matter systems should find their 
analogues in photonics. After all, light is a wave, and the above-
mentioned topological effects are merely the consequence of the 
wave nature of the electrons. In the past, photonic crystals have 
even been referred to as ‘semiconductors of light’13 because some 
of the best-known features of semiconductors, such as the band 
structure in the electrons’ momentum space that consists of prop-
agation bands separated by bandgaps, are readily replicated with 
photons. Although photons cannot experience electric potential 
because they do not carry an electric charge, their motion is gov-
erned by the gradients of the refractive index, which plays the role 
of effective potential (Box 1, left panel).

Nevertheless, emulating many of the key condensed-matter 
manifestations of topological physics with photons, for example, 
the quantization of the Hall conductance, is not straightforward 
because of the key differences between electrons and photons. For 
example, photons do not possess a half-integer spin of electrons, 
cannot directly interact with magnetic fields and are not subject 

Two-dimensional topological photonics
Alexander B. Khanikaev1,2* and Gennady Shvets3*

Originating from the studies of two-dimensional condensed-matter states, the concept of topological order has recently been 
expanded to other fields of physics and engineering, particularly optics and photonics. Topological photonic structures have 
already overturned some of the traditional views on wave propagation and manipulation. The application of topological con-
cepts to guided wave propagation has enabled novel photonic devices, such as reflection-free sharply bent waveguides, robust 
delay lines, spin-polarized switches and non-reciprocal devices. Discrete degrees of freedom, widely used in condensed-matter 
physics, such as spin and valley, are now entering the realm of photonics. In this Review, we summarize the latest advances in 
this highly dynamic field, with special emphasis on the experimental work on two-dimensional photonic topological structures.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature Photonics | VOL 11 | DECEMBER 2017 | 763–773 | www.nature.com/naturephotonics 763

https://doi.org/10.1038/s41566-017-0048-5
akhanikaev@ccny.cuny.edu
mailto:gshvets@cornell.edu
http://www.nature.com/naturephotonics


Review Article ��| FOCUS Nature Photonics

to Fermi statistics. Because of these key differences between elec-
tronic and photonic topological phases, the latter must be obtained 
through judicious photonic designs. This Review provides a concise 
exposition of some of these design approaches, with special empha-
sis on experimentally realized 2D photonic structures and the ben-
efits of such designs to the field of photonics. Many experimental 
and theoretical developments have emerged since the last review of 
topological photonics14, making this Review timely for this rapidly 
evolving field.

The organization of the rest of the Review is schematically repre-
sented by Fig. 1, which illustrates the classification map of different 
approaches to engineering photonic topological states (at the time of 
writing). The three classes of topological systems depicted in Fig. 1 
are: (1) photonic topological insulators (PTIs) with broken time-
reversal symmetry; (2) time-reversal invariant PTIs that rely on 
internal symmetries of the electromagnetic field or on spatial sym-
metries of the structure; and (3) Floquet PTIs that are periodically  
modulated in time and/or space. These different categories of  

photonic topological states partially overlap due to underlying simi-
larities between different topological phases. All these approaches 
have been successfully realized in experiments over the past decade.

PTIs with broken time-reversal symmetry
In a natural parallel with the first discovered insulating topologi-
cal phase of magnetized electrons, the quantum Hall photonic 
topological insulator (QH-PTI) was the first to be theoretically 
described15,16 and experimentally implemented17. The implemented 
2D photonic structure was designed to operate at microwave fre-
quencies, and comprised a gyromagnetic material embedded in a 
magnetic field that breaks the time-reversal symmetry. The struc-
ture supports photonic topological phases that are mathemati-
cally equivalent to the quantum Hall phase of a magnetized 2DEG 
(Fig. 1), with all its requisite features, such as topological bandgaps 
and one-way topologically protected edge states that propagate 
around obstacles without reflection, as shown in Fig. 2a,b and in 
Box  2. Magnetic photonic crystals have been used as a research 

Box 1 | Trivial and non-trivial photonic topological insulators

A topologically trivial photonic crystal is described by a stand-
ard wave equation with effective periodic photonic potential ∼V r( ) and is characterized by a band structure that consists of 
isolated bands separated by trivial gaps opened by Bragg diffrac-
tion. As illustrated in the left panel, the bands are characterized 
by a well-defined modal profile, which remains unchanged (up 
to the Bloch phase factor) over the entire Brillouin zone (BZ). 
The colour coding applied here is such that the bands with a 
modal profile characterized by certain symmetry are indicated 
by the same colour. In topological systems with broken time-
reversal symmetry, the magnetization or temporal modulation 
results in an additional gauge-field contribution A r( ) to the 
wave equation. The gauge field causes crossing and mixing of 
the previously degenerate or isolated bands, as indicated by the 
admixture of an ‘alien’ colour to the band, and the emergence 

of an additional Berry phase contribution to the wavefunction 
across the Brillouin zone, which has opposite sign (indicated by 
±​) for two mixing bands. In the example shown in the middle 
panel, the gauge field results in a non-vanishing Berry connec-
tion 𝓐 and Berry curvature Ω(k). An additional Berry phase 

