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Preface

Nine years have passed since the first edition of Optical properties of
solids was published, and in these years I have received many helpful
comments and suggestions about how to improve the text. By and large,
the comments from students have been concerned with sections that need
further clarification, while those from colleagues have been about adding
new topics. This second edition gives me the opportunity to make both
types of improvements.

Science move on, and, even in the relatively short time since the first
edition was published, some completely new subjects have arisen, while
others have grown in importance. There are also other topics that should
have been included in the first edition, but were omitted. It is not pos-
sible to cover everything in a book of this length, and in the end I have
settled on the following list of new topics for the second edition:

Electro-optics and magneto-optics New sections on induced bire-
fringence, optical chirality, and electro-optics have been added,
namely Sections 2.5.2, 2.6, and 11.3.4.

Spintronics Three new sections have been added—Sections 3.3.7, 5.3.4,
and 6.4.5—to cover the physics of optical spin injection in semi-
conductors.

Cathodoluminescence This topic is covered in Section 5.4.4.
Quantum dots Section 6.8 has been substantially expanded to reflect

the prominence of quantum dots in current semiconductor research
and device development.

Plasmonics The discussion of bulk plasmons in Section 7.5 has been
improved, and a new subsection on surface plasmons has been
added.

Negative refraction Section 7.6 gives a brief discussion of this phe-
nomenon.

Carbon nanostructures Graphene, nanotubes, and bucky balls are
discussed in Section 8.5.

Diamond NV centres Section 9.2.2 has been added to reflect the
growing interest in diamond NV centres for quantum information
processing.

Solid-state lighting A discussion of white light LEDs has been added
to Section 9.5.

This choice undoubtedly reflects my personal opinions on the present
state of the subject, but it also based on the suggestions that I have
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received from colleagues. With some ingenuity, it has been possible to
work all of this new material into the chapter structure of the first edition
outlined in Fig. 1. Note, however, that the title of Chapter 6 has been
changed from ‘Quantum wells’ to ‘Quantum confinement’ to reflect the
greater emphasis on quantum dots.

In addition to these new topics, I have made improvements through-
out the whole text, and have tried to correct any errors or misleading
remarks that were present in the first edition. All of the chapters have
been updated, with new examples and exercises added where appropri-
ate. In some cases new data have been included. The most significant
improvements have been made to the sections on the Kramers–Kronig re-
lationships (2.3), birefringence (2.5.1), and the quantum-confined Stark
effect (6.5). It is inevitable that some errors will still persist in this sec-
ond edition, and new ones occur. A web page with the errata will be
posted as these errors are discovered.

M.F.
Sheffield

January 2010

Preface to the First Edition

This book is about the way light interacts with solids. The beautiful
colours of gemstones have been valued in all societies, and metals have
been used for making mirrors for thousands of years. However, the scien-
tific explanations for these phenomena have only been given in relatively
recent times. Nowadays, we build on this understanding and make use
of rubies and sapphires in high power solid-state lasers. Meanwhile, the
arrival of inorganic and organic semiconductors has created the modern
opto-electronics industry. The onward march of science and technology
therefore keeps this perennial subject alive and active.

The book is designed for final year undergraduates and first year grad-
uate students in physics. At the same time, I hope that some of the
topics will be of interest to students and researchers of other disciplines
such as engineering or materials science. It evolved from a final year
undergraduate course in condensed matter physics given as part of the
Master of Physics degree at Oxford University. In preparing the course
I became aware that the discussion of optical phenomena in most of the
general solid-state physics texts was relatively brief. My aim in writing
was therefore to supplement the standard texts and to introduce new
subjects that have come to the fore in the last 10–20 years.

Practically all textbooks on this subject are built around a number
of core topics such as interband transitions, excitons, free electron re-
flectivity, and phonon polaritons. This book is no exception. These core
topics form the backbone for our understanding of the optical physics,
and pave the way for the introduction of more modern topics. Much
of this core material is well covered in the standard texts, but it can
still benefit from the inclusion of more recent experimental data. This
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Fig. 1 Scheme of the topics covered in this book. The numbers in brackets refer to chapters.

is made possible through the ever-improving purity of optical materials
and the now widespread use of laser spectroscopy.

The overall plan of the subject material is summarized in Fig. 1. The
flow diagram shows that some of the chapters can be read more or less
independently of the others, on the assumption that the introductory
material in Chapters 1 and 2 has been fully assimilated. I say ‘more
or less’ here because it does not really make sense, for example, to try
to understand nonlinear optics without a firm grasp of linear optics.
The rest of the chapters have been arranged into groups, with their
order following a certain logical progression. For example, knowledge
of interband absorption is required to understand quantum wells, and
is also needed to explain certain details in the reflectivity spectra of
metals. Similarly, molecular materials provide an intuitive introduction
to the concept of configuration diagrams, which are required for the
understanding of colour centres and luminescent impurities.

The inclusion of recent developments in the subject has been one of
the main priorities motivating this work. The chapters on semiconduc-
tor quantum wells, molecular materials, and nonlinear optics will not be
found in most of the standard texts. Other new topics such as the Bose–
Einstein condensation of excitons are included alongside traditional sub-
ject material. Furthermore, it is my deliberate intention to illustrate the
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physics with up-to-date examples of optical technology. This provides
an interesting modern motivation for traditional topics such as colour
centres and also helps to emphasize the importance of the solid-state
devices.

Throughout the book I have understood the term ‘optical’ in a wider
sense than its strict meaning referring to the visible spectral region.
This has allowed me to include discussions of infrared phenomena such
as those due to phonons and free carriers, and also the properties of
insulators and metals in the ultraviolet. I have likewise taken the scope
of the word ‘solid’ beyond the traditional emphasis on crystalline ma-
terials such as metals, semiconductors, and insulators. This has allowed
me to include important non-crystalline materials such as glasses and
polymers.

The process of relating measured optical phenomena to the electronic
and vibrational properties of the material under study can proceed in
two ways. We can work forwards from known electronic or vibrational
physics to predict the results of optical experiments, or we can work
backwards from experimental data to the microscopic properties. An
example of the first approach is to use the free electron theory to ex-
plain why metals reflect light, while an example of the second is to use
absorption or emission data to deduce the electron level structure of a
crystal. Textbooks such as this one inevitably tend to work forwards
from the microscopic properties to the measured data, even though an
experimental scientist would probably be working in the other direction.

The book presupposes that the reader has a working knowledge of
solid-state physics at the level appropriate to a third-year undergrad-
uate, such as that found in H.M. Rosenberg’s The solid state (Oxford
University Press, third edn, 1988). This puts the treatment at about
the same level as, or at a slightly higher level than, that given in the
Introduction to solid state physics by Charles Kittel. The book also nec-
essarily presupposes a reasonable knowledge of electromagnetism and
quantum theory. Classical and quantum arguments are used interchange-
ably throughout, and the reader will need to revise their own favourite
texts on these subjects if any of the material is unfamiliar. Four ap-
pendices are included to provide a succinct summary of the principal
results from band theory, electromagnetism, and quantum theory that
have been presupposed.

The text has been written in a tutorial style, with worked examples
in most chapters. A collection of exercises is provided at the end of each
chapter, with solutions at the end of the book. The exercises follow the
presentation of the material in the chapter, and the more challenging
ones are identified with an asterisk. A solutions manual is available on
request for instructors from the Oxford University Press web page.

M.F.
Sheffield

January 2001
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Light interacts with matter in many different ways. Metals are shiny, but
glass is transparent. Stained glass and gemstones transmit some colours,
but absorb others. Other materials such as milk appear white because
they scatter the incoming light in all directions.

In the chapters that follow, we shall be looking at a whole host of
these optical phenomena in a wide range of solid state materials. Before
we can begin to do this, we must first describe the way in which the
phenomena are classified, and the coefficients that are used to quantify
them. We must then introduce the materials that we shall be studying,
and clarify in general terms how the solid-state is different from the gas
and liquid phase. This is the subject of the present chapter.

1.1 Classification of optical processes

The wide-ranging optical properties observed in solid-state materials
can be classified into a small number of general phenomena. The sim-
plest group, namely reflection, propagation, and transmission, is
illustrated in Fig. 1.1. This shows a light beam incident on an optical
medium. Some of the light is reflected from the front surface, while the
rest enters the medium and propagates through it. If any of this light
reaches the back surface, it can be reflected again, or it can be trans-
mitted through to the other side. The amount of light transmitted is
therefore related to the reflectivity at the front and back surfaces and
also to the way the light propagates through the medium.

The phenomena that can occur while light propagates through an
optical medium are illustrated schematically in Fig. 1.2.

Refraction causes the light waves to propagate with a smaller ve-
locity than in free space. This reduction of the velocity leads to the
bending of light rays at interfaces described by Snell’s law of refraction.
Refraction, in itself, does not affect the intensity of the light wave as it
propagates.

Absorption occurs during the propagation if the frequency of the
light is resonant with the transition frequencies of the atoms in the
medium. In this case, the beam will be attenuated as it progresses. The
transmission of the medium is clearly related to the absorption, because
only unabsorbed light will be transmitted. Selective absorption is respon-
sible for the colouration of many optical materials. Rubies, for example,
are red because they absorb blue and green light, but not red.

Luminescence is the general name given to the process of sponta-
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Fig. 1.1 Reflection, propagation, and
transmission of a light beam incident
on an optical medium.

incident light

reflected light

transmitted light
propagation through

the mediumincident light

reflected light

transmitted light
propagation through

the medium

neous emission of light by excited atoms in a solid-state material. One of
the ways in which the atoms can be promoted into excited states prior
to spontaneous emission is by the absorption of light. Luminescence can
thus accompany the propagation of light in an absorbing medium. The
light is emitted in all directions, and usually has a different frequency
to the incoming beam.

Luminescence does not always have to accompany absorption. It takes
a characteristic amount of time for the excited atoms to re-emit by spon-
taneous emission. This means that it might be possible for the excited
atoms to dissipate the excitation energy as heat before the radiative re-
emission process occurs. The efficiency of the luminescence process is
therefore closely tied up with the dynamics of the de-excitation mecha-
nisms in the atoms.

refraction

absorption and

luminescence

scattering

refraction

absorption and

luminescence

scattering

Fig. 1.2 Phenomena that can occur
as a light beam propagates through
an optical medium. Refraction causes
a reduction in the velocity of the
wave, while absorption causes atten-
uation. Luminescence can accompany
absorption if the excited atoms re-
emit by spontaneous emission. Scatter-
ing causes a redirection of the light. The
diminishing width of the arrow for the
processes of absorption and scattering
represents the attenuation of the beam.

Scattering is the phenomenon in which the light changes direction
and possibly also its frequency after interacting with the medium. The
total number of photons is unchanged, but the number going in the
forward direction decreases because light is being re-directed in other
directions. Scattering therefore has the same attenuating effect as ab-
sorption. The scattering is said to be elastic if the frequency of the
scattered light is unchanged, or inelastic if the frequency changes in
the process. The difference in the photon energy in an inelastic scatter-
ing process has to be taken from the medium if the frequency increases
or given to the medium if the frequency decreases.

A number of other phenomena can occur as the light propagates
through the medium if the intensity of the beam is very high. These
are described by nonlinear optics. An example is frequency doubling,
in which the frequency of part of a beam is doubled by interaction with
the optical medium. Most nonlinear effects have only been discovered
through the use of lasers. At this stage, we only mention their existence
for completeness, and postpone their further discussion to Chapter 11.

1.2 Optical coefficients

The optical phenomena described in the previous section can be quan-
tified by a number of parameters that determine the properties of the
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medium at the macroscopic level.
The reflection at the surfaces is described by the coefficient of reflec-

tion or reflectivity. This is usually given the symbol R and is defined
as the ratio of the reflected power to the power incident on the surface.
The coefficient of transmission or transmissivity T is defined like-
wise as the ratio of the transmitted power to the incident power. If there
is no absorption or scattering, then by conservation of energy we must
have that:

R + T = 1 . (1.1)

The propagation of the beam through a transparent medium is de-
scribed by the refractive index n. This is defined as the ratio of the
velocity of light in free space c to the velocity of light in the medium v
according to:

n =
c

v
. (1.2)

The refractive index depends on the frequency of the light beam. This
effect is called, and will be discussed in detail in Section 2.4. In colourless
transparent materials such as glass, the dispersion is small in the visible
spectral region, and it therefore makes sense to speak of ‘the’ refractive
index of the substance in question.

The absorption of light by an optical medium is quantified by its
absorption coefficient α. This is defined as the fraction of the power
absorbed in a unit length of the medium. If the beam is propagating
in the z direction, and the intensity (optical power per unit area) at
position z is I(z), then the decrease of the intensity in an incremental
slice of thickness dz is given by:

dI = −αdz × I(z) . (1.3)

This can be integrated to obtain Beer’s law:

I(z) = I0e−αz , (1.4)

where I0 is the optical intensity at z = 0. The absorption coefficient is a
strong function of frequency, so that optical materials may absorb one
colour but not another.

In the next section we shall explain how both the absorption and the
refraction can be incorporated into a single quantity called the complex
refractive index. Knowledge of this quantity enables us to calculate the
reflectivity R, and hence the transmissivity T . The transmissivity of a
parallel-sided plate containing an optical medium such as the one shown
in Fig. 1.1 can be calculated by considering the multiple reflections from
the front and back surfaces. It is useful to consider two limiting cases.

(1) Incoherent light. If the thickness l of the plate is much larger
than the coherence length lc of the light, then interference effects
are negligible, and we can just add the intensities of the multiply-
reflected beams. In this case, the transmission is given by (see
Exercise 1.8):

T =
(1 − R1)(1 − R2) e−αl

1 − R1R2 e−2αl
, (1.5)
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where R1 and R2 are the reflectivities of the front and back sur-
faces respectively, and α is absorption coefficient of the medium. If
the front and back surfaces have equal reflectivities, then eqn 1.5
simplifies to:

It is obvious from considerations of
symmetry that R1 must equal R2 for
the standard case of a uniform plate
with air on either side. However, it is
quite common to consider examples of
absorbing thin films grown on glass or
similar transparent substrates. In this
case we have an air–medium interface
at one side, and a medium–substrate
interface at the other, and it will not
be the case that R1 = R2. (See Exer-
cise 1.12.)

T =
(1 − R)2 e−αl

1 − R2 e−2αl
, (1.6)

where R is the reflectivity.
(2) Coherent light. If the coherence of the light is not negligible (i.e.

lc > l), then interference fringes will occur, and the transmission
of a plate with equal reflectivities at both surfaces is given by (see
Exercise 1.9):

T =
(1 − R)2 e−αl

1 − 2Re−αl cosΦ + R2 e−2αl
, (1.7)

where Φ is the round-trip phase shift.

For a strongly absorbing medium (i.e. αl � 1), multiple reflections are
negligible, and eqns 1.6 and 1.7 both reduce to:

T = (1 − R)2 e−αl . (1.8)

The (1 − R)2 term accounts for the transmission of the front and back
surfaces, while the exponential factor gives the decrease in intensity due
to the absorption according to Beer’s law. If the medium is transparent,
i.e. α = 0, then the transmission for incoherent light is given by eqn 1.6
as:

T =
1 − R

1 + R
, (1.9)

while for coherent light, the transmission will oscillate as the wavelengthA parallel-sided plate in which interfer-
ence effects are important is called a
Fabry–Perot etalon.

is changed due to the formation of bright and dark interference fringes.
The absorption of an optical medium can also be quantified in terms of

the optical density (O.D.). This is sometimes called the absorbance,
and is defined as:The optical density, and hence the ab-

sorption coefficient, is usually worked
out from the measured transmissivity
of the sample. This requires accurate
normalization of the reflection losses at
the surfaces. (See Exercise 1.13.)

O.D. = − log10

(
I(l)
I0

)
, (1.10)

where l is the length of the absorbing medium. It is apparent from eqn 1.4
that the optical density is directly related to the absorption coefficient
α through:

O.D. =
αl

loge(10)
= 0.434 αl . (1.11)

In this book we quantify the absorption by α instead of the optical
density because it is independent of the sample length.

The phenomenon of luminescence was studied extensively by George
Stokes in the nineteenth century before the advent of quantum theory.
Stokes discovered that the luminescence is usually down-shifted in fre-
quency relative to the absorption, an effect now known as the Stokes
shift. Luminescence cannot be described easily by macroscopic classical
parameters because spontaneous emission is fundamentally a quantum
process (see Appendix B).
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1.2 Optical coefficients 5

The simplest sequence of events that takes place in luminescence is
illustrated in Fig. 1.3. The atom jumps to an excited state by absorbing
a photon, then relaxes to an intermediate state, and finally re-emits a
photon as it drops back to the ground state. The Stokes shift is explained
by applying the law of conservation of energy to the process. It is easy
to see that the energy of the photon emitted must be less than that of
the photon absorbed, and hence that the frequency of the emitted light
is less than that of the absorbed light. The magnitude of the Stokes shift
is therefore determined by the energy levels of the atoms in the medium.

absorption emission

relaxation

ground state

excited state

Fig. 1.3 Luminescence process in an
atom. The atom jumps to an excited
state by absorption of a photon, then
relaxes to an intermediate state, before
re-emitting a photon by spontaneous
emission as it falls back to the ground
state. The photon emitted has a smaller
energy than the absorbed photon. This
reduction in the photon energy is called
the Stokes shift.

Scattering is caused by variations of the refractive index of the medium
on a length scale smaller than the wavelength of the light. This could
be caused by the presence of impurities, defects, or inhomogeneities.
Scattering causes attenuation of a light beam in an analogous way to
absorption. The intensity decreases exponentially as it propagates into
the medium according to:

I(z) = I0 exp(−Nσsz) , (1.12)

where N is the number of scattering centres per unit volume, and σs is
the scattering cross-section of the scattering centre. This is identical
in form to Beer’s law given in eqn 1.4, with α replaced by Nσs.

The scattering is described as Rayleigh scattering if the size of the
scattering centre is very much smaller than the wavelength of the light.
In this case, the scattering cross-section will vary with the wavelength λ
according to:

σs(λ) ∝ 1
λ4

. (1.13)

The Rayleigh scattering law implies that inhomogeneous materials tend
to scatter short wavelengths more strongly than longer wavelengths.

Example 1.1

The reflectivity of silicon at 633 nm is 35% and the absorption coeffi-
cient is 3.8× 105 m−1. Calculate the transmission and optical density of
a sample with a thickness of 10 µm.

Solution
In this example we have αl = (3.8 × 105) × (10 × 10−6) = 3.8, and it is
valid to use eqn 1.8 for the transmission. With R = 0.35, this gives:

T = (1 − 0.35)2 · exp(−3.8) = 0.0095 .

The optical density is given by eqn 1.11:

O.D. = 0.434 × 3.8 = 1.65 .
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6 Introduction

1.3 The complex refractive index and
dielectric constant

In the previous section we mentioned that the absorption and refraction
of a medium can be described by a single quantity called the complex
refractive index. This is usually given the symbol ñ and is defined
through the equation:

ñ = n + iκ . (1.14)

The real part of ñ, namely n, is the same as the normal refractive index
defined in eqn. 1.2. The imaginary part of ñ, namely κ, is called the
extinction coefficient. As we shall see below, κ is directly related to
the absorption coefficient α of the medium.

The relationship between α and κ can be derived by considering the
propagation of plane electromagnetic waves through a medium with a
complex refractive index. If the wave is propagating in the z direction,
the spatial and time dependence of the electric field is given by (see
eqn A.32 in Appendix A):

E(z, t) = E0 ei(kz−ωt) , (1.15)

where k is the wave vector of the light and ω is the angular frequency.
E0 is the amplitude at z = 0. In a non-absorbing medium of refractive
index n, the wavelength of the light is reduced by a factor n compared
to the free-space wavelength λ. k and ω are therefore related to each
other through:

k =
2π

(λ/n)
=

nω

c
. (1.16)

This can be generalized to the case of an absorbing medium by allowing
the refractive index to be complex:

k = ñ
ω

c
= (n + iκ)

ω

c
. (1.17)

On substituting eqn 1.17 into eqn 1.15, we obtain:

E(z, t) = E0 ei(ωñz/c−ωt)

= E0 e−κωz/c ei(ωnz/c−ωt) .
(1.18)

This shows that a non-zero extinction coefficient leads to an exponential
decay of the wave in the medium. At the same time, the real part of ñ
still determines the phase velocity of the wave front, as in the standard
definition of the refractive index given in eqn 1.2.

The optical intensity of a light wave is proportional to the square
of the electric field, namely I ∝ EE∗ (cf. eqn A.44). We can therefore
deduce from eqn 1.18 that the intensity falls off exponentially in the
medium with a decay constant equal to 2 × (κω/c). On comparing this
to Beer’s law given in eqn 1.4 we conclude that:

α =
2κω

c
=

4πκ

λ
, (1.19)
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1.3 The complex refractive index and dielectric constant 7

where λ is the vacuum wavelength of the light. This shows that κ is
directly proportional to the absorption coefficient.

We can relate the refractive index of a medium to its relative dielec-
tric constant εr by using the standard result derived from Maxwell’s The relative dielectric constant is also

called the relative permittivity.equations (cf. eqn A.31 in Appendix A):

n =
√

εr . (1.20)

This shows us that if n is complex, then εr must also be complex. We
therefore define the complex relative dielectric constant ε̃r accord-
ing to:

ε̃r = ε1 + iε2 . (1.21)

By analogy with eqn 1.20, we see that ñ and ε̃r are related to each other
through:

ñ2 = ε̃r . (1.22)

We can now work out explicit relationships between the real and imag-
inary parts of ñ and ε̃r by combining eqns 1.14, 1.21, and 1.22. These
are:

ε1 = n2 − κ2 (1.23)
ε2 = 2nκ , (1.24)

and

n =
1√
2

(
ε1 + (ε21 + ε22)

1/2
)1/2

(1.25)

κ =
1√
2

(
−ε1 + (ε21 + ε22)

1/2
)1/2

. (1.26)

This analysis shows us that ñ and ε̃r are not independent variables: if
we know ε1 and ε2 we can calculate n and κ, and vice versa. Note that
if the medium is only weakly absorbing, then we can assume that κ is
very small, so that eqns 1.25 and 1.26 simplify to:

n =
√

ε1 (1.27)

κ =
ε2
2n

. (1.28)

These equations show us that the refractive index is basically determined
by the real part of the dielectric constant, while the absorption is mainly
determined by the imaginary part. This generalization is obviously not
valid if the medium has a very large absorption coefficient.

The microscopic models that we shall be developing throughout the
book usually enable us to calculate ε̃r rather than ñ. The measurable
optical properties can then be obtained by converting ε1 and ε2 to n and
κ through eqns 1.25 and 1.26. The refractive index is given directly by
n, while the absorption coefficient can be worked out from κ by using
eqn 1.19. The reflectivity depends on both n and κ and is given by:

R =
∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣
2

=
(n − 1)2 + κ2

(n + 1)2 + κ2
. (1.29)
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This formula is derived in eqn A.54. It gives the coefficient of reflection
between the medium and the air (or vacuum) at normal incidence.

In a transparent material such as glass in the visible region of the
spectrum, the absorption coefficient is very small. Equations 1.19 and
1.24 then tell us that κ and ε2 are negligible, and hence that both ñ and
ε̃r may be taken as real numbers. This is why tables of the properties
of transparent optical materials generally list only the real parts of the
refractive index and dielectric constant. On the other hand, if there is
significant absorption, then we shall need to know both the real and
imaginary parts of ñ and ε̃r.

In the remainder of this book we shall take it as assumed that both
the refractive index and the dielectric constant are complex quantities.
We shall therefore drop the tilde notation on n and εr from now on,
except where it is explicitly needed to avoid ambiguity. It will usually
be obvious from the context whether we are dealing with real or complex
quantities.

Example 1.2

The complex refractive index of germanium at 400 nm is given by ñ =
4.141+ i 2.215. Calculate for germanium at 400 nm: (a) the phase veloc-
ity of light, (b) the absorption coefficient, and (c) the reflectivity.

Solution
(a) The velocity of light is given by eqn 1.2, where n is the real part of
ñ. Hence we obtain:

v =
c

n
=

2.998 × 108

4.141
m s−1 = 7.24 × 107 m s−1 .

(b) The absorption coefficient is given by eqn 1.19. By inserting κ =
2.215 and λ = 400 nm, we obtain:

α =
4π × 2.215
400 × 10−9

m−1 = 6.96 × 107 m−1 .

(c) The reflectivity is given by eqn 1.29. On inserting n = 4.141 and
κ = 2.215 into this, we obtain:

R =
(4.141 − 1)2 + 2.2152

(4.141 + 1)2 + 2.2152
= 47.1 % .

Example 1.3

Salt (NaCl) absorbs very strongly at infrared wavelengths in the ‘Rest-
strahl’ band. The complex dielectric constant at 60 µm is given by ε̃r =
−16.8 + i 91.4. Calculate the absorption coefficient and the reflectivity
at this wavelength.

We shall see in Chapter 10 that the
Reststrahl absorption is caused by the
interaction between the light and the
optical phonons.
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Solution
We must first work out the complex refractive index by using eqns 1.25
and 1.26. This gives:

n =
1√
2

(
−16.8 + ((−16.8)2 + 91.42)1/2

)1/2

= 6.17

and
κ =

1√
2

(
+16.8 + ((−16.8)2 + 91.42)1/2

)1/2

= 7.41 .

We then insert these values into eqns 1.19 and 1.29 to obtain the required
results:

α =
4π × 7.41
60 × 10−6

m−1 = 1.55 × 106 m−1 ,

and
R =

(6.17 − 1)2 + 7.412

(6.17 + 1)2 + 7.412
= 76.8 % .

1.4 Optical materials

We shall be studying the optical properties of many different types of
solid-state materials throughout this book. The materials can be loosely
classified into five general categories:

• Crystalline insulators and semiconductors
• Glasses
• Metals
• Molecular materials
• Doped glasses and insulators.

Before delving into the details, we give here a brief overview of the main
optical properties of these materials. This will serve as an introduction
to the optical physics that will be covered in the following chapters.

1.4.1 Crystalline insulators and semiconductors

Figure 1.4(a) shows the transmission spectrum of crystalline sapphire
(Al2O3) from the infrared to the ultraviolet spectral region. The spec-
trum for sapphire shows the main features observed in all insulators,
although of course the details will vary considerably from material to
material. The principal optical properties can be summarized as follows.

(1) Sapphire has a high transmission in the wavelength range 0.2–
6 µm. This defines the transparency range of the crystal. The
transparency region of sapphire includes the whole of the visible
spectrum, which explains why it appears colourless and transpar-
ent to the human eye.

Sapphire gemstones tend to be blue.
This is caused by the presence of
chromium, titanium, and iron impuri-
ties in the Al2O3 crystal. Pure syn-
thetic Al2O3 crystals are colourless.
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Fig. 1.4 (a) Transmission spectrum of
a sapphire (Al2O3) crystal of thick-
ness 3mm. (b) Transmission spectrum
of a CdSe crystal of thickness 1.67mm.
Data from Driscoll & Vaughan (1978).
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(2) Within the transparency range the absorption coefficient is very
small, and the refractive index may be taken to be real with no
imaginary component. The value of the refractive index is approx-
imately constant, and is equal to 1.77 in sapphire.

(3) The transmission coefficient in the transparency range is deter-
mined by the reflectivity of the surfaces through eqn 1.9. The re-
flectivity in turn is determined by the refractive index through
eqn 1.29. For sapphire with n = 1.77, this gives R = 0.077. Hence
we find T = (1 − R)/(1 + R) = 0.86.

(4) The dip in the transmission in the infrared spectral region around
3 µm, and the sharp drop in the transmission for λ > 6 µm, is
caused by vibrational absorption. This absorption mechanism isSapphire actually transmits in the far

infrared spectral region when the fre-
quency is well below that of the optical
phonons.

analogous to the infrared absorption due to vibrations in polar
molecules. The vibrational excitations of a crystal lattice are called
phonon modes, and so the vibrational absorption in a solid is usu-
ally called phonon absorption or lattice absorption. This absorp-
tion mechanism will be discussed in Chapter 10.

(5) The transmission drops sharply in the ultraviolet spectral region
for λ < 0.2 µm due to absorption by bound electrons. The onset of
the absorption is called the fundamental absorption edge. The
wavelength of the fundamental edge is determined by the band
gap of the insulator. The explanation of the absorption spectra
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Table 1.1 Approximate transparency range and refractive index n of a number of crystalline
insulators. n is measured at 546 nm. Values of n are given both for the o-ray and e-ray of
birefringent materials. Data from Driscoll & Vaughan (1978) and Kaye & Laby (1986).

Crystal Common name Transparency range Birefringent n
(�m)

Al2O3 sapphire 0.2 – 6 yes 1.771 (o), 1.763 (e)
BaF2 0.2 – 12 1.476
Diamond 0.25 – > 80 2.424
KBr 0.3 – 30 1.564
KCl 0.21 – 25 1.493
KI 0.3 – 40 1.673
MgF2 0.12 – 8 yes 1.379 (o), 1.390 (e)
NaCl salt 0.21 – 20 1.55
NaF 0.19 – 15 1.326
SiO2 quartz 0.2 – 3 yes 1.546 (o), 1.555 (e)
TiO2 rutile 0.45 – 5 yes 2.652 (o), 2.958 (e)

due to bound electrons needs band theory, and will be discussed
in Chapters 3 and 4.

Point (1) is perhaps the most obvious aspect of the optical properties
of insulators: they all tend to be colourless and transparent in the vis-
ible spectral region. If they are coloured, this is most likely caused by
the presence of impurities, as will be explained in Section 1.4.5 below.
This transparency is slightly deceptive. The insulators do absorb very
strongly in the ultraviolet and in the infrared spectral regions, but this
is hidden from the human eye. The transparent region between the in-
frared and ultraviolet absorption bands is particularly useful for making
optical windows and lenses. The approximate transparency range and
refractive index of a number of common crystalline insulators are listed
in Table 1.1.

The very high transparency of diamond
in the infrared is noteworthy. This is
caused by the fact that diamond is a
purely covalent crystal, which means
that its optical phonons cannot inter-
act directly with light waves. This point
will be discussed further in Chapter 10.

The crystallinity of the materials gives rise to a number of properties
relating to the underlying symmetry of the lattice. This point will be
expanded further in Section 1.5.1. One immediate consequence is that
some of the materials listed in Table 1.1 are birefringent. The optical
properties are anisotropic, and the value of the refractive index depends
on the direction of the light relative to the crystallographic axes. The
phenomenon of birefringence will be described in more detail in Sec-
tion 2.5.1.

The optical properties of semiconductors are conceptually similar to
those of insulators, except that the electronic transitions occur at longer
wavelengths. By way of example, Fig. 1.4(b) shows the transmission
spectrum of the II–VI compound semiconductor CdSe over the same
wavelength range as for the sapphire crystal. Just as with sapphire, we
have a transparency range which is limited by electronic absorption at
short wavelengths and lattice absorption at long wavelengths. The max-
imum transmission is around 60% which is again mainly limited by the
surface reflectivities. The short wavelength edge occurs beyond 700 nm,
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which means that the whole of the transparency range lies outside the
visible spectrum. Hence no visible light is transmitted through the crys-
tal, and it has a dark metallic appearance to the eye.

Table 1.2 Approximate transparency
range, band gap wavelength λg, and
refractive index n of a number of
common semiconductors. n is mea-
sured at 10�m. Data from Driscoll &
Vaughan (1978), Kaye & Laby (1986),
and Madelung (1996).

Crystal Range λg n
(�m) (�m)

Ge 1.8 – 23 1.8 4.00
Si 1.2 – 15 1.1 3.42
GaAs 1.0 – 20 0.87 3.16
CdTe 0.9 – 14 0.83 2.67
CdSe 0.75 – 24 0.71 2.50
ZnSe 0.45 – 20 0.44 2.41
ZnS 0.4 – 14 0.33 2.20

Table 1.2 lists the transparency range and refractive index of several
semiconductors. The data show that the lower limit of the transmission
range coincides closely with the wavelength of the fundamental band
gap. This happens because the band gap determines the lowest energy
for interband transitions, as will be explained in Chapter 3. Note that the
refractive index increases as the band gap wavelength gets larger. This
is a consequence of the Kramers–Kronig relationships between the real
and imaginary parts of the complex refractive index. (See Section 2.3.)

The upper limit of the transmission range is determined by the lattice
absorption, as for insulators, and also by free carrier absorption. Free
carriers are present in semiconductors at room temperature through the
thermal excitation of electrons across the band gap or due to the presence
of impurities. This causes infrared absorption, as will be explained in
Section 7.4. Insulators have very small free carrier densities due to their
large band gaps.

One very important aspect of the optical properties of semiconduc-
tors is that a subset of them, namely those with direct band gaps, lu-
minesce strongly when electrons are promoted to the conduction band.
This is the physical basis for the light-emitting devices used in the opto-
electronics industry. The physical processes behind the luminescence will
be explained in Chapter 5. The main point is that the wavelength of
the luminescence coincides with the band gap of the semiconductor. In
Chapter 6 we shall see how quantum size effects in low-dimensional semi-
conductors can be used to shift the effective band gap to higher energy.
This is a highly desirable feature, because it provides a way to ‘tune’
the emission wavelength by controlled variation of the parameters during
the crystal growth.

1.4.2 Glasses

Table 1.3 Refractive in-
dex, n, of synthetic fused
silica versus wavelength.
Data from Kaye & Laby
(1986).

Wavelength n
(nm)

213.9 1.53430
239.9 1.51336
275.3 1.49591
334.2 1.47977
404.7 1.46962
467.8 1.46429
508.6 1.46186
546.1 1.46008
632.8 1.45702
706.5 1.45515
780.0 1.45367
1060 1.44968
1395 1.44583
1530 1.44427
1970 1.43853
2325 1.43293

Glasses are extremely important optical materials. They have been used
for centuries in prisms and lenses for optical instruments, in addition
to their common usage in windows and glassware. In more recent times
they have found new applications in optical fibre technology. With the
exception of stained glasses, they are usually made to be transparent in
the visible spectrum. They are not crystalline solids, and therefore do
not exhibit the optical anisotropy that is characteristic of some crystals.

Most types of glass are made by fusing sand (silica: SiO2) with other
chemicals. Pure fused silica is an insulator, and shows all the character-
istic features of insulators discussed in the previous section. It is trans-
parent in the visible region, but absorbs in the ultraviolet due to the
electronic transitions of the SiO2 molecules, and in the infrared due to
vibrational absorption. The transparency range thus goes from around
200 nm in the ultraviolet to beyond 2000 nm in the infrared.

The properties of fused silica will be described in more detail in Sec-
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1.4 Optical materials 13

Table 1.4 Composition, refractive index and ultraviolet transmission of some common glasses. The letters after the names give
the abbreviations used to identify the glass type. The composition figures are the percentage by mass. The refractive index
is measured at 546.1 nm, and the transmission is for a 1 cm plate at 310 nm. Data from Driscoll & Vaughan (1978), and Lide
(1996).