∮ϕ =B 𝓐(k)dl contribution arises as we go around the band-
crossing region in the k-space. A similar situation occurs for 
the case of time-reversal-invariant topological systems, with 
the difference that the Berry phase appears in two time-reversal 
partner domains referenced as pseudospin up ↑​ and pseudospin 
down ↓​, respectively. In both time-reversal broken and time-
reversal-invariant cases, such an extra phase leads to a unique 
evolution of the field profiles and it cannot be removed by any 
gauge transformation. (ω is frequency, η∼ is the bianisotropy  
parameter and z  is a unit vector in the z direction.)

ω ω ω ω
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platform to explore a variety of topological phenomena, such as 
cladding-free guiding of topologically protected edge states in 
photonic graphene lattices18, steering of multiple edge states along 
domain walls with large Chern numbers19,20 and 3D symmetry-
protected photon transport21.

While photons cannot directly experience magnetic fields, it 
has been shown16 that finite off-diagonal elements of the magnetic 
permeability tensor μ μ κ= − = ixy xy  give rise to the effective vec-
tor potential (gauge field) κ∇∝ ×zA e  experienced by a photon  
(Box 1, middle panel). As it turns out, of even greater fundamental  

Broken time-reversal symmetry Time-reversal invariant

Magneto-optical
photonic crystals (QHE)
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Fig. 1 | Classification scheme of topological orders in 2D photonic systems. The three major classes of photonic topological phases are based on  
(1) breaking the time-reversal symmetry, (2) conservation of synthetic discrete degrees of freedom based on symmetry or adiabaticity (for example, 
directional coupling), and (3) spatial or temporal modulation. These three classes, correspondingly, emulate the quantum Hall effect (QHE), quantum 
spin- and valley-Hall effects (QSHE and QVHE), and the Floquet effect in condensed-matter systems.
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Fig. 2 | Topologically protected photonic transport with broken time-reversal symmetry. a, Robust guiding around perfectly conducting defect shown by 
the grey region (theoretical calculations). The red and blue show the out-of-plane component of the electric field Ez. The yellow circles show the position of 
the ferrite rods and the blue star indicates source position. b, Experimental observation of the one-way transmission through the topological edge state in the 
realization of the system shown in a. SAB and SBA are transmission from port A to port B and from port B to port A, respectively, and the yellow region indicates 
the frequency region of the bandgap. c, Cladding-free realization of topologically robust transport in photonic graphene. d, Theoretical (top) and experimental 
(bottom) demonstrations of robust transport around defects: metallic rod (filled blue circle) replacing ferrite post (black circles; left) and missing ferrite 
post (dashed blue circle; right). S12 and S21 are transmission from port 1 to port 2 and from port 2 to port 1, respectively, and the yellow region indicates the 
spectral position of the topological bandgap. Panels reproduced from: a,b, ref. 17, Macmillan Publishers Ltd; c, ref. 18, APS. Panel d adapted from ref. 18, APS.
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importance is the gradient of the Berry phase 𝓐(k) (also known as 
the Berry connection), which plays the role of the vector potential 
in the momentum space. Under the influence of the so-called Berry 
curvature Ω = ∇k × 𝓐(k), photonic wave packets propagate in real 
space as if influenced by the momentum–space analogue of a mag-
netic field22.

While it is straightforward to assign the effective real-space vec-
tor potential to photons in a gyromagnetic (or gyro-electric21) crys-
tal, such assignment is not possible for other types of topological 
structure, for example, ones that emulate the valley-Hall effect23. 
In such structures, the Berry connection and curvature become 
essential to describing the photons’ topological properties. In fact, 
the standard classification of 2D topological structures is based on 
the calculation of their Chern numbers, which are directly con-
nected to the integral over the Berry curvature (Box 1). One of the 
key properties of a QH-PTI is that it supports one or more one-
way edge states at the interface with a topologically trivial medium, 
such as a perfectly conducting wall (see Fig.  2a,b) or an unpat-
terned vacuum region (Fig. 2c,d). According to the bulk–bound-
ary correspondence principle24–26 that was originally formulated for 
electronic systems, the number of the edge19,20 states is equal to the 
bulk Chern number.