Name Si02 B2O3 Al203 Na20 K20 CaO BaO PbO P2O5 n T

Fused silica 100 1.460 0.91
Crown (K) 74 9 11 6 1.513 0.4
Borosilicate crown (BK) 70 10 8 8 1 3 1.519 0.35
Phosphate crown (PK) 3 10 12 5 70 1.527 0.46
Light flint (LF) 53 5 8 34 1.585 0.008
Flint (F) 47 2 7 44 1.607 –
Dense flint (SF) 33 5 62 1.746 –

tion 2.2.3. Fused silica is used extensively in the fibre-optics industry,
as the principal material from which many fibres are made. It has been
refined to such an extent that the absorption and scattering losses are so
small that light can travel many kilometres down the fibre before being
fully attenuated.

The refractive index of silica in the transparency range is tabulated
against the wavelength in Table 1.3. This variation of the refractive index
with wavelength is called dispersion. Note that it is not a very large
effect: n changes by less than 1% over the whole visible spectral region.
Note also that the dispersion is largest at the shortest wavelengths near
the fundamental absorption edge. Dispersion is present in all optical
materials, as will be explained in Section 2.4.

Chemicals are commonly added to silica during the fusion process to
produce a whole range of other types of glasses. The presence of these
additives can alter the refractive index and the transmission range. Ta-
ble 1.4 lists the composition of a number of common glasses together
with their refractive index and ultraviolet transmission. It is apparent
that the additives have the effect of increasing the refractive index, at
the expense of decreasing the ultraviolet transmission. A high refractive Pure SiO2 has a very large band gap

of about 10 eV, which corresponds to a
wavelength of 120 nm. The additives re-
duce the energy of the fundamental ab-
sorption edge, although not out of the
ultraviolet spectral region. This means
that the glasses are still transparent at
visible wavelengths, but have reduced
transmission in the ultraviolet. The re-
duction of the band gap increases the
refractive index through the Kramers–
Kronig relationship. (See Section 2.3.)

index is desirable for cut-glass products, since it increases the reflec-
tivity (see Exercise 1.2), and hence gives the glassware a more shiny
appearance. Note that the glass with the highest refractive index listed
in Table 1.4 is the ‘dense flint’ type. This glass contains a large amount
of lead, which explains why cut glass with a high degree of sparkle is
rather heavy.

Coloured glass can be made by adding semiconductors with band gaps
in the visible spectral region during the fusion process. The properties
of these coloured glasses will be discussed further in Section 1.4.5 below.

1.4.3 Metals

The characteristic optical feature of metals is that they are shiny. This is
why metals like silver and aluminium have been used for making mirrors
for centuries. The shiny appearance is a consequence of their very high
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Fig. 1.5 Reflectivity of silver from the
infrared to the ultraviolet. Data from
Lide (1996).
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reflection coefficients. We shall see in Chapter 7 that the high reflectivity
is caused by the interaction of the light with the free electrons that are
present in the metal.

Figure 1.5 shows the reflectivity of silver from the infrared spectral re-
gion to the ultraviolet. We see that the reflectivity is very close to 100%
in the infrared, and stays above 80% throughout the whole visible spec-
tral region. The reflectivity then drops sharply in the ultraviolet. This
general behaviour is observed in all metals. There is strong reflection for
all frequencies below a characteristic cut-off frequency called the plasma
frequency. The plasma frequency usually corresponds to a wavelength in
the ultraviolet spectral region, and so metals reflect infrared and visible
wavelengths, but transmit ultraviolet wavelengths. This effect is called
the ultraviolet transmission of metals.

Some metals have characteristic colours. Copper, for example, has a
pinkish colour, while gold is yellowish. These colours are caused by in-
terband electronic transitions that occur in addition to the free carrier
effects that cause the reflection. This point will be explained in Sec-
tion 7.3.2 of Chapter 7.

1.4.4 Molecular materials

The term ‘molecular material’ could in principle cover the solid phase
of any molecule. However, the crystalline phases of inorganic molecules
such as NaCl or GaAs are classified as insulators or semiconductors in
this book, while simple organic molecules such as methane (CH4) tend
to be gases or liquids at room temperature. We therefore restrict our
attention here to large organic molecules.

Some organic compounds form crystals in the condensed phase, but
many others are amorphous. The solids are held together by the rela-
tively weak van der Waals interactions between the molecules, which are
themselves held together by strong covalent bonds. The optical proper-
ties of the solid therefore tend to be very similar to those of the individual
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molecules.
Organic compounds can be generally classified into either saturated or

conjugated systems. This classification depends on the type of bonding
in the molecule, and will be explained in more detail in Chapter 8.

In saturated compounds, the valence electrons are incorporated into
strong, localized bonds between neighbouring atoms. This means that
all the electrons are tightly held in their bonds, and can only respond at
high frequencies in the ultraviolet spectral range. Saturated compounds
are therefore usually colourless and do not absorb in the visible region.
Their properties are generally similar to those of the glasses discussed in
Section 1.4.2: they absorb in the infrared and ultraviolet spectral regions
due to vibrational and electronic transitions respectively, and are trans-
parent at visible frequencies. Plastics such as poly-methyl-methacrylate
(commonly known as ‘perspex’ or ‘plexiglass’) or poly-ethylene (poly-
thene) are typical examples.

Conjugated molecules, by contrast, have much more interesting op-
tical properties. The electrons from the p-like atomic states of the car-
bon atoms form large delocalized orbitals called π orbitals which spread
out across the whole molecule. The standard example of a conjugated
molecule is benzene (C6H6), in which the π electrons form a ring-like or-
bital above and below the plane of the carbon and hydrogen atoms. Fur-
ther examples include the other aromatic hydrocarbons, dye molecules,
and conjugated polymers.

π electrons are less tightly bound than the electrons in saturated
molecules, and interact with light at lower frequencies. In benzene the
absorption edge is in the ultraviolet spectral region at 260 nm, but with
other molecules the transition energy is shifted down to visible frequen-
cies. The molecules with visible absorption also tend to emit strongly at
visible frequencies. This makes them of high technological interest for
applications as light-emitting devices. These are the solid state counter-
parts of the organic dyes that have been used in liquid lasers for several
decades.

The optical processes that occur in π conjugated materials will be
described in Chapter 8. By way of example, Fig. 1.6 shows the absorption
spectrum of the technologically important polyfluorene-based polymer
called ‘F8’. Thin film samples of this material are typically prepared
by spin coating the molecules onto a glass slide. The data in Fig. 1.6
show that the polymer is transparent throughout most of the visible
spectral region, but absorbs strongly at ultraviolet wavelengths. The
broad absorption band which peaks at 380 nm is caused by vibrational–
electronic transitions to the first singlet excited state of the molecule.
This band extends slightly into the blue spectral region, and gives the
material a pale yellow colour.

Conjugated polymers such as F8 luminesce strongly when electrons are
promoted into the excited states of the molecule. The luminescence is
Stokes-shifted to lower energy compared to the absorption, and typically
occurs in the middle of the visible spectral region. An attractive feature
of these organic materials is that the emission wavelength can be ‘tuned’
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Fig. 1.6 Absorption spectrum of
the polyfluorene-based polymer F8
[poly(9,9-dioctylfluorene)]. After Buck-
ley et al. (2001), c© Excerpta Medica
Inc., reprinted with permission.
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by small alterations to the chemical structure of the molecular units
within the polymers. We shall see in Section 8.4 how this property has
been used to develop organic light-emitting devices to cover the full
range of the visible spectral region.

1.4.5 Doped glasses and insulators

We have already mentioned in Section 1.4.2 that coloured glass can be
made by adding appropriately chosen semiconductors to silica during
the fusion process. This is a typical example of how a colourless material
such as fused silica can take on new properties by controlled doping with
optically-active substances.

The colour of doped glass can be controlled in two different ways.

(1) The most obvious way is by variation of the composition of the
dopant. For example, the glass might be doped with the alloy semi-
conductor CdxZn1−xSe during the fusion process, with the value
of x determined by the ZnSe:CdSe ratio in the original melt. The
band gap of the alloy can be ‘tuned’ through the visible spectrum
region by varying x, and this determines the short wavelength
transmission cut-off for the glass.

(2) The size of the semiconductor crystallites within the glass can be
very small, and this can also have an effect on the colour produced.
Normally, the optical properties of a material are independent of
the size of the crystal, but this ceases to be the case if the dimen-
sions are comparable to the electron wavelength. The ‘quantum
size effect’ increases the energy of the electrons and hence shifts
the effective band gap to higher energy. This point will be ex-
plained further in Section 6.8 of Chapter 6.

The principle of doping optically-active atoms into colourless hosts is
employed extensively in the crystals used for solid-state lasers. A typical
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Fig. 1.7 Transmission spectrum of

ruby (Al2O3 with 0.05% Cr3+) com-
pared to sapphire (pure Al2O3). The
thicknesses of the two crystals were
6.1mm and 3.0mm respectively. After
McCarthy (1967), reprinted with per-
mission.

example is the ruby crystal. Rubies consist of Cr3+ ions doped into
Al2O3 (sapphire). In the natural crystals, the Cr3+ ions are present
as impurities, but in synthetic crystals, the dopants are deliberately
introduced in controlled quantities during the crystal growth process.

Figure 1.7 compares the transmission spectra of synthetic ruby (Al2O3

with 0.05% Cr3+) to that of synthetic sapphire (pure Al2O3). It is ap-
parent that the presence of the chromium ions produces two strong ab-
sorption bands, one in the blue spectral region and the other in the
yellow/green region. These two absorption bands give rubies their char-
acteristic red colour. The other obvious difference between the two trans-
mission curves is that the overall transmission of the ruby is lower. This
is caused in part by the increased scattering of light by the impurities
in the crystal.

The optical properties of crystals like ruby will be covered in Chap-
ter 9. We shall see there that the broadening of the discrete transition
lines of the isolated dopant ions into absorption bands is caused by vi-
bronic coupling between the valence electrons of the dopant and the
phonons in the host crystal. We shall also see how the centre wavelength
of the bands is affected by the crystal-field effect, that is, the inter-
action between the dopant ions and electric field of the host crystal.
These properties are very important in the design of solid-state lasers
and phosphors.

1.5 Characteristic optical physics in the
solid state

The previous section has given a brief overview of the optical properties
of several different classes of solid-state materials. It is natural to ask
whether any of these properties are exclusive to the solid state. In other
words, how do the optical properties of a solid differ from those of its
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constituent atoms or molecules? This question is essentially the same as
asking what the difference is between solid-state and atomic or molecular
physics.

The answer clearly depends on the type of material that we are con-
sidering. In some materials there will be a whole range of new effects
associated with the solid state, while with others, the differences may
not be so great. Molecular materials are an example of the second type.
We would expect the absorption spectra of a solid film and that of an
equivalent dilute solution to be fairly similar. This happens because the
forces between the molecules in the condensed phase are relatively weak
compared to the forces within the molecule itself. The appeal of the
solid state in this case is the high number density of molecules that
are present, and the possibility of incorporating them into solid-state
electronic devices.

With many other materials, however, there will be substantial differ-
ences between the condensed phase and the gaseous or liquid state. It
is obviously not possible to give a full catalogue of these effects in an
introductory chapter such as this one. Instead, we highlight here five as-
pects that make the physics of the solid state interesting and different,
namely

• Crystal symmetry

• Electronic bands

• Vibronic bands

• The density of states

• Delocalized states and collective excitations.

There are many others, of course, but these themes occur over and over
again and are therefore worth considering briefly in themselves before
we start going into the details.

1.5.1 Crystal symmetry

Most of the materials that we shall be studying occur as crystals. Crys-
tals have long-range translational order, and can be categorized into
32 classes according to their point group symmetry. The point group
symmetry refers to the group of symmetry operations that leaves the
crystal invariant. Examples of these include rotations about particular
axes, reflections about planes, and inversion about points in the unit cell.
Some crystal classes such as the cubic ones possess a very high degree
of symmetry. Others have much lower symmetry.

The link between the measurable properties and the point group sym-
metry of a crystal can be made through Neumann’s principle. This
states that:

Any macroscopic physical property must have at least the
symmetry of the crystal structure.
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Fig. 1.8 Splitting of the magnetic lev-
els of a free atom by the crystal-field
effect. In the free atoms, the magnetic
levels are degenerate. We must apply a
magnetic field to split them by the Zee-
man effect. However, the magnetic lev-
els can be split even without applying
an external magnetic field in a crystal.
The details of the way the levels split
are determined by the symmetry class
of the crystal.

For example, if a crystal has four-fold rotational symmetry about a par-
ticular axis, then we must get the same result in any experiment we
might perform in the four equivalent orientations.

It is instructive to compare the properties of a crystal to those of the
atoms from which it has been formed. A gas of atoms has no translational
order. Therefore we expect to find new effects in the solid state that
reflect its translational symmetry. The formation of electronic bands
and delocalized states discussed in Sections 1.5.2 and 1.5.5 below are
examples of this. At the same time, the point group symmetry of a
crystal is lower than that of the individual atoms, which have the highest
possible symmetry due to their spherical invariance. We therefore expect
to find other effects in the solid state that relate to the lowering of the
symmetry on going from free atoms to the particular point group of the
crystal class. Two specific examples of this are discussed briefly here,
namely optical anisotropy and the lifting of degeneracies.

A crystal is said to be anisotropic if its properties are not the same
in all directions. Anisotropy is only found in the solid state, because
gases and liquids do not have any preferred directions. The degree of
anisotropy found in a crystal depends strongly on the point group sym-
metry that it possesses. In cubic crystals, for example, the optical prop-
erties must be the same along the x, y, and z axes because they are
physically indistinguishable. On the other hand, in a uniaxial crystal,
the properties along the optic axis will be different from those along
the axes at right angles to it. The optical anisotropy is manifested by
the property of birefringence which is discussed in Section 2.5.1. It is
also important for the description of the nonlinear optical coefficients of
crystals discussed in Chapter 11.

The lifting of degeneracies by reduction of the symmetry is a well-
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known effect in atomic physics. Free atoms are spherically symmetric
and have no preferred directions. The symmetry can be broken by ap-
plying an external magnetic or electric field which creates a preferred
axis along the field direction. This can lead to the lifting of certain level
degeneracies that are present in the free atoms. The Zeeman effect, for
example, describes the splitting of degenerate magnetic levels when a
magnetic field is applied. If the same atom is introduced into a crystal,
it will find itself in an environment with a point group symmetry deter-
mined by the lattice. This symmetry is lower than that of the free atom,
and therefore some level degeneracies can be lifted.

This point is illustrated schematically in Fig. 1.8, which shows how
the magnetic levels of a free atom can be split by the crystal-field effect
in an analogous way to the Zeeman effect. The splitting is caused by
the interaction of the orbitals of the atoms with the electric fields of the
crystalline environment. The details do not concern us here. The impor-
tant point is that the splittings are determined by the symmetry class
of the crystal and do not require an external field. Optical transitions
between these crystal-field split levels often occur in the visible spectral
region, and cause the material to have very interesting properties that
are not found in the free atoms. These effects will be explored in more
detail in Chapter 9.

Before closing this section on crystal symmetry, it is worth pointing
out that many important solid-state materials do not possess long-range
translational symmetry. Glass is an obvious example. Other examples
include thin molecular films such as light-emitting polymers sputtered
onto substrates, and amorphous silicon. The optical properties of these
materials may be very similar to those of their constituent atoms or
molecules. Their importance is usually related to the convenience of the
solid phase rather than to new optical properties that relate to the solid-
state physics.

1.5.2 Electronic bands

The atoms in a solid are packed very close to each other, with the inter-
atomic separation approximately equal to the size of the atoms. Hence
the outer orbitals of the atoms overlap and interact strongly with each
other. This broadens the discrete levels of the free atoms into bands, as
illustrated schematically in Fig. 1.9.

The electron states within the bands are delocalized and possess the
translational invariance of the crystal. Bloch’s theorem states that the
wave functions should be written in the form:

ψk(r) = uk(r) exp(ik · r) , (1.30)

where uk(r) is a function that has the periodicity of the lattice. The
Bloch states described by eqn 1.30 are modulated plane waves. Each
electronic band has a different envelope function uk(r) which retains
some of the atomic character of the states from which the band was
derived.
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Optical transitions can occur between the electronic bands if they are
allowed by the selection rules. This ‘interband’ absorption is possible
over a continuous range of photon energies determined by the lower and
upper energy limits of the bands. This contrasts with the absorption
spectra of free atoms, which consist of discrete lines. The observation
of broad bands of absorption rather than discrete lines is one of the
characteristic features of the solid state.

E
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solid free

atomE

Interatomic separation

solid free

atom

Fig. 1.9 Schematic diagram of the for-
mation of electronic bands in a solid
from the condensation of free atoms. As
the atoms are brought closer together
to form the solid, their outer orbitals
begin to overlap with each other. These
overlapping orbitals interact strongly,
and broad bands are formed. The in-
ner core orbitals do not overlap and so
remain discrete even in the solid state.
Optical transitions between the bands
can occur, and this causes absorption
over a continuous range of frequencies
rather than discrete lines.

Interband transitions will be discussed at length in a number of chap-
ters in this book, most notably Chapters 3 and 5. The absorption strength
is usually very high because of the very large density of absorbing atoms
in the solid. This means that we can produce sizeable optical effects in
very thin samples, allowing us to make the compact optical devices that
form the basis of the modern opto-electronics industry.

1.5.3 Vibronic bands

The electronic states of the atoms or molecules in a solid may be strongly
coupled to the vibrational modes of the crystal through the vibronic in-
teraction. A typical example of where this effect occurs is the doped insu-
lator crystals introduced in Section 1.4.5. The vibronic coupling broadens
the discrete electronic states of the isolated dopant atoms into bands.
This has the effect of broadening the absorption and emission lines of the
atoms into continuous bands. These vibronic effects will be described in
more detail in Chapter 9.

It is important to realize that the reason for the formation of the vi-
bronic bands is different to that for the electronic bands considered in
the previous section. In the case of vibronic bands, the continuum of
states arises from the coupling of discrete electronic states to a contin-
uous spectrum of vibrational modes (i.e. phonons). This contrasts with
the electronic bands, where the continuum arises from interactions be-
tween electronic states of neighbouring atoms.

Vibronic effects are also observed in molecular materials. This is an
interesting case which highlights the difference between the solid state
and the liquid or gaseous phase. The absorption spectra of simple free
molecules also show vibrational–electronic bands, but the transition fre-
quencies are discrete because both the electronic energies and the vibra-
tional energies are discrete. In molecular solids, by contrast, the vibra-
tional frequencies are continuous, and this causes continuous absorption
and emission spectra.

1.5.4 The density of states

The concept of the density of states is an inevitable corollary of
band formation in solids. The electronic and vibrational states of free
molecules and atoms have discrete energies, but this is not the case in a
solid: both the electronic states and the phonon modes have a continuous
range of energies. This continuum of states leads to continuous absorp-
tion and emission bands, as has already been stressed in the previous
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two sections.
The number of states within a given energy range of a band is conve-

niently expressed in terms of the density of states function g(E). This is
defined as:

Number of states in the range E → (E + dE) = g(E) dE . (1.31)

g(E) is usually worked out by first calculating the density of states in
momentum space g(k), and then using the relationship between g(E)
and g(k), namely:

g(E) = g(k)
dk

dE
. (1.32)

This can be evaluated from knowledge of the E–k relationship for the
electrons or phonons. Knowledge of g(E) is crucial for calculating the
absorption and emission spectra due to interband transitions and also
for calculating the shape of vibronic bands.

1.5.5 Delocalized states and collective excitations

The fact that the atoms in a solid are very close together means that it
is possible for the electron states to spread over many atoms. The wave
functions of these delocalized states possess the underlying translational
symmetry of the crystal. The Bloch waves described by eqn 1.30 are a
typical example. The delocalized electron waves move freely throughout
the whole crystal and interact with each other in a way that is not
possible in atoms. The delocalization also allows collective excitations
of the whole crystal rather than individual atoms. Two examples that
we shall consider in this book are the excitons formed from delocalized
electrons and holes in a semiconductor, and the plasmons formed from
free electrons in metals and doped semiconductors. The excitonic effects
will be discussed in Chapter 4, while plasmons are covered in Section 7.5.
The collective excitations may be observed in the optical spectra, and
have no obvious counterpart in the spectra of free atoms.

Other wave-like excitations of the crystal are delocalized in the same
way as the electrons. In the case of the lattice vibrations, the delocal-
ized excitations are described by the phonon modes. We have already
mentioned above that the phonon frequencies are continuous, which con-
trasts with the discrete vibrational frequencies of molecules. Some opti-
cal effects related to phonons have direct analogies with the vibrational
phenomena observed in isolated molecules, but others are peculiar to the
solid state. Examples of the former are Raman scattering and infrared
absorption. Examples of the latter include the phonon-assisted interband
transitions in semiconductors with indirect band gaps (cf. Section 3.4),
and the broadening of the discrete levels of impurity atoms into con-
tinuous vibronic bands by interactions with phonons as discussed in
Chapter 9.

The delocalized states of a crystal are described by quantum numbers
such as k and q which have the dimensions of inverse length. These quan-
tum numbers follow from the translational invariance, and are therefore
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a fundamental manifestation of the crystal symmetry. To all intents and
purposes, k and q behave like the wave vectors of the excitations, and
they will be treated as such whenever we encounter them in derivations.
However, it should be borne in mind that this is really a consequence of
the deep underlying symmetry which is unique to the solid state.

1.6 Microscopic models

In the following chapters we shall be developing many microscopic mod-
els to explain the optical phenomena that are observed in the solid state.
The types of models will obviously vary considerably, but they can all
be classified into one of the following three general categories:

• Classical

• Semi-classical

• Fully quantum.

These approaches get progressively more difficult, and so we usually
apply them in the order listed above.

In the classical approach we treat both the medium and the light
according to classical physics. The dipole oscillator model described in
Chapter 2 is a typical example. This model is the basic starting point for
understanding the general optical properties of a medium, and in par-
ticular for describing the main effects due to free electrons (Chapter 7)
and phonons (Chapter 10). We shall also use it as a starting point for
the discussion of nonlinear optics in Chapter 11. It would be a mistake
to undervalue the classical approach in this modern day and age. The
value of more sophisticated models will only be appreciated fully once
the classical physics has been properly understood.

In semi-classical models we apply quantum mechanics to the atoms,
but treat the light as a classical electromagnetic wave. The treatment
of interband absorption in Chapter 3 is a typical example. The absorp-
tion coefficient is calculated using Fermi’s golden rule, which requires
knowledge of the wave functions of the quantized levels of the atoms,
but treats the light–matter interaction as that between a quantized atom
and a classical electric field. This semi-classical approach is used exten-
sively throughout the book. Appendix B summarizes the main results
that will be needed.

The final approach is the full quantum treatment. This is the realm
of quantum optics, where both the atoms and the light are treated
quantum mechanically. We use this approach implicitly whenever we re-
fer to the light as a beam of photons and draw Feynman diagrams to
represent the interaction processes that are occurring. This might give
the impression that the explanations we are giving are fully quantum
because we speak in terms of photons interacting with atoms. However,
in the equations used to describe the processes, the light is treated clas-
sically and only the atoms are quantized. The quantitative description
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is therefore only semi-classical. The use of the fully quantum approach
at the quantitative level is beyond the scope of the present book.

Chapter summary

• The propagation of light though a medium is quantified by the
complex refractive index ñ. The real part of ñ determines the ve-
locity of light in the medium, while the imaginary part determines
the absorption coefficient. Beer’s law (eqn 1.4) shows that the in-
tensity of light in an absorbing medium decays exponentially.

• Reflection occurs at the interface between two optical materials
with different refractive indices. The coefficient of reflectivity can
be calculated from the complex refractive index by using eqn 1.29.

• The transmission of a sample is determined by the reflectivities of
the surfaces and the absorption coefficient. If the light is incoherent,
the transmission coefficient of a plate is given by eqn 1.6.

• The complex refractive index is related to the complex dielectric
constant through eqn 1.22. Microscopic models of optical materials
normally calculate ε̃r rather than ñ, and the measurable optical
coefficients are evaluated by working out the real and imaginary
parts of ñ from eqns 1.23–1.28.

• Luminescent materials re-emit light by spontaneous emission after
absorbing photons. The frequency shift between the emission and
absorption is called the Stokes shift.

• Scattering causes an exponential attenuation of the optical beam.
The scattering is called elastic if the frequency is unchanged, and
inelastic otherwise.

• The optical spectra of solid-state materials usually consist of broad
bands rather than sharp lines. The bands arise either from elec-
tronic interactions between neighbouring atoms or from vibronic
coupling to the phonon modes.

• Insulators and glasses have vibrational absorption at infrared wave-
lengths and electronic absorption in the ultraviolet spectral region.
They are transparent and colourless in the visible spectral region
between these two absorption bands. In semiconductors and molec-
ular materials the electronic absorption usually occurs at lower
frequencies in the near infrared or visible spectral region.

• The free carriers present in metals make them highly reflective in
the infrared and visible spectral regions. The colouration of some
metals is caused by electronic interband absorption.
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• The addition of optically active dopants to a colourless host crystal
or glass produces the characteristic colours of coloured glasses and
gemstones.

• Crystals have both translational symmetry and point group sym-
metry. The consequences of the point group symmetry for the op-
tical properties are determined by Neumann’s principle.

Further reading

A good general discussion of the optical properties of ma-
terials can be found in Hecht (2001). A more advanced
treatment may be found in Born and Wolf (1999). The
discussion of the optical properties of different materi-
als given in Section 1.4 will be expanded in subsequent
chapters, where suitable further reading will be suggested.
The exception is the discussion of glasses, which are only
covered briefly elsewhere in this book. A more detailed
discussion of the optical properties of different types of
glass may be found in Krause (2005) or Bach and Neu-

roth (1995).
The relationship between the optical properties and

the complex refractive index and dielectric constant is
discussed in most texts on electromagnetism, for exam-
ple, Bleaney and Bleaney (1976), or Lorrain, Corson, and
Lorrain (2000). This material is also covered in Born and
Wolf (1999).

A classic discussion of the effects of the point group
symmetry on the physical properties of crystals is given
in Nye (1985).

Exercises

(1.1) Crown glass has a refractive index of 1.51 in the
visible spectral region. Calculate the reflectivity of
the air–glass interface, and the transmission of a
typical glass window.

(1.2) Use the data in Table 1.4 to calculate the ratio
of the reflectivities of fused silica and dense flint
glass.

(1.3) The complex dielectric constant of the semicon-
ductor cadmium telluride is given by ε̃r = 8.92 +
i 2.29 at 500 nm. Calculate for CdTe at this wave-
length: the phase velocity of light, the absorption
coefficient and the reflectivity.

(1.4) The detectors used in optical fibre networks op-
erating at 850 nm are usually made from silicon,
which has an absorption coefficient of 1.3×105 m−1

at this wavelength. The detectors have coatings on
the front surface that makes the reflectivity at the
design wavelength negligibly small. Calculate the
thickness of the active region of a photodiode de-
signed to absorb 90% of the light.

(1.5) GaAs has a refractive index of 3.68 and an ab-
sorption coefficient of 1.3 × 106 m−1 at 800 nm.

Calculate the transmission coefficient and optical
density of a GaAs plate of thickness 2�m.

(1.6) Sea water has a refractive index of 1.33 and ab-
sorbs 99.8% of red light of wavelength 700 nm in a
depth of 10m. What is its complex dielectric con-
stant at this wavelength?

(1.7) How would you expect the absorption coefficient
of a yellow colour-glass filter to vary with wave-
length?

(1.8) A beam of light is incident on a parallel-sided plate
of thickness l as shown in Fig. 1.10. We assume
that the plate is ‘thick’, so that l exceeds the co-
herence length of the light and interference effects
do not have to be considered. Let R1 and R2 be
respectively the reflectivities of the front and back
surfaces, and α be the absorption coefficient of the
medium.
(a) By adding the intensities of the beams trans-
mitted after multiple reflections to the intensity
of the beam transmitted after the first pass, show
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that the transmission of the plate is given by:

T =
(1 − R1)(1 − R2) e−αl

1 − R1R2e−2αl
.

(b) Calculate the size of the error introduced
by neglecting multiple reflections (i.e. by using
eqn 1.8 to calculate the transmission) for the fol-
lowing cases:
(i) a silicon plate at a frequency in the trans-
parency region, where n = 3.4 and αl = 0;
(ii) a silicon plate at a frequency just above its
band edge, where n = 3.4 and αl = 1, on the as-
sumption that n � κ;
(iii) a sapphire plate at a frequency in its trans-
parency region, where n = 1.77 and αl = 0.
(c) Discuss the implications of the results of part
(b).

incident

light

reflected

light

transmitted

light

Fig. 1.10 Multiple reflections in a parallel-sided plate.

(1.9) We now repeat Exercise 1.8 for the case where the
coherence length of the light exceeds the thick-
ness, l, of the medium, so that interference effects
are important. For simplicity, we restrict our at-
tention to the case where the reflectivities of the
front and back surfaces are identical, as will be the
case for a solid plate with air at either side. Let n
be the real part of the refractive index and α the
absorption coefficient of the medium.
(a) By considering the interference between the
multiple reflections, as illustrated in Fig. 1.10,
show that the transmission of the plate is given
by:

T =
(1 − R)2 e−αl

1 − 2Re−αl cosΦ + R2e−2αl
,

where R is the reflectivity and Φ = 4πnl/λ is the
round-trip phase shift, λ being the vacuum wave-
length of the light.
(b) Show that the ratio of the reflected intensity

Ir to the incident intensity Ii is given by:

Ir

Ii
=

R(1 − 2e−αl cosΦ + e−2αl)

1 − 2Re−αl cosΦ + R2e−2αl
.

Hint: remember that the amplitude reflection coef-
ficients for air–medium and medium–air reflections
differ by a phase factor of eiπ.
(c) In the limit where α = 0, confirm that the inci-
dent intensity is equal to the sum of the reflected
and transmitted intensities.
(d) What is the transmission of the plate in the
limit where αl � 1?
(e) Discuss the variation of T with the wavelength
when the absorption is negligibly small.

(1.10) A semiconductor platelet with air interfaces on
both sides has a thickness 2�m. The semiconduc-
tor has a refractive index of 3.5 and an absorption
edge at 870 nm. There is no absorption for wave-
lengths above the absorption edge, while for wave-
lengths below the edge the absorption coefficient
is given by (cf. eqn 3.25):

α(�ω) = C(�ω − Eg)
1/2 ,

where �ω is the photon energy, Eg is the pho-
ton energy corresponding to the absorption edge,
and C = 5 × 106 m−1 eV−1/2. On the assumption
that the real part of the refractive index does not
change significantly with the wavelength, use the
results of Exercise 1.9 to draw graphs of the trans-
missivity and reflectivity of the platelet for the
wavelength range 600–1000 nm.

(1.11) Show that, in the incoherent limit, the transmis-
sivity of a transparent plate with refractive index
n is given by:

T =
2n

n2 + 1
.

(1.12) Consider a thin film of a medium with a refractive
index of 2.5 grown on a glass substrate of refractive
index 1.5. Calculate the reflectivities of the air–
medium, medium–glass, and glass–air interfaces.
(Ignore multiple reflections.)

(1.13) Show that the optical density (O.D.) of a thick ab-
sorbing sample is related to its transmission T and
reflectivity R through:

O.D. = − log10(T ) + 2 log10(1 − R) .

Hence explain how you would determine the opti-
cal density by making two transmission measure-
ments, one at wavelength λ where the material
absorbs, and the other at a wavelength λ′ where
the material is transparent.
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(1.14) The complex dielectric constant of a metal at in-
frared frequencies is given by

ε̃r = εr + i
σ

ε0ω
,

where εr is the static relative dielectric constant,
σ is the electrical conductivity, and ω is the an-
gular frequency. (See eqn A.49 in Appendix A
with µr = 1.) Estimate the reflectivity of a silver
mirror at a wavelength of 100�m. Assume that
ε2 � ε1, and that the conductivity of silver is
6.6 × 107 Ω−1m.

(1.15) Estimate the distance over which the light inten-
sity falls by a factor of 2 in a gold film at a wave-
length of 100�m. The electrical conductivity of
gold is 4.9 × 107 Ω−1m. Make the same assump-
tions as in the previous question.

(1.16) The data shown in Fig. 1.5 indicates that the re-
flectivity of silver is close to zero at 320 nm. What
is the approximate value of the complex dielectric
constant at this wavelength?

(1.17) A neodymium laser crystal absorbs photons at
850 nm and luminesces at 1064 nm. The efficiency
of the luminescence process is quantified in terms
of the radiative quantum efficiency ηR, which is
defined as the fraction of the atoms that emit a
photon after absorbing a photon.
(a) Calculate the amount of energy dissipated as

heat in each emission process.
(b) If the total power absorbed at 850 nm is 10W,
calculate the power emitted at 1064 nm if ηR =
100%. How much power is dissipated as heat in
the crystal?
(c) Repeat part (b) for a crystal with ηR = 50%.

(1.18) A photon of wavelength 514 nm is scattered inelas-
tically from an NaCl crystal by exciting a phonon
of frequency 7.92 × 1012 Hz. By applying the law
of conservation of energy to the scattering process,
calculate the wavelength of the scattered photon.

(1.19) A certain optical fibre transmits 10% of the light
coupled into it at 850 nm. Calculate the transmis-
sion of the same fibre at 1550 nm, on the assump-
tion that the dominant loss is Rayleigh scattering
from inhomogeneities in the fibre. Hence explain
why telecommunications companies use a wave-
length of 1550 nm for their long distance optical
fibre networks instead of the wavelength of 850 nm
used for local area networks.

(1.20) Calculate the distance over which the intensity
falls to 50% of its original value in a medium
which contains 1016 m−3 scattering centres with
σs = 2 × 10−17 m2. Calculate the equivalent dis-
tance at half the wavelength, on the assumption
that the Rayleigh scattering law applies.

(1.21) Explain why ice is birefringent, but water is not.
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The propagation of light through an optical medium was discussed in
general terms in Sections 1.1–1.3 of Chapter 1. We saw there that the
propagation is characterized by two parameters, namely the refractive
index and the absorption coefficient. In this chapter we shall investigate
the classical theory of optical propagation, in which the light is treated
as electromagnetic waves and the atoms or molecules are modelled as
classical dipole oscillators. We shall see that this model gives a good
general overview of the optical properties, and enables us to calculate
the frequency dependence of the complex dielectric constant. This gives
us the frequency dependence of the absorption coefficient and refractive
index, and hence enables us to explain the phenomenon of dispersion.
We shall also see that the model provides the framework for describing
the effects due to optical anisotropy such as birefringence.

The treatment given here presupposes a working knowledge of the
electromagnetic properties of dielectrics. A summary of the main results
that we shall use is given in Appendix A. The model will be revisited
in subsequent chapters when we consider the optical properties of free
electrons in Chapter 7, and when we discuss lattice vibrations in Chap-
ter 10. The model is also the starting point for the treatment of nonlinear
optical effects in Chapter 11.

2.1 Propagation of light in a dense optical
medium

The classical model of light propagation was developed at the end of the
nineteenth century following Maxwell’s theory of electromagnetic waves
and the introduction of the concept of the dipole oscillator. In this section
we shall give a qualitative discussion of the physical assumptions of this
model, leaving the quantitative calculations to the next section.