Despite the conceptual simplicity of robustness of QH-PTIs, 
the ability to emulate magnetic fields without using gyromagnetic 
or magneto-optical materials becomes increasingly important for 
topological photonic structures operating at optical frequencies. 
The reason for that is that a large magneto-optical response, which 
is required for opening a spectrally broad topological bandgap, can 
only be found in ferrites at microwave frequencies. And even at 
microwave frequencies, the gyromagnetic approach is not practical 
because of the large size of the required magnets and absorption 
in ferrites. Therefore, alternative approaches to producing synthetic 
gauge fields27,28 that would result in finite Berry curvature without 
using a magnetic field are actively pursued, as discussed below. In 
a broader context, there has been recently a broad range of activi-
ties aimed at emulating condensed-matter effects in photonics in a 
variety of systems. Just to name a few, a synthetic magnetic field was 
generated and pseudo-Landau levels demonstrated in a multimode 
ring resonator with a non-planar geometry29, and spin–orbit cou-
pling for photons and polaritons have been engineered in semicon-
ductor micropillars30. These, and other novel photonic platforms, 
are likely to be used in future topological systems.

Time-reversal invariant photonic topological phases
It has been known for some time that breaking the time-reversal 
symmetry is not the only way of creating electronic topological 
phases. As mentioned in the introduction, neither the quantum 
spin-Hall nor the valley-Hall topological phases require time-rever-
sal symmetry breaking. In fact, it is the time-reversal symmetry that 
ensures the topological stability of edge states supported by spin-
Hall topological insulators31 in the absence of spin-flipping processes 
(Box 2, right panel). Other recent developments in condensed-mat-
ter physics, such as the discovery of topological orders protected by 
the lattice symmetry (that is, the crystalline topological insulators32) 
and time-dependent Floquet topological insulators33, catalysed the 
development of similar concepts in photonics. However, one should 
keep in mind that while time-reversal symmetry alone is sufficient 
to guarantee the presence of degenerate spin-½ states in condensed-
matter physics, owing to Kramer’s theorem for fermions, this is not 
the case for photons. Therefore, as we illustrate throughout this 
Review, additional symmetries are exploited in photonics to achieve 
time-reversal-invariant topological order.

The earliest proposed time-reversal-invariant photonic topo-
logical concept utilized a non-periodic array of coupled silicon ring 
resonators whose diameters are much larger than the wavelength 
of light28,34. The conserved spin degree of freedom is emulated by 

the rotation direction of light in the rings, which is preserved by 
the directional coupling between the rings, and the synthetic vector 
potential (the synthetic gauge field) is emulated by spatially depen-
dent lengths of the links between the rings.

The idea of engineering a photonic pseudospin degree of freedom 
by having two degenerate modes connected by time-reversal sym-
metry27,28, the condition referred to as spin degeneracy35, represents 
one of the cornerstones of topological photonics with preserved 
time-reversal symmetry. For many recently proposed platforms, such 
as silicon28,34 or structured metallic36 rings, the pseudospins are rep-
resented by clockwise and anticlockwise modes. The fundamental 
reason for this separation of pseudospins is that the total topologi-
cal Chern number of any time-reversal symmetric photonic structure 
vanishes. However, separate spin Chern numbers can be assigned to 
each of the pseudospins35,37, thus removing the need for time-reversal 
symmetry-breaking magnetic fields (Box 1).

In the particular case of ring-resonator topological struc-
tures28,34,36, the conservation of pseudospins is the consequence of 
directional coupling between the rings. However, this is done at the 
expense of large curvature radii of the ring resonators, thus impos-
ing severe limitations on the footprint of such systems. The need 
for making the unit cells of topological structures smaller or on the 
order of the wavelength necessitates a complementary approach to 
decoupling of pseudospins: designer symmetry protection against 
spins mixing. The resulting symmetry-protected topological phases 
represent a broad class of photonic topological systems that do not 
require breaking time-reversal symmetry, yet enable a wavelength-
scale footprint. Such symmetry-protected topological phases can be 
subdivided into two subclasses according to the symmetries used 
to engineer the topological state, which can be either (1) an inter-
nal symmetry of the field inside the structure or (2) a crystalline 
symmetry of the lattice. The symmetry can be exploited to pro-
duce modal degeneracies in the spectrum that can emulate the spin 
degree of freedom, thus enabling photonic analogues of the quan-
tum spin-Hall (QSH) effect.