The model assumes that there are several different types of oscillators
within a medium, each with its own characteristic resonant frequency. In
an insulator or semiconductor, the most important contribution at op-
tical frequencies is from the oscillations of the bound electrons within
the atoms, and so we begin this section by considering atomic oscilla-
tors. We then go on to introduce the idea of vibrational oscillators,
which resonate at lower frequencies in the infrared spectral region, and
finally mention free electron oscillators, which are responsible for the
principal optical properties of metals.
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2.1.1 Atomic oscillators

The concept of the dipole oscillator was introduced soon after Maxwell’s
electromagnetic theory. It was shown theoretically that an oscillating
electric dipole would emit electromagnetic waves, and this was confirmed
in 1887 when Heinrich Hertz succeeded in generating and detecting radio
waves in the laboratory. He used an oscillatory discharge across a spark
gap as the source and a wire loop as the aerial of the detector. This
was an elegant confirmation of the validity of Maxwell’s electromagnetic
theory, and the beginning of radio telecommunications.

The idea of considering atoms as oscillating dipoles was originally pro-
posed by Henrick Antoon Lorentz in 1878, thus preceding Hertz’s demon-
stration by several years. It was known that atoms emit and absorb at
discrete frequencies, and Lorentz’s model provided a simple explanation
for these observations in terms of the newly discovered electromagnetic
theories.

Fig. 2.1 Classical model of the bound
electrons in an atom. The electrons are
represented by the open circles, while
the black circle at the centre of the
atom represents the nucleus. The elec-
trons are held to the heavy nucleus by
springs which represent the restoring
forces due to the binding between them.
Each atom has a series of characteris-
tic resonant frequencies which we now
know to correspond with the quantized
transition energies.

The oscillator model of the atom is illustrated schematically in Fig. 2.1.
It is assumed that the electron is held in a stable orbit with respect to the
nucleus, and the spring represents the restoring force for small displace-
ments from the equilibrium. The negatively charged electron and the
positively charged nucleus form an electric dipole with a magnitude pro-
portional to their separation. Lorentz, of course, could not have known
about electrons and nuclei, because they were not discovered until 1897
and 1911 by J.J. Thomson and Ernest Rutherford respectively. Lorentz
simply postulated the existence of dipoles without knowing their origin.

The natural resonant frequency ω0 of the atomic dipoles is determined
by their mass and the magnitude of the restoring force experienced for
small displacements. The appropriate mass is the reduced mass given
by:

1
µ

=
1

m0
+

1
mN

, (2.1)

where m0 and mN are the masses of the electron and nucleus respec-
tively. Since mN � m0, we may safely take µ ≈ m0 here. The restoring
force is quantified in terms of a spring constant Ks, which is chosen so
that ω0 coincides with one of the natural frequencies of the atoms (see
Exercise 2.1):

ω0 =

√
Ks

µ
. (2.2)

We have to suppose that there are several dipoles within every atom, to
account for the fact that a given atom has many transition frequencies.
These are known from the absorption and emission spectra, and the
frequencies occur in the near-infrared, visible, and ultraviolet spectral
regions (1014–1015 Hz).

We can understand the connection between the atomic dipoles and the
emission spectra by considering the oscillations of the dipole shown in
Fig. 2.2. An electric dipole consists of a positive charge +q at position r+

and a negative charge −q at r−. The electric-dipole moment is defined
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Fig. 2.2 Oscillations of a classical
dipole consisting of a heavy positive
charge and a light negative charge
bound together by a spring. x(t) is
the time-dependent displacement of the
negative charge from its equilibrium
position. The natural vibrations of the
dipole about the equilibrium position
at angular frequency ω0 generate a
time-dependent dipole moment p(t) as
indicated in the top part of the figure.
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p = q(r+ − r−) . (2.3)

Hence the positive nucleus and negative electron form a dipole with
magnitude equal to e|rN − re|.

During the oscillations of the atomic dipole, the nucleus remains more
or less stationary due to its heavy mass, while the electron oscillates
backwards and forwards at angular frequency ω0. Hence the oscillations
produce a time-varying dipole in addition to any permanent dipole the
atom might have. The magnitude of the time-varying dipole is given by:

p(t) = −ex(t) , (2.4)

where x(t) is the time-varying displacement of the electron from its equi-
librium position. This connection between the electron displacement and
the time-dependent atomic dipole is illustrated in the top half of Fig. 2.2.
The oscillating dipole behaves like a tiny aerial and radiates electromag-
netic waves at angular frequency ω0, in accordance with the theory of
classical Hertzian dipoles. Hence the atom is expected to radiate light at
its resonant frequency whenever sufficient energy is imparted to excite
the oscillations.

We assume here that the forces exerted
by the electric fields are very small com-
pared to the binding forces that hold
the electrons to the nucleus. This ap-
proximation may not be valid if we are
using a very powerful laser beam to ex-
cite the medium. If this were the case,
then we would be working in the regime
of nonlinear optics. These effects are
considered in Chapter 11.

We can also use the dipole model to understand how the atom interacts
with an external electromagnetic wave at angular frequency ω. The AC
electric field exerts forces on the electron and the nucleus and drives
oscillations of the system at frequency ω. If ω coincides with one of the
natural frequencies of the atom, then we have a resonance phenomenon.
This induces very large amplitude oscillations, and transfers energy from
the external wave to the atom. The atom can therefore absorb energy
from the light wave if ω = ω0. The absorption strength is characterized
by the absorption coefficient α, and the intensity of the wave will decay
exponentially according to Beer’s law (eqn 1.4).
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We now know from quantum theory that what actually happens dur-
ing absorption is that the atom jumps to an excited state by absorbing
a photon. This can only occur if �ω = E2 − E1, where E1 and E2

are the quantized energies of the initial and final states. Once it has
been excited, the atom can return to the ground state by a series of
radiationless transitions, in which case the energy from the absorbed
photon is ultimately converted into heat. Alternatively, it can luminesce
by re-emitting a photon at some later time. The re-radiated photons
are incoherent with each other and are emitted in all directions rather
than in the specific direction of the incoming wave. Hence there is a net
decrease in the energy flow in the beam direction, which is equivalent to
absorption.

If ω does not coincide with any of the resonant frequencies, then the
atoms will not absorb, and the medium will be transparent. In this
situation the light wave drives non-resonant oscillations of the atoms
at its own frequency ω. The oscillations of the atoms follow those of
the driving wave, but with a phase lag. This phase lag is a standard
feature of forced oscillators and is caused by damping. (See Exercise 2.2.)
The oscillating atoms all re-radiate instantaneously, but the phase lag
acquired in the process accumulates through the medium and retards
the propagation of the wave front. This implies that the propagation
velocity is smaller than in free space. The reduction of the velocity in
the medium is characterized by the refractive index defined in eqn 1.2.

The slowing of the wave due to the non-resonant interactions can
be considered as a repeated scattering process. The scattering is both
coherent and elastic, and each atom behaves like a Huygens point source.
The scattered light interferes constructively in the forward direction, and
destructively in all other directions, so that the direction of the beam is
unchanged by the repetitive scattering process. However, each scattering
event introduces a phase lag which causes a slowing of the propagation
of the phase front through the medium.

2.1.2 Vibrational oscillators

+

�

+

�

Fig. 2.3 Classical model of a po-
lar molecule. The atoms are positively
and negatively charged, and can vi-
brate about their equilibrium separa-
tion. These vibrations produce an oscil-
lating electric dipole which will radiate
electromagnetic waves at the resonant
frequency. Alternatively, the molecule
will interact with the electric field � of
a light wave through the forces exerted
on the charged atoms.

An optical medium may contain other types of dipole oscillators in ad-
dition to those originating from the bound electrons within the atoms. If
the medium is ionic, it will contain oppositely charged ions. Vibrations
of these charged atoms from their equilibrium positions within the crys-
tal lattice will produce an oscillating dipole moment, in exactly the same
way as the oscillations of the electrons within the individual atoms that
we considered above. Therefore, we must also consider the optical effects
due to these vibrational oscillators when we consider the interaction of
light with an ionic optical medium.

The optical effects of vibrational oscillators are well known in molec-
ular physics. Figure 2.3 gives a schematic illustration of a classical po-
lar molecule. This consists of two charged atoms bound together in a
stable configuration, with the spring representing the molecular bond
between them. The charged atoms can vibrate about their equilibrium
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positions and induce an oscillating electric dipole in an analogous way
to the bound electrons in the atoms. We see immediately from eqn 2.2
that the vibrations will occur at lower frequencies because the reduced
mass is larger. The vibrations therefore occur at infrared frequencies
with ω0/2π ∼ 1012–1013 Hz. These molecular vibrations are associated
with strong absorption lines in the infrared spectral region.

The interaction between the vibrations of the molecule and the light
wave occurs through the forces exerted on the atoms by the electric
field. It is obvious that this can only happen if the atoms inside the
molecule are charged. This is why we specified that the molecule was
polar in the preceding paragraph. A polar molecule is one in which
the charge cloud of the electrons that form the bond sits closer to one
of the atoms than to the other. Ionic molecules like the alkali halides
(e.g. Na+Cl−) clearly fall into this category, while purely covalent ones
such as the elemental molecules (e.g. O2) do not. Many other molecules
fall somewhere between these two limits. Water (H2O) is a well-known
example. Oxygen has a greater electron affinity than hydrogen, and so
the valence electrons in the O–H bond sit closer to the oxygen atoms.
The two hydrogen atoms therefore possess a small positive charge which
is balanced by a negative charge of twice the magnitude on the oxygen
atom.

In a crystalline solid formed from the condensation of polar molecules,
the atoms are arranged in an alternating sequence of positive and neg-
ative ions. The ions can vibrate about their equilibrium positions, and
this produces oscillating dipole waves. These oscillations are associated
with lattice vibrations, and they occur at frequencies in the infrared
spectral region. We shall consider the optical properties related to the
lattice vibrations in detail in Chapter 10. We shall see there that the
light–matter interaction is associated with the excitation of phonons,
which are quantized lattice waves. At this stage, we simply note that
the lattice vibrations of a polar crystal give rise to strong optical effects
in the infrared spectral region. These effects occur in addition to those
due to the bound electrons of the atoms that comprise the crystal. In
practice we can treat these two types of dipoles separately because the
resonances occur at very different frequencies. Therefore the resonant
effects of the bound electrons are negligible at the frequencies of the
lattice vibrations, and vice versa. This point will be considered in more
detail in Section 2.2.2.

2.1.3 Free electron oscillators

The electronic and vibrational dipoles considered above are both exam-
ples of bound oscillators. Metals and doped semiconductors, by contrast,
contain significant numbers of free electrons. As the name implies,
these are electrons that are not bound to any atoms, and therefore do
not experience any restoring forces when they are displaced. This implies
that the spring constant in eqn 2.2 is zero, and hence that the natural
resonant frequency ω0 = 0.
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The free electron model of metals is attributed to Paul Drude, and
so the application of the dipole oscillator model to free electron systems
is generally called the Drude–Lorentz model. The dipole oscillator
model is perfectly valid, except that we must set ω0 = 0 throughout. The
optical properties of free electron systems will be discussed in Chapter 7.

2.2 The dipole oscillator model

In the previous section we introduced the general assumptions of the
dipole oscillator model. We now want to use the model to calculate the
frequency dependence of the refractive index and absorption coefficient.
This will provide a simple explanation for the dispersion of the refrac-
tive index in optical materials. It will also illustrate the general point,
which will be developed further in Section 2.3, that the phenomena of
absorption and refraction are related to each other.

2.2.1 The Lorentz oscillator

We know from experimental observa-
tions that atoms must have many nat-
ural resonant frequencies to account
for the multiplicity of lines in the ab-
sorption and emission spectra. How-
ever, the salient features of the physi-
cal behaviour are well illustrated by a
singly resonant system, and the inclu-
sion of multiple resonances complicates
the discussion without adding much
to the physical understanding at this
stage. We therefore postpone the dis-
cussion of the effects of multiple reso-
nances to Section 2.2.2.

We consider the interaction between a light wave and an atom with a
single resonant frequency ω0 due to the bound electrons, as given by
eqn 2.2. We model the displacement of the atomic dipoles as damped
harmonic oscillators. The inclusion of damping is a consequence of the
fact that the oscillating dipoles can lose their energy by collisional pro-
cesses. In solids, this would typically occur through an interaction with
a phonon which has been thermally excited in the crystal. As we shall
see, the damping term has the effect of reducing the peak absorption
coefficient and broadening the absorption line.

The electric field of the light wave induces forced oscillations of the
atomic dipole through the driving forces exerted on the electrons. We
make the reasonable assumption that the nuclear mass is much greater
than the electron mass (i.e. mN � m0), so that we can ignore the motion
of the nucleus. The displacement x of the electron is governed by an
equation of motion of the form:

m0
d2x

dt2
+ m0γ

dx

dt
+ m0ω

2
0x = −eE , (2.5)

where γ is the damping rate, e is the magnitude of the electric charge of
the electron, and E is the electric field of the light wave. The terms on the
left-hand side represent the acceleration, the damping and the restoring
force respectively. The damping is modelled by a frictional force which
is proportional to the velocity and impedes the motion. The term on the
right-hand side represents the driving force due to the AC electric field
of the light wave.

In some conventions, the time depen-

dence is written as ejωt instead of e−iωt.
This makes no physical difference. Con-
sistency can be obtained by replacing
−i with +j throughout.

We consider the interaction of the atom with a monochromatic light
wave of angular frequency ω. The time dependence of the electric field
is given by

E(t) = E0 cos(ωt + Φ) = E0 �e
(
e−i(ωt+Φ)

)
, (2.6)
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where E0 is the amplitude and Φ is the phase of the light. In order
to keep consistency with the sign convention introduced later, we have
chosen to take the negative frequency part of the complex exponential.

The AC electric field will drive oscillations at its own frequency ω. We
therefore substitute eqn 2.6 into eqn 2.5 and look for solutions of the
form:

Note that the phase factors Φ and Φ′ in
eqns 2.6 and 2.7 are not necessarily the
same. In fact, the phase of the electrons
will tend to lag behind the phase of the
light. This is a well known property of
forced oscillations: the vibrations occur
at the same frequency as the driving
force but lag behind due to the damping
term. This phase lag is the origin of the
slowing down of the light in the opti-
cal medium, and hence of the refractive
index, as discussed above in Section 2.1

x(t) = X0 �e
(
e−i(ωt+Φ′)

)
, (2.7)

where X0 and Φ′ are the amplitude and phase of the oscillations. We can
incorporate the phase factors of eqns 2.6 and 2.7 into the amplitudes by
allowing both E0 and X0 to be complex numbers. We then substitute
E(t) = E0e−iωt into eqn 2.5, and look for solutions of the form x(t) =
X0e−iωt. This gives:

−m0ω
2X0e−iωt − im0γωX0e−iωt + m0ω

2
0X0e−iωt = −eE0e−iωt , (2.8)

which implies that:

X0 =
−eE0/m0

ω2
0 − ω2 − iγω

. (2.9)

The displacement of the electrons from their equilibrium positions pro-
duces a time-varying dipole moment p(t), as shown in Fig. 2.2. The
magnitude of the dipole is given by eqn 2.4. This gives a resonant con-
tribution to the macroscopic polarization (dipole moment per unit vol-
ume) of the medium. If N is the number of atoms per unit volume, the
resonant polarization is given by:

Presonant = Np

= −Nex

=
Ne2

m0

1
(ω2

0 − ω2 − iγω)
E .

(2.10)

A quick inspection of eqn 2.10 shows that the magnitude of Presonant is
small unless the frequency is close to ω0. This is another general property
of forced oscillations: the response is small unless the frequency is close
to resonance with the natural frequency of the oscillator.

Equation 2.10 can be used to obtain the complex relative dielectric
constant εr. The electric displacement D of the medium is related to the
electric field E and polarization P through:

D = ε0E + P , (2.11)

where the bold font indicates vector quantities (see eqn A.2 in Appendix
A). We are interested in the optical response at frequencies close to ω0,
and so we split the polarization into a non-resonant background term
and the resonant term arising from the driven response of the oscillator.
We therefore write:

The electric susceptibility χ in eqn 2.12
accounts for all other contributions to
the polarizability of the atoms. We
shall discuss the physical meaning of
the ‘non-resonant polarization’ in Sec-
tion 2.2.2 below.

D = ε0E + P background + P resonant

= ε0E + ε0χE + P resonant.
(2.12)
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To simplify the mathematics, we assume that the material is isotropic,
in which case the relative dielectric constant is defined through the re-
lationship:

D = ε0εrE . (2.13)

We then combine eqns 2.10–2.13 to obtain: The treatment of non-isotropic materi-
als only introduces unnecessary compli-
cations at this stage, and so the consid-
eration of anisotropy will be postponed
to Section 2.5.1.

εr(ω) = 1 + χ +
Ne2

ε0m0

1
(ω2

0 − ω2 − iγω)
. (2.14)

This can be spilt into its real and imaginary parts according to eqn 1.21
to give:

ε1(ω) = 1 + χ +
Ne2

ε0m0

ω2
0 − ω2

(ω2
0 − ω2)2 + (γω)2

(2.15)

ε2(ω) =
Ne2

ε0m0

γω

(ω2
0 − ω2)2 + (γω)2

. (2.16)

These formulae can be simplified further if we are working at frequencies
close to resonance, where ω ≈ ω0 � γ. This allows us to approximate
(ω2

0 −ω2) by 2ω0∆ω, where ∆ω = (ω−ω0) is the detuning from ω0. We
then notice that the low and high frequency limits of εr(ω) are given by

εr(0) ≡ εst = 1 + χ +
Ne2

ε0m0ω2
0

, (2.17)

and
εr(∞) ≡ ε∞ = 1 + χ , (2.18)

respectively. The subscript on εst stands for ‘static’, since it represents
the dielectric response to static (i.e. low-frequency) electric fields. With
this notation we find that:

(εst − ε∞) =
Ne2

ε0m0ω
2
0

. (2.19)

We finally rewrite eqns 2.15 and 2.16 in the following form valid at
frequencies close to resonance:

ε1(∆ω) = ε∞ − (εst − ε∞)
2ω0∆ω

4(∆ω)2 + γ2
, (2.20)

ε2(∆ω) = (εst − ε∞)
γω0

4(∆ω)2 + γ2
. (2.21)

These equations describe a sharp atomic absorption line centred at ω0

with full width at half maximum equal to γ.
Figure 2.4 shows the frequency dependence of ε1 and ε2 predicted by

eqns 2.20–2.21 for an oscillator with ω0 = 1014 rad/s, γ = 5 × 1012 s−1,
εst = 12.1 and ε∞ = 10. We see that ε2 is a strongly peaked function
of ω with a maximum value at ω0 and a full width at half maximum
equal to γ. The frequency dependence of ε1 is more complicated. As
we approach ω0 from below, ε1 gradually rises from the low-frequency
value of εst, and reaches a peak at ω0−γ/2. (See Example 2.1 below.) It
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Fig. 2.4 Frequency dependence of the real and imaginary parts of the complex dielectric constant of a dipole oscillator at

frequencies close to resonance. The graphs are calculated for an oscillator with ω0 = 1014 rad/s, γ = 5 × 1012 s−1, εst = 12.1,0
and ε∞ = 10. Also shown is the real and imaginary part of the refractive index calculated from the dielectric constant.

then falls sharply, passing through a minimum at ω0 + γ/2 before rising
again to the high-frequency limit of ε∞. Note that the frequency scale
over which these effects occur is determined by γ for both ε1 and ε2.
This shows that the damping of the oscillator causes line broadening.
The frequency dependence determined of ε1 and ε2 shown in Fig. 2.4 is
called Lorentzian after the originator of the dipole model.

In an experiment we actually measure the refractive index n and the
absorption coefficient α. The measurement of α then determines the
extinction coefficient κ through eqn 1.19. Figure 2.4 shows the values of
n and κ calculated from ε1 and ε2 using eqns 1.25 and 1.26. We see that
n approximately follows the frequency dependence of

√
ε1(ω), while κ

more or less follows ε2(ω). The correspondence n ↔ √
ε1 and κ ↔ ε2

would be exact if κ were much smaller than n (cf. eqns 1.27 and 1.28).
This is what generally happens in gases in which the low density of atoms
makes the total absorption small. In the example shown in Fig. 2.4,
the correspondence is only approximate because the absorption is very
strong near ω0, so that we cannot always assume n � κ. Nevertheless,
the basic behaviour shows that the absorption peaks at a frequency very
close to ω0 and has a width of about γ, while the refractive index shows
positive and negative excursions below and above ω0. This is the typical
behaviour expected of an atomic absorption line.

One important aspect of a resonant Lorentzian dipole is that the effect
on the refractive index occurs over a much larger frequency range than
on the absorption. This point is clearly illustrated in the graphs shown in
Fig. 2.4. The absorption is a strongly-peaked function of ω and falls off
as (∆ω)−2 as we tune away from resonance. Thus there is no significant
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absorption if we tune sufficiently far from resonance. On the other hand,
the frequency dependence of the refractive index varies more slowly as
|∆ω|−1 for large |∆ω|. This follows from eqn 2.20 with the approximation
n =

√
ε1, which is valid for large |∆ω| when ε2 is very small. This means

that there can still be a significant contribution to the refractive index
even when the light frequency is far from resonance with the absorption
frequency.

Example 2.1

The full width at half maximum of an atomic absorption line at 589.0 nm
is 100MHz. A beam of light passes through a gas with an atomic density
of 1 × 1017 m−3. Calculate:
(a) The peak absorption coefficient due to this absorption line.
(b) The frequency at which the resonant contribution to the refractive
index is at a maximum.
(c) The peak value of the resonant contribution to the refractive index.

Solution
(a) We are dealing with a gas with a low density of atoms, and so the
approximations given in eqns 1.27 and 1.28 will be valid. This means that
the absorption will directly follow the frequency dependence of ε2(ω),
and the peak absorption will occur precisely at the line centre. The
peak extinction coefficient can be worked out from eqns 2.16 and 1.28.
This gives:

κ(ω0) =
ε2(ω0)

2n
=

Ne2

2nε0m0

1
γω0

.

We do not know what n is, but because we are dealing with a gas, it
will only be very slightly different from unity. This point is confirmed in
part (c) of the example. We therefore take n = 1 here, and insert N =
1 × 1017 m−3, γ = 2π × 108 s−1 and ω0 = 2πc/λ = 3.20 × 1015 rad/s, to
find that κ(ω0) = 7.90×10−5. This confirms that n � κ, and hence that
it is valid to use eqn 1.28. We then work out the absorption coefficient
from eqn 1.19, which gives:

The wavelength and linewidth of the
transition considered in this example
correspond to the strongest hyperfine
component of the sodium D2 line. The
true absorption coefficient of this tran-
sition is smaller than the value calcu-
lated here by about a factor of 3. This
discrepancy occurs because we are er-
roneously assuming that the oscillator
strength of the transition is equal to
unity, which it is not. The concept of
the oscillator strength is introduced in
Section 2.2.2.

αmax ≡ α(ω0) =
4πκ(ω0)

λ
= 1.7 × 103 m−1 .

(b) We know from Fig. 2.4 that there will be a peak in the refractive
index just below ω0. Equation 1.27 tells us that n(ω) =

√
ε1(ω), and

hence that the local maximum of n will occur at the same frequency as
the maximum in ε1. Since the peak occurs near ω0, it will be valid to
use eqn 2.20. The local maximum occurs when:

dε1(ω)
dω

≡ dε1(∆ω)
d∆ω

∝ 4(∆ω)2 − γ2

[4(∆ω)2 + γ2]2
= 0 .
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Fig. 2.5 Absorption coefficient and re-
fractive index of the atomic gas consid-
ered in Example 2.1. n0 represents the
off-resonant refractive index, which is
approximately equal to unity.
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This gives ∆ω = ±γ/2. We see from Fig. 2.4 that ∆ω = −γ/2 cor-
responds to the local maximum, while ∆ω = +γ/2 corresponds to the
local minimum. Therefore the peak in the refractive index occurs 50 MHz
below the line centre.

(c) From part (b) we know that the local maximum in the refractive
index occurs when ∆ω = −γ/2. We see from eqns 1.27 and 2.20 that
the refractive index at this frequency is given by:

nmax =
√

ε1 =
(

ε∞ +
Ne2

2ε0m0ω0γ

)1/2

= n0

(
1 +

7.90 × 10−5

n2
0

)1/2

,

where n0 =
√

ε∞ is the off-resonant refractive index. We are dealing
with a low-density gas, and so it is justified to take n0 ≈ 1 here. This
implies that the peak value of the resonant contribution to the refractive
index is 3.95 × 10−5.

The full frequency dependence of the absorption and refractive index
near this absorption line is plotted in Fig. 2.5.

2.2.2 Multiple resonances

In general, an optical medium will have many characteristic resonant fre-
quencies. We already discussed in Section 2.1 how we expect to observe
separate resonances due to the lattice vibrations and to the oscillations of
the bound electrons within the atoms. Furthermore, a particular medium
may have many resonances of each type. We can treat these multiple res-
onances without difficulty in our model provided they occur at distinct
frequencies.
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In writing eqn 2.12 we split the polarization of the medium into a
resonant part and a non-resonant part. We then discussed the resonant
part in detail, without specifying very accurately what we meant by the
‘non-resonant’ term. We simply stated that P was proportional to E
through the susceptibility χ. In reality, the non-resonant polarization
of the medium must originate from the polarizability of the atoms in
exactly the same way as the resonant part. Equation 2.19 tells us that the
dielectric constant decreases each time we go through an absorption line.
The contributions that enter the background electric susceptibility χ in
eqn 2.12 thus arise from the polarization due to all the other oscillators
at higher frequencies.

We can understand this point better by making it more quantitative.
The contribution to the polarization of a particular oscillator is given
by eqn 2.10. In a medium with many electronic oscillators of different
frequencies, the total polarization will therefore be given by

P =


Ne2

m0

∑
j

1(
ω2

j − ω2 − iγjω
)

E , (2.22)

where ωj and γj are the angular frequency and damping coefficient of
a particular resonance line. We then substitute this into eqn 2.11, and
recall the definition of εr given in eqn 2.13, to obtain:

εr(ω) = 1 +
Ne2

ε0m0

∑
j

1(
ω2

j − ω2 − iγjω
) . (2.23)

This equation takes account of all the transitions in the medium and
can be used to calculate the full frequency dependence of the dielectric
constant.

The refractive index and absorption coefficient calculated from eqn 2.23
are plotted against frequency in Fig. 2.6. The figure has been calculated
for a hypothetical solid with three well-separated resonances with ωj

equal to 4 × 1013 rad/s, 4 × 1015 rad/s, and 1 × 1017 rad/s respectively.
The width of each absorption line has been set to 10% of the centre fre-
quency by appropriate choice of the damping coefficient. The resonance
in the infrared is included to represent the vibrational absorption. In a
real solid, we would have to adapt the model appropriately to account
for the different reduced mass and effective charge of the vibrational
oscillator.

We can understand this figure by starting at the highest frequencies
and gradually working our way down to the lower frequencies. At the
very highest frequencies, the electrons are too sluggish to respond to
the driving field. The medium therefore has no polarization, and the
dielectric constant is unity. As we reduce the frequency, we first run into
the transitions of the inner electrons in the X-ray/vacuum-ultraviolet
spectral region, and then the transitions of the outer electrons in the
ultraviolet and visible. We then have a region with no transitions until
we finally reach the vibrational frequencies in the infrared. Each time we
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Fig. 2.6 Schematic diagram of the fre-
quency dependence of the refractive in-
dex and absorption of a hypothetical
solid from the infrared to the X-ray
spectral region. The solid is assumed
to have three resonant frequencies with
ωj = 4×1013 rad/s, 4×1015 rad/s, and
1 × 1017 rad/s respectively. The width
of each absorption line has been set to
10% of the centre frequency by appro-
priate choice of γj .
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go through one of these resonances, we see the characteristic frequency
dependence of the Lorentz oscillator, with a peak in the absorption spec-
trum and a ‘wiggle’ in the refractive index. In between the resonances
the medium is transparent: the absorption coefficient is zero and the
refractive index is almost constant.

The value of the refractive index in the transparent regions gradually
increases as we go through more and more resonance lines on decreasing
the frequency. This increase of the refractive index is caused by the
fact that εst > ε∞ (cf. eqn 2.19), which implies that n is larger below
an absorption line than above it. By reference to Fig. 2.6, we now see
that we have to understand ‘static’ and ‘∞’ as relative to a particular
resonance. The variation of n with frequency due to the resonances is
the origin of the dispersion found in optical materials even when they
are transparent. This point will be discussed further in Section 2.4.An astute reader will have noticed that

the peak absorption coefficient for the
three transition lines shown in Fig. 2.6
decreases slightly with decreasing fre-
quency. This happens because n is
larger at the lower frequencies. The
transitions all have the same peak ε2,
but we can see from eqn 1.24 that κ
must be slightly smaller if n is larger.

The dipole oscillator model predicts that each oscillator contributes a
term given by eqn 2.10. This leads to a series of absorption lines of the
same strength. However, experimental data shows that the absorption
strength actually varies considerably between different atomic transi-
tions. With the benefit of hindsight, we know that this is caused by the
variation of the quantum mechanical transition probability. (See Ap-
pendix B.) In classical physics, however, there is no explanation, and we
just assign a phenomenological oscillator strength fj to each transi-
tion, rewriting eqn 2.23 as:

εr(ω) = 1 +
Ne2

ε0m0

∑
j

fj(
ω2

0j − ω2 − iγjω
) . (2.24)
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Fig. 2.7 (a) Refractive index and
(b) extinction coefficient of fused silica
(SiO2) glass from the infrared to the x-
ray spectral region. After Palik (1985).

It can be shown from quantum mechanics that we must have
∑

j fj = 1
for each electron. Since the classical model predicts fj = 1 for each
oscillator, we then interpret this by saying that a particular electron
is involved in several transitions at the same time, and the absorption
strength is being divided between these transitions.

2.2.3 Comparison with experimental data

The schematic behaviour shown in Fig. 2.6 can be compared to experi-
mental data on a typical optical material. Figure 2.7 shows the frequency
dependence of the refractive index and extinction coefficient of fused sil-
ica (SiO2) glass from the infrared to the X-ray spectral region. The
general characteristics indicated by Fig. 2.6 are clearly observed, with
strong absorption in the infrared and ultraviolet, and a broad region of
low absorption in between. The data confirms that n � κ except near
the peaks of the absorption. This means that the approximation whereby
we associate the frequency dependence of n with that of ε1, and that of
κ with ε2 (eqns 1.27 and 1.28), is valid at most frequencies.

The general behaviour shown in Fig. 2.7 is typical of optical materials
which are transparent in the visible spectral region. We already noted
in Sections 1.4.1 and 1.4.2 that the transmission range of colourless ma-
terials is determined by the electronic absorption in the ultraviolet and
the vibrational absorption in the infrared. This is demonstrated by the
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transmission data for sapphire shown in Fig. 1.4(a).
Fused silica is a glass, and hence does not have a regular crystal lattice.

The infrared absorption is therefore caused by excitation of vibrational
quanta in the SiO2 molecules themselves. Two distinct peaks are ob-
served at 1.4×1013 Hz (21 µm) and 3.3×1013 Hz (9.1 µm) respectively.
These correspond to different vibrational modes of the molecule. The de-
tailed modelling of these absorption bands by the oscillator model will
be discussed in Chapter 10.

The ultraviolet absorption in silica is caused by interband electronic
transitions. SiO2 has a fundamental band gap of about 10 eV, and in-
terband transitions are possible whenever the photon energy exceeds
this value. Hence we observe an absorption threshold in the ultravio-
let at 2 × 1015 Hz (150 nm). The interband absorption peaks at around
3× 1015 Hz with an extremely high absorption coefficient of ∼ 108 m−1,
and then gradually falls off to higher frequency. Subsidiary peaks are
observed at ∼ 3× 1016 Hz and 1.3× 1017 Hz. These are caused by tran-
sitions of the inner core electrons of the silicon and oxygen atoms. The
fact that the electronic absorption consists of a continuous band rather
than a discrete line makes it hard to model accurately as a Lorentz oscil-
lator. We shall discuss the quantum theory of the interband absorption
in Chapter 3.

The refractive index of glass has resonances in the infrared and the
ultraviolet which correspond respectively to the vibrational and inter-
band absorption bands. In the far infrared region below the vibrational
resonance, the refractive index is ∼ 2, while in the hard ultraviolet and
X-ray region it approaches unity. In the transparency region between the
vibrational and interband absorption, the refractive index has a value of
∼ 1.5. Closer inspection of Fig. 2.7 shows that the refractive index ac-
tually increases with frequency in this transparency region, rising from
a value of 1.40 at 8× 1013 Hz (3.5 µm) to 1.55 at 1.5× 1015 Hz (200 nm).
This dispersion originates from the low-frequency wings of the ultravio-
let absorption and the high-frequency wings of the infrared absorption,
and will be discussed in more detail in Section 2.4.

The data in Fig. 2.7 show that the refractive index falls below unity at
a number of frequencies. This implies that the phase velocity of the light
is greater than c, which might seem to imply a contradiction with rela-
tivity. However, this overlooks the fact that a signal must be transmitted
as a wave packet rather than as a monochromatic wave. In a dispersive
medium, a wave packet will propagate at the group velocity vg given
by:

vg =
dω

dk
, (2.25)

rather than at the phase velocity v = ω/k = c/n. The relationship
between vg and v is:

It is apparent from Fig. 2.6 that dn/dω
will be negative at some frequencies
close to a resonance line. Equation 2.26
then implies that vg > v, and so we
could again run into a problem with rel-
ativity. However, the medium is highly
absorbing in these frequency regions,
and this means that the signal travels
with yet another velocity called the sig-
nal velocity. This is always less than c.

vg = v

(
1 +

ω

n

dn

dω

)−1

= v

(
1 − λ

n

dn

dλ

)−1

, (2.26)

where λ is the vacuum wavelength of the light. The derivation of this
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result is left as an exercise to the reader. (See Exercise 2.7.) We shall
see in Section 2.4 that dn/dω is positive in most materials at optical
frequencies. This then implies that vg is always less than v, and if we
were to try to transmit a signal in a spectral region where v > c, we
would always find that vg is less than c. The proof of this for a simple
Lorentz oscillator is considered in Exercise 2.8.

2.2.4 Local field corrections

The calculation of the dielectric constant given in eqn 2.24 is valid in
a rarefied gas with a low density of atoms. However, in a dense optical
medium such as a solid, there is another factor that we must consider.
The individual atomic dipoles respond to the local field that they ex-
perience. This may not necessarily be the same as the external field,
because the dipoles themselves generate electric fields that will be felt
by all the other dipoles. The actual local field experienced by an atom
therefore takes the form:

E local = E + Eother dipoles , (2.27)

where E and Eother dipoles represent the fields due to the external field
and the other dipoles respectively. We should have been using E local

instead of E all along throughout the calculation given in Sections 2.2.1
and 2.2.2.
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Fig. 2.8 Model used to calculate the
local field by the Lorentz correction.
An imaginary spherical surface drawn
around a particular atom divides the
medium into nearby dipoles and dis-
tant dipoles. The field at the centre of
the sphere due to the nearby dipoles
is summed exactly, while the field due
to the distant dipoles is calculated by
treating the material outside the sphere
as a uniformly polarized dielectric.