One of the earliest conceptual examples of such a system35 is a 2D 
spin-degenerate metacrystal with hexagonal symmetry comprising 
metamaterials-based unit cells with equal electric permittivity and 
magnetic permeability tensors, ϵ and μ, respectively. The μϵ = 

  con-
dition, which can be approximately satisfied in a finite frequency 
range in electromagnetic metamaterials, enables one to construct 
degenerate spin states out of the linear combinations of transverse 
electric and transverse magnetic waves. A synthetic gauge field act-
ing separately and unequally on the two spin states could be then 
engineered through additional metamaterials design, so that the 
two spin states experience opposite effective Berry curvatures. It 
has been theoretically shown35 that such a gauge field can be gener-
ated by breaking the inversion symmetry in the vertical direction 
and inducing a bianisotropic (also known as the high-frequency 
magneto-electric) coupling between the transverse electric and 
transverse magnetic modes (Box 1). Specifically, the bianisotropic 
response is described by the constitutive relations that relate the 
electric displacement field {D} and magnetic field {B} to the elec-
tric field {E} and magnetic intensity {H} according to: χ= ϵ +

D E H 
and μ χ= + +

 B H E, where χ is the magneto-electric parameter 
with the following non-vanishing components: χ χ ζ= − = ixy xy ,  
where ζ is the strength of magneto-electric coupling. Just as the 
off-diagonal components of the magnetic permeability tensor 
give rise to the effective gauge field A and the Berry connection  
A(k) in QH-PTIs, so does the above bianisotropy separately pro-
duce the gauge field and the Berry connection for each of the two 
spin components, giving rise to a QSH-PTI, as explained in Box 1.

The concept of bianisotropy-induced QSH-PTIs was successfully 
realized in many experiments37–41 that demonstrated the existence 
and topological protection of the edge states. The robustness of such 
topologically protected edge waves (TPEWs) against bending of 
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the domain wall and symmetry preserving disorder38. This robust-
ness manifests as the reflectionless propagation of electromagnetic 
radiation around sharp corners, as illustrated in Fig. 3a, and across 
disordered regions. Active topology control through reconfigurable 
gauge fields was also demonstrated using mechanical movements of 
the constituent elements of the PTIs, thus enabling wave steering, as 
shown in Fig. 3c. Among other important advantages brought up by 
the topology are also the possibility to build topological delay lines 
where the wave can acquire an arbitrary phase without the need of 
coupling to resonances24, and spin-polarized wave division at topo-
logical multiport junctions, as shown in Fig. 3b23. The chiral nature 
of the TPEWs42, that is, the possibility of launching directional edge 
states using a circularly polarized emitter, has also been experimen-
tally demonstrated39.

To better illustrate the differences and similarities between using 
QH-PTIs and QSH-PTIs for topologically protected wave propaga-
tion, we focus on one of the simplest realizations based on a metal-
lic parallel plate waveguide with an embedded triangular array of 
metal rods42, shown in Fig. 3a. The geometrical parameters of this 
vertically confining 2D structure can be engineered to produce a 
doubly degenerate spectrum with two pairs of overlaid Dirac cones 
each corresponding to transverse electric and transverse magnetic 
polarized modes, thus enabling spin emulation. As the next step, 
the bianisotropic response emulating the spin–orbit coupling can 
be introduced by exploiting the different symmetries of transverse 
electric and transverse magnetic modes with respect to the inver-
sion symmetry in the vertical direction. It was theoretically pro-
posed42 that the topological bandgap can be produced either by 
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introducing air gaps between the rods and just one of the parallel 
plates or by adding a wider section to the rods. Both experimen-
tal approaches38,39 (Fig. 3a) rely on bianisotropic coupling between 
the transverse electric and transverse magnetic modes, preserve 
the spin-degeneracy, and emulate the spin–orbit interactions of the 
Kane-Mele type that were originally used to describe the quantum 
spin-Hall effect in graphene5.

Although the total Chern number, as calculated by summing 
up over all modes and integrating over the Brillouin zone, is zero 
(unlike in the case of QH-PTIs), each of the spin states is topologi-
cally non-trivial, and is characterized by the spin-Chern numbers 

Δ= ±↑↓C sign( )SOM , where Δ​SOM is proportional to the topological 
bandgap induced by the bianisotropy. The sign of Δ​SOM determines 
the order of the bands at the high-symmetry corners of the Brillouin 
zone (K and K′​), and is defined by the nature of the bianisotropic 
asymmetry (for example, whether the air gap is at the top or bottom 
plates). The latter property enables topological interfaces (‘domain 
walls’) between PTIs with opposite signs of Δ​SOM and, therefore, 
between photonic topological phases with opposite spin-Chern 

numbers. It has been known in condensed-matter physics for such 
domain walls separating topologically non-trivial electron phases 
with different Berry curvatures to support multiple bandgap-cross-
ing edge states24–26. In the photonics context, such chiral states that 
exhibit spin-locked propagation are referred to as TPEWs.