The calculation of the correction field due to the other dipoles in the
medium is actually a rather complicated one. An approximate solution
due to Lorentz can be derived if we assume that all the dipoles are
parallel to the applied field and are arranged on a cubic lattice. The
calculation works by separating the contribution from the nearby dipoles
and that from the rest of the sample, as indicated in Fig. 2.8. The division
is effected by an imaginary spherical surface with a radius large enough
to make it sensible to average the material outside it. The problem is
then reduced to summing the field of the dipoles inside the sphere at
the one in the middle, and then calculating the effect of a uniformly
polarized dielectric outside the sphere. The final result is:

Eother dipoles =
P

3ε0
, (2.28)

where P is the polarization of the dielectric outside the sphere. The
derivation of this result is the subject of Exercise 2.9. By using the
result of eqn 2.28 in eqn 2.27 we find that:

E local = E +
P

3ε0
. (2.29)

The macroscopic polarization P will be given by

P = Nε0χaE local , (2.30)

where χa is the electric susceptibility per atom. χa is defined by:

p = ε0χaE local , (2.31)

liuhui
Highlight



44 Classical propagation

p being the induced dipole moment per atom. This is analogous to the
usual definition of the macroscopic susceptibility given in eqn A.1, except
that it is now applied to individual atoms interacting with the local field.
We can see from eqn 2.10 that χa is given by

χa =
e2

ε0m0

1
(ω2

0 − ω2 − iγω)
, (2.32)

if there is just a single resonance. This is modified to

χa =
e2

ε0m0

∑
j

fj(
ω2

j − ω2 − iγjω
) , (2.33)

if there are multiple resonances (cf. eqn 2.24).
We can combine eqns 2.29 and 2.30 with eqns 2.11 and 2.13 by writing

P = Nε0χa

(
E +

P

3ε0

)
= (εr − 1)ε0E . (2.34)

We put all this together to find that:

εr − 1
εr + 2

=
Nχa

3
. (2.35)

This result is known as the Clausius–Mossotti relationship. The re-
lationship works well in gases and liquids. It is also valid for those crys-
tals in which the Lorentz correction given in eqn 2.29 gives an accurate
account of the local field effects, namely cubic crystals.

2.3 The Kramers–Kronig relationships

The discussion of the dipole oscillator shows that the refractive index
and the absorption coefficient are not independent parameters but are
related to each other. This is a consequence of the fact that they are
derived from the real and imaginary parts of a single parameter, namely
the complex refractive index. If we invoke the law of causality (that
an effect may not precede its cause) and apply complex number analy-
sis, we can derive general relationships between the real and imaginary
parts of the refractive index. These are known as the Kramers–Kronig
relationships and may be stated as follows:

The derivation of the Kramers–Kronig
relationships may be found, for exam-
ple, in Dressel and Grüner (2002). The
principal part of an integral that has a
divergence at c within the integration
range a → b is defined as:

P

� b

a
f(x) dx =

lim
δ→0

�� c−δ

a
f(x) dx +

� b

c+δ
f(x) dx

�
.

n(ω) − 1 =
2
π

P

∫ ∞

0

ω′κ(ω′)
ω′2 − ω2

dω′ (2.36)

κ(ω) = − 2
πω

P

∫ ∞

0

ω′2[n(ω′) − 1]
ω′2 − ω2

dω′, (2.37)

where P indicates that we take the principal part of the integral.
The Kramers–Kronig relationships allow us to calculate n from κ, and

vice versa. This can be very useful in practice, because it would allow
us, for example, to measure the frequency dependence of the optical
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absorption and then calculate the dispersion without needing to make a
separate measurement of n.

As examples of the way the Kramers–Kronig relationships are used,
we consider here two points raised in Section 1.4 of Chapter 1.

(1) In the discussion of the data in Table 1.2 in Section 1.4.1, we
noted that the refractive index of a semiconductor in its trans-
parency range tends to increase with the band gap wavelength.
Example 2.2 below shows that the refractive index at frequencies
well below an absorption band centred at ω0 has a contribution
that varies as 1/ω0. In the case of a semiconductor, we can put
ω0 ≈ Eg/� = 2πc/λg, which then implies that the refractive index
should increase linearly with λg. Figure 2.9 plots the refractive
index data from Table 1.2 against the band gap wavelength. It
is apparent that the relationship between n and λg is indeed ap-
proximately linear, which confirms the basic point that the higher
frequency absorption in larger band gap materials gives a smaller
contribution to the refractive index through the ω′2 term in the
denominator of eqn 2.36. The fact that the graph does not extrap-
olate to n = 1 at λg = 0 indicates that the narrow absorption band
assumption of Example 2.2 should not be taken too far, and that
there are other contributions to the refractive index that have not
been considered here.
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Fig. 2.9 Refractive index measured at
10�m against band gap wavelength for
several different semiconductors. The
data are taken from Table 1.2.

(2) In the discussion of the data in Table 1.4 in Section 1.4.2, we noted
that the addition of compounds such as PbO to SiO2 glass tends
to reduce the frequency of the fundamental absorption edge and
increase the refractive index in the visible spectral region. We can
explain this by using a very simple model of the glass in which we
assume that the material has an absorption band that runs from
photon energy E1 to E2. If we assume that the absorption has
a constant value of α0 throughout the band, a Kramers–Kronig
analysis shows that the refractive index at a photon energy E
below the absorption edge at E1 is given by (see Exercise 2.12):

n(E) = 1 +
c�α0

2πE
ln

(E2 − E)(E1 + E)
(E2 + E)(E1 − E)

. (2.38)

For pure SiO2, the value of E1 is about 10 eV, which corresponds
to a wavelength of 120 nm. The additives reduce E1, which has the
effect of increasing n through the relatively small (E1 − E) term
in the denominator.

Example 2.2

A solid has a single absorption band of width γ centred at frequency ω0

such that the extinction coefficient may be written in the form:

κ(ω) = κ0 , ω0 − γ/2 ≤ ω ≤ ω0 + γ/2 ,

= 0 otherwise .
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Fig. 2.10 Refractive index of SiO2

glass in the near infrared, visible, and
ultraviolet spectral regions. The thick
arrow indicates the frequency at which
the group velocity dispersion is zero.
After Palik (1985).
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Calculate the refractive index at low frequencies on the assumption that
ω0 � γ.

Solution
We are asked to compute the refractive index at low frequencies, which
means that we can assume ω0 � ω, and therefore put ω = 0 in the
Kramers–Kronig relationships. On substituting into eqn 2.36 and using
the fact that κ(ω) is zero at all frequencies apart from those within the
absorption band, we can write:

n(0) = 1 +
2
π

∫ ω0+γ/2

ω0−γ/2

κ0

ω′ dω′ .

Since ω0 � γ, we can take ω′ = constant = ω0 in the denominator of
the integrand, and then obtain:

n(0) = 1 +
2
π

κ0

ω0
× γ = 1 +

2γκ0

πω0
.

2.4 Dispersion

Figure 2.10 plots the refractive index data from Fig. 2.7 in more detail.
The data show that the refractive index increases with frequency in the
near infrared and visible spectral regions. We have seen in Section 2.2.3
that this dispersion originates mainly from the interband absorption
in the ultraviolet spectral region. At visible frequencies the absorption
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from these transitions is negligible and the glass is transparent. However,
the ultraviolet absorption still affects the refractive index through the
extreme wings of the Lorentzian line. In the near infrared, the dispersion
is also affected by the high-frequency wings of the vibrational absorption
at lower frequency.

The use of the words ‘normal’ and
‘anomalous’ is somewhat misleading
here. The dipole oscillator model shows
us that all materials have anomalous
dispersion at some frequencies. The
phraseology was adopted before mea-
surements of the refractive index had
been made over a wide range of frequen-
cies and the origin of dispersion had
been properly understood.

A material in which the refractive index increases with frequency is
said to have normal dispersion, while one in which the contrary occurs
is said to have anomalous dispersion. A number of empirical formulae
to describe the normal dispersion of glasses have been developed over
the years. (See Exercise 2.13.)

The dispersion of the refractive index of glasses such as silica can be
used to separate different wavelengths of light with a prism, as shown in
Fig. 2.11. The blue light is refracted more because of the higher index of
refraction, and is therefore deviated through a larger angle by the prism.
(See Exercise 2.14.) This effect is used in prism spectrometers.

One of the effects of dispersion is that light of different frequencies
takes a different amount of time to propagate through a material. A pulse
of light of duration tp must necessarily contain a spread of frequencies
given approximately by

∆ν ≈ 1
tp

(2.39)

in order to satisfy the ‘uncertainty principle’ ∆ν∆t ∼ 1. Dispersion will
therefore cause the pulse to broaden in time as it propagates through
the medium, due to the different velocities of the frequency components
of the pulse. This can become a serious problem when attempting to
transmit very short pulses through a long length of an optical material,
for example in a high speed optical fibre telecommunications system.

blue

redwhite

blue

redwhite

Fig. 2.11 Separation of white light into
different colours by dispersion in a glass
prism.

We mentioned in Section 2.2.3 that a pulse of light travels with the
group velocity vg. The important parameter for pulse spreading due to
dispersion is therefore the group velocity dispersion (GVD). It is
shown in Exercise 2.15 that the temporal broadening of a pulse due
to group velocity dispersion is proportional to the second derivative of
the refractive index with respect to the vacuum wavelength, and it is
therefore useful to define a material dispersion parameter as follows:

D = −λ

c

d2n

dλ2
. (2.40)

This is usually quoted in units of ps nm−1 km−1, so that the temporal
broadening ∆τ of a pulse is given by:

∆τ (ps) = |D|∆λ L , (2.41)

where ∆λ is the spectral width of the pulse measured in nm and L is
the length of the medium in km.

The Lorentz model indicates that, within the normal dispersion re-
gion, d2n/dλ2 is negative for frequencies below an absorption line and
positive above it. On applying this to the data in Fig. 2.10, we have a
positive material dispersion parameter in the infrared due to the vibra-
tional absorption and a negative one in the visible due to the interband
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Fig. 2.12 (a) Double refraction in a calcite crystal. The shape of the crystal and the orientation of the optic axis is determined
by the natural cleavage planes of calcite. An unpolarized incident light ray is split into two spatially separated, orthogonally
polarized rays. The • symbol for the o-ray indicates that it is polarized with its field pointing out of the page. (b) An example
of double refraction in a birefringent crystal. The single line underneath the crystal appears double, due to the separation of
the o- and e-rays. Photo courtesy of S. Collins.

absorption in the ultraviolet. These two effects cancel at a wavelength
in the near infrared, when the curvature of the graph of n against ω
changes from negative to positive. This region of zero group velocity
dispersion occurs around 1.3 µm in silica optical fibres, and is identified
in Fig. 2.10. Short pulses can be transmitted down the fibre with very
small temporal broadening at this wavelength, and so it is one of the
preferred wavelengths for optical fibre communication systems.

2.5 Optical anisotropy

For liquids and gases, it is reasonable to assume that the optical proper-
ties are isotropic, i.e. the same in all directions. This will also be the case
for glasses and amorphous materials, which have no preferred physical
axes. However, it will not, in general, be a valid assumption for crystals,
which have well-defined axes arising from their structure. In this section
we shall discuss the effects of anisotropy on optical materials, beginning
with the natural anisotropy found in crystals, and then moving on to
induced anisotropy caused by strain and external fields.

2.5.1 Natural anisotropy: birefringence

The atoms in a solid are locked into a crystalline lattice with well-defined
axes. In general, we cannot assume that the optical properties along the
different crystalline axes are equivalent. For example, the separation of
the atoms might not be the same in all directions. This would lead to
different vibrational frequencies, and hence a change in the refractive in-
dex between the relevant directions. Alternatively, the molecules locked
into the lattice might preferentially absorb certain polarizations of light.

One of the most clear manifestations of optical anisotropy is the
phenomenon of birefringence, which can be observed in transparent,
anisotropic crystals. We can describe the properties of a birefringent
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crystal by generalizing the relationship between the polarization and
the applied electric field. If the electric field is applied along an arbi-
trary direction relative to the crystalline axes, we must write a tensor
equation to relate P to E : Equation 2.42 should be contrasted

with the usual scalar relationship be-
tween � and � namely (cf. eqn A.1):

� = ε0χ� ,

which only applies to isotropic materi-
als.

P = ε0χE (2.42)

where χ represents the susceptibility tensor. Written explicitly in
terms of the components, we have:

Pi = ε0
∑

j

χijEj . (2.43)

This can be conveniently expressed in terms of matrices as:
 Px

Py

Pz


 = ε0


 χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33





 Ex

Ey

Ez


 . (2.44)

We can simplify the form of χ by choosing the Cartesian coordinates x,
y, and z to correspond to the principal axes of the crystal. In this case,
the off-diagonal components are zero, and the susceptibility tensor takes
the form:

χ =


 χ11 0 0

0 χ22 0
0 0 χ33


 . (2.45)

The relationships between the components are determined by the crystal
symmetry.

Crystals with cubic symmetry are only
isotropic as regards their linear opti-
cal properties. We shall see in Chap-
ter 11 that cubic crystals can actu-
ally have anisotropic nonlinear optical
properties. This is possible because the
nonlinear properties are described by

second-rank tensors (e.g. χ
(2)
ijk), rather

than the first-rank tensors (e.g. χij)
used for the linear optical properties.
See Nye (1985) for further details.

• In cubic crystals, the x, y, and z axes are indistinguishable. They
therefore have χ11 = χ22 = χ33, and their optical properties are
isotropic.

• Crystals with tetragonal, hexagonal, or trigonal (rhombohedral)
symmetry are called uniaxial crystals. These crystals possess a
single optic axis, which is usually taken to be the z axis. In
hexagonal crystals, for example, the optic axis is defined by the
direction normal to the plane of the hexagons. The optical prop-
erties are the same along the x and y directions, but not along the
z direction. This implies that χ11 = χ22 �= χ33. Some examples of
uniaxial crystals are listed in Table 2.1.

• Crystals with orthorhombic, monoclinic, or triclinic symmetry are
called biaxial crystals. They have two optic axes, and all three
diagonal components of the susceptibility tensor are different. Mica
is an important example of a biaxial crystal.

One very striking demonstration of birefringence is the phenomenon
of double refraction. In this effect an unpolarized light ray is sepa-
rated into two rays which emerge displaced from each other, as shown in
Fig. 2.12. These two rays are called ‘ordinary’ and ‘extraordinary’, and
are orthogonally polarized to each other. It is apparent from Fig 2.12
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Fig. 2.13 Electric field vector of a ray
propagating in a uniaxial crystal with
its optic axis along the z direction. The
propagation direction is determined by
the direction of the Poynting vector.
The ray makes an angle of θ with re-
spect to the optic axis. The x and y axes
are chosen so that the beam is propa-
gating in the y, z plane. The polariza-
tion can be resolved into: (a) a compo-
nent along the x axis and (b) a compo-
nent at an angle of 90◦ − θ to the optic
axis. (a) is the o-ray and (b) is the e-ray.
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that the e-ray does not obey Snell’s law of refraction, which is why it is
called ‘extraordinary’.

The phenomenon of double refraction can be explained by assuming
that the crystal has different refractive indices for the orthogonal po-
larizations of the ordinary and extraordinary rays. These two refractive
indices are usually labelled no and ne respectively. Consider the prop-
agation of a beam of unpolarized light that enters a uniaxial crystal at
an angle θ to the optic axis, which is taken to lie along the z axis. The
optical properties are isotropic in the x, y plane, and so we can choose
the axes so that the beam is propagating in the y, z plane without loss of
generality, as shown in Fig. 2.13. This allows us to split the polarization
of the light into two orthogonal components, one of which is polarized
along the x axis, and the other polarized at an angle of (90◦ − θ) to
the optic axis. The former is the o(rdinary)-ray, and the latter is the
e(xtraordinary)-ray. Now the refractive index will be different for light
which is polarized along the z axis or in the x, y plane. Therefore the
o-ray, which has no polarization component along the z axis, experiences
a different refractive index to the e-ray, which has a component along
z. The two rays will thus be refracted differently: hence double refrac-
tion. On the other hand, if the beam propagates along the optic axis so
that θ = 0, the E-vector of the light will always fall in the x, y plane.
In this case, no double refraction will be observed because the x and y
directions are equivalent.

Double refraction was first observed in natural uniaxial crystals such
as calcite (‘Iceland Spar’). Table 2.1 lists the refractive indices for the
o- and e-rays of calcite, together with those of several other uniaxial
crystals. The birefringent crystals are classified as being either positive
or negative depending on whether ne is larger or smaller than no.

Uniaxial birefringent crystals find widespread application in mak-
ing optical components to control the polarization state of light. Fig-
ure 2.14 illustrates the operating principle of a Glan–Foucault polar-
izing prism. The polarizer consists of two identical birefringent prisms
mounted with an air gap between them, with their optic axes in the plane
of the front surface. Unpolarized light at the input surface of the prism is
split into the o-ray and e-ray, which are then incident at the intermediate
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Table 2.1 Refractive indices of some common uniaxial crystals at 589.3 nm. Data from
Driscoll & Vaughan (1978).

Crystal Chemical structure Symmetry class Type no ne

Ice H2O trigonal positive 1.309 1.313
Quartz SiO2 trigonal positive 1.544 1.553
Beryl Be3Al2(SiO3)6 hexagonal negative 1.581 1.575
Sodium nitrate NaNO3 trigonal negative 1.584 1.336
Calcite CaCO3 trigonal negative 1.658 1.486
Tourmaline complex silicate trigonal negative 1.669 1.638
Sapphire Al2O3 trigonal negative 1.768 1.760
Zircon ZrSiO4 tetragonal positive 1.923 1.968
Rutile TiO2 tetragonal positive 2.616 2.903

air interface. For the case of positive uniaxial crystals, the apex angle θ
of the prisms is chosen so that the o-ray suffers total internal reflection,
but not the e-ray. (See Exercise 2.17.) The light that emerges at the out-
put of the polarizer therefore only consists of the e-ray, and is linearly
polarized. The Glan–Foucault prism therefore turns unpolarized light
into linearly polarized light. The Glan–Thompson polarizing prism
is a variation of the Glan–Foucault prism, with optical cement in the
gap between the two birefringent prisms. This improves the acceptance
angle of the polarizer (i.e the tolerance to the angle of incidence of the
input beam) at the expense of reducing the optical damage threshold.
This makes the Glan–Thompson prism more useful for general purpose
optics, but less useful when working with high power lasers.

e-rayo-ray

unpolarized

light

�

air gap

optic axis

e-rayo-ray

unpolarized

light

�

air gap

optic axis

Fig. 2.14 Glan–Foucault polarizing
prism. The optic axes of the crystals
point vertically out of the page. In the
case shown here, the crystals are as-
sumed to have positive birefringence.
The role of the o- and e-rays are re-
versed if the crystals have negative bire-
fringence.

Figure 2.15 illustrates another important optical component that ex-
ploits birefringence, namely the retarder plate. The retarder is made
by cutting a uniaxial birefringent crystal so that the optic axis lies in
the plane of the input surface of the plate. Figure 2.15 shows a retarder
plate with a linearly polarized input beam. As the beam propagates
through the crystal, it can be resolved into an o-ray and r-ray, as shown
in Fig. 2.15(b). The two rays experience different refractive indices, and
therefore propagate with different phase velocities. This introduces a rel-
ative phase difference (or ‘retardation’) between the o- and e-rays. The
magnitude ∆φ of the phase difference is given by:

∆φ =
2π|no − ne|d

λ
=

2π|∆n|d
λ

, (2.46)

where d is the thickness of the retarder plate, λ is the vacuum wavelength
of the light, and ∆n is the difference between the ordinary and extraor-
dinary refractive indices. The thickness of the plate is usually chosen so
that ∆φ equals either π/2 or π. For the case of ∆φ = π/2, the phase
difference is equivalent to a quarter of a wave, and so the retarder is
called a quarter-wave plate. For similar reasons, a plate with ∆φ = π
is called a half-wave plate. A quarter-wave plate will turn linearly-
polarized light into circularly-polarized light, and vice versa, while a
half-wave plate will rotate the polarization of linearly polarized light.
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Fig. 2.15 (a) A birefringent optical re-
tarder plate with linear input polariza-
tion. The optic axis of the birefringent
crystal lies in the plane of the input sur-
face. (b) Input surface of the retarder,
showing the resolution of the input po-
larization into the o- and e-rays. θ is
the angle between the input polariza-
tion and the optic axis, and d is the
thickness of the plate.
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(See Exercise 2.18.)
Further discussion of the detailed effects of birefringence may be found

in most optics textbooks. The main purpose of discussing birefringence
here is to illustrate the phenomenon of optical anisotropy and make
the point that it arises from the underlying symmetry of the crystal
structure. This is a very standard example of an optical effect that occurs
in crystalline solids and is not found in gases or liquids.

Example 2.3

The optic axis of a uniaxial crystal lies along the z axis. The refractive
index for light polarized in the z direction is ne, while that for light
polarized in the x, y plane is no. Write down the dielectric constant
tensor defined through the tensor relationship

D = ε0εrE .

Solution
We make use of eqns 2.11 and 2.42 to write:

D = ε0E + P

= ε0E + ε0χE
= ε0 (1 + χ)E ≡ ε0εrE .

(2.47)

Hence we see that:
εr = 1 + χ . (2.48)

The susceptibility tensor is given by eqn 2.45, and hence the dielectric
constant tensor will take the form:

εr =


 1 + χ11 0 0

0 1 + χ22 0
0 0 1 + χ33


 . (2.49)

In a uniaxial crystal with the optic axis along the z direction, we must
have χ11 = χ22 �= χ33.
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We now further assume that the crystal is transparent, so that the
dielectric constant is just equal to the square of the refractive index (cf.
eqns 1.27 and 1.28 with κ = 0). If we had a linearly polarized light beam
with the electric field directed along the x or y directions, we would
measure a refractive index of no. This tells us that

1 + χ11 = 1 + χ22 = n2
o .

On the other hand, if E is along the z axis, we would measure a refractive
index of ne, which implies that

1 + χ33 = n2
e .

Therefore the dielectric constant tensor must be:

εr =


 n2

o 0 0
0 n2

o 0
0 0 n2

e


 . (2.50)

Example 2.4

Calculate the thickness of a quartz half-wave plate designed for a wave-
length of 589 nm.

Solution
The thickness can be calculated by substituting the refractive index data
from Table 2.1 into eqn 2.46. With no = 1.544 and ne = 1.553, we have
|∆n| = 0.009. In a half-wave plate we require ∆φ = π, and so we can
find d by solving:

A quartz plate of thickness 0.033 nm
would be very fragile, and so optical
companies frequently design their wave
plates to have a retardation of (2πm +
∆φ), where m is an integer. This makes
no difference at the design wavelength,
and allows more practical thicknesses to
be used.

∆φ = π =
2π|∆n|d

λ
.

This gives d = λ/2|∆n| = 0.033mm.

2.5.2 Induced optical anisotropy

Isotropic materials such as liquids, gases, and glasses are not birefrin-
gent. However, the application of external perturbations can break the
symmetry, thereby producing birefringence. This gives rise to a range
of induced optical phenomena associated with strain and electric fields.
Note that the application of a magnetic field induces optical activity
rather than birefringence, and so it must be treated differently. (See
Section 2.6 below.)

The most obvious way to break the symmetry of an isotropic medium
is to compress it in one direction. The resulting strain-induced bire-
fringence is called the photo-elastic effect. The effect can readily be
observed by placing a piece of stressed glass between crossed polarizers.



54 Classical propagation

In the absence of strain, the glass should have no effect on the polar-
ization of the light, and so there should be no transmission through the
second polarizer. However, if stress is present, the polarization vector
will be altered, and some light will be transmitted. This method is in
fact used to detect strain in glasses and other isotropic optical materials.

Birefringence can also be induced in an isotropic material by applying
an electric field to break the symmetry. This effect was first discovered
by Kerr in the nineteenth century, and is therefore known as the Kerr
effect. Kerr discovered that an isotropic medium behaves as a uniaxialSince an electromagnetic wave consists

of an oscillating transverse electric field,
a high-intensity light beam can produce
self-induced birefringence through the
Kerr effect. This is an example of a a
nonlinear optical effect, and will be dis-
cussed further in Chapter 11.

crystal when an electric field is applied in the direction transverse to the
light direction. The optic axis is parallel to the field, and the induced
birefringence is given by:

∆n = λKE2 , (2.51)

where λ is the vacuum wavelength, K is the Kerr constant, and E in the
field strength. Since the the birefringence is proportional to the square
of the field, the Kerr effect is alternatively known as the quadratic
electro-optic effect. Table 2.2 lists some representative values of the
Kerr constant.

The quadratic field dependence of the Kerr effect can be understood in
simple terms as follows: the first power of the field breaks the symmetry,
and the second power induces the refractive index change. This contrasts
with the Pockels effect which is observed in anisotropic crystals, where
symmetry breaking is not required. Therefore, a refractive index change
proportional to the field automatically produces induced birefringence,
giving rise to a linear electro-optic effect.

Table 2.2 Kerr constants of repre-
sentative substances. In the case of
oxide glasses, the Kerr constant gen-
erally increases with the PbO con-
tent. Data from Kaye & Laby (1986)
and Hoffmann (1995).

Substance K (mV−2)

Nitrobenzene 4.4 × 10−12

CS2 3.6 × 10−14

Water 5.2 × 10−14

Oxide glass 0.1 − 3 × 10−14

Chalcogenide
glass (As2O3) 8.7 × 10−14

In addition to the different functional dependence on the field strength,
there are a number of other important differences between the linear and
quadratic electro-optic effects.

(1) The Kerr effect can, in principle, be observed in any medium, but
the Pockels effect is only observed in anisotropic crystals that lack
inversion symmetry.

(2) The Kerr effect is only observed with transverse fields, but the
Pockels effect can also be observed with longitudinal fields.

(3) Since no symmetry breaking is required for the Pockels effect, the
fields required to induce a particular value of ∆n are smaller than
for the Kerr effect, so that the Kerr effect is usually negligible in
an anisotropic medium that exhibits the Pockels effect. The Kerr
effect is normally only studied in isotropic media such as liquids,
gases, and glasses, and requires large fields to observe significant
effects. (See Exercise 2.21.)

Further discussion of the linear electro-optic effect and Kerr effect is
postponed to Sections 11.3.4 and 11.4.3 in Chapter 11.
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2.6 Optical chirality

Objects that do not possess reflection symmetry appear reversed when
observed in a mirror. Left- and right-handed gloves are obvious examples,
as are springs, corkscrews and helices. Such objects are said to possess
chirality (i.e. handedness). The fact that an optical medium possesses
chirality implies that its response to left- and right-circular light will be
different. We can therefore quantify optical chirality by the difference
of the refractive indices experienced by left- and right-circular light.
A difference in the real part of the complex refractive index gives rise
to optical activity, while a difference in the imaginary part causes
circular dichroism.

Optical activity is observed in transparent, chiral materials, and causes
the direction of linear polarization to rotate as the light propagates
through the medium. The rotation can be in either direction, which leads The names ‘dextro-rotatory’ and

‘laevo-rotatory’ are derived from the
Latin words dexter and laevus which
mean ‘right’ and ‘left’ respectively.
Dextro-rotatory and laevo-rotatory
materials are alternatively said to
have positive or negative chirality,
respectively.

to a sub-classification of the material as being either dextro-rotatory
or laevo-rotatory, depending on whether the rotation is in a clockwise
or anti-clockwise sense when looking along the beam from the source.
Since optical activity arises from a difference in the refractive index
for circularly polarized light, it is sometimes called circular birefrin-
gence. This should not be confused with the birefringence discussed
in Section 2.5.1, which arises from anisotropy, and is quantified by the
difference in the refractive indices for orthogonal linear polarizations.

The rotation angle θ of the polarization in an optically-active medium
of thickness d is given by (see Exercise 2.22):

θ =
πd

λ
(nR − nL) , (2.52)

where nR (nL) is the refractive index for right- (left-) circular light, and
λ is the vacuum wavelength. A dextro-rotatory medium has nR < nL,
and vice versa for a laevo-rotatory one.

Circular dichroism is observed in absorbing chiral materials. The chi-
rality manifests itself as a difference in the imaginary part of the refrac-
tive index for left- and right-circular light. The word ‘dichroic’ means
‘two-coloured’, and the term dichroism is applied to any optical phe-
nomenon that affects two colours differently. In the case of circular
dichroism, the absorption coefficient is sensitive to the direction to the
circular polarization, which implies that if the absorption bands lie in
the visible spectral region, the colour will be different when viewed with
left- or right-circular light.

Chirality can arise either from the crystalline structure, or from the
molecules that comprise the medium. We concentrate here on the former

The study of the chirality of molecules
is very important in chemistry and bi-
ology. Since the chirality arises from
the molecules themselves, it can be ob-
served even in isotropic media such as
liquids. Sugar solution is a well-known
example, so much so that dextrose and
laevulose (commonly known as fruc-
tose) get their names from their dextro-
rotatory and laevo-rotatory properties
respectively.

effect, of which crystalline quartz (SiO2) is a good example, with both
dextro-rotatory and laevo-rotatory forms existing in nature. Quartz is
a uniaxial birefringent crystal, and the optical activity is best observed
when the light propagates along the optic axis. In this situation, lin-
early polarized light experiences a refractive index of no irrespective of
its orientation, which means that it emerges unaffected in a non-chiral



56 Classical propagation

Table 2.3 Verdet constant of representative substances. Since V varies
with λ, the wavelength of the measurement must be specified. Data
from Kaye & Laby (1986).

Substance Wavelength (nm) V (radian T−1 m−1)

Fused silica (SiO2) 546.1 5.0
Hard crown glass 589.3 5.5
Light flint glass 589.3 9.0
Dense flint glass 589.3 11.2
Rock salt (NaCl) 670.8 7.1
Fluorite (CaF2) 589.3 7.1
Water 589.3 3.8
CS2 589.3 12.2

uniaxial crystal such as calcite. However, since the unit cell of quartz is
chiral, linearly polarized light emerges rotated even when propagating
along the optic axis.

The optical activity of crystalline quartz should be contrasted with
the absence of optical activity in fused silica (SiO2 glass). This shows
that the optical activity arises from the crystal structure rather than the
molecules. The unit cell of quartz belongs to the trigonal crystal class
labelled 32, which has no mirror symmetry, and is therefore chiral. By
contrast, calcite has the 32/m structure, where the ‘m’ symbol implies
mirror symmetry in the unit cell, and therefore a lack of chirality.

Optical chirality can be induced in non-chiral materials by applying
a magnetic field, thereby giving rise to a number of magneto-optical
phenomena. In the case of transparent materials, the field induces optical
activity and the phenomenon is called either the Faraday effect or the
magneto-optical Kerr effect, depending on whether the rotation of
the polarization is observed in transmission or reflection respectively. If
the medium is absorbing, the field can induce circular dichroism, in which
case we have magnetic circular dichroism. All of these magneto-
optical effects ultimately have their origin in the Zeeman effect. (See
Exercise 2.23.)
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Fig. 2.16 The Faraday effect. A mag-
netic field B applied along the axis of
an optical medium induces optical ac-
tivity and causes a rotation of linearly
polarized light by an angle θ.

Figure 2.16 illustrates the Faraday effect. The field is applied along
the axis of an optical material and this causes a rotation of linearly
polarized light. The rotation angle θ is related to the field strength B
by:

θ = V Bd , (2.53)

where V is the Verdet coefficient of the medium and d is its thick-
ness. Table 2.3 lists the values of the Verdet constant for a number
of materials. In general, the Verdet coefficients are small in the visible
spectral region, and decrease strongly as the detuning from the ultravi-
olet absorption bands increases. In practice, this means that substantial
thicknesses have to be used to obtain significant rotations at the field
strengths that are readily available from permanent magnets. (See Ex-
ercise 2.24.)
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Chapter summary

• The classical model of a solid treats the atoms and molecules
as oscillating electric dipoles with characteristic resonant frequen-
cies. The resonances due to the bound electrons occur in the near
infrared, visible, and ultraviolet spectral regions (1014–1015 Hz),
while those associated with vibrations occur in the infrared (1012–
1013 Hz). Free electrons can be treated in the dipole oscillator
model by assuming that the natural resonant frequency is zero.

• The medium absorbs light when the frequency coincides with one
of its resonant frequencies. In non-resonant conditions, the medium
is transparent, but the velocity of light is reduced by the phase lag
due to multiple coherent elastic scattering.

• The absorption coefficient of an individual dipole oscillator has
a Lorentzian line shape (cf. eqn 2.21). The spectral width of the
absorption line is equal to the damping constant γ. The peak ab-
sorption is proportional to 1/γ.

• The refractive index of a dipole oscillator increases as the frequency
approaches the resonant frequency, then drops sharply in the ab-
sorbing region, and then increases again at higher frequencies. The
off-resonant refractive index decreases each time we increase the
frequency through an absorption line.

• The relative dielectric constant of a medium with multiple resonant
frequencies is given by eqn 2.24. The refractive index and absorp-
tion coefficient can be calculated from the real and imaginary parts
of εr.

• The dipole oscillator model demonstrates that the absorption and
refraction of an optical medium are fundamentally related to each
other. This interrelationship is made explicit through the Kramers–
Kronig formulae.

• Dispersion in the refractive index originates from the wings of the
resonances at transition frequencies. The dispersion is called nor-
mal when the refractive index increases with frequency. Group ve-
locity dispersion causes temporal broadening of short pulses.

• Optical anisotropy leads to birefringence. The anisotropy is de-
scribed through the electric susceptibility tensor or the dielectric
constant tensor. Anisotropy can be induced in isotropic media by
strain or electric fields, giving rise respectively to the photo-elastic
and electro-optic effects.

• Structural chirality causes optical activity and circular dichroism.
The chirality can be induced by a magnetic field, which gives rise
to magneto-optical effects.
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Further reading

The subject matter of this chapter is covered, to a greater
or lesser extent, in most electromagnetism and optics
textbooks. See, for example: Bleaney and Bleaney (1976),
Born and Wolf (1999), Hecht (2001), Smith, King, and
Wilkins (2007), or Klein and Furtak (1986).

An excellent collection of optical data on a wide range
of solid-state materials can be found in Palik (1985). A

detailed discussion on the origin of the dispersion in sil-
ica glass and its relationship to ultraviolet and infrared
absorption may be found in Smith et al. (2004).

For a fuller description of birefringence and optical ac-
tivity, see: Hecht (2001), Smith, King, and Wilkins (2007),
Born and Wolf (1999) or Klein and Furtak (1986).

Exercises

(2.1) Write down the equations of motion for the fric-
tionless displacements x1 and x2 of two masses,
m1 and m2, connected together by a light spring
with a spring constant Ks. Hence show that the
angular frequency for small oscillations is equal to
(Ks/µ)1/2 where µ−1 = m−1

1 + m−1
2 .

(2.2) A damped oscillator with mass m, natural angu-
lar frequency ω0, and damping constant γ is be-
ing driven by a force of amplitude F0 and angular
frequency ω. The equation of motion for the dis-
placement x of the oscillator is:

m
d2x

dt2
+ mγ

dx

dt
+ mω2

0x = F0 cos ωt .

What is the phase of x relative to the phase of the
driving force ?

(2.3) A sapphire crystal doped with titanium absorbs
strongly around 500 nm. Calculate the difference
in the refractive index of the doped crystal above
and below the 500 nm absorption band if the den-
sity of absorbing atoms is 1 × 1025 m−3. The re-
fractive index of undoped sapphire is 1.77.

(2.4) The laser crystal Ni2+:MgF2 has a broad absorp-
tion band in the blue which peaks at 405 nm and
has a full width at half maximum of 8.2×1013 Hz.
The oscillator strength of the transition is 9×10−5.
Estimate the maximum absorption coefficient in a
crystal with 2×1026m−3 absorbing atoms per unit
volume. The refractive index of the crystal is 1.39.

(2.5) Show that the absorption coefficient of a Lorentz
oscillator at the line centre does not depend on the
value of ω0.
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Fig. 2.17 Infrared refractive index of NaCl. After Pa-
lik (1985).

(2.6) Figure 2.17 shows the refractive index of NaCl
in the infrared spectral region. The data can be
modelled approximately by assuming that the res-
onance feature is caused by the vibrations of the
completely ionic Na+Cl− molecules. The atomic
weights of sodium and chlorine are 23 and 35.5
respectively. Use the data to estimate:
(a) The static dielectric constant of NaCl.
(b) The natural oscillation frequency of the vibra-
tions.
(c) The restoring force for a unit displacement of
the oscillator.
(d) The density of NaCl molecules per unit vol-
ume.
(e) The damping constant γ for the vibrations.
(f) The peak absorption coefficient.

(2.7) Derive both the relationships between the group
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velocity and the phase velocity given in eqn 2.26.

(2.8)∗Consider a simple Lorentz oscillator with a single
undamped resonance. The dielectric constant will
be given by eqn 2.14 with χ and γ both zero. This
gives:

εr(ω) = 1 +
Ne2

ε0m0

1

(ω2
0 − ω2)

.

Prove that the group velocity is always less than
c.

(2.9)∗Consider a dielectric sample placed in a uniform
electric field pointing in the z direction as shown
in Fig. 2.8. Assume that the atoms are arranged
on a cubic lattice and the dipoles are all pointing
along the external field direction.
(a) Let us first consider the field generated by the
dipoles within the spherical surface. By using the
standard formula for the electric field generated by
an electric dipole, show that the field at the centre
of the sphere is given by

Esphere =
1

4πε0

�

j

pj
3z2

j − r2
j

r5
j

,

where the summation runs over all the dipoles
within the surface except the one at the centre,
and pj is the dipole moment of the atom at the
jth lattice site.
(b) Show that Esphere = 0 in a homogenous
medium where all the values of pj are identical.
(c) Now consider the uniformly polarized dielectric
material outside the spherical hole. Let � be the
macroscopic polarization of the medium, which is
assumed to be parallel to the external field. Show
that the surface charge density on the sphere at an
angle θ from the z axis is equal to −P cos θ. Hence
show that the material outside the spherical sur-
face generates a field at the centre of the sphere
equal to −� /3ε0.

(2.10) Under what conditions does the Clausius–Mossotti
relationship given by eqn 2.35 reduce to the usual
relationship between the dielectric constant and
the electric susceptibility given in eqn A.4?

(2.11) The relative dielectric constant of N2 gas at stan-
dard temperature and pressure is 1.000588. Calcu-
late χa for the N2 molecule. Show that the electric
field strength required to generate a dipole equiv-
alent to displacing the electron by 1 Å (10−10 m)
is of a similar magnitude to the electric field be-
tween a proton and an electron separated by the

same distance.

(2.12) A certain material has a single absorption band
which runs from photon energy E1 to E2. On the
assumption that the absorption coefficient has a
constant value of α0 within the band, and is zero
elsewhere, use the Kramers–Kronig relationship to
show that the refractive index for a photon energy
E below E1 is given by:

n(E) = 1 +
c�α0

2πE
ln

(E2 − E)(E1 + E)

(E2 + E)(E1 − E)
.

(2.13) (a) Sellmeier derived the following equation for the
wavelength dependence of the refractive index in
1871:

n2 = 1 +
�

j

Ajλ
2

�
λ2 − λ2

j

� .

Show that this equation is equivalent to eqn 2.24
in regions of transparency far from any absorption
lines. State the values of Aj and λj .
(b) Assume that the dispersion is dominated by
the closest resonance, so that we only need to in-
clude one term (say the one with j = 1) in the
summation of Sellmeier’s equation. Assume that
λ2

1/λ2 is small, and expand Sellmeier’s equation
to derive the earlier dispersion formula determined
empirically by Cauchy:

n = C1 +
C2

λ2
+

C3

λ4
+ · · ·

State the values of C1, C2, and C3 in terms of A1

and λ1.

(2.14) The refractive index of crown glass is 1.5553 at
402.6 nm and 1.5352 at 706.5 nm.
(a) Determine the coefficients C1 and C2 in
Cauchy’s formula given in the previous exercise,
on the assumption that the term in C3 is negligi-
ble.
(b) Estimate the refractive index for blue light at
450 nm and for red light at 650 nm.
(c) White light strikes a crown glass prism with an
apex angle of 60◦, as shown in Fig. 2.11. The angle
of incidence with the first surface is 45◦. Calcu-
late the difference in the angle between the light
at 450 nm and 650 nm at the exit surface of the
prism.

(2.15) Show that the temporal broadening of a short
pulse by a dispersive medium of length L is given
approximately by:

∆τ = L

����
λ

c

d2n

dλ2

����∆λ ,

∗Exercises marked with an asterisk are more difficult.
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where λ is the vacuum wavelength and ∆λ is the
spectral width of the pulse. Estimate ∆τ for a laser
pulse with a temporal width of 10 ps in 1 km of
optical fibre at 1550 nm, where |(λ/c)d2n/dλ2| =
17ps km−1 nm−1.

(2.16) Consider the propagation of a wave with polariza-
tion vector components (x, y, z), where x2 + y2 +
z2 = 1, in a birefringent medium. The dielectric
constant experienced by the wave is conveniently
described by the index ellipsoid:1

x2

ε11/ε0
+

y2

ε22/ε0
+

z2

ε33/ε0
= 1 ,

where the εij are the components of the dielectric
constant tensor defined in eqn 2.49. Use the index
ellipsoid to show that the refractive index for the
e-ray propagating at an angle θ to the optic axis of
a uniaxial crystal as shown in Fig. 2.13(b) is given
by:

1

n(θ)2
=

sin2 θ

n2
e

+
cos2 θ

n2
o

,

where ne and no are defined in Example 2.3.

(2.17) By using the refractive index data given in Ta-
ble 2.1, calculate the range of apex angles that
will lead to selective total internal reflection of the
o-ray in a Glan–Foucault polarizing prism made
from calcite.

(2.18) (a) Consider a half-wave plate with linearly po-
larized light at the input surface, as shown in
Fig. 2.15. Show that the wave plate rotates the
polarization of the light by an angle 2θ, where θ is
the angle between the input polarization and the
optic axis.
(b) Show that a quarter-wave plate turns a linearly
polarized input beam into circularly-polarized
light, and vice versa, if the angle θ is chosen to
be 45◦.
(c) Describe the output of the quarter-wave plate
when θ �= 45◦.

(2.19) A uniaxial birefringent crystal made from quartz
has no = 1.5443 and ne = 1.5534. A retardation
plate is made by cutting the crystal so that the
optic axis is parallel to the surfaces of the plate,
as shown in Fig. 2.15. Calculate the thickness of
the crystal that must be chosen so that it behaves
as a quarter-wave plate at 500 nm.

(2.20) Look up the crystal structures of the following
materials to determine whether they are birefrin-
gent or not: (a) NaCl, (b) diamond, (c) graphite

(in the infrared, where it transmits), (d) ZnS
(wurtzite structure), (e) ZnS (zinc-blende struc-
ture), (f) solid argon at 4 K, (g) sulphur. Specify
which, if any, of the birefringent materials are bi-
axial.

(2.21) (a) A Kerr cell consists of a Kerr medium with
contacts attached so that an electric field can be
applied. Show that the field strength required to
produce a birefringent phase shift equivalent to
half a wavelength is given by:

Eλ/2 = 1/
√

2Kd ,

where K is the Kerr constant, and d is the length
of the medium.
(b) Calculate the voltage required to produce a
field of Eλ/2 in a Kerr cell of length 2 cm made
from chalcogenide glass with a Kerr constant of
8.7×10−14 mV−2, if the lateral width across which
the voltage is dropped is 5 mm.

(2.22) (a) A transparent chiral medium of thickness d has
a refractive index of nL and nR for left- and right-
circular light respectively for light of vacuum wave-
length λ. By considering linearly-polarized light
as a superposition of left- and right-circular light,
show that the medium rotates the linear polariza-
tion by an angle θ given by

θ =
πd

λ
(nR − nL) .

(b) The value of |nR −nL| for crystalline quartz is
7.1×10−5 at 589 nm. Calculate the rotatory power
of quartz (defined as θ/d) at this wavelength in
units of ◦/mm.

(2.23) Consider an optical medium with a single
Lorentzian resonance line at angular frequency ω0

of width γ. When a magnetic field of strength B
is applied, the transition energy shifts by ±µBB
according to the normal Zeeman effect. For light
propagating parallel to the field, the absorption
frequency increases to ω0 + µBB/� for σ+ circu-
lar polarization, and decreases to ω0 − µBB/� for
σ− polarization. Magneto-optical phenomena can
be explained by considering the difference in the
complex refractive index, (ñ+ − ñ−), for σ+ and
σ− light.
(a) By considering the real part of (ñ+ − ñ−),
sketch the frequency dependence of the Faraday

1The use of the index ellipsoid can be justified by considering the direction of the energy flow through the crystal: see Born
and Wolf (1999).
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rotation.
(b) By considering the imaginary part of (ñ+ −
ñ−), sketch the frequency dependence of the mag-
netic circular dichroism.

(2.24) In an optical isolator, the Faraday effect is used

to rotate the plane of linearly polarized light by
45◦. Given that Verdet coefficient of flint glass
is 9.0 radian T−1 m−1, calculate the thickness of
glass required in an isolator with a permanent
magnet of strength 0.5T.
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We noted in Section 1.4.1 that semiconductors and insulators have a
fundamental absorption edge in the near-infrared, visible, or ultraviolet
spectral regions. The absorption edge is caused by the onset of opti-
cal transitions across the fundamental band gap of the material. This
naturally leads us to investigate the physical processes that occur when
electrons are excited between the bands of a solid by making optical
transitions. This process is called interband absorption, and is the
subject of the present chapter. The opposite process of interband lumi-
nescence, in which electrons drop from excited state bands by emitting
photons, is discussed in Chapter 5.

Interband transitions are observed in all solids. Our objective here
is to understand how the absorption spectrum of a given material is
related to its band structure, and in particular to the density of states
for the transition. We shall postpone the discussion of excitonic effects
on the absorption spectra to Chapter 4, and concentrate on crystalline
semiconductors, which illustrate the main points clearly. The principles
that we shall find can easily be adapted to other materials, as required.
This is done, for example, in Section 7.3.2, where we consider the effects
of interband transitions on the reflectivity spectra of metals.

The understanding of interband absorption is based on applying the
quantum-mechanical treatment of the light–matter interaction to the
band states of solids. This presupposes a working knowledge of both
quantum mechanics and band theory. A summary of the main results
required for the chapter is given in Appendices B and D. The reader is
recommended to refer to the quantum-mechanics and solid-state physics
texts listed in these appendices if any of the material is unfamiliar.

3.1 Interband transitions

The energy-level diagram of isolated atoms consists of a series of states
with discrete energies. Optical transitions between these levels give rise
to sharp lines in the absorption and emission spectra. We have to use
quantum mechanics to calculate the transition energies and the oscillator
strengths. Once we have done this, we can obtain a good understand-
ing of the frequency dependence of the refractive index and absorption
coefficient by applying the classical oscillator model described in the
previous chapter.

The optical transitions of solids are more complicated to deal with.
Some of the properties that apply to the individual atoms carry over, but
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new physics arises as a result of the formation of bands with their delo-
calized states. The classical model has difficulty dealing with continuous
absorption bands rather than discrete lines, and we must develop new
techniques to describe the frequency dependence of the optical proper-
ties. We can only expect the classical oscillator model to work with any
accuracy when the frequency is far away from the absorption transitions
between the bands.

Figure 3.1 shows a highly simplified energy diagram of two separated
bands in a solid. The gap in energy between the bands is called the
band gap Eg. Interband optical transitions will be possible between these
bands if the selection rules allow them. During the transition an electron
jumps from the band at lower energy to the one above it by absorbing a
photon. This can only happen if there is an electron in the initial state
in the lower band. Furthermore, the Pauli exclusion principle demands
that the final state in the upper band must be empty. A typical example
of a situation where this applies is the transitions across the fundamental
band gap of a semiconductor or insulator. In this case, a photon excites
an electron from the filled valence band to the empty conduction band.

Ef

Ei

��Eg

upper band

lower band

Energy

Ef

Ei

��Eg

upper band

lower band

Energy

Fig. 3.1 Interband optical absorption
between an initial state of energy Ei in
an occupied lower band and a final state
at energy Ef in an empty upper band.
The energy difference between the two
bands is Eg.

By applying the law of conservation of energy to the interband tran-
sition shown in Fig. 3.1 we can see that:

Ef = Ei + �ω , (3.1)

where Ei is the energy of the electron in the lower band, Ef is the energy
of the final state in the upper band, and �ω is the photon energy. Since
there is a continuous range of energy states within the upper and lower
bands, the interband transitions will be possible over a continuous range
of frequencies. The range of frequencies is determined by the upper and
lower energy limits of the bands.

It is apparent from Fig. 3.1 that the minimum value of (Ef −Ei) is Eg.
This implies that the absorption shows a threshold behaviour: interband
transitions will not be possible unless �ω > Eg. Interband transitions
therefore give rise to a continuous absorption spectrum from the low
energy threshold at Eg to an upper value set by the extreme limits of
the participating bands. This contrasts with the absorption spectrum of
isolated atoms which consist of discrete lines.

The excitation of the electron leaves the initial state at energy Ei in
the lower band unoccupied. This is equivalent to the creation of a hole
in the initial state. The interband absorption process therefore creates
a hole in the initial state and an electron in the final state, and may be
considered as the creation of an electron-hole pair.

We shall consider the effect of the at-
tractive force between the negative elec-
tron and the positive hole in Chapter 4.
At this stage we shall ignore these ef-
fects and concentrate on investigating
the general features of interband ab-
sorption.

In the sections that follow, we shall study how the interband absorp-
tion rate depends on the band structure of the solid. At this stage we just
make one general distinction based on whether the band gap is direct
or indirect. This point is illustrated in Fig. 3.2. Figure 3.2(a) shows
the E–k diagram of a solid with a direct band gap, while Fig. 3.2(b)
shows the equivalent diagram for an indirect gap material. The distinc-
tion concerns the relative positions of the conduction band minimum
and the valence band maximum in the Brillouin zone. In a direct gap
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Fig. 3.2 Interband transitions in solids:
(a) direct band gap, (b) indirect band
gap. The vertical arrow represents the
photon absorption process, while the
wiggly arrow in part (b) represents the
absorption or emission of a phonon.
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material, both occur at the zone centre where k = 0. In an indirect
gap material, however, the conduction band minimum does not occur at
k = 0, but rather at some other value of k which is usually at the zone
edge or close to it.

The distinction between the nature of the band gap has very impor-
tant consequences for the optical properties. We shall see in Section 3.2
that conservation of momentum implies that the electron wave vector
does not change significantly during a photon absorption process. We
therefore represent photon absorption processes by vertical lines on E–k
diagrams. It is immediately apparent from Fig. 3.2(b) that the electron
wave vector must change significantly in jumping from the valence band
to the bottom of the conduction band if the band gap is indirect. It
is not possible to make this jump by absorption of a photon alone: the
transition must involve a phonon to conserve momentum. This contrasts
with a direct gap material in which the process may take place without
any phonons being involved.

Indirect absorption plays a very significant role in technologically im-
portant materials such as silicon. The treatment of indirect absorption
is more complicated than direct absorption because of the role of the
phonons. We shall therefore begin our discussion of interband transi-
tions by restricting our attention to direct processes. Interband absorp-
tion processes in indirect gap materials will be considered in Section 3.4.

3.2 The transition rate for direct
absorption

The optical absorption coefficient α is determined by the quantum me-
chanical transition rate Wi→f for exciting an electron in an initial quan-
tum state ψi to a final state ψf by absorption of a photon of angular
frequency ω. Our task is therefore to calculate Wi→f , and hence to de-
rive the frequency dependence of α. As discussed in Appendix B, the
transition rate is given by Fermi’s golden rule:

Wi→f =
2π

�
|M |2g(�ω) . (3.2)
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The transition rate thus depends on two factors:

• the matrix element M ,

• the density of states g(�ω).

In the discussion below, we consider the matrix element first, and then
g(�ω) afterwards.

The matrix element describes the effect of the external perturbation
caused by the light wave on the electrons. It is given by: The bracket symbol 〈f|H′|i〉 is an ex-

ample of Dirac notation. The ‘ket’ |i〉
represents the wave function ψi, while
the ‘bra’ 〈f| represents ψ∗

f . The closed
‘bra-cket’ with the perturbation in the
middle indicates that we evaluate the
expectation value written out explicitly
in the second line of eqn 3.3.

M = 〈f|H ′|i〉
=

∫
ψ∗

f (r)H ′(r)ψi(r) d3r,
(3.3)

where H ′ is the perturbation associated with the light wave, and r is
the position vector of the electron. We adopt here the semi-classical
approach in which we treat the electrons quantum mechanically, but the
photons are described by electromagnetic waves.

In classical electromagnetism, the presence of a perturbing electric
field E causes a shift in the energy of a charged particle equal to −p·E,
where p is the electric-dipole moment of the particle. The appropriate
quantum perturbation to describe the electric-dipole interaction between
the light and the electron is therefore:

H ′ = −pe·Ephoton, (3.4)

where pe is the electron dipole moment and is equal to −er. This form
for the perturbation is justified more rigorously in Section B.2 of Ap-
pendix B.

The light wave is described by plane waves of the form: Note that we only need to include the
spatial dependence of the light wave
here. The e−iωt time dependence of
the perturbation has already been in-
cluded in the derivation of Fermi’s
golden rule, and is implicitly contained
in the conservation of energy statement
of eqn 3.1.

Ephoton(r) = E0 eik · r, (3.5)

and the perturbation is thus:

H′(r) = eE0·r eik · r. (3.6)

The electron states in a crystalline solid are described by Bloch func-
tions. This allows us to write the wave functions as a product of a plane
wave and an envelope function that has the periodicity of the crystal
lattice. (See eqns 1.30 and D.7.) We therefore write:

ψi(r) =
1√
V

ui(r) eiki · r (3.7)

ψf(r) =
1√
V

uf(r) eikf · r , (3.8)

where ui and uf are the appropriate envelope functions for the initial and
final bands respectively, and V is the normalization volume. ki and kf are
the wave vectors of the initial and final electron states. On substituting
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the perturbation of eqn 3.6 and the wave functions of eqns 3.7 and 3.8
into eqn 3.3, we obtain:

M =
e

V

∫
u∗

f (r) e−ikf · r
(E0·r eik · r

)
ui(r) eiki · r d3r , (3.9)

where the limits of the integration are over the whole crystal.
The integral in eqn 3.9 can be simplified by two considerations. First,

we invoke conservation of momentum, which demands that the change
in crystal momentum of the electron must equal the momentum of the
photon, that is:

�kf − �ki = �k . (3.10)

This is equivalent to requiring that the phase factor in eqn 3.9 must be
zero. If the phase factor is not zero, the different unit cells within the
crystal will be out of phase with each other and the integral will sum to
zero. Second, we recall that Bloch’s theorem requires that ui and uf are
periodic functions with the same periodicity as the lattice. This implies
that we can separate the integral over the whole crystal into a sum over
identical unit cells, because the unit cells are equivalent and, as we have
seen above, in phase. We thus obtain:We are assuming here that the light is

linearly polarized, and have arbitrarily
chosen the polarization direction as the
x axis. In crystals with cubic symme-
try, the x, y, and z directions are all
equivalent, but this will not be the case
for anisotropic materials. At this stage
we just consider the general princi-
ples, and postpone the consideration of
anisotropy to the discussion of quantum
wells in Chapter 6. Circularly polarized
light is considered in Section 3.3.7.

|M | ∝
∫

unit cell

u∗
i (r)x uf(r) d3r , (3.11)

where we have defined our axes in such a way that the light is polarized
along the x axis. This matrix element represents the electric-dipole mo-
ment of the transition. Its evaluation requires knowledge of the envelope
functions ui and uf . These functions are derived from the atomic orbitals
of the constituent atoms, and so each material has to be considered sep-
arately.

The conservation of momentum condition embodied in eqn 3.10 can
be simplified further by considering the magnitude of the wave vectors of
the electrons and photons. The wave vector of the photon is 2π/λ, where
λ is the wavelength of the light. Optical frequency photons therefore have
k values of about 107 m−1. The wave vectors of the electrons, however,
are much larger. This is because the electron wave vector is related to the
size of the Brillouin zone, which is equal to π/a, where a is the unit cell
dimension. Since a ∼ 10−10 m, the photon wave vector is much smaller
than the size of a Brillouin zone. Therefore we may neglect the photon
momentum in eqn 3.10 in comparison to the electron momentum and
write:

kf = ki . (3.12)

A direct optical transition therefore leads to a negligible change in the
wave vector of the electron. This is why we represent the absorption
processes by vertical arrows in the electron E–k diagrams such as the
ones shown in Fig. 3.2.

The factor of g(�ω) that appears in eqn 3.2 is the joint density of
states evaluated at the photon energy. As explained in Section 1.5.4, the
density of states function describes the distribution of the states within
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the bands. The joint density of states accounts for the fact that both
the initial and final electron states lie within continuous bands.

For electrons within a band, the density of states per unit energy range
g(E) is obtained from:

g(E) dE = 2 g(k) dk , (3.13)

where g(k) is the density of states in momentum space. The extra factor
of 2 here compared to eqn 1.32 allows for the fact that there are two
electron spin states for each k state. This gives:

g(E) =
2g(k)
dE/dk

, (3.14)

where dE/dk is the gradient of the E–k dispersion curve in the band
diagram. g(k) itself is worked out by calculating the number of k states
in the incremental volume between shells in k space of radius k and
k +dk. This is equal to the number of states per unit volume of k space,
namely 1/(2π)3 (see Exercise 3.1), multiplied by the incremental volume
4πk2dk. Hence g(k) is given by the standard formula:

g(k)dk =
1

(2π)3
4πk2dk

⇒ g(k) =
k2

2π2
.

(3.15)

We can then work out g(E) by using eqn 3.14 if we know the rela-
tionship between E and k from the band structure of the material. For
electrons in a parabolic band with effective mass m∗, g(E) is given by
(see Exercise 3.2):

g(E) =
1

2π2

(
2m∗

�2

)3/2

E1/2 . (3.16)

This is just the standard formula for free electrons but with the free
electron mass m0 replaced by m∗.

The joint density of states factor is finally obtained by evaluating g(E)
at Ei and Ef when they are related to �ω through the band energies.
To proceed further, we therefore need detailed knowledge of the band
structure. We shall see how to do this in the case of parabolic bands
in Section 3.3.3, and then use the result to derive the frequency depen-
dence of the absorption near the band edge of a direct gap semiconductor
in Section 3.3.4. The case of non-parabolic bands is considered in Sec-
tion 3.5.

One useful general point can be made at this stage. Since the density
of atoms in a solid is very large, the density of states within a band is
also going to be large. Therefore, the absorption strength for allowed
transitions in a solid will, in general, be much larger than that found in
dilute media such as gases.
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3.3 Band edge absorption in direct gap
semiconductors

The basic process for an optical transition across the fundamental band
gap of a direct gap semiconductor is shown in Fig. 3.2(a). An electron
is excited from the valence band to the conduction band by absorption
of a photon. The transition rate is evaluated by working out the matrix
element and the density of states, as discussed in the preceding section.
These factors are considered separately below.

3.3.1 The atomic physics of the interband
transitions

The matrix element to be evaluated is given in eqn 3.11. This allows
us to calculate the probability for electric-dipole transitions if we know
the atomic character of the envelope wave functions ui(r) and uf(r).
The full treatment of this problem employs group theory to determine
the character of the bands involved. This approach is beyond the scope
of our present discussion, and at this level we just offer a few intuitive
arguments.

The semiconductors that we shall be considering all have four valence
electrons. This is obvious in the case of the elemental semiconductors
such as silicon and germanium, which come from group IV of the pe-
riodic table. It is also true, however, for the binary compounds made
from elements symmetrically displaced from group IV of the periodic
table. The covalent bond in these compounds is made by sharing the
electrons in such a way that each atom ends up with four electrons. For
example, the bond in the III–V compounds is formed by sharing the
five valence electrons from the group V element with the three from the
group III element, giving a total of eight electrons for every two atoms.
It is energetically favourable to do this because it is then possible to
form very stable covalent crystals with a structure similar to diamond.
Similar arguments apply to the II–VI semiconductor compounds.

The valence electrons of a four-valent atom are derived from the s
and p orbitals. For example, the electronic configuration of germanium
is 4s24p2. In the crystalline phase the adjacent atoms share the valence
electrons with each other in a covalent bond. Figure 3.3 shows schemat-
ically the evolution of the s- and p-like atomic states, through the s and
p bonding and anti-bonding orbitals of the molecule, to the valence and
conduction bands of the crystalline solid. The level ordering shown is
appropriate for most III–V and II–VI semiconductors, as well as germa-
nium. The level ordering in silicon is different: see Exercise 3.12.

The evolution of the levels shown in Fig. 3.3 makes it apparent that
the top of the valence band has a p-like atomic character, while the bot-
tom of the conduction band is s-like. This is because the four valence
electrons occupy the four bonding orbitals, which then evolve into the
valence band. The top of the valence band is derived from the p bond-
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Fig. 3.3 Schematic diagram of the elec-
tron levels in a covalent crystal made
from four-valent atoms such as germa-
nium or binary compounds such as gal-
lium arsenide. The s and p states of the
atoms hybridize to form bonding and
anti-bonding molecular orbitals, which
then evolve into the conduction and va-
lence bands of the semiconductor.

ing orbitals, while the bottom of the conduction band originates from
the s anti-bonding orbitals. Therefore optical transitions from the va-
lence band to the conduction band are from p-like states to s-like states.
We know from the selections rules for electric-dipole transitions that
p → s transitions are allowed. (See Exercise 3.3 and Section B.3 in Ap-
pendix B.) Hence we conclude that the transitions between the valence
band and the conduction band of a semiconductor with a level ordering
such as the one shown in Fig. 3.3 are electric-dipole allowed.

The conclusion of this discussion is that the probability for interband
transitions across the band gap in materials like germanium or the III–V
compounds is high. Since the density of states factor is also large above
the band edge, we therefore expect to observe strong absorption. This
is indeed the case, as we shall see below. The discussion of germanium
is complicated because it has an indirect band gap. We shall therefore
concentrate our attention on the III–V compound semiconductor gallium
arsenide. GaAs has a direct band gap, and the level ordering follows the
scheme shown in Fig. 3.3. The transitions across the gap are therefore
both dipole allowed and direct. This makes GaAs a standard example
for considering direct interband transitions. It is also a very important
material for opto-electronic applications.

3.3.2 The band structure of a direct gap III–V
semiconductor

The band structure of GaAs in the energy range near the fundamental
band gap is shown in Fig. 3.4. The energy E of the electrons in the
different bands is plotted against the electron wave vector k. GaAs has
the zinc-blende structure, which is based on the face-centred cubic (fcc)
lattice. The band dispersion is shown for increasing k along two differ-
ent directions of the Brillouin zone. The right-hand side of the figure
corresponds to moving from the zone centre where k = (0, 0, 0) along
the (100) direction to the zone edge at k = (2π/a)(1, 0, 0), a being the
length of the cube edge in the fcc lattice. The left-hand side corresponds
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Fig. 3.4 Band structure of GaAs. The
dispersion of the bands is shown for two
directions of the Brillouin zone: Γ → X
and Γ → L. The Γ point corresponds to
the zone centre with a wave vector of
(0,0,0), while the X and L points cor-
respond respectively to the zone edges
along the (100) and (111) directions.
The valence bands are below the Fermi
level and are full of electrons. This is in-
dicated by the shading in the figure. Af-
ter Chelikowsky and Cohen (1976), c©
American Physical Society, reprinted
with permission.
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to moving from k = 0 along the body-diagonal direction until reaching
the zone edge at k = (π/a)(1, 1, 1).

The figure is divided into a shaded region and an unshaded region.
The shading represents the occupancy of the levels in the bands: bands
that fall in the shaded region are below the Fermi level and are full of
electrons. The three bands in the shaded region therefore correspond to
valence band states. The single band above the shaded region is empty
of electrons and is therefore the conduction band. The three bands in
the valence band correspond to the three p bonding orbitals shown in
Fig. 3.3, while the single conduction band corresponds to the s anti-
bonding state. This correspondence between the bands and the molec-
ular orbitals is strictly valid only at the Γ point at the Brillouin zone
centre. The atomic character (or more accurately, the symmetry) of the
bands actually changes as k increases, and is only well defined at high
symmetry points in the Brillouin zone such as Γ, X, or L.

The high symmetry points of Brillouin
zones are given symbolic names. The
zone centre where � = (0, 0, 0) is called
the Γ point. The zone edges along the
(100) and (111) directions are called
the X and L points respectively. In the
Brillouin zone of the diamond or zinc-
blende lattice, the wave vectors at the
X and L points are � = (2π/a)(1, 0, 0)
and (π/a)(1, 1, 1) respectively, where a
is the length of the cube edge of the
face-centred cubic lattice from which
the diamond or zinc-blende structure
is derived. The Γ → X direction is la-
belled ∆, while the Γ → L direction is
labelled Λ. See Appendix D for further
details.

In this section we are interested in the transitions that take place
across the band gap for small k values close to the Γ point. This means
that the correspondence to Fig. 3.3 will be justified in our discussion
here. We can therefore assume that the transitions are dipole allowed,
and concentrate on working out the density of states for the transition.
To do this, it is helpful to make use of the simplified four-band model
shown in Fig. 3.5. This model band diagram is typical of direct gap III–V
semiconductors near k = 0. There is a single s-like conduction band and
three p-like valence bands. All four bands have parabolic dispersions.
The positive curvature of the conduction band on the E–k diagram
indicates that it corresponds to an electron (e) band, while the negative
curvature of the valence bands correspond to hole states. Two of the
hole bands are degenerate at k = 0. These are known as the heavy (hh)
and light hole (lh) bands, the heavy hole band being the one with the
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smaller curvature. The third band is split off to lower energy by the spin–
orbit coupling, and is known as the split-off (so) hole band. The energy
difference between the maximum of the valence band and the minimum
of the conduction band is the band gap Eg, while the spin–orbit splitting
between the hole bands at k = 0 is usually given the symbol ∆.

k
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e

hh

lh

so

Eg

0

��

� �

k

E

e

hh

lh

so

Eg

0

��

� �

Fig. 3.5 Band structure of a direct gap
III–V semiconductor such as GaAs near
k = 0. E = 0 corresponds to the top of
the valence band, while E = Eg corre-
sponds to the bottom of the conduction
band. Four bands are shown: the heavy-
hole (hh) band, the light-hole (lh) band,
the split-off hole (so) band, and the
electron (e) band. Two optical transi-
tions are indicated. Transition 1 is a
heavy-hole transition, while transition
2 is a light-hole transition. Transitions
can also take place between the split-off
hole band and the conduction band, but
these are not shown for the sake of clar-
ity. This four-band model was originally
developed for InSb in Kane (1957).

The schematic diagram of Fig. 3.5 should be compared with the de-
tailed band structure of GaAs shown previously in Fig. 3.4. The maxima
of the valence band occur at the Γ point of the Brillouin zone, while
the conduction band has a ‘camel back’ structure, with minima at the
Γ point, the L point, and near the X point. We can neglect the subsidiary
minima at the L point and near the X point here because momentum
conservation does not allow direct transitions to these states from the
top of the valence band. The bands near the zone centre are all approx-
imately parabolic, and so the simplified picture in Fig. 3.5 is valid near
k = 0.

The three valence band states all have p-like atomic character, and so
it is possible to have electric-dipole transitions from each of the bands
to the conduction band. Two such transitions are indicated on Fig. 3.5.
As noted earlier, these absorption processes are represented by verti-
cal arrows on the E–k diagram. This means that the k vector of the
electron and hole created by the transition are the same (cf. eqn 3.12).
The transition labelled 1 involves the excitation of an electron from the
heavy-hole band to the electron band. Transition 2 is the correspond-
ing process originating in the light-hole band. Direct transitions are also
possible from the split-off band to the conduction band, but these are
not shown in the figure for clarity.

3.3.3 The joint density of states

The frequency dependence of the absorption coefficient can now be calcu-
lated if we know the joint density of states factor given in eqn 3.14. This
can be evaluated analytically for the simplified band structure shown in
Fig. 3.5. The dispersion of the bands is determined by their respective
effective masses, namely m∗

e for the electrons, m∗
hh for the heavy holes,

m∗
lh for the light holes, and m∗

so for the split-off holes. This allows us
to write the following E–k relationships for the conduction, heavy-hole,
light-hole, and split-off hole bands respectively:

Ec(k) = Eg +
�
2k2

2m∗
e

(3.17)

Ehh(k) = − �
2k2

2m∗
hh

(3.18)

Elh(k) = − �
2k2

2m∗
lh

(3.19)

Eso(k) = −∆ − �
2k2

2m∗
so

. (3.20)
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It is evident from Fig. 3.5, that conservation of energy during a heavy-
hole or light-hole transition requires that:

�ω = Eg +
�

2k2

2m∗
e

+
�

2k2

2m∗
h

, (3.21)

where m∗
h = m∗

hh or m∗
lh for the heavy- or light-hole transition respec-

tively. We define the reduced electron-hole mass µ according to:

1
µ

=
1

m∗
e

+
1

m∗
h

. (3.22)

This allows us to rewrite eqn 3.21 in the simpler form:

�ω = Eg +
�

2k2

2µ
. (3.23)

We are interested in evaluating g(E) with E = �ω. The joint electron-
hole density of states can be worked out by substituting eqn 3.23 into
eqns 3.14 and 3.15. This gives:

For �ω < Eg, g(�ω) = 0.

For �ω ≥ Eg, g(�ω) =
1

2π2

(
2µ

�2

)3/2

(�ω − Eg)1/2.
(3.24)

We therefore see that the density of states factor rises as (�ω − Eg)1/2

for photon energies greater than the band gap.