There are several key differences between the edge states that 
exist at the domain walls of QH-PTIs and QSH-PTIs. First, the 
TPEWs at the edge of QH-PTIs are strictly non-reciprocal, that is, 
support only one-way propagation. In contrast, the TPEW at the 
edges and the domain walls of QSH-PTIs are spin-polarized, but 
reciprocal, that is, they propagate in the direction locked to their 
spin. Therefore, in the case of QSH-PTIs, each spin-polarized 
edge state ψ↑( )k  has an opposite spin ψ −↓( )k  propagating in the 
opposite direction. As expected for the system with time-reversal  
symmetry, these states are connected by the time-reversal 
operation. As a consequence, violations of the symmetry 
responsible for the emergence of the pseudospin, as well as the time- 
reversal breaking, couple such states, effectively destroying their 
topological protection.

Box 2 | Topologically robust transport of chiral and helical edge states

The topologically non-trivial properties of the bulk give rise to the 
emergence of a new class of electromagnetic states spectrally lo-
cated within the range of the topological bandgap and crossing it 
interconnecting upper and lower bands. These states are confined 
to the boundaries of the system and are referred to as topologi-
cal edge states. According to the bulk–boundary correspondence 
principle, the number of such edge states on a particular inter-
face is determined by the difference in the band Chern num-
bers across the interface calculated for a particular frequency ω0 
within the bandgap, where the band Chern number is defined as 
the sum of all Chern numbers of the bands below this frequency 

= ∑ ω ω<C Cn
nB

( )n 0
, where n is the band number. The panels illus-

trate three possible scenarios for 2D systems. The left panel shows 
the case of an interface between two topologically trivial struc-
tures (CB =​ 0) in both domains, which can host only conventional 
(non-topological) surface states whose dispersion is itself gapped 
within the (topologically trivial) bandgap of 2D bulk bands pro-
jected onto the 1D interface. In the case of a topological system 
with broken time-reversal symmetry shown in the middle panel, 

the projected 2D band structure shows a non-trivial topological 
bandgap with the edge modes crossing the entire bandgap. Such 
modes are non-reciprocal and can carry energy only in one di-
rection along the domain wall. Owing to such unidirectionality, 
these guided modes are referred to as one-way (or chiral) edge 
states. The lack of solution that would carry energy in the reverse 
direction leads to complete suppression of backscattering, which 
endows the topological edge states with robustness against defects 
and disorder (middle panel). In the case of symmetry-protected 
topological order with time-reversal symmetry, the spin-up and 
spin-down domains both possess similar unidirectional topologi-
cal edge states (right panel). Similar to the bulk states, the edge 
states of two domains appear to be time-reversal partners trans-
forming one into another under the inversion of the arrow of 
time. Despite the fact that the partner can always carry energy in 
the opposite direction, the backscattering appears to be still sup-
pressed as long as defects and disorder do not mix spins and the 
edge states, referred to as spin-polarized one-way (or helical) edge 
states, exhibit topological robustness.

ω ω ω

δk|| δk|| δk||

Topologically trivial
photonic lattice

Time-reversal broken topological
photonic lattice

Time-reversal-invariant topological photonic lattice
Spin up (↑) Spin down (↓)

Non-topological surface state Chiral edge states Helical edge states

C1 = 0 C1 = 0 C1
↑(↓) = 0

Backsattering
C2 = 0 Robust one-way propagation

C2 = 1
C2

↑(↓) = ±1 Robust two-way
propagation
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The edge states in the QH-PTI case have been observed either 
at the interface between the topological non-trivial and topo-
logically trivial (metal wall17 or air18) domains, or between two  
topologically non-trivial domains20. Similarly, topologically pro-
tected edge states have been experimentally observed at the edge 
of a QSH-PTI and free space for the system based on direction-
ally coupled ring resonators34,36. The edge states at a domain wall 
between topologically trivial photonic crystals and QSH-PTIs 
have also been theoretically predicted35,43 and experimentally real-
ized37 in bianisotropic meta-waveguides. Of considerable interest 
are recent experimental observations38,39,41 of TPEWs (sometimes 
referred to as the kink states by analogy with condensed-matter 
systems44) localized at interfaces between two PTIs with opposite 
values of spin-projected Berry curvature, which allow the propa-
gation of topological edge states to be controlled by dynamically 
changing the location of the domain walls through switching 
the sign of synthetic gauge fields. Despite their seemingly fragile 
nature, edge states in QSH-PTIs have been shown to be robust 
against a broad range of disorders, including sharp bending and 
random distribution of the synthetic gauge field38,39, as well as 
against lattice disorder45,46. Detailed experimental comparisons 
between topologically trivial and protected guided modes dem-
onstrated that only the latter exhibit broadband reflection-free 
propagation along sharply bent waveguides39.