3.3.4 The frequency dependence of the band edge
absorption

Now that we have discussed the matrix element and the density of states,
we can put it all together and deduce the frequency dependence of the
absorption coefficient α. Fermi’s golden rule given in eqn 3.2 tells us
that the absorption rate for a dipole allowed interband transition is
proportional to the joint density of states given by eqn 3.24. We therefore
expect the following behaviour for α(�ω):

For �ω < Eg, α(�ω) = 0.

For �ω ≥ Eg, α(�ω) ∝ (�ω − Eg)1/2.
(3.25)

There is no absorption if �ω < Eg, and the absorption increases as (�ω−
Eg)1/2 for photon energies greater than the band gap. We also expect
that transitions with larger reduced masses will give rise to stronger
absorption due to the µ3/2 factor in eqn 3.24.

The predictions of eqn 3.25 can be compared to experimental data.
Figure 3.6 shows results for the absorption coefficient of the direct gap
III–V semiconductor indium arsenide at room temperature. The graph
plots α2 against the photon energy in the spectral region close to the
band gap. The straight-line relationship between α2 and (�ω − Eg) in-
dicates that the model we have developed is a good one. The band gap
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Fig. 3.6 Square of the optical absorp-
tion coefficient α versus photon energy
for the direct gap III–V semiconductor
InAs at room temperature. The band
gap can be deduced to be 0.35 eV by
extrapolating the absorption to zero.
Data from Palik (1985).

can be read from the data as the point at which the absorption goes
to zero. This gives a value of 0.35 eV, which is in good agreement with
values deduced from electrical measurements. Note that the values of
the absorption coefficient are very large. This is a consequence of the
very large density of states in the solid phase.

In many III–V semiconductors, including GaAs itself, it is found that
the frequency dependence predicted by eqn 3.25 is only approximately
obeyed. There are a number of reasons for this.

• We have neglected the Coulomb attraction between the electron
and hole, which can enhance the absorption rate and cause exci-
ton formation. These effects become stronger as the band gap gets
larger and the temperature is lowered. This is why we have pre-
sented room temperature data for a semiconductor with a smallish
band gap in Fig. 3.6. Excitonic effects are very significant in ma-
terials like GaAs even at room temperature. This point will be
discussed further in Chapter 4, and is clearly apparent in the ab-
sorption data for GaAs shown in Fig. 4.3.

• The semiconductor may contain impurity or defect states with
energies within the band gap, and these may allow absorption for
photon energies less than the band gap. This point is discussed in
Section 7.4.2.

• The parabolic band approximations embodied in the dispersion
relations of eqns 3.17–3.20 are only valid near k = 0. As the photon
energy increases above the band gap, the joint density of states
will no longer obey the frequency dependence given in eqn 3.24.
In these cases we must use the full band structure to evaluate the
density of states, as discussed in Section 3.5 below.
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Example 3.1

Indium phosphide is a direct gap III–V semiconductor with a band gap
of 1.35 eV at room temperature. The absorption coefficient at 775 nm is
3.5× 106 m−1. A platelet sample 1 µm thick is made with anti-reflection
coated surfaces. Estimate the transmission of the sample at 620 nm.

Solution
The sample is anti-reflection coated, and so we do not need to consider
multiple reflections. We therefore calculate the transmission from eqn 1.8
with R = 0. The wavelength of 775 nm corresponds to a photon energy
of 1.60 eV, which is greater than Eg. Similarly, 620 nm corresponds to a
photon energy of 2.00 eV, which is also above Eg. We can therefore use
eqn 3.25 and write:The value of T calculated in this exam-

ple is only an estimate because we have
ignored the excitonic effects and we
have assumed that the parabolic band
approximation is valid, even though we
are quite a long way above Eg. The ex-
perimental value of α(620 nm) is actu-
ally about 15% larger than the value
calculated here.

α(620 nm)
α(775 nm)

=
(2.00 − Eg)1/2

(1.60 − Eg)1/2
= 1.6 ,

where we have used Eg = 1.35 eV. This implies that α(620 nm) = 5.6 ×
106 m−1 ≡ 5.6 µm−1, and hence that αl = 5.6. We thus obtain the final
result:

T (620 nm) = exp(−αl) = exp(−5.6) = 0.37% .

3.3.5 The Franz–Keldysh effect

The modification of the band edge absorption by the application of an
external electric field E was studied independently by W. Franz and
L.V.Keldysh in 1958. They showed that there are two main effects:

• The absorption coefficient for photon energies less than Eg is no
longer zero, as stated in eqn 3.25, but now decreases exponentially
with (Eg − �ω). The frequency dependence of α is given by:

α(�ω) ∝ exp
(
−4

√
2m∗

e

3|e|�E (Eg − �ω)3/2

)
. (3.26)

This implies that the band edge shifts to lower energy as the field
is increased. (See Exercise 3.14.)

• The absorption coefficient for �ω > Eg is modulated by an oscilla-
tory function. The oscillations in α(�ω) are called Franz–Keldysh
oscillations.

These two effects are collectively known as the Franz–Keldysh effect.
They are typically observed when the semiconductor is incorporated as
a thin i-region at the junction of a p–n diode. This allows controllable
fields to be applied by varying the bias on the device, as explained in
Appendix E.
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It can be seen from the Kramers–Kronig relationship given in eqn 2.36
that a change in the absorption coefficient will produce changes in the
refractive index at frequencies below the band gap. Thus the application
of the electric field modulates both the absorption and the refractive
index of the material. This modulation of the optical constants by the
electric field is an example of an electro-optic effect. The changes may
be either linear or quadratic in the field, as discussed in Section 2.5.2. In
Chapter 11 we shall explain how these effects can be described in terms
of nonlinear optical susceptibility tensors.

The changes in the real and imaginary parts of the refractive index
produced by the electric field imply that the reflectivity will also be
changed through eqn 1.29. This is the basis of the technique of electro-
reflectance, in which the modulation of the reflectivity in response to
an AC electric field is measured as a function of the photon energy. The
electro-reflectance technique is widely used to determine important band
structure parameters.

3.3.6 Band edge absorption in a magnetic field

It is well known in classical physics that the application of a strong
magnetic field with flux density B causes electrons to perform circular
motion around the field at the cyclotron frequency ωc given by (see
Exercise 3.15):

ωc =
eB

m0
. (3.27)

In classical physics, the radius of the orbit and the energy can have any
values, but in quantum physics, they are both quantized. The quantized
energies are given by:

En = (n + 1
2
)�ωc , (3.28)

where n = 0, 1, 2, . . .. These quantized energy levels are called Landau
levels.

Consider a semiconductor in the presence of a strong magnetic field
along the z direction. The motion of the electrons in the conduction
band and holes in the valence band will be quantized in the x, y plane,
but their motion will still be free in the z direction. Their energies within
the bands will thus be given by:

En(kz) = (n + 1
2
)
e�B

m∗ +
�
2k2

z

2m∗ , (3.29)

where m∗ is the appropriate effective mass. The first term gives the en-
ergy of the quantized motion in the x, y plane, while the second describes
the free motion along the z direction. In absolute terms relative to E = 0
at the top of the valence band, the electron and hole energies are given
by:

Ee
n(kz) = Eg + (n + 1

2
)
e�B

m∗
e

+
�

2k2
z

2m∗
e

,

Eh
n(kz) = −(n + 1

2
)
e�B

m∗
h

− �
2k2

z

2m∗
h

. (3.30)
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Fig. 3.7 Transmission spectrum of ger-
manium for B = 0 and B = 3.6T at
300K. After Zwerdling et al. (1957), c©
American Physical Society, reprinted
with permission.
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These are equivalent to eqns 3.17–3.19, which are valid at B = 0.
If the sample is illuminated when the field is applied, an interband

transition can take place in which an electron is created in the conduction
band and a hole is created in the valence band. It can be shown that the
Landau level number n does not change during the interband transition.
(See Exercise 3.15.) This selection rule implies that the electron and
hole must have the same value of n. Furthermore, the kz value of both
particles must be the same because the photon has negligible momentum.
Therefore, the transition energy will be given by:

�ω = Ee
n(kz) − Eh

n(kz)

= Eg + (n + 1
2
)
e�B

µ
+

�
2k2

z

2µ
, (3.31)

where µ is the reduced mass given in eqn 3.22. Equation 3.31 should
be compared to eqn 3.23 which applies when B = 0. The term in kz is
unchanged, but the x and y components of k are now quantized by the
magnetic field.

The frequency dependence of the absorption coefficient which follows
from eqn 3.31 is considered in detail in Exercise 3.16. In brief, we expect
very high absorption at any photon energy that can satisfy eqn 3.31
with kz = 0. This gives rise to a series of equally spaced peaks in the
absorption spectrum with energies given by

�ω = Eg + (n + 1
2
)
e�B

µ
; n = 0, 1, 2, . . . . (3.32)

One immediate consequence of this result is that we expect the absorp-
tion edge to shift to higher energy by �eB/2µ in the magnetic field.

Figure 3.7 shows the room temperature transmission spectrum of ger-
manium at B = 0 and B = 3.6 T. We see that at B = 3.6T the ab-
sorption edge is indeed shifted to higher energy and there is a regularly
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spaced series of dips in the transmission, as predicted by eqn 3.32. The
spectral width of the dips is determined mainly by line broadening due
to scattering. The electron effective mass can be determined from the
energies of the minima in the transmission: see Exercise 3.16.

3.3.7 Spin injection

In the absence of a magnetic field, the electrons in the conduction band
are equally likely to be in the spin up (ms = +1/2) and the spin down
(ms = −1/2) states. This means that there is normally no net spin in
the electron gas. However, it is possible to create a net electron spin by
absorption of circularly polarized light. This technique is called optical
spin injection, or optical orientation, and is important in the field
of spintronics, which aims to exploit the electron spin to generate new
functionality in electronic devices.

Optical spin injection is possible, in general terms, because circularly
polarized photons carry angular momentum components of ±� along the
direction of propagation. The sign of the angular momentum component

Positive and negative circular light (i.e.

σ+ and σ−) are defined by the sense
of rotation relative to the source. This
makes σ+ and σ− equivalent, respec-
tively, to left and right circular, since
the handedness of circular light is de-
fined relative to the observer.

depends on the sense of rotation, with +� for σ+ photons and −� for
σ−. This means that the absorption of a circularly polarized light beam
imparts angular momentum to the semiconductor as a whole, which can
end up as a net spin of the electron gas.

Let us consider a direct gap III–V semiconductor in the four-band
model with the band structure shown in Fig. 3.5. We concentrate on
transitions at the fundamental band edge (i.e. at k = 0), where the
heavy-hole and light-hole bands are degenerate. We have seen in Sec-
tion 3.3.1 that the conduction band is derived from s-like atomic states
with orbital angular momentum quantum number L = 0, while the va-
lence band is derived from p-like states with L = 1. The electrons and
holes have spin angular momentum with quantum number S = 1/2. In The rules for the addition of quantum

mechanical angular momenta are sum-
marized in Appendix C. See especially
eqn C.7, and the subsequent discussion
of the possible values of J .

the conduction band we therefore have a single J = 1/2 level, whereas in
the valence band we have two values of J , namely J = 3/2 and J = 1/2.
At k = 0, these two valence band J levels are split by the spin–orbit
energy ∆, as shown in Fig. 3.5.

In order to understand how spin injection works, we first need to
consider the MJ states of the levels at k = 0. Figure 3.8 shows the
detailed sub-level structure of the conduction and valence bands at k =
0. The conduction band consists of the degenerate MJ = ±1/2 sub-levels
arising from the electron spin. The valence band is more complicated.
The four sub-levels of the J = 3/2 level correspond to the degenerate
heavy- and light-hole bands, with MJ = ±3/2 for the heavy-hole band
and MJ = ±1/2 for the light-hole band. The MJ = ±1/2 sub-levels of
the J = 1/2 level of the valence band correspond to the split-off hole
band.

If the semiconductor is illuminated with circularly polarized light,
the selection rules only permit specific transitions to occur. Light with
positive circular polarization (i.e. σ+ polarization) induces transitions
with ∆MJ = +1. (See Exercise 3.3.) Similarly, negatively circularly
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Fig. 3.8 Detailed sub-level structure
of a semiconductor with the four-band
model of Fig. 3.5 at k = 0. Circularly
polarized transitions for a photon with
energy Eg are shown from the degen-
erate heavy- and light-hole bands to
the conduction band. It is assumed that
there is no magnetic field applied.
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polarized light (i.e. σ− polarization) induces transitions with ∆MJ =
−1. If the photon energy is just above the band gap energy Eg, then four
transitions are possible, as illustrated in Fig. 3.8. In σ+ light, we have
transitions from the MJ = −3/2 heavy-hole sub-level to the MJ = −1/2
electron sub-level, and from the MJ = −1/2 light-hole sub-level to the
MJ = +1/2 electron sub-level. The signs of the MJ states are reversed
for σ− polarization. It is shown in Exercise 3.9 that the square of the
matrix element for heavy-hole transitions is three times larger than that
for the light-hole transitions. Therefore, σ+ light generates three times
as many electrons with MJ = −1/2 as those with MJ = +1/2. The
electron spin polarization is defined by:

Π =
N(+1/2) − N(−1/2)
N(+1/2) + N(−1/2)

, (3.33)

where N(+1/2) and N(−1/2) are the number of electrons with spin
+1/2 and −1/2 respectively. Hence we find Π = −50% for σ+ excitation.
Similarly, σ− photons with energy just above Eg can generate an electron
spin polarization with Π = +50%. We therefore conclude that the use
of circularly polarized light can produce a spin polarization of 50% in
a bulk III–V semiconductor. In order to generate 100% electron spin
polarization by optical excitation at zero magnetic field, it is necessary
to use quantum well structures. (See Section 6.4.5.)

Note that the removal of an electron

with Jelectron
z = MJ� from the va-

lence band creates a hole with Jhole
z =

−MJ�. This is because the valence
band has

�
Jz = 0 when it is fully

occupied, so that Jhole
z = −Jelectron

z .
Thus a σ+ heavy-hole transition cre-
ates an electron with MJ = −1/2 and
a hole with MJ = +3/2. The electron-
hole pair therefore has:

Meh
J = Melectron

J + Mhole
J = +1 ,

as required by conservation of angu-
lar momentum in the optical transition.
Similarly, a σ+ light-hole transition cre-
ates an electron with MJ = +1/2 and
a hole with MJ = +1/2, again giving
Meh

J = +1.

The arguments developed for the electrons should apply in an analo-
gous way to the holes, because the σ+ and σ− transitions create holes
with well-defined MJ values. However, the electrons, with L = 0, experi-In atomic physics, the spin–orbit inter-

action is proportional to � � �, where �
and � are the orbital and spin angular
momenta respectively.

ence no spin–orbit interaction, whereas the holes, with L = 1, experience
the strong spin–orbit interaction that is responsible for the splitting of
the J = 1/2 and J = 3/2 states. This spin–orbit coupling randomizes
the hole spin in a very short time, so that it is normally assumed that the
hole-spin polarization is negligible. By contrast, the electron-spin polar-
ization can persist for a significant amount of time until it is destroyed
by a relatively slow spin-flip process.
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It should be pointed out that the electron spin injection picture dis-
cussed above only applies to semiconductors that have the cubic zinc-
blende crystal structure, such as InSb and GaAs. In wide gap semicon-
ductors such as GaN or ZnO, the picture breaks down for two reasons.
Firstly, the spin–orbit interaction is very small, and secondly, the crys-
tals tends to adopt the hexagonal wurtzite structure. This means that
crystal-field interactions have to be considered in addition to the spin–
orbit coupling, and the end result is that the Kane four-band model that
leads to the band structure shown in Fig. 3.8 does not apply to wide-gap
semiconductors that have the wurtzite structure.

The band gap of a semiconductor gen-
erally decreases on descending the pe-
riodic table. For example:

EGaN
g > EGaP

g > EGaAs
g > EGaSb

g .

Since the spin–orbit coupling increases
with the atomic number Z, this means
that spin–orbit effects are more im-
portant in narrow gap semiconductors
than in wide gap ones.

3.4 Band edge absorption in indirect gap
semiconductors

In the previous two sections, we have been concentrating on direct inter-
band transitions. As it happens, several of the most important semicon-
ductors have indirect band gaps, most notably silicon and germanium.
Indirect gap semiconductors have their conduction band minimum away
from the Brillouin zone centre, as shown schematically in Fig. 3.2(b).
Transitions at the band edge must therefore involve a large change in
the electron wave vector. Optical frequency photons only have a very
small k vector, and it is not possible to make this transition by absorp-
tion of a photon alone: the transition must involve a phonon to conserve
momentum.

Consider an indirect transition that excites an electron in the valence
band in state (Ei,ki) to a state (Ef , kf) in the conduction band. The
photon energy is �ω, while the phonon involved has energy �Ω and wave
vector q. Conservation of energy demands that:

Ef = Ei + �ω ± �Ω , (3.34)

while conservation of momentum requires that:

�kf = �ki ± �q . (3.35)

The ± factors allow for the possibility of phonon absorption or emis-
sion, with the + sign corresponding to absorption, and the − sign to
emission. We have neglected the photon’s momentum in eqn 3.35. This
approximation was justified previously in connection with eqn 3.12.

Before considering the shape of the band edge absorption spectrum,
we can first make a general point. Indirect transitions involve both pho-
tons and phonons. In quantum-mechanical terms, this is a second-order
process: a photon must be destroyed, and a phonon must be either cre-
ated or destroyed. This contrasts with direct transitions which are first-
order processes because no phonons are involved. The transition rate for
indirect absorption is therefore much smaller than for direct absorption.

The smaller transition rate for indirect processes is clearly shown by
the data given in Fig. 3.9, which compares the band edge absorption
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Fig. 3.9 Comparison of the absorption
coefficients of GaAs and silicon near
their band edges. GaAs has a direct
band gap at 1.42 eV, while silicon has
an indirect gap at 1.12 eV. Note that
the vertical axis is logarithmic. Data
from Palik (1985).
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of silicon and GaAs. Silicon has an indirect band gap at 1.12 eV, while
GaAs has a direct gap at 1.42 eV. We see that the absorption rises much
faster with frequency in the direct gap material, and soon exceeds the
indirect material even though its band gap is larger. The absorption of
GaAs is roughly an order of magnitude larger than that of silicon for
energies greater than ∼ 1.43 eV.

The derivation of the quantum-mechanical transition rate for an indi-
rect gap semiconductor is beyond the scope of this book. The results of
such a calculation give the following result:The derivation of eqn 3.36 may be

found, for example, in Yu & Cardona
(1996) or Hamaguchi (2001). αindirect(�ω) ∝ (�ω − Eg ∓ �Ω)2 . (3.36)

This shows that we expect the absorption to have a threshold close to
Eg, but not exactly at Eg. The difference is ∓�Ω, depending on whether
the phonon is absorbed or emitted. Note that the frequency dependence
is different to that for direct gap semiconductors given in eqn 3.25. This
provides a convenient way to determine whether the band gap is direct
or not. Furthermore, the involvement of the phonons gives other tell-tale
signs that the band gap is indirect, as we shall discuss below.

Indirect absorption has been thoroughly studied in materials like ger-
manium. The band structure of germanium is shown in Fig. 3.10. The
overall shape of the band dispersion is fairly similar to that of GaAs
given in Fig. 3.4. This is hardly surprising, given that gallium and ar-
senic lie on either side of germanium in the periodic table, so that GaAs
and Ge are approximately isoelectronic materials. There is, however, one
very important qualitative difference: the lowest conduction band mini-
mum of germanium occurs at the L point, where k = (π/a)(1, 1, 1), and
not at k = 0. This makes germanium an indirect semiconductor with a
band gap of 0.66 eV.

Figure 3.11 shows the results of absorption measurements on germa-
nium near its band edge. Figure 3.11(a) focuses on the indirect absorp-
tion near the band gap, while Fig. 3.11(b) concentrates on the direct
absorption at higher energy. Consider first the indirect absorption edge
shown in Fig. 3.11(a). In general we expect contributions both from
phonon emission and absorption. Phonon emission is possible at all tem-
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Fig. 3.10 Band structure of germa-
nium. After Cohen and Chelikowsky
(1988), c© Springer-Verlag, reprinted
with permission.
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Fig. 3.11 Experimental data for the
absorption of germanium near its band
edge. (a) Plot of α1/2 against photon
energy at 291K and 20K. (b) Plot of
α against photon energy at 300K. Af-
ter MacFarlane & Roberts (1955) and
Dash & Newman (1955), c© American
Physical Society, reprinted with per-
mission.

peratures, but phonon absorption is only possible if phonons are ther-
mally excited. The number of phonons of angular frequency Ω excited
at temperature T is proportional to the Bose–Einstein formula:

The Bose–Einstein formula is normally
written:

fBE(E) =
1

exp[(E − µ)/kBT ] − 1
,

where µ is the chemical potential.
When applying this to phonons, the
chemical potential is zero because the
number of particles does not have to be
conserved.

fBE(�Ω) =
1

exp(�Ω/kBT ) − 1
. (3.37)

The variation of the phonon populations implied by eqn 3.37 leads to a
characteristic temperature dependence of the indirect absorption edge.
As we decrease T , the contributions due to phonon absorption gradu-
ally freeze out, and at the lowest temperatures, the absorption edge is
determined entirely by phonon emission. This contrasts with direct gap
materials, in which the absorption edge merely shifts with the band gap
as the temperature is varied.

The absorption spectra shown in Fig. 3.11(a) clearly show the be-
haviour discussed above. At 20 K only phonon emission is possible, and
eqn 3.36 predicts that a graph of

√
α against photon energy should give

a straight line extrapolating back to (Eg + �Ω). This is clearly observed
in the data, from which a value of Eg + �Ω ≈ 0.76 eV is deduced. The
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accepted band gap of Ge at 20 K is 0.74 eV, which implies that the av-
erage energy of the phonons emitted is around 0.02 eV. The wave vector
of the phonon must be equal to that of an electron at the L point of
the Brillouin zone, and the experimental results are consistent with a
weighted average of the relevant phonon energies. (See Table 3.1.) At
the higher temperature of 291K, the strongest contribution is still from
phonon emission, but the probability for phonon absorption is now sig-
nificant, and this gives rise to the tail extending down to ∼ 0.60 eV.
Note that it is possible to absorb more than one phonon in an indirect
transition, which means that the absorption tail can extend below the
energy threshold allowed by single phonon processes.

Table 3.1 Phonon energies for germanium
at the L point where � = (π/a)(1, 1, 1),
a being the unit cell size. Data from
Madelung (1996).

Mode �Ω (eV)

Longitudinal acoustic (LA) 0.027
Transverse acoustic (TA) 0.008
Longitudinal optic (LO) 0.030
Transverse optic (TO) 0.035

Figure 3.11(b) shows the band edge absorption of germanium at room
temperature on a linear scale. The band diagram for germanium in
Fig. 3.10 implies that direct transitions can occur at the Γ point (i.e.
k = 0) if the photon energy exceeds 0.80 eV. In this case, we expect that
the absorption should follow eqn 3.25 instead of eqn 3.36. This is indeed
observed in the data, with α ∝ (�ω −Edir

g )1/2, where Edir
g = 0.805 eV is

the direct band gap. Note that the direct absorption completely domi-
nates once we have crossed the threshold at Edir

g . The indirect absorption
below 0.80 eV is much weaker, and is insignificant when plotted on the
same scale as the direct absorption. This highlights the second-order
nature of indirect transitions.

3.5 Interband absorption above the band
edge

Up to this point, we have been concentrating on the absorption near
the band edge. As we shall see in Chapter 5, the reason for doing this
is that the optical properties at the band edge determine the emission
spectra. This does not mean that the rest of the absorption spectrum
is uninteresting: it is just more complicated to deal with because the
parabolic band approximation does not apply. However, as we shall see
below, much useful information about the full band structure can be
obtained from analysis of the overall spectrum.

It is not possible to give explicit formulae for the full frequency depen-
dence of the absorption spectrum as we did for the band edge absorption
in eqns 3.25 and 3.36. Instead, we have to work out dE/dk in eqn 3.14
from the full band structure. In this section we shall illustrate how this is
done for the case of silicon. The principles described here can be applied
to other materials if the band structure is known.

Figure 3.12 shows the interband absorption spectrum of silicon up to
10 eV. Two features at about 3.5 eV and 4.3 eV are readily identified in
the data. These two energies are labelled E1 and E2 and are related to
aspects of the band structure, as discussed further below. The absorp-
tion coefficient in the spectral region around E1 and E2 is extremely
large, with values of α in excess of 108 m−1. This should be compared
to values of 102–106 m−1 in the spectral region immediately above the
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Fig. 3.12 Interband absorption spec-
trum of silicon at 300K up to 10 eV.
The energies E1 and E2 correspond
to critical points where the conduction
and valence bands are parallel to each
other. This can be seen more clearly
in the band structure diagram given in
Fig. 3.13. Data from Palik (1985).

band gap Eg at 1.1 eV. (See Fig. 3.9.) Indeed, the band edge absorp-
tion is completely negligible on the scale of the data shown in Fig. 3.12.
This is a consequence of two factors. Firstly, the band edge absorption
is weak because it is indirect, and secondly, the density of states at the
band edge is comparatively small. The measured absorption spectrum
is actually dominated by direct absorption at photon energies where the
density of states is very high.

Figure 3.13 shows the band structure of silicon along the (100) and
(111) directions. The band gap Eg is indirect and has a value of 1.1 eV,
with the conduction band minimum located near the X point of the
Brillouin zone. Direct transitions can take place between any state in
the valence band and the conduction band states directly above it, if the
transitions are dipole-allowed. The minimum direct separation between
the conduction and valence bands occurs near the L point, where the
transition energy is 3.5 eV. The energy of these transitions is labelled
E1, and corresponds to the sharp increase in the absorption at 3.5 eV
observed in the data shown in Fig. 3.12. The separation of the conduction
and valence bands near the X point is also significant. This energy is
labelled E2 and corresponds to the absorption maximum at 4.3 eV.

The transitions near the L and X points are particularly important
because of the ‘camel’s back’ shape of the conduction band, which means
that the conduction band ends up having a negative curvature near these
points of the Brillouin zone. The curvature is more or less the same as
that in the valence band, so that the conduction and valence bands
are approximately parallel to each other. This means that we can have
direct transitions with the same photon energy for many different values
of k. The joint density of states factor is therefore very high at E1 and
E2, and we expect the absorption to be correspondingly high. This is
indeed observed in the experimental data: the absorption rises sharply
at E1 and reaches a peak at E2. The absolute values of the absorption
coefficient are extremely large: over 108 m−1 as we have already noted.

In a region of the Brillouin zone where the bands are parallel, the
photon energy E for direct transitions does not depend on k. This implies
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Fig. 3.13 Band structure of silicon.
The band gap Eg is indirect and oc-
curs at 1.1 eV. The conduction and va-
lence bands are approximately paral-
lel along the (111) and (100) directions
near the zone edges at the L and X
points. The separation of the bands in
these region are labelled E1 (3.5 eV)
and E2 (4.3 eV) respectively. The ab-
sorption at these energies is very high
due to the van Hove singularities in
the joint density of states. After Cohen
and Chelikowsky (1988), c© Springer-
Verlag, reprinted with permission.
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that dE/dk is zero, and hence that the joint density of states g(E)
diverges (cf. eqn 3.14). The energies at which dE/dk vanishes are called
critical points, and the corresponding divergences in the density of
states are called van Hove singularities. In practice, the bands are
only approximately parallel over a portion of the Brillouin zone, and so
g(�ω) just becomes very large, rather than diverging completely.

The discussion of the absorption coefficient of silicon given here can
be adapted to other materials if their band structure is known. The
absorption strength will be proportional to the joint density of states,
which will be particularly high if the conduction and valence bands are
parallel to each other. An example of how this is done in the case of
metals is discussed in Section 7.3.2 of Chapter 7.

3.6 Measurement of absorption spectra
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Fig. 3.14 Schematic diagram of the ex-
perimental arrangement required to de-
termine the absorption coefficient over
a wide spectral range by making re-
flectivity and transmissivity measure-
ments.

The easiest way to measure the absorption coefficient of a material is
to make a transmission measurement on a thin platelet sample. If the
absorption is strong enough to dampen out any interference effects, then
the absorption coefficient can be deduced from eqn 1.8 if the thickness
and surface reflectivities are known. However, since the absorption coeffi-
cient can vary by several orders magnitude according to the wavelength,
this can be more difficult than it sounds, and it is usually necessary to
combine several techniques to determine α accurately over a wide range
of photon energies.

Figure 3.14 illustrates the basic principles of transmission and re-
flection measurements. Light from a white-light source is filtered by a
monochromator and is incident on the sample. The transmitted and re-
flected light is recorded by detectors as the photon energy is changed
by scanning the monochromator. The detector collecting the reflected
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Table 3.2 Experimental considerations for reflection and transmission measurements in different
spectral regions. Note that the transition points from the infrared to near infrared and from the
ultraviolet to vacuum ultraviolet spectral regions are not uniquely defined, and the values listed
here are only approximate.

Spectral region Wavelength range Source Detector

Infrared > 1600 nm Black body Cooled semiconductor
Near infrared 700 – 1600 nm Black body Semiconductor
Visible 400 – 700 nm Black body Photomultiplier or silicon
Ultraviolet 200 – 400 nm Xenon lamp Photomultiplier or silicon
Vacuum ultraviolet < 200 nm Specialist UV source Photomultiplier

light should be positioned so that the angle between the incoming and
reflected light is as small as possible, so that the experiment effectively
measures the reflection at normal incidence. The transmission coefficient
is determined by comparing the signal on the transmission detector for
two identical scans, one with the sample present, and the other without
it. The reflectivity is determined by comparing the signal on the reflec-
tion detector to that obtained from a calibrated mirror. Aluminium is
typically chosen as the mirror material, owing to its strong reflectivity
up to 15 eV. (See Fig. 7.2.)

The choice of source and detector for a particular experiment depends
on the spectral region in which the measurements are being made. (See
Table 3.2.) A black-body emitter such as a tungsten bulb can be used as
the source for measurements in the visible or infrared spectral regions,
but at higher frequencies xenon arc lamps and other specialized ultra-
violet sources must be used. Photomultiplier tubes can be used as the
detector for the visible and ultraviolet regions, and silicon detectors can
be used up to about 1000 nm. In the near infrared spectral region beyond
the detection limit of silicon, it is possible to use high-efficiency InGaAs
or germanium detectors developed for fibre optics telecommunications
at 1550 nm. At longer wavelengths, narrow gap semiconductor detectors
are selected according to the criteria discussed in Section 3.7.1.

For measurements in the infrared or vacuum ultraviolet spectral re-
gions, the apparatus must be enclosed within a vacuum chamber to pre-
vent absorption by the air molecules. Specialist optical components must
be also used, because silica-based glasses no longer transmit. In some ex-

The absorption spectrum of high pu-
rity fused silica is given in Fig. 2.7(b).
The transmission range is from about
180 nm to 3500 nm. Most other com-
mon types of glass include additives
that reduce the transmission range.

periments, reflective optics only are used to avoid problems relating to
absorption in the windows and lenses. Transmission measurements in
the infrared spectral region beyond ∼ 5 µm become increasingly difficult
due to the strong background black-body emission from objects in the
laboratory at ambient temperatures. For this reason, a different tech-
nique called Fourier transform spectroscopy is commonly used for the
long wavelength infrared spectral region.

Figure 3.15 shows a modern experimental arrangement designed for
fast transmission measurements in the detection range of silicon, namely
∼ 200–1000 nm. The light from a low intensity white-light source is
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passed through the sample, and the spectrum of the transmitted light
is recorded with a spectrograph and a silicon diode array detector. The
transmission coefficient is determined by calculating the ratio of the light
on the detector with and without the sample present. The absorption
coefficient is then calculated from the transmission using eqn 1.8, after
measuring the reflectivity in a separate experiment. By placing the sam-
ple in a helium cryostat, the absorption coefficient can be measured as
a function of temperature down to 2K.

The measurement of the absorption coefficient of a material like silicon
over a wide range of photon energies such as that presented in Fig. 3.12
is very difficult by transmission experiments alone. The absorption coef-
ficient varies from about 103 m−1 at the indirect band edge to > 108 m−1

at the critical points. In an ideal transmission experiment, the thickness
of the sample should be of order α−1, so that the absorption produces
a measurable change of the transmission without making the sample
almost totally opaque. This means that a series of plate thicknesses is
required to cover the interesting spectral regions. Since this would re-
quire impractical thicknesses of order 10 nm for photon energies near
and above the critical points, an alternative method based on reflection
measurements is normally used.

In a reflection measurement, the absorption coefficient is calculated
from the imaginary part of the complex refractive index by using eqn 1.19.
κ itself is deduced from the measured reflectivity spectra R(�ω) through
eqn 1.29. This might seem impossible at first sight, because R depends
on both n and κ. However, we know from Section 2.3 that n and κ are
not completely independent variables and must be related to each other
through the Kramers–Kronig relationships. Hence by self-consistent fit-
ting of the reflectivity spectra using the Kramers–Kronig formulæ given
in eqns 2.36 and 2.37, we can determine both n and κ from R(�ω), and
hence deduce α from κ.

In recent years a more refined version of the reflectivity technique
called ellipsometry has been developed. In this technique the sam-
ple is illuminated at an oblique angle by linearly polarized light with
the polarization vector outside the s- or p-plane. The reflected light be-For oblique incidence on a plane sur-

face, light polarized parallel or per-
pendicular to the plane of incidence
and reflection is called p-polarized or
s-polarized, respectively. The difference
in the reflection coefficients for these
two polarizations is governed by Fres-
nel’s equations. See, for example, Hecht
(2001).

comes elliptically polarized because of the different reflectivities for s-
and p-polarizations, and a careful analysis allows values of the real and
imaginary parts of the refractive index to be determined. The accuracy
of these values can depend critically on the cleanliness of the surface,
because the light only penetrates a very small distance into the material
when the absorption coefficient is very high.

3.7 Semiconductor photodetectors

The strong absorption found in semiconductors is the basis of semi-
conductor photodetectors. Light with photon energy greater than the
band gap is absorbed in the semiconductor, and this creates free elec-
trons in the conduction band and free holes in the valence band. The
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Fig. 3.15 Schematic diagram of a mod-
ern experimental arrangement to mea-
sure absorption spectra in the wave-
length range 200–1000 nm using a sil-
icon diode array detector.

presence of the light can therefore be detected either by measuring a
change in the resistance of the sample or by measuring an electrical
current in an external circuit. In this section we consider the operating
principles of two different types of detector, and then discuss the use of
semiconductor detectors in solar cells.

3.7.1 Photodiodes

Many basic detectors just use p–n
structures without the i-region. The
light is absorbed in the depletion re-
gion at the junction, where there are
no free carriers. The p–i–n structure
is preferable because of the faster re-
sponse times that can be achieved. It
is, however, more complicated to make.

Figure 3.16 shows a schematic diagram of a photodiode detector. The
detector consists of a p–n junction with a thin intrinsic (undoped) layer
sandwiched in the depletion region, forming a p–i–n structure. The band
alignments and electrostatics of this type of structure are discussed in
Appendix E. The diode is operated in reverse bias. This ensures that
there is only a very small current in the circuit when no light is present,
and applies a very strong DC electric field across the i-region. Photons
absorbed in the i-region generate electron-hole pairs, that are rapidly
swept towards the contacts by the field, and hence into the external
circuit. The current generated in this way is called the photocurrent.