Another concept that is attracting considerable attention in 
photonics is that of a valley: an additional discrete degree of free-
dom in photonic crystals with C6υ point symmetry. Viewed as a 
pseudospin degree of freedom, the valley refers to the proxim-
ity of one of the two high-symmetry corners = π∕ ak (4 3 , 0)K 0  and 

= − π∕′ ak ( 4 3 , 0)K 0  of the Brillouin zone of a hexagonal crystal lat-
tice with lattice constant a0. The valley degree of freedom recently 
gained prominence in condensed-matter physics in the context of 

valleytronics (that is, valley-locked propagation) for a wide variety 
of materials, including AB–BA stacked electrically biased bilayer 
graphene10,11,47, silicene48 and graphene placed on top of hexagonal 
boron nitride49. Crucially, under a broad set of perturbations23 that 
cannot scatter photons from one valley into another, this degree 
of freedom can be considered to be conserved. There is a growing 
interest in exploiting the valley degree of freedom in photonics, 
and designing a new class of quantum valley Hall PTIs (QVH-
PTIs)23,46,50–52. It has been theoretically demonstrated23,46 that, in a 
triangular array of dielectric or metal rods satisfying the C3 point 
symmetry, the reduction of the lattice symmetry leads to a non-
vanishing Berry curvature of the bands at this point and a topo-
logical transition to the valley-Chern state.

Specifically, under the valley-conservation assumption, it 
becomes appropriate to consider a restricted topological phase of 
photons that is defined in only one of the two valleys. Such phases 
are commonly referred to as merons6,53,54, and are characterized by 
restricted (valley projected) half-integer Chern numbers associ-
ated with their spin and valley: = ±ν

↑↓C ( ) 1
2

, where υ =​ K,K′​, and ν
↑↓C ( ) 

for each spin state are obtained by integrating the Berry curvature 
over a restricted region of the Brillouin zone that coincides with 
one of the valleys. The bulk–boundary correspondence principle 
prohibits edge states at the interface between a meron topological 
phase and a topologically trivial phase. However, the edge states at 
the domain wall between PTIs with half-integer spin-valley Chern 
numbers of the opposite sign are allowed regardless of whether 
the two PTIs are of the same type (for example, two QVH-PTIs or 
QSH-PTIs) or not46. In condensed-matter physics, such 1D chiral 
states are sometimes referred to as valley-Hall kink states44,55–57 to 
distinguish them from the more conventional edge states that exist 
at the periphery of a topological insulator. The conservation of 
the valley degree of freedom depends on the shape of the domain 
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wall separating the QVH-PTI from, for example, free space, or 
from another QVH-PTI: the zigzag-shaped domain walls pre-
serve the valley whereas the armchair-shaped ones do not23. Valley  
conservation enables yet another recently discovered phenome-
non: a ‘perfect’ refraction of the valley-kink states into free space58.

A different approach to topology relying on the lattice symmetry 
and the valleys was introduced in ref. 43, where the valley degree of 
freedom was used as a pseudospin to emulate QSH-PTIs in a pho-
tonic system. A synthetic gauge field was emulated using a particular 
symmetry reduction of the hexagonal lattice of dielectric rods — 
shrinking or expansion of a group of six nearest Si rods as illustrated 
in Fig. 4a — the transformation that changes the shape of the unit cell 
and the Brillouin zone of the lattice, giving rise to the folding of the 
original lattice valleys into the centre of the Brillouin zone of the new 
(expanded) lattice. The transformed lattice is triangular, with a unit 
cell comprising hexamer-shaped photonic ‘molecules’ supporting 
hybridized dipolar and quadrupolar circularly polarized eigenmodes.  
These circularly polarized doubly degenerate states play the role of 
spin-up (↑​) and spin-down (↓​) states, and the synthetic gauge field 
generated by the rods’ expansion leads to band inversion and topo-
logically non-trivial bulk bands below the bandgap that possess inte-
ger spin-Chern numbers = ±↑↓C 1. In contrast, the shrinkage of the 
rods produces a gapped but topologically trivial state ( =↑↓C 0). The 
fact that two photonic systems with identical lattice types support 
either trivial or topological phases at the same frequency makes it 
a convenient platform for realizing the domain walls and the edge 
states localized at the walls (Fig. 4b). It has been experimentally con-
firmed in microwave systems59,60 for both all-dielectric and metal-
based systems (shown in Fig. 4b–d and Fig. 4e,f, respectively) that 
such crystalline photonic topological systems host edge states, which, 
however, can become gapped because the interface itself may break 
the symmetry responsible for the topological order. Nonetheless, as 
evidenced in Fig. 4c59, the edge states show a significant degree of 
protection against sharp bending of the interface, as well as against 
defects in its proximity43. More recently, a similar design was used in 
the optical domain to control light scattering in silicon-based meta-
surfaces by tuning a synthetic gauge field61.