Consider a photodiode of active length l illuminated by a light beam
of optical power P and angular frequency ω. The flux of photons per
unit time on the detector is P/�ω. From the definition of the absorption
coefficient given in eqn 1.4, we can deduce that the fraction of light
absorbed in a length l is equal to (1 − e−αl), where α is the absorption
coefficient at frequency ω. Each absorbed photon generates one electron-
hole pair, and we define the quantum efficiency η as the fraction of
these charge carriers that flow into the external circuit. The magnitude
of the photocurrent Ipc is thus given by:

Ipc = eη
P

�ω
(1 − e−αl). (3.38)

We have assumed here that the top surface of the detector has been anti-
reflection coated to prevent the wasteful reflection of incident photons.
We have also assumed that the absorption in any layers above the active
region is negligible.

The responsivity of the device is the ratio of the photocurrent Ipc
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to the optical power P , and is given by:

Responsivity =
Ipc

P
=

ηe

�ω
(1 − e−αl) amps per watt. (3.39)

Equation 3.39 shows us that in order to obtain a large responsivity we
need a high absorption and high quantum efficiency. Ideally, we would
like to have both η and (1− e−αl) to be equal to unity, in which case the
responsivity is simply e/�ω. This sets an upper limit on the responsivity
that can be achieved. For example, the maximum possible responsivity
for a 2 eV photon (λ = 620 nm) is 0.5 A W−1. Well-designed photodiodes
can come quite close to this ideal figure.
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Fig. 3.16 Schematic diagram of a p–i–
n photodiode. The diode is operated in
reverse bias with a positive voltage V0

applied to the n-region. This generates
a strong DC electric field E across the
i-region. Absorption of photons in the
i-region creates free electrons and holes
that are driven to the n-region and p-
regions respectively by the field. The
carriers that reach the doped regions
flow into the external circuit, thereby
generating the photocurrent Ipc.

The design of practical photodiodes is based on several criteria.

• The choice of the semiconductor is made to optimize the respon-
sivity while ensuring a fast response and low noise. The most fun-
damental criterion is that the band gap must be smaller than the
photon energy. Having satisfied this criterion, we want Eg to be
as large as possible to minimize the noisy dark current that arises
from the thermal excitation of electrons and holes across the gap.
At the same time, we want a material in which the electron and
hole mobilities are high so that the photogenerated carriers can be
swept quickly across the device and give a fast response time.

• Materials with direct band gaps are better than those with indi-
rect gaps because the absorption is higher. With typical values of
α over 106 m−1 for direct absorption, the thickness of the active
layer needs only to be ∼ 1 µm to achieve very strong absorption.
In an indirect gap semiconductor, greater thicknesses are required,
which increases the constraints on the purity of the material. Fur-
thermore, the direct gap materials can give faster response times
because the thinner i-region reduces the transit time of the device.

• The top contact should be designed to transmit as much of the
light into the i-region as possible. This means that the top con-
tact should be made very thin. A better solution is to use different
semiconductors for the p–n junction and i-region, such that the
top contact has a larger band gap than the photons to be detected.
This is possible with modern epitaxial semiconductor growth tech-
nology.

All these physical considerations have to be weighed against the manu-
facturing costs.

Table 3.3 gives a list of several common types of semiconductor pho-
todetectors. Silicon is extensively used at visible and near infrared wave-
lengths, despite the fact that the absorption is indirect. This choice is
determined by the advanced technology of the silicon industry. Germa-
nium detectors can be used out to 1.9 µm, but for more demanding
applications in the wavelength range 1–1.6 µm, the III–V alloy semicon-
ductor InGaAs is becoming increasingly important. This is because it
has a direct gap and also has a higher electron mobility than Ge, which
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means that fast, efficient detectors can be made for the telecommunica-
tions wavelengths of 1.3 µm and 1.5 µm.

At wavelengths beyond 1.9 µm, narrow gap semiconductors such as
InAs or InSb have to be used. These long wavelength detectors invari-
ably require cryogenic cooling to suppress the thermal dark currents
and achieve good signal to noise ratios. The II–VI alloy semiconduc-
tor HgCdTe is frequently used for wavelengths beyond 5 µm. It has a
band gap which can be varied according to the composition, and detec-
tors with peak sensitivities in the range 5–14 µm are available. HgCdTe
detectors are therefore able to cover several technologically important
infrared wavelengths, especially 10.6 µm, which corresponds to one of
the infrared windows in the atmosphere and also to the emission lines
of the CO2 laser. In Section 6.7 of Chapter 6 we shall describe an al-
ternative detector for 10.6 µm which has recently been developed using
GaAs quantum wells. These quantum well detectors operate on a differ-
ent principle to the interband detectors described here.

Table 3.3 Common semiconductor pho-
todetectors. Eg is the band gap, T the op-
erating temperature, and λmax the max-
imum wavelength that can be detected.
The band gap of alloy semiconductors
such as InGaAs and HgCdTe can be var-
ied by altering the composition. The com-
positions listed here correspond to typical
values used in detectors.

Semiconductor Eg T λmax

(eV) (K) (�m)

Si 1.1 300 1.1
In0.53Ga0.47As 0.75 300 1.65
Ge 0.66 300 1.9
Ge 0.73 77 1.7
InAs 0.42 77 3.0
InSb 0.23 77 5.2
Hg0.8Cd0.2Te 0.09 77 14Example 3.2

Estimate the responsivity of a 10 µm thick anti-reflection coated silicon
photodiode at 800 nm. Calculate the photocurrent generated when the
diode is illuminated with a 1 mW beam from a semiconductor laser op-
erating at this wavelength.

Solution
The responsivity is given by eqn 3.39. We can read a value of α ≈
1 × 105 m−1 ≡ 0.1 µm−1 for silicon at 800 nm (1.55 eV) from Fig. 3.9.
The device is anti-reflection coated, and we therefore assume that no
optical power is lost at the front surface. A well-designed photodiode
will have negligible absorption in the top contact and quantum efficiency
η ≈ 1 at the operating wavelength. We therefore obtain:

Responsivity =
e

�ω
(1 − e−0.1×10) = 0.41 amps per watt .

The photocurrent is given by the product of the responsivity and the
optical power. The photocurrent will therefore be 0.41 mA.

3.7.2 Photoconductive devices

An alternative way to make a semiconductor photodetector is to use the
photoconductive effect. This relies on the change of the conductivity of
the material when illuminated by light. The conductivity is proportional
to the density of free electrons and holes. The conductivity therefore in-
creases due to the generation of free carriers after absorption of photons
by interband transitions.
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Fig. 3.17 (a) A p–i–n photodiode op-
erating in photovoltaic mode. The pho-
tocurrent Ipc develops power in the
load resistor R, but the photovoltage V
puts the device into forward bias, and
hence opposes the built-in field of the
diode. (b) I–V curve for a typical pho-
tovoltaic device under illumination.
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The devices consist of a sample with contacts at the ends so that a
constant DC current can flow through the semiconductor between the
contacts. The resistance between the contacts decreases upon illumina-
tion. This alters the voltage dropped across the device, and hence pro-
vides the detection mechanism. Photoconductive detectors are simpler
to make than photodiodes, but tend to have slow response times.

3.7.3 Photovoltaic devices

Semiconductor photodiodes can also be operated in photovoltaic mode.
In this mode of operation, the device does not have an external power
supply, but instead generates a photovoltage when irradiated by light.
The voltage can generate electrical power in an external load, thus con-
verting optical energy into electrical energy. This is the basis of operation
of solar cells, which generate electrical power from sunlight.Solar cells can be used as renewable en-

ergy sources, which makes the develop-
ment of low-cost, high-efficiency pho-
tovoltaic devices a very important re-
search field.

The operating principle of a photovoltaic device relies on the relation-
ship between the photocurrent and the applied bias in a photodiode.
The photocurrent is sensitive to the bias because it affects the electric
field E across the depletion region. As explained in Appendix E, the field
strength can be quite large even when the external bias is zero. This is
because of the alignment of the Fermi levels in the p- and n-regions,
which produces a voltage drop across the depletion region called the
built-in voltage Vbi. The magnitude of Vbi is approximately equal to
Eg/e. A forward bias approaching Vbi must therefore be applied before
E drops to zero. The diode will produce a photocurrent on illumination
provided that there is a field to sweep out the electrons and holes. Thus
photocurrents can be produced at zero bias and even in forward bias, as
long as the forward bias voltage is less than Vbi.

Let us suppose that we replace the battery in Fig. 3.16 with an elec-
trical load of resistance R, as shown in Fig. 3.17(a). The voltage on the
diode in the dark is zero. If the diode is illuminated, a photocurrent will
be generated because the field due to the built-in voltage sweeps the car-
riers out of the i-region. This photocurrent flows through the load and
the device therefore converts optical power to electrical power. The di-
rection of the photocurrent is such that the photovoltage V ≡ IpcR puts
the diode into forward bias. This limits the maximum power that can be
generated, since Ipc drops as V increases towards Vbi, as shown schemat-
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ically in Fig. 3.17(b). The two key parameters identified in Fig. 3.17(b)
are the open-circuit voltage VOC and the short-circuit current ISC.
VOC is the voltage generated when the load resistance is very high so
that no current flows, while ISC is the current generated when the load
resistance is very low, so that no voltage is generated. The power output
is equal to IpcV , and the maximum efficiency point usually occurs just
below VOC, as indicated in Fig. 3.17(b).

The maximum power conversion effi-
ciency that can be achieved from a
silicon solar cell is in the range 10–
25%, and the maximum voltage gen-
erated is about 0.6 V. Larger efficien-
cies (∼ 40%) have been obtained from
multi-junction devices. Multi-junction
technology is very expensive, and its
use is currently restricted to the most
demanding applications such as space
science.

Solar radiation has a broad spectrum, and this puts conflicting de-
mands on the optimization of the efficiency of solar cells.

(1) IOC is proportional to the number of photons absorbed, which in
turn is proportional to the number of photons in the solar spectrum
with �ω > Eg. This favours solar cells with small band gaps, so
that the largest part of the solar spectrum can be captured.

(2) Since Vbi ∼ Eg/e, the open-circuit voltage increases with Eg, which
favours devices with large band gaps.

An effective way to beat this trade-off is to develop ‘multi-junction’ solar
cells incorporating two or more materials with varying band gaps within
the active region. The high energy solar photons are captured by the
large gap material at the front of the device, while the lower energy ones
are transmitted through to the smaller gap material underneath. In this
way a larger part of the solar energy spectrum can be harnessed with
high efficiency.

Chapter summary

• Interband transitions occur when electrons jump to an excited state
band by absorption of photons. The absorption process may be
considered as the creation of an electron-hole pair.

• Interband absorption is only possible if the photon energy exceeds
the band gap energy Eg. The absorption spectrum therefore shows
a threshold at Eg.

• The absorption rate for direct transitions is proportional to the
product of the joint density of states and the square of the electric-
dipole matrix element.

• The photon wave vector is negligible compared to that of the elec-
tron, and so the electron wave vector is unchanged in a direct
transition. Direct transitions are represented by vertical arrows on
E–k band diagrams.

• The frequency dependence of the absorption edge of a direct gap
semiconductor near Eg is given by eqn 3.25. At higher frequencies,
the absorption coefficient is determined by the detailed frequency
dependence of the joint density of states. The absorption is partic-
ularly high at critical points.
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• The application of an external electric field results in non-zero ab-
sorption below the band gap through the Franz–Keldysh effect.
The application of a magnetic field causes the absorption edge to
shift to higher energy.

• Electron spin polarization can be created in a semiconductor with
the zinc-blende structure by excitation with circularly polarized
light.

• Interband transitions in indirect gap materials involve the absorp-
tion or emission of a phonon to conserve momentum in the process.
Indirect absorption is much weaker than direct absorption since it
is a second-order process.

• The frequency dependence of the absorption edge in an indirect gap
material is given by eqn 3.36. This is different to that observed in
direct gap semiconductors, and provides a way for determining the
nature of the band gap experimentally.

• The absorption of light by interband transitions can be used to
make photodetectors and photovoltaic devices. The photons with
energies greater than the band gap generate a current in a pho-
todetector and a voltage in a photovoltaic device. A photovoltaic
device generating power from solar radiation is called a solar cell.

Further reading

The electronic states of solids are covered in the compan-
ion book of this series by Singleton (2001). They are also
covered in all general solid-state physics texts, for exam-
ple Burns (1985), Ibach & Luth (2003), or Kittel (2005),
and in more detail by Harrison (1999).

Detailed information on the interband absorption of
semiconductors may be found in Klingshirn (1995),
Pankove (1971), Seeger (1997), or Yu & Cardona (1996).
Introductory treatments of the application of group the-
ory to interband transitions can be found in Klingshirn
(1995) or Yu & Cardona (1996).

The Franz–Keldysh effect and the use of modulation

spectroscopy to determine band structure parameters are
described in Aspnes (1980), Hamaguchi (2001), Seeger
(1997), and Yu & Cardona (1996), while Seeger (1997)
gives a good discussion of the effect of magnetic fields
on the band edge absorption. A detailed account of the
accurate determination of the optical parameters of semi-
conductors by ellipsometry may be found in Aspnes and
Studna (1983).

The physics of semiconductor photodetectors is de-
scribed in more detail in Bhattacharya (1997), Chuang
(1995), Sze (1985), Wilson and Hawkes (1998), or Yariv
(1997). Sze (1985) gives a good discussion of solar cells.

Exercises

(3.1) Apply Born–von Karman periodic boundary con-
ditions (i.e. eikx = eik(x+L) etc., where L is a
macroscopic length) to show that the density of
states per unit volume in k space is 1/(2π)3.

(3.2) Show that the density of states for an electron with
E(k) = �

2k2/2m∗ is given by eqn 3.16.

(3.3) The wave function of an atomic state with princi-
pal quantum number n, orbital quantum number l
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and magnetic quantum number m may be written
in the form:

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) ,

where Rnl(r) is the radial wave function, Ylm(θ, φ)
is the spherical harmonic function, and (r, θ, φ)
are spherical polar coordinates. The spherical har-
monic function itself may be written

Ylm(θ, φ) = C P m
l (cos θ)eimφ ,

where P m
l (cos θ) is a polynomial function in cos θ,

and C is a normalization constant. The parity of
the spherical harmonic functions is equal to (−1)l.
(a) Explain what is meant by the ‘parity’ of an
atomic wave function.
(b) The matrix element for an electric-dipole tran-
sition between states with initial and final wave
functions ψi and ψf respectively is given by

M =

����
� ∞

r=0

� π

θ=0

� 2π

φ=0

ψ∗
f H ′ ψi r

2 sin θ drdθdφ

���� ,

where H ′ = −e�. By considering the parity of the
wave functions, prove that M = 0 unless l changes
by an odd number during the transition.1

(c) By writing the components of � in spherical
polar coordinates, prove that ∆m = 0 if the light
is polarized along the z direction, and ∆m = ±1
for light polarized in the x or y direction.
(d) By writing circularly polarized light in the
form given in eqn A.40, show that σ+ and σ− light
induce transitions with ∆m = +1 and ∆m = −1
respectively.

(3.4) Draw a schematic diagram of an experimental ar-
rangement that could be used to obtain the ab-
sorption data shown in Fig. 3.6.

Table 3.4 Absorption coefficient α of GaP tabulated
against photon energy E at 300K. Data from Palik
(1985).

E (eV) α (m−1) E (eV) α (m−1)

2.2 3.12 × 101 2.7 7.39 × 105

2.3 7.79 × 103 2.8 3.35 × 106

2.4 2.72 × 104 2.9 5.38 × 106

2.5 6.43 × 104 3.0 6.81 × 106

2.6 1.44 × 105 3.1 8.64 × 106

(3.5) Explain how you would use optical absorption
measurements to determine whether a semicon-
ductor has a direct or indirect band gap.

(3.6) Table 3.4 gives absorption data for gallium phos-
phide at 300K. What can you deduce about the
band structure of GaP from this data?

(3.7) Use the data given in Fig. 3.11 to estimate the
absorption coefficient of germanium at 1200 nm.

(3.8) The band parameters of the four-band model
shown in Fig. 3.5 are given for GaAs in Table D.2.
(a) Calculate the k vector of the electron excited
from the heavy-hole band to the conduction band
in GaAs when a photon of energy 1.6 eV is ab-
sorbed at 300K. What is the corresponding value
for the light-hole transition ?
(b) Calculate the wave vector of the photon inside
the crystal. Does this confirm the validity of the
approximation given in eqn 3.12 ? The refractive
index of GaAs at 1.6 eV is 3.7.
(c) Calculate the ratio of the joint density of states
for the heavy- and light-hole transitions.
(d) What is the wavelength at which transitions
from the split-off hole band become possible?

(3.9) Consider an electric-dipole transition with ∆J =
−1, as appropriate for transitions from the heavy-
hole and light-hole bands to the conduction band
at k = 0. The matrix elements for σ−, linear, and
σ+ light are given respectively by:2

|〈J − 1, MJ − 1|σ−|J, MJ〉|2 =
1
2
(J + MJ)(J + MJ − 1)C ,

|〈J − 1, MJ |z|J, MJ 〉|2 =

(J2 − MJ)2C ,

|〈J − 1, MJ + 1|σ+|J, MJ〉|2 =
1
2
(J − MJ)(J − MJ − 1)C ,

where C is the same for all three transitions. Use
these results to show that, for circularly polarized
light, the square of the matrix element for heavy-
hole transitions in a semiconductor with the band
structure shown in Fig. 3.8 is three times as strong
as for light-hole transitions.

(3.10) Explain why the electron spin polarization gener-
ated with linearly polarized light is equal to zero.

1By considering the properties of the function P m
l (cos θ), it is possible to prove that the selection rule on ∆l is stricter than

just being an odd number: ∆l must in fact be equal to ±1.
2See, for example, Woodgate (1980), Table 8.1, or Corney (1977), Table 5.1.
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(3.11) Discuss the variation of the electron spin polar-
ization generated by absorption of circularly po-
larized photons as the photon energy is increased
above the band gap energy.

(3.12)∗ In silicon the s-like anti-bonding orbital lies at
a higher energy than the p-like anti-bonding or-
bitals, which contrasts with the ordering of the
levels for Ge or GaAs shown in Fig. 3.3. This leads
to major qualitative differences between the con-
duction band states of silicon and germanium at
the Γ point, as can be seen by comparing Figs 3.10
and 3.13.
(a) Deduce the value of the direct band gap of
silicon at the Γ point from the band structure di-
agram given in Fig. 3.13.
(b) Explain qualitatively how the transitions at
energies E1 and E2 can be dipole allowed.

(3.13) Where would you expect to measure the optical
absorption edge in germanium at 4 K? The indi-
rect band gap is 0.74 eV at this temperature.

(3.14) Estimate the electric field strength at which the
band edge of GaAs is red shifted by 0.01 eV. The
electron effective mass is 0.067m0.

(3.15)∗Show that a classical particle of mass m and charge
e performs circular orbits around a magnetic field
with an angular frequency of eB/m, where B is
the field strength. Show also that the selection rule
for the Landau level number n during an interband
transition is ∆n = 0.

(3.16)∗ (a) Show that the density of states of a particle
which is free to move in one dimension only is pro-
portional to E−1/2, where E is the energy of the
particle.
(b) Draw a sketch of the frequency dependence of

the optical absorption edge of a one-dimensional
direct gap semiconductor.
(c) Explain why a bulk semiconductor in a
strong magnetic field can be considered as a one-
dimensional system. Hence explain the shape of
the optical transmission spectrum of germanium
at 300K at 3.6 T given in Fig. 3.7.
(d) Use the data in Fig. 3.7 to deduce values for
the band gap and the electron effective mass of Ge
on the assumption that m∗

h � m∗
e . Comment on

the values you obtain.

(3.17) The absorption coefficient of germanium is 4.6 ×
104 m−1 at 1.55�m and 7.5× 105 m−1 at 1.30�m.
Calculate the maximum responsivities of a ger-
manium photodiode with a 10�m thick absorbing
layer at these two wavelengths.

(3.18) (a) The capacitance of a reverse biased p–i–n pho-
todiode can be calculated by treating the device
as a parallel plate capacitor. Justify this approxi-
mation.
(b) Calculate the capacitance of a silicon p–i–n
photodiode with an area of 1 mm2 and an i-region
thickness of 10�m. The static dielectric constant
of silicon is 11.9.
(c) Estimate the time taken for the photogen-
erated electrons and holes to drift across the i-
region when the reverse bias on the photodi-
ode is 10V. Assume that the built-in voltage is
1.1V, and that the electron and hole mobilities of
Si at room temperature are 0.15m2 V−1 s−1 and
0.045m2 V−1 s−1 respectively.
(d) At what voltage would the electron transit
time be equal to the RC time constant of the diode
when connected to a 50 Ω load?

∗Exercises marked with an asterisk are more challenging
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In the previous chapter we discussed the absorption of photons by in-
terband transitions. We saw that this process creates an electron in the
conduction band and a hole in the valence band, but we neglected the
effects of the mutual Coulomb attraction between them. As we shall
see in this chapter, the Coulomb interaction can give rise to the for-
mation of new excitations of the crystal called excitons. These excitons
have interesting optical properties and are important for opto-electronic
applications.

We shall encounter excitons in several different contexts throughout
this book. In this chapter we concentrate mainly on their effects on the
absorption edge of bulk semiconductors. In Chapter 6 we shall see how
the excitonic effects can be enhanced in quantum-confined structures,
and then in Chapter 8 we shall see how excitonic effects have a strong
influence on the optical properties of molecular materials. Finally, in
Chapter 11 we shall briefly study how the presence of excitons can give
rise to useful nonlinear optical properties.

4.1 The concept of excitons

The absorption of a photon by an interband transition in a semicon-
ductor or insulator creates an electron in the conduction band and a
hole in the valence band. The oppositely charged particles are created
at the same point in space and can attract each other through their
mutual Coulomb interaction. This attractive interaction increases the
probability of the formation of an electron-hole pair, and therefore in-
creases the optical transition rate. Moreover, if the right conditions are
satisfied, a bound electron-hole pair can be formed. This neutral bound
pair is called an exciton. In the simplest picture, the exciton may be
conceived as a small hydrogenic system similar to a positronium atom
with the electron and hole in a stable orbit around each other.

Excitons are observed in many crystalline materials. There are two
basic types:

• Wannier–Mott excitons, also called free excitons;
• Frenkel excitons, also called tightly bound excitons.

The Wannier–Mott excitons are mainly observed in semiconductors,
while the Frenkel excitons are found in insulators and molecular crystals.

The two types of exciton are illustrated schematically in Fig. 4.1.
The diagrams show an electron and hole orbiting around each other
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Fig. 4.1 Schematic diagram of: (a) a
free exciton, and (b) a tightly bound
exciton. The free excitons illustrated in
(a) are also called Wannier–Mott exci-
tons, while the tightly bound excitons
illustrated in (b) are also called Frenkel
excitons.

(a) Free exciton (b) Tightly bound exciton
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within a crystal. The Wannier–Mott type excitons have a large radius
that encompasses many atoms, and they are delocalized states that can
move freely throughout the crystal: hence the alternative name of ‘free’
excitons. Frenkel excitons, by contrast, have a much smaller radius which
is comparable to the size of the unit cell. This makes them localized
states which are tightly bound to specific atoms or molecules; hence their
alternative name of ‘tightly bound’ excitons. Tightly bound excitons are
much less mobile than free excitons, and they have to move through the
crystal by hopping from one atom site to another.

Stable excitons will only be formed if the attractive potential is suf-
ficient to protect the exciton against collisions with phonons. Since the
maximum energy of a thermally excited phonon at temperature T is
∼ kBT , where kB is Boltzmann’s constant, this condition will be satis-
fied if the exciton binding energy is greater than kBT . Wannier–Mott
excitons have small binding energies due to their large radius, with typ-
ical values of around 0.01 eV. Since kBT ∼ 0.025 eV at room tempera-
ture, the excitons are only observed clearly at cryogenic temperatures in
many materials. Frenkel excitons, on the other hand, have larger bind-
ing energies of the order 0.1–1 eV, which makes them stable at room
temperature.

In the sections that follow, we first describe the basic properties of free
excitons, and then study how they are affected by external electric and
magnetic fields. We then discuss the interactions between excitons, which
are the basis for the nonlinear optical properties of excitons discussed in
Chapter 11. We close the chapter with a brief discussion of the optical
properties of Frenkel excitons.

4.2 Free excitons

4.2.1 Binding energy and radius

In a free exciton, the average separation of the electrons and holes is
much greater than the atomic spacing, as shown in Fig. 4.1(a). This
is effectively the definition of a Wannier exciton, and it specifies more
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accurately what is meant by saying that the free exciton is a weakly
bound electron-hole pair. Since the electron-hole separation is so large,
it is a good approximation to average over the detailed structure of the
atoms in between the electron and hole and consider the particles to
be moving in a uniform dielectric material. We can then model the free
exciton as a hydrogenic system similar to positronium.

We know from atomic physics that the motion of hydrogenic atoms
splits into the centre of mass motion and the relative motion. (See Ex-
ercise 4.1.) The centre of mass motion describes the kinetic energy of
the atom as a whole, while the relative motion determines the internal
structure. The energies of the bound states can be determined by finding
the eigenvalues of the Schrödinger equation for the relative motion, or
alternatively by using approximation techniques such as the variational
method. (See Exercises 4.2–4.4). The main results are, however, well
explained by using the Bohr model (see Exercise 4.5), and this is the
procedure we adopt here.

In applying the Bohr model to the exciton, we must take account of
the fact that the electron and hole are moving through a medium with
a high dielectric constant εr. We must also remember that the reduced
mass µ will be given by eqn 3.22, instead of the value of 0.9995m0 that
applies to the electron–proton system in a hydrogen atom. With these
two qualifications, we can then just use the standard results of the Bohr
model. The bound states are characterized by the principal quantum
number n, and the energy of the nth level relative to the ionization limit
is given by:

E(n) = − µ

m0

1
ε2r

RH

n2
= −RX

n2
, (4.1)

where RH is the Rydberg energy of the hydrogen atom (13.6 eV). The
quantity RX = (µ/m0ε

2
r )RH introduced here is the exciton Rydberg

energy. The radius of the electron-hole orbit is given by

rn =
m0

µ
εr n2aH = n2aX (4.2)

where aH is the Bohr radius of the hydrogen atom (5.29× 10−11m) and
aX = (m0εr/µ)aH is the exciton Bohr radius. Equations 4.1 and 4.2
show that the ground state with n = 1 has the largest binding energy
and smallest radius. The excited states with n > 1 are less strongly
bound and have a larger radius.

Table 4.1 Calculated Rydberg
energy and Bohr radius of the free
excitons in several direct gap III–V
and II–VI compound semiconduc-
tors. The bracketed figures for InSb
indicate that there has been no
experimental confirmation of the
values.
Eg: band gap,
RX: exciton Rydberg energy from
eqn 4.1,
aX: exciton Bohr radius from
eqn 4.2.

Crystal Eg RX aX

(eV) (meV) (nm)

GaN 3.5 23 3.1
ZnSe 2.8 20 4.5
CdS 2.6 28 2.7
ZnTe 2.4 13 5.5
CdSe 1.8 15 5.4
CdTe 1.6 12 6.7
GaAs 1.5 4.2 13
InP 1.4 4.8 12
GaSb 0.8 2.0 23
InSb 0.2 (0.4) (100)

Table 4.1 lists the exciton Rydberg energy and Bohr radius for a
number of direct gap III–V and II–VI semiconductors. A general pattern
is easily noticed in the data, namely that RX tends to increase and aX

to decrease as Eg increases. This is explained by the fact that εr tends
to decrease and µ to increase as the band gap increases. From eqns 4.1
and 4.2, we see that this causes an increase in the exciton binding energy
and a decrease in the radius. In insulators with band gaps greater than
about 5 eV, aX becomes comparable to the unit cell size, and the Wannier
model is no longer valid. At the other extreme, RX is so small in narrow
gap semiconductors such as InSb that it is difficult to observe any free
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exciton effects at all. Hence, free exciton behaviour is best observed in
semiconductors with medium-sized band gaps in the range ∼ 1–3 eV.

Example 4.1

(i) Calculate the exciton Rydberg energy and Bohr radius for GaAs,
which has εr = 12.8, m∗

e = 0.067m0 and m∗
h = 0.2m0.

It is not immediately obvious what is
the correct dielectric constant or hole
effective mass to use for a III–V semi-
conductor such as GaAs. This is be-
cause εr varies with frequency (see Sec-
tion 10.2), and the heavy- and light-
hole bands are degenerate at k = 0.
(See Fig. 3.5.) As a rule of thumb, we
use the value of εr for the photon energy
that corresponds to RX, and a weighted
average of the heavy- and light-hole
masses for m∗

h. In this example, RX

comes out to be 4.2meV, which is in the
far-infrared spectral region. We there-
fore use the static dielectric constant εst
for εr.

(ii) GaAs has a cubic crystal structure with a unit cell size of 0.56 nm.
Estimate the number of unit cells contained within the orbit of the n = 1
exciton. Hence justify the validity of assuming that the medium can be
treated as a uniform dielectric in deriving eqns 4.1 and 4.2.

(iii) Estimate the highest temperature at which it will be possible to
observe stable excitons in GaAs.

Solution
(i) We first need to calculate the reduced electron-hole mass µ, which

is given by eqn 3.22. With m∗
e = 0.067m0, and m∗

h = 0.2m0, we find

µ =
(

1
0.067m0

+
1

0.2m0

)−1

= 0.05m0 .

We then insert this value of µ and εr = 12.8 into eqns 4.1 and 4.2 to
obtain:

RX =
0.05
12.82

× 13.6 eV = 4.2meV ,

and
aX =

12.8
0.05

× 0.0529 nm = 13 nm .

(ii) We see from eqn 4.2 that the radius of the n = 1 exciton is
equal to aX. The volume occupied by this exciton is 4

3πa3
X which is

equal to 9.2 × 10−24 m3. The volume of the cubic unit cell is equal to
(0.56 nm)3 = 1.8 × 10−28 m3. Hence the exciton volume can contain
5 × 104 unit cells. Since this is a large number, the approximation of
averaging the atomic structure to a uniform dielectric is justified.

(iii) The n = 1 exciton has the largest binding energy with a value of
4.2meV. This is equal to kBT at 49 K. Therefore, we would not expect
the excitons to be stable above ∼ 50K.

4.2.2 Exciton absorption

Free excitons are typically observed in direct gap semiconductors such
as GaAs. They are created during direct optical transitions between the
valence and conduction bands. As discussed in Section 3.2 this creates
an electron-hole pair in which the electron and hole have the same k
vector.
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Excitons can only be formed if the electron and hole group velocities ve

and vh are the same. This is a necessary condition for the electrons and
holes to be able to move together as a bound pair. The group velocity
of an electron in a band is given by (see eqn D.4):

vg =
1
�

∂E

∂k
. (4.3)

This implies that the condition ve = vh can only be satisfied if the
gradients of the conduction and valence bands are the same at the point
of the Brillouin zone where the transition occurs. All bands have zero
gradient at the zone centre. Hence we can form excitons during a direct
transition at k = 0. In a direct gap semiconductor, these transitions
correspond to photon energies of Eg. (See eqn 3.23.) Therefore we expect
to observe strong excitonic effects in the spectral region close to the
fundamental band gap. Eg

Photon energy

n = 1

n = 2

(�� � Eg)
1/2

A
b
so

rp
ti

o
n

Fig. 4.2 Band edge absorption spec-
trum for a direct gap semiconductor
with excitonic effects included. The
dotted line shows the expected absorp-
tion when the excitonic effects are ig-
nored.

The energy of the exciton created in a direct transition at k = 0 is
equal to the energy required to create the electron-hole pair, namely Eg,
less the binding energy due to the Coulomb interaction, which is given
by eqn 4.1. Hence the energy of the exciton will be given by:

En = Eg − RX

n2
. (4.4)

Whenever the photon energy is equal to En, excitons can be formed. The
probability for the formation of excitons is expected to be high, because
it is energetically favourable for the exciton states to be formed compared
to free electron-hole pairs. Therefore we expect to observe strong optical
absorption lines at energies equal to En. These will appear in the optical
spectra at energies just below the fundamental band gap.

The band edge absorption spectrum expected when excitonic effects
are included is illustrated schematically in Fig. 4.2. The electron-hole
Coulomb interaction causes a series of excitonic absorption lines to ap-
pear just below the band gap, and enhances the absorption coefficient
just above the band gap. The second point is a consequence of the fact
that the Coulomb attraction decreases the size of the free electron and
hole wave functions and hence increases their overlap, thereby leading
to an increased transition probability.

Free excitons can only be observed in the absorption spectrum of very
pure samples. This is because impurities release unpaired free electrons
and holes that can screen the Coulomb interaction in the exciton and
thereby strongly reduce the binding forces. For this reason, excitonic
effects are not usually observed in doped semiconductors or metals, since
they contain a very high density of free carriers. Charged impurities also
generate electric fields, which tend to ionize the excitons, as discussed
in Section 4.3.1.

Free excitons can also be observed near the fundamental band gap
of indirect semiconductors such as silicon and germanium. These indi-
rect excitons are more difficult to conceptualize because the electrons
and holes have different k vectors. The condition ve = vh is satisfied
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Fig. 4.3 Excitonic absorption of GaAs
between 21K and 294 K. The dashed
line is an attempt to fit the absorp-
tion edge using eqn 3.25 with a value of
Eg equal to 1.425 eV, which is appro-
priate for GaAs at 294K. After Sturge
(1962), c© American Physical Society,
reprinted with permission.
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because the electron at the conduction band minimum still has ve = 0,
even though it has a large k vector. Experimental results give the bind-
ing energies of the free excitons in silicon and germanium as 14meV
and 4 meV respectively. These values are slightly higher than the gen-
eral trends for direct gap semiconductors shown in Table 4.1. This is
because of the larger electron mass at the zone edges compared to the
Γ point. It is difficult to observe indirect excitons in absorption because
of the reduced probability for indirect transitions. They can, however,
be clearly observed in emission experiments, as will be discussed briefly
in Section 4.4.

4.2.3 Experimental data for free excitons in GaAs

Figure 4.3 gives experimental data for the excitonic absorption of un-
doped GaAs between 21 K and 294 K. As expected, the data show strong
absorption lines at photon energies just below the fundamental band gap
of GaAs. At 21 K a peak is observed just below the direct absorption
edge. This corresponds to the n = 1 exciton. The line is too broad
to permit observation of any of the excited states. As the temperature
is increased, the band gap shifts to lower energy and the exciton line
weakens. At room temperature where kBT � RX, the exciton line has
completely gone.