The approach based on symmetry-protected topological order in 
time-reversal-invariant photonic systems has apparent disadvantages 
compared with that based on broken time-reversal symmetry. Indeed, 
engineering symmetries is not straightforward and may require cum-
bersome designs that may be hard to realize in practice. Moreover, 
inability to guarantee the presence of such symmetries across the 
entire structure, including the interfaces (where the edge modes 
localize), may have a detrimental effect on the topological order and 
robustness of the edge states43. Indeed, the violation of the symmetry 
affects the photonic edge states in the same way as magnetic defects in 
electronic systems with topology protected by time-reversal symme-
try, leading to the spin-flip of a photonic pseudospin generated by the 
symmetry. This limitation applies equally to the case of topological 
photonic orders induced by the duality and by the spatial lattice sym-
metry, with the difference that the topological interface itself typically 
does not break duality and the edge states in such systems appear to 
be gapless. The same is true for the array of ring resonators, where 
clockwise and anticlockwise modes remain decoupled, and the edge 
states are gapless both at the domain walls and at the edges. In the 
case of topological orders protected by the lattice symmetry, struc-
tures may require additional optimization to minimize the detrimen-
tal effect of symmetry breaking by interfaces and domain walls.

Floquet topological photonic systems
An alternative approach to topology that is free of the limitations of 
symmetry-protected systems and also does not require magnetiza-
tion or magnetic materials is based on temporal modulation and 
was independently introduced in condensed-matter physics33,62 and 
photonics63,64, and, in analogy to its condensed-matter counterpart, 

is often referred to as Floquet topological order. In photonics, it has 
been shown that a non-uniform temporal modulation of the sys-
tem can generate a synthetic gauge field with an arbitrary spatial  
distribution, giving rise to a variety of topological effects, includ-
ing emergence of one-way surface states and modification of the 
wave-packet dynamics — essentially the Hall effect of light64. 
Unfortunately, this approach requires modulation of dielectric 
parameters of the photonic system, which should be both suffi-
ciently fast and strong, and therefore is hard to implement in prac-
tice. Although the synthetic magnetic field generated by temporal 
modulation has been experimentally implemented, in particular, to 
achieve non-reciprocal behaviour without magnetic materials65–69, 
topological order of the Floquet class based on temporal modula-
tion has not been experimentally realized.

Despite lacking experimental realization of true topological 
Floquet systems, this concept has been very fruitful in photonics 
and was tested in a variety of systems based on arrays of coupled 
dielectric waveguides with modulation in time emulated with 
modulation in space. In particular, a photonic crystal compris-
ing a 2D hexagonal array of twisted fibres70 was recently consid-
ered. Under paraxial approximation, this system is described by 
a Schrödinger-type equation, where the time variable is replaced 
by the propagation distance along the fibres and the periodic 
twisting replaces temporal modulation. This fact was evidenced 
by the emergence of a synthetic magnetic field in the effective 
wave-equation describing the dynamics of the field amplitude 
in the system. Experimental results unequivocally confirmed 
that twisting of the waveguides results in the topological Floquet 
state, causing opening of photonic bandgaps and the emergence 
of topological edge states at the open ends of the waveguide 
array. Robustness of the edge states has also been confirmed by 
direct observation of their reflectionless propagation across sharp  
corners between different cuts of the lattice, as well as by the 
ability of modes to propagate around deliberately introduced  
defects — missing waveguides.

To avoid coupling between different Floquet orders, the authors 
considered the case of fast-rotating modulation, which gives rise to 
the emergence of an effective magnetic field and a topological state 
characterized by a non-vanishing Chern number. More recently, 
two groups independently lifted the condition of fast modulation 
and demonstrated experimentally71,72 another topological class 
of so-called anomalous Floquet insulators73,74, shown in Fig.  5a,b. 
Despite vanishing Chern numbers, these systems have been shown 
to host robust edge states, which, however, appear within the band-
gaps open due to hybridization of bands corresponding to different 
Floquet orders.

Interestingly, a rigorous mathematical connection has also 
been found between the Floquet topological systems and 2D net-
works and arrays of ring resonators, providing a mechanism for 
direct mapping and emulation of Floquet states in this platform74. 
In particular, a microwave network has been used to experimen-
tally measure topological edge invariants75. In another study36, a 
similar mapping was used to emulate anomalous Floquet insu-
lators in an array of ring resonators formed by closely spaced 
subwavelength metallic rods, shown in Fig.  5c. The near-field 
coupling between the rods enables transfer of electromagnetic 
radiation and appearance of collective modes known as ‘spoof ’ 
or ‘designer’ plasmons, whose dispersion characteristics can be 
widely tuned by adjusting dimensions of the rods and their spac-
ing. Such designer photonic modes therefore represent a power-
ful instrument for engineering topological responses across the 
entire electromagnetic spectrum, with the first experimental real-
ization in the microwave domain36 demonstrating edge transport 
via topological designer plasmons (Fig.  5d). In the same study, 
the authors systematically investigated robustness of the edge 
states to defects and showed that they are robust against removal 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Nature Photonics | VOL 11 | DECEMBER 2017 | 763–773 | www.nature.com/naturephotonics770

http://www.nature.com/naturephotonics


FOCUS | Review ArticleNature Photonics

of some of the rings from the lattice. The authors also for the 
first time considered the effect of a dissipative defect and showed 
that the edge states are not robust to it as well as to imperfections  
in the rings, causing back reflection of the spoof plasmons,  
emphasizing the importance of eliminating such defects in 
Floquet systems emulated with spatial periodicities.

Finally, we note that while the majority of topological pho-
tonics research is concerned with the observation of robust edge 
states because of their importance for applications, one should 
keep in mind that, according to the bulk–interface correspon-
dence, these edge properties emerge from the topological proper-
ties of the photons propagating in the bulk. Therefore, studies of 
bulk topological properties are interesting on their own. Because 
topological properties of the bulk states affect their propaga-
tion, topological invariants have been directly extracted for 1D76 
and 2D61 systems. A different approach to extracting a winding 
number was taken by Mittal et al.77 who introduced a unit quan-
tum flux at the edge and observed a shift in the position of the  
edge spectrum.

Conclusions and outlook
While the field of topological photonics is still in its infancy, a large 
number of successful experimental results have demonstrated its 
transformative potential for fundamental and applied photonics. 
While here we focused on 2D systems, which we believe are of the 
utmost importance for practical applications, there is an outpour-
ing of new experimental results in 1D78 and 3D79–81, and even a 
proposal for the realization of second Chern class topological 4D 
systems in 3D82 photonic structures followed by recent implemen-
tation in a 2D system of coupled waveguides83. Topological quasi-
crystals is another emerging field, where topology can be created 
by exploiting even higher dimensions where quasicrystals appear 

to be periodic84,85. Another groundbreaking generalization of the 
Floquet topological order using the multi-spectral response of 
photonic cavities envisions additional synthetic dimensions in the 
frequency domain, thus implementing 3D topological physics in 
2D structures86.

Of more practical interest are the recent proposals of valley-
polarized transport in metamaterials23,87, especially in the context 
of combining different types of topological phase into pseudospin 
filtering junctions46. Even more practical revolutionary proposals 
aim to redefine laser systems by endowing them with topological 
robustness88 and quantum-limited travelling wave amplifiers that 
are protected against both internal losses and backscattering89.

Looking further ahead, a particularly promising direction in 
topological photonics is to go beyond the linear regime towards 
strong photon–photon and photon–matter interactions in topolog-
ical environments. For example, strong coupling of photons to pho-
nons has been suggested as one approach to generating synthetic 
gauge field for light in photonic lattices supporting both photonic 
and phononic modes90. Another promising multiphysics platform 
is based on polaritons, where ‘topolaritons’, the topological polari-
tonic excitations whose topological properties emerge from strong 
light–matter coupling, for example, in 2D quantum systems91,92. 
Recent experimental results93 for a 2D polaritonic honeycomb lat-
tice demonstrated the presence of polaritonic zero-energy edge 
states characterized by a 1D topological invariant. Finally, develop-
ing a strongly interacting topological photonic platform for study-
ing fractional Hall states of bosons94–97 is another (albeit distant) 
promising application of nonlinear topological photonics. While 
many of the concepts proposed within the field of topological pho-
tonics are likely to remain of purely fundamental interest, there is 
no doubt that the unique properties of photonic topological phases 
will secure their place in future applications98,99.
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Fig. 5 | Floquet topological insulators with spatial modulation. a, Schematic of anomalous Floquet insulator based on a 2D array of laser-written optical 
waveguides. The numbers indicate proximal segments of the waveguides where the transfer of the guided mode, schematically shown by red line, takes 
place. b, Topologically robust edge transport induced by the spatial modulation of coupled waveguides shown in a in the z direction. c, 2D system network 
of rings supporting spoof plasmons that can be mapped onto a Floquet topological insulator. The small arrows show the direction of energy flow, and the 
large curved arrow indicates the probe of the near field. The red line indicates the path of the wave in the structure. The blue block is the apparatus that 
measures the near field from the probe. d, Demonstration of robustness against bending (left), and the lack of robustness against dissipative defects 
(middle) and defects causing flipping of the pseudospin (right). The colour shows the intensity of the guided edge state and the dashed rectangles indicate 
position of defective cells. Panels reproduced from: a, ref. 72, Macmillan Publishers Ltd; c, ref. 36, Macmillan Publishers Ltd. Panels adapted from: b, ref. 72, 
Macmillan Publishers Ltd; d, ref. 36, Macmillan Publishers Ltd.
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