The spectrum at 185 K shows a weak exciton line at the band edge
even though kBT is almost four times greater than RX. This indicates
that the criterion for exciton stability used in Example 4.1(iii), namely
kBT < RX, is too stringent. The main mechanism that causes dissoci-
ation of excitons is collisions with longitudinal optic (LO) phonons. As
the probability of such collisions increases, the lifetime of the excitons
shortens. This leads to a corresponding broadening of the exciton line
in the absorption spectrum. In GaAs, the relevant LO phonon has an
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Fig. 4.4 Excitonic absorption of ultra
pure GaAs at 1.2K. After Fehrenbach
et al. (1985), c© Excerpta Medica Inc.,
reprinted with permission.

energy of 35 meV, which has a thermal occupation of 11% at 185 K. (See
eqn 3.37.) There are therefore still relatively few LO phonons in the
crystal at this temperature, and the exciton line is just resolved. In Chapter 6 we shall discuss how the

excitonic effects in materials such as
GaAs can be enhanced in quantum-
confined structures. This has made it
possible to observe very strong free ex-
citon absorption lines in GaAs quantum
wells even at room temperature.

The dashed line in Fig. 4.3 shows the frequency dependence of the
absorption edge expected if excitonic effects are ignored. This line is
obtained from eqn 3.25 with a value of 1.425 eV for Eg, which is appro-
priate for GaAs at 294 K. We see that the fit to the data is not good.
This tells us that the Coulomb interaction between the electron and hole
still enhances the absorption rate considerably, even though there are no
clear exciton lines observed in the spectrum.

Figure 4.4 shows more recent data for the excitonic absorption of ultra
pure GaAs at 1.2 K. The data clearly show the hydrogen-like energy
spectrum of the exciton in the vicinity of the band gap. The exciton
lines are more clearly resolved in this data set than in Fig. 4.3 because
the temperature is lower and the sample purity is superior. As discussed
above, the presence of impurities leads to screening of the Coulomb
interaction by free carriers, while lower temperatures reduce the thermal
broadening of the absorption lines.

Three exciton states can be clearly identified in the absorption spec-
trum shown in Fig. 4.4. The energies of the n = 1, n = 2 and n = 3
excitons are 1.5149 eV, 1.5180 eV, and 1.5187 eV respectively. These en-
ergies fit eqn 4.4 very well with Eg=1.5191 eV and RX = 4.2 meV. This
value of Eg agrees well with other measurements, while the experimen-
tal figure of 4.2 meV for RX is in excellent agreement with the value
calculated in Example 4.1.

4.3 Free excitons in external fields

Free excitons are bound together by the electrostatic attraction between
the negative electron and the positive hole. External electric and mag-
netic fields perturb the system through the forces exerted on the charged
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Fig. 4.5 Field ionization of the free ex-
citons in GaAs at 5K. The data was
taken on a GaAs p–i–n diode with an
i-region thickness of 1.0�m. The solid
line corresponds to ‘flat band’ condi-
tions (forward bias = +1.44V, E ≈
0), while the dashed line is for a for-
ward bias of +1.00V, where E ≈ 5 ×
105 V m−1. No exciton lines are re-
solved at zero bias. Unpublished data
from G. von Plessen and A.M. Tomlin-
son.
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particles. The effects of these perturbations are discussed here, using the
excitons in GaAs as an example.

4.3.1 Electric fields

When a DC electric field E is applied to an exciton, the oppositely
charged electrons and holes are pushed away from each other. It is shown
in Exercise 4.10 that the order of magnitude of the electric field between
the electron and hole in the ground state exciton is equal to 2RX/eaX.
If E exceeds this value, the exciton will break apart. This effect is known
as field ionization.

Electric fields are applied to excitons by incorporating the semicon-
ductor as the i-region in a p–i–n diode structure, as discussed in Ap-
pendix E. The field strength across the i-region when a bias voltage V0

is applied is given by eqn E.3 as:

E =
|Vbi − V0|

li
, (4.5)

where Vbi is the built-in voltage of the diode and li is the intrinsic region
thickness. The sign convention is such that positive V0 corresponds to
forward bias.

In a typical GaAs p–i–n diode, the i-region thickness is about 1 µm,
and Vbi is about 1.5V. Equation 4.5 then tells us that E is 1.5×106 Vm−1

at zero bias. At the same time we see from Table 4.1 that in GaAs
2RX/eaX is of order 6 × 105 Vm−1, which is substantially less than the
field strength at V0 = 0. We would therefore expect the excitons to be
ionized even before we apply bias to the diode.

Figure 4.5 shows experimental data for the field ionization of free exci-
tons in a GaAs p–i–n diode with li = 1.0 µm at 5 K. In this experiment,
the diode is illuminated with light, and the photocurrent generated at a
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given voltage and wavelength is recorded. The solid line is the photocur-
rent recorded in ‘flat band conditions’ (V0 = +1.44V, E ≈ 0), while the
dashed line is for V0 = +1.00V, where E ≈ 5 × 105 V m−1. In the flat
band case we observe a well-resolved exciton line at 1.515 eV. However,
once we reduce the bias by only a very small amount, we rapidly ap-
proach the ionization field, and the exciton broadens significantly. At
zero bias (not shown), we are well above the ionization field, and no
exciton lines are resolved in the spectrum.

The wavelength dependence of the pho-
tocurrent follows the absorption spec-
trum. We can see this from eqn 3.38,
which shows that the photocurrent is
proportional to (1 − e−αl). If αl is
small, the photocurrent is directly pro-
portional to α. If αl is not small, the
photocurrent will still show peaks at
wavelengths where α is a maximum.

From the discussion above, it is clear that excitonic effects do not play
a large part in the physics of bulk semiconductor diodes. The excitons
will only be observed over a small range of forward bias voltages just
less than Vbi. Therefore, the physics of bulk semiconductors in electric
fields is dominated more by the effect of the field on the band states,
namely the Franz–Keldysh effect discussed in Section 3.3.5. As we shall
see in Chapter 6, this is not the case for the enhanced free excitons in
GaAs quantum wells. These show very interesting electric field effects
even at room temperature.

4.3.2 Magnetic fields

The application of a magnetic field perturbs the free excitons by ap-
plying magnetic forces to the electron and hole. The strength of the
perturbation is set by the exciton cyclotron energy �ωc, which is given
by

�ωc = �
eB

µ
, (4.6)

where B is the magnetic flux density. This is similar to the formula for
individual electrons given in eqn 3.27, except that the reduced electron-
hole effective mass µ appears instead of the individual electron mass.

The behaviour can be divided into the weak and strong field limits,
with the transition point set by the ratio of the exciton Rydberg energy
to the cyclotron energy. If RX � �ωc, we are in the weak field regime,
whereas RX � �ωc corresponds to the strong field regime. In GaAs,
the transition between the two limits occurs around 2T for the n = 1
exciton: see Exercise 4.12.

In the weak field limit we treat the magnetic field as a perturbation
on the excitons. The ground state of a hydrogen atom has no net mag-
netic moment because it is spherically symmetric. Thus the interaction
between the n = 1 exciton and the magnetic field will be described
by diamagnetic effects. The diamagnetic energy shift is given by (see
Exercise 4.13):

δE = +
e2

12µ
r2
nB2 . (4.7)

The shift is positive because Lenz’s law tells us that the field induces
a magnetic moment that opposes the applied field. This induced dipole
then interacts with the field to give an energy shift proportional to +B2.

In the strong field limit, the interaction of the electrons and holes with
the field is stronger than their mutual Coulomb interaction. We therefore
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consider the Landau energy of the individual electrons and holes first,
as in Section 3.3.6. We then add on the Coulomb interaction as a smallA more detailed discussion of the effects

of magnetic fields on excitons may be
found in Klingshirn (1995).

perturbation. The details of this analysis are beyond the scope of this
book. The end result is that the excitonic effects cause a small shift in
the energies of the optical transitions between the Landau levels.

4.4 Free excitons at high densities

Wannier excitons behave as if they are hydrogen-like atoms moving freely
through the crystal. The atoms in a gas of hydrogen are agitated by
thermal motion and interact with each other whenever they get close
together. The simplest type of interaction is the tendency to form the
H2 molecule, but other phenomena such as Bose–Einstein condensation
are also possible. Excitons show a similar variety of phenomena such as
the tendency to form molecules or condense to a liquid phase. The type
of behaviour observed in any one material depends very much on the
conditions that apply and the details of the interactions between the
excitons.

We first consider an experiment in which we take a powerful laser and
tune it to one of the exciton absorption lines. The laser creates excitons
in the sample, with a density that is proportional to the laser power.
At low powers, the density of the excitons is small, and the separation
between the excitons is large, as sketched in Fig. 4.6(a). The exciton-
exciton interactions are negligible in these conditions. As the power is
increased, the density of excitons increases. Eventually, the density will
be high enough that the exciton wave functions begin to overlap, as
sketched in Fig. 4.6(b). At this point, we expect that the exciton-exciton
interactions will become very significant.

(a) Low density
Separation � diameter

(b) High density
Separation 	 diameter

(a) Low density
Separation � diameter

(b) High density
Separation 	 diameter

Fig. 4.6 Distribution of the free ex-
citons within a crystal. (a) Low den-
sities: the excitons are randomly dis-
tributed throughout the excitation vol-
ume and the interexciton separation is
large. (b) High densities: the wave func-
tions overlap when the exciton-exciton
separation becomes comparable to the
exciton diameter.

We can see from Fig. 4.6(b) that exciton wave function overlap occurs
when the exciton-exciton distance is equal to the exciton diameter. The
density at which this occurs is called the Mott density NMott. It is
given approximately by the inverse volume of the exciton:

NMott ≈ 1
4
3πr3

n

. (4.8)

From Table 4.1 and eqn 4.2, we find that the Mott density for the n = 1
excitons in GaAs is 1.1×1023 m−3. This density is easily achievable with
a focused laser beam.

When the exciton density approaches NMott, a number of effects can
occur. In GaAs the collisions between the excitons cause the exciton gas
to dissociate into an electron-hole plasma, i.e. a neutral gas containing
equal numbers of electrons and holes. This causes exciton broadening
with a reduction in the absorption strength. Figure 4.7 shows the ab-
sorption coefficient at the n = 1 exciton in GaAs at 1.2K at three
different excitation powers. The weakening and broadening of the ex-
citon line as the carrier density is increased is clearly observed in the
data. The density at which these effects occur agrees well with the value
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Fig. 4.7 Absorption coefficient of GaAs
in the spectral region close to the band
edge at 1.2K at three different excita-
tion powers. The carrier densities gen-
erated for the two higher power lev-
els are indicated. After Fehrenbach et
al. (1985), c© Excerpta Medica Inc.,
reprinted with permission.

of 1.1 × 1023 m−3 given by eqn 4.8. The change of the exciton absorp-
tion with increasing power is an example of a nonlinear optical effect:
the absorption coefficient depends on the intensity of the light. We shall
return to discuss applications of these nonlinear effects in Section 11.4.7
of Chapter 11.

Another effect that can be observed at high exciton densities in other
materials is the formation of exciton molecules called biexcitons. This
is the equivalent process to the formation of an H2 molecule from two
isolated hydrogen atoms. Biexcitons have been observed in a number
of wide gap semiconductors, including CdS, ZnSe, ZnO, and especially
copper chloride. CuCl has a band gap at 3.40 eV, and the ground-state Attempts to observe biexcitons in bulk

GaAs have been complicated by the
nonlinear saturation effects described
above. However, biexcitons can readily
be observed in GaAs quantum-confined
structures such as quantum wells and
quantum dots.

exciton is observed at 3.20 eV, implying that RX = 0.2 eV. At high
densities, a new feature that is attributed to biexcitons is observed in
the absorption spectrum at 3.18 eV. The energy difference between the
two features tells us that the binding energy of the biexciton is 0.02 eV.

In silicon and germanium at high densities, yet another effect occurs.
At low densities the excitons may be considered to be in a gaseous phase.
As the density increases, the excitons condense to form a liquid. The liq-
uid phase manifests itself in the formation of electron-hole droplets,
which are observed in the recombination radiation of the excitons at
high densities. The droplet appears as a broad feature at lower energy
than the free excitons.

The final high-density excitonic effect that we consider here is Bose–
Einstein condensation. At high temperatures, the particles in a non-
interacting boson gas are distributed between the possible energy levels
of the system according to Bose–Einstein statistics. As the temperature
is lowered, the distribution undergoes a radical range, and a macroscopic
number of particles accumulates in the ground state. The critical tem-
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perature Tc at which this occurs is given by:

N = 2.612
(

mkBTc

2π�2

)3/2

, (4.9)

where N is the number of particles per unit volume and m is the particle
mass. At Tc the thermal de Broglie wavelength is comparable to the
interparticle separation, and quantum effects are to be expected. (See
Exercise 4.16.)

Bose–Einstein condensation (BEC) has been observed in many boson
systems. One of the best-studied examples is liquid helium. In this case,
N is fixed, and eqn 4.9 predicts a phase transition as the liquid is cooled
through Tc at 2.2K. However, the physics of BEC in liquid helium is
complicated by the strong interactions between the atoms. To achieve
pure BEC behaviour, we require that the interactions between the bosons
are negligible. This suggests that we need highly dilute gaseous systems
such that the interparticle separation is very large. However, from eqn 4.9
we see that the transition temperature for such a dilute system would
be very low. It has been an outstanding recent achievement of atomic
physics to succeed in observing BEC in extremely dilute gases of atoms
at temperatures below 1 µK.

Excitons consist of two spin 1/2 particles, and so their total spin is
either 0 or 1. This means that they are bosons, and therefore that BEC
should be possible. However, the study of excitonic BEC has a long, che-
quered history, with many claimed observations that have subsequently
been disputed. Part of the reason for the controversy is that it is actually
very difficult to prove definitively that condensation has occurred.

We briefly mention here three of the more promising candidate sys-
tems for excitonic BEC. Details of the experiments and results may be
found by referring to the articles and books listed for Further Reading.

• Copper oxide (Cu2O) and copper chloride (CuCl). These wide gap
semiconductors have particularly strong excitonic effects. In the
case of Cu2O, it is the excitons with zero spin that have given the
most encouraging results, while for CuCl it the biexcitons that are
of particular interest.

• Coupled GaAs quantum wells. Excitonic effects are enhanced in
quantum wells (see Section 6.4.4), and the use of coupled wells
leads to long recombination lifetimes. This gives sufficient time for
the excitons to form a cold gas, which increases the probability for
BEC to occur.

• CdTe quantum wells in a microcavity. The use of the microcavity
leads to the formation of a coupled exciton–photon quasiparticle
called an ‘exciton polariton’. The results for these excitonic polari-
tons are probably the most convincing to date.
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4.5 Frenkel excitons

The free exciton model that leads to eqns 4.1 and 4.2 breaks down when
the predicted radius becomes comparable to the interatomic spacing.
This occurs in large band gap materials with small dielectric constants
and large effective masses. In these materials we observe Frenkel excitons
rather than Wannier excitons.

Frenkel excitons are localized on the atom site at which they are cre-
ated, as shown in Fig. 4.1(b). The excitons may therefore be considered
as excited states of the individual atoms or molecules on which they
are localized, and they can propagate through the crystal by hopping
from atom site to site. They have very small radii and correspondingly
large binding energies, with typical values ranging from about 0.1 eV to
several eV. This means that Frenkel excitons are usually stable at room
temperature.

The theoretical treatment of Frenkel excitons requires techniques more
akin to atomic or molecular physics than solid-state physics. There is
no simple model similar to the one that led to eqns 4.1 and 4.2 for
free excitons. The calculation of the exciton energies usually follows a
tight binding approach, in order to emphasize the correspondence to the
atomic or molecular states from which the excitons are derived. The
calculation is further complicated by the fact that the coupling between
the excitons and the crystal lattice is usually very strong. This leads to The self-trapping of electrons or holes

is caused by the electron–phonon cou-
pling. These polaronic effects will be
discussed in Section 10.4.

‘self-trapping’ effects, in which the exciton produces a local distortion
of the lattice, which then causes further localization of the exciton wave
functions.

Frenkel excitons have been observed in many inorganic and organic
materials. The properties of some of the more widely studied crystals
are described briefly below.

4.5.1 Rare gas crystals

The rare gases from group VIII of the periodic table, namely neon,
argon, krypton, and xenon, crystallize at cryogenic temperatures. The
band gap ranges from 21.6 eV in neon to 9.3 eV in xenon. Neon in fact
has the largest band gap of any crystal known in nature. The excitonic
absorption of these materials has been thoroughly studied, and the re-
sults are summarized in Table 4.2. The excitonic transitions all occur in
the vacuum ultraviolet spectral range, and the binding energies are very
large.

Table 4.2 Properties of Frenkel exci-
tons in rare gas crystals. All energies
are given in eV. Data from Song and
Williams (1993).
Tm: melting temperature in K,
Eg: band gap,
E1: energy of the n = 1 exciton,
Eb: binding energy of the n = 1 exci-
ton.

Crystal Tm Eg E1 Eb

Ne 25 21.6 17.5 4.1
Ar 84 14.2 12.1 2.1
Kr 116 11.7 10.2 1.5
Xe 161 9.3 8.3 1.0

It has been found experimentally that there is a close correspondence
between the n = 1 exciton energies in the crystals and the optical transi-
tions of the isolated atoms. For example, the energy of the n = 1 exciton
in xenon crystals coincides almost exactly with the lowest energy absorp-
tion line of xenon atoms in the gaseous phase, namely the 5p6 → 5p56s
transition. This underlines the point made earlier that the localized na-
ture of the Frenkel excitons makes them equivalent to excited states of
the individual atoms or molecules. This correspondence gets weaker for
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Fig. 4.8 Absorption spectra of NaCl
and LiF at room temperature. Data
from Palik (1985).
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the excitons with larger values of n. As the radius increases with n, the
excitons become more and more delocalized, and it eventually becomes
valid to use the Wannier model.

4.5.2 Alkali halides

Frenkel excitons are readily observable in the optical spectra of alkali
halide crystals. These have large direct band gaps in the ultraviolet
spectral region ranging from 5.9 eV in NaI to 13.7 eV in LiF. LiF has the
widest band gap of any practical optical material: only argon and neon
crystals have larger band gaps, but neither of these are solids at room
temperature.

Table 4.3 lists the band gap of selected alkali halide crystals, together
with the energy and binding energy of the n = 1 exciton. The data show
that Eg tends to increase with decreasing anion and cation size. The
exciton binding energy follows a similar general trend. Detailed spec-
troscopy has established that the excitons are localized at the negative
(halogen) ions.

Table 4.3 Properties of Frenkel
excitons in selected alkali halide
crystals. All energies are given
in eV. Data from Song and
Williams (1993).
Eg: band gap,
E1: energy of the n = 1 exciton
line,
Eb binding energy of the n = 1
exciton.

Crystal Eg E1 Eb

KI 6.3 5.9 0.4
KBr 7.4 6.7 0.7
KCl 8.7 7.8 0.9
KF 10.8 9.9 0.9
NaI 5.9 5.6 0.3
NaBr 7.1 6.7 0.4
NaCl 8.8 7.9 0.9
NaF 11.5 10.7 0.8
CsF 9.8 9.3 0.5
RbF 10.3 9.5 0.8
LiF 13.7 12.8 1.9

Figure 4.8 shows the absorption spectrum of two representative alkali
halide crystals at room temperature, namely NaCl and LiF. Both spectra
show a strong excitonic absorption line below the band gap. The binding
energies are 0.8 eV and 1.9 eV respectively. These values are well above
kBT at room temperature, which explains why the excitons are observed
so strongly. The fine structure of the excitons due to the excited states
can be observed by cooling the crystals. Note that the absorption coef-
ficient at the exciton lines is extremely large, with values over 108 m−1

in both materials.

4.5.3 Molecular crystals

Frenkel excitons can be observed in many molecular crystals and organic
thin film structures. In most cases, there is a very strong correspondence
between the optical transitions of the isolated molecules and the excitons
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Fig. 4.9 Absorption spectrum of
pyrene (C16H10) single crystals at
room temperature. After Matsui and
Nishimura (1980), reprinted with per-
mission.

observed in the solid state. This is a consequence of the fact that the
molecular crystals are held together by relatively weak van der Waals
forces, so that the molecular levels are only weakly perturbed when
condensing to the solid state.

Figure 4.9 shows the fundamental absorption edge of pyrene crys-
tals at room temperature. The pyrene molecule has a composition of
C16H10 and is an example of an aromatic hydrocarbon, that is, a carbon–
hydrogen compound based on benzene rings. The four-ring structure of
pyrene is given in the inset. The absorption spectrum shows a clear exci-
tonic peak at 3.29 eV. Other aromatic hydrocarbons such as anthracene
(C14H10) also show very strong excitonic effects, but the optical spectra
are more complicated because of the strong coupling to the vibrational
modes of the molecule. These effects will be discussed in more detail in
Section 8.3.1 in Chapter 8. The pyrene spectrum is relatively simple be-
cause the four-ring structure makes the molecule very rigid and reduces
the effects of the vibrational coupling.

Pyrene, anthracene, and the other aro-
matic hydrocarbons are examples of
conjugated molecules. The π electrons
of the benzene rings form large de-
localized molecular orbitals with opti-
cal transitions in the blue/UV spectral
range. Polydiacetylene is another exam-
ple of a conjugated molecule. In Sec-
tion 1.4.4 we mentioned that the most
interesting molecular materials, from
the point of view of their optical prop-
erties, are those with conjugated bonds.
This point will be developed further in
Chapter 8.

Frenkel excitons are also very important in conjugated polymers, such
as polydiacetylene (PDA). Single crystals of PDA can be grown, but the
optical properties are often studied by using amorphous films coated onto
glass substrates. The strong excitonic effects in conjugated polymers
have acquired considerable technological significance in recent years, fol-
lowing the development of organic light-emitting diodes for use in dis-
play technology. The optical properties of organic semiconductors such
as PDA will be discussed in more detail in Sections 8.3.2 and 8.4 of
Chapter 8.

Chapter summary

• Excitons are electron-hole pairs bound together in stable orbits by
the mutual Coulomb attraction between them.
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• There are two types of excitons. Wannier (free) excitons have
a large radius and move freely throughout the crystal. Frenkel
(tightly bound) excitons are localized on individual atoms sites.

• The properties of free excitons can be calculated by treating them
as hydrogen-like atoms. The binding energies and radii are given
by eqns 4.1 and 4.2 respectively.

• Free excitons are observed in semiconductors at photon energies
just below Eg. They have fairly small binding energies, and are
observed most clearly at low temperatures. They are easily ionized
by electric fields.

• Free excitons can interact with each other, and they show a rich
variety of phenomena at high densities due to the exciton-exciton
interactions.

• Frenkel excitons have very small radii and large binding energies.
They are easily observed at room temperature in insulator crystals
and molecular materials. There is a strong correspondence between
the excitons observed in the solid state and the excited states of
the individual atoms or molecules of which the solid is composed.

Further reading

Supplementary reading on excitons may be found in most
of the standard solid-state texts such as Burns (1985)
or Kittel (1996). More detailed information on free ex-
citons in semiconductors may be found in Klingshirn
(1995), Pankove (1971), Seeger (1997), or Yu and Car-
dona (1996).

Dexter and Knox (1965) is a classic text on excitons,
while Rashba and Sturge (1982) is a more recent au-
thoritative reference work. Reynolds and Collins (1981)
give a good overview of excitonic physics, while Song and
Williams (1993) give a thorough discussion of the prop-
erties of Frenkel excitons.

An overview of high-density exciton effects may be
found in Klingshirn (1995). The general phenomenon of
Bose–Einstein condensation is discussed in most texts on
statistical mechanics, for example, Mandl (1988). Griffin
et al. (1995) give a review of measurements of BEC in
a wide variety of systems, while Moskalenko and Snoke
(2000) give a more detailed account specifically for exci-
tons and biexcitons. Details of recent experimental work
on BEC in coupled quantum wells and microcavities may
be found in Butov (2007), Kasprzak et al. (2006), and
Kavokin et al. (2007).

Exercises

(4.1) Write down the Schrödinger equation for the hy-
drogen atom. By defining the centre of mass and
relative coordinates for the electron and proton,
show that the Hamiltonian of the system can be
split into two parts, one describing the free motion
of the whole atom and the other describing the

internal energy of the atom due to the Coulomb
energy and orbital motion.

(4.2) The Hamiltonian for the relative motion of an
electron-hole pair in a semiconductor is given by:

Ĥ = − �
2

2µ
∇2 − e2

4πε0εrr
.
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(a) Explain the origin of the two terms in the
Hamiltonian.
(b) Show that the wave function Ψ(r, θ, φ) =
C exp(−r/a0) is a solution of the Schrödinger
equation

ĤΨ = EΨ ,

and find the values of E and a0. Find also the value
of the normalization constant C.

(4.3) Find the radius at which the radial probability
density of the hydrogenic wave function given in
the previous question reaches its maximum value.
Compare this to the expectation value 〈r〉 defined
by

〈r〉 =

� ∞

r=0

� π

θ=0

� 2π

φ=0

Ψ∗ r Ψ r2 sin θ drdθdφ .

(4.4)∗ In the variational method, we make an enlight-
ened guess of the wave function, and then vary its
parameters to minimize the expectation value of
the energy. The variational principle says that the
wave function that gives the minimum energy is
the best approximation to the true wave function,
and that the corresponding expectation value of
the energy is the best approximation of the true
energy.1

(a) Explain why the following function is a sensi-
ble guess for the wave function of the ground state
of the exciton system:

Ψ(r, θ, φ) =

�
1

ξ

�3/2
1√
π

exp

�
−r

ξ

�
.

(b) Calculate the expectation value for the energy
of an exciton with wave function Ψ:

〈E〉 =

���
Ψ∗ĤΨ r2 sin θ dr dθ dφ ,

where Ĥ is the Hamiltonian given in Exercise 4.2.
(c) Find the value of ξ that minimizes 〈E〉, and
compute 〈E〉 for this value of ξ.
(d) Compare the minimal values of E and ξ ob-
tained in part (c) to those obtained in Exercise 4.2,
and comment on your answer.

(4.5) (a) State the assumptions of the Bohr model of
the hydrogen atom.
(b) Use the Bohr model to show that the energy
and radius of a hydrogenic atom with reduced

mass µ in a medium with a relative dielectric con-
stant εr are given by eqns 4.1 and 4.2 respectively.
(c) How does E(n) compare to the exact solution
of the Schrödinger equation considered in Exer-
cise 4.2?
(d) How does rn relate to the conclusions of Exer-
cise 4.3?

(4.6) Calculate the binding energy and radius of the
n = 1 and n = 2 free excitons in zinc sulphide
(ZnS) which has m∗

e = 0.28m0, m∗
h = 0.5m0 and

εr = 7.9. Would you expect these excitons to be
stable at room temperature?

(4.7) Calculate the difference in the wavelengths of the
n = 1 and n = 2 excitons in InP, which has
Eg = 1.424 eV, m∗

e = 0.077m0, m∗
h = 0.2m0, and

εr = 12.4.

(4.8) At 4K the n = 1 exciton in GaAs has a peak ab-
sorption coefficient of 3 × 106 m−1 at 1.5149 eV,
with a full width at half maximum equal to
0.6meV. By applying the bound oscillator model
discussed in Chapter 2 to the exciton, determine
the magnitude and energy of the local maximum
in the refractive index just below the exciton ab-
sorption line. The non-resonant refractive index of
GaAs at energies below the band gap is 3.5.

(4.9) Excitons can absorb photons by making transi-
tions to excited states in exactly the same way
that hydrogen atoms do. Calculate the wavelength
of the photon required to promote an exciton in
GaAs (µ = 0.05m0, εr = 12.8) from the n = 1 to
the n = 2 state.

(4.10) Use the Bohr model to show that the magnitude
of the electric field between the electron and hole
in the ground state of a free exciton is equal to
2RX/eaX.

(4.11) Direct excitons may be formed in germanium at
low temperatures using photon energies close to
the direct band gap at 0.898 eV. Calculate the
binding energy and radius of the ground state ex-
citon, taking m∗

e = 0.038m0, m∗
h = 0.1m0, and

εr = 16. Calculate the voltage at which the field
across the excitons will be equal to the ioniza-
tion field in a germanium p–i–n diode, which has
Vbi = 0.74V and an i-region thickness of 2�m.

∗Exercises marked with an asterisk are more difficult.

1This exercise illustrates the use of the variational method to obtain approximate solutions for the wave function and energy of
the ground state. These can of course be found by brute force solution of the Schrödinger equation, but the variational method
is more intuitive, and can be easily adapted to other problems where no analytic solutions are possible.
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(4.12) Show that the magnetic field strength at which
the exciton cyclotron energy is equal to the exci-
ton Rydberg energy is given by:

B =
µ2

ε2rm0�

�
RH

e

�
.

Evaluate this field strength for GaAs with µ =
0.05m0 and εr = 12.8.

(4.13)∗Verify by using eqn A.14 that a vector potential
of the form � = (B/2)(−y, x, 0) produces a con-
stant magnetic flux density of magnitude B in the
z direction. By following an analysis similar to the
one that leads to eqn B.19 in Appendix B, show
that the diamagnetic energy shift of an electron in
an atom with a wave function ψ is given by:

∆E =
e2B2

8m0
〈ψ|(x2 + y2)|ψ〉 .

Hence derive eqn 4.7.

(4.14) Calculate the diamagnetic energy shift of the n =
1 exciton of GaAs in a magnetic field of 1.0T.
What is the shift in the wavelength of the exciton
caused by applying the field? Take µ = 0.05m0,

and the energy of the exciton at B = 0 to be
1.515 eV.

(4.15) Estimate the Mott densities for the n = 1 and
n = 2 excitons in gallium nitride (GaN), which
has m∗

e = 0.2m0, m∗
h = 1.2m0 and εr = 10.

(4.16) Show that the de Broglie wavelength λdeB of a par-
ticle of mass m with thermal kinetic energy 3

2
kBT

is given by:

λdeB =
h

(3mkBT )1/2
.

Calculate the ratio of the interparticle separation
to λdeB at the Bose–Einstein condensation tem-
perature.

(4.17) Calculate the Bose–Einstein condensation temper-
ature for excitons in cuprous oxide when the ex-
citon density is 1024 m−3. The electron and hole
effective masses are 1.0m0 and 0.7m0 respectively.

(4.18) The values of µ and εr for sodium iodide (NaI) are
0.18m0 and 2.9 respectively. The unit cell size is
0.65 nm. Would you expect the Wannier model to
be valid for the n = 1 exciton? What about the
n = 2 exciton?
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In Chapter 3 we considered how light can be absorbed in solids by ex-
citing interband transitions. Then in Chapter 4 we considered how the
absorption spectrum is modified by the interactions that lead to the for-
mation of excitons. We now consider the reverse process in which elec-
trons in an excited state drop to lower levels by emitting photons. This
is the solid-state equivalent to light emission in atoms by spontaneous
emission, which is reviewed in Appendix B.

The physical mechanisms responsible for light emission in solids vary
considerably from material to material. In this chapter we start by giving
a few general principles that apply to all materials, and then focus on the
emission of light by interband transitions in bulk semiconductors. This
will provide the framework for discussing the light emission processes
in quantum-confined structures in Chapter 6, and will also serve as a
general introduction to the light emission processes in other types of
materials.

5.1 Light emission in solids

Atoms emit light by spontaneous emission when electrons in excited
states drop down to a lower level by radiative transitions. In solids the
radiative emission process is called luminescence. Luminescence can
occur by a number of mechanisms, but in this book we mainly consider
just two:

• Photoluminescence: the re-emission of light after absorbing a
photon of higher energy.

• Electroluminescence: the emission of light caused by running
an electrical current through the material.

The physical processes involved in both photoluminescence and elec-
troluminescence are more complicated than those in absorption. This
is because the generation of light by luminescence is intimately tied up
with the energy relaxation mechanisms in the solid. Furthermore, the
shape of the emission spectrum is affected by the thermal distributions
of the electrons and holes within their bands. Therefore, we have to con-
sider the emission rates and the thermal spread of the carriers before
we can gain a good understanding of the emission efficiency and the
luminescence spectrum.

Figure 5.1 gives an overview of the main processes that occur when
light is emitted from a solid. The photon is emitted when an electron
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in an excited state drops down into an empty state in the ground-state
band. For this to be possible, we must first inject electrons, which thenThe diagram in Fig. 5.1 applies to emis-

sion between bands, but the basic idea
that the carriers relax to the lowest
excited state level before emitting the
photon is usually applicable even if the
levels are discrete.

relax to the state from where the emission occurs. This could be the
bottom of the conduction band, but it might also be a discrete level.
The photon cannot be emitted unless the lower level for the transition
is empty, because the Pauli principle does not permit us to put two
electrons into the same quantum state. The empty lower level is produced
by injecting holes into the ground-state band in an entirely analogous
way to the injection of the electrons into the excited state.

The spontaneous emission rate for radiative transitions between two
levels is determined by the Einstein A coefficient. (See Appendix B.) If
the upper level has a population N at time t, the radiative emission rate
is given by: (

dN

dt

)
radiative

= −AN . (5.1)

This shows that the number of photons emitted in a given time is pro-
portional to both the A coefficient of the transition and also to the
population of the upper level. The rate equation can be solved to give:

N(t) = N(0) exp(−At) = N(0) exp(−t/τR) , (5.2)

where τR = A−1 is the radiative lifetime of the transition.
Equation B.11 in Appendix B tells us that the Einstein A coefficient

is directly proportional to the B coefficient, which determines the prob-
ability for absorption. This means that transitions which have large
absorption coefficients also have high emission probabilities and short
radiative lifetimes. However, the fact that the absorption and emission
probabilities are closely related to each other does not imply that the
absorption and emission spectra are the same. This is because of the
population factor that enters eqn 5.1. A transition might have a high
emission probability, but no light will be emitted unless the upper level
is populated.

��

inject electrons

inject holes

relaxation

�NR �R

GROUND

STATE
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Fig. 5.1 General scheme of lumines-
cence in a solid. Electrons are injected
into the excited state band and re-
lax to the lowest available level be-
fore dropping down to empty levels in
the ground-state band by emitting a
photon. These empty levels are gen-
erated by the injection of holes. The
radiative recombination rate is deter-
mined by the radiative lifetime τR. Ra-
diative emission has to compete with
non-radiative recombination, which has
a time constant τNR. The luminescent
efficiency is determined by the ratio of
τR to τNR, and is given by eqn 5.5.

We can summarize these points by writing the luminescent intensity
at frequency ν as:

I(hν) ∝ |M |2g(hν) × level occupancy factors, (5.3)

where the occupancy factors give the probabilities that the relevant up-
per level is occupied and the lower level is empty. The other two terms
are the matrix element and the density of states for the transition, which
determine the quantum mechanical transition probability by Fermi’s
golden rule. (See Section B.2 in Appendix B.)

The occupancy factors that enter eqn 5.3 will be discussed in detail
in Section 5.3. The main point is that the electrons relax very rapidly to
the lowest levels within the excited state band, and then form a thermal
distribution that can be calculated by statistical mechanics. In normal
circumstances the electrons will relax to within ∼ kBT of the bottom
of the excited state band. The holes follow a similar series of relaxation
processes. The light is emitted between the electron and hole states that
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are thermally occupied, and will therefore only be emitted within a nar-
row energy range from the lowest levels in the excited state band. This
contrasts with the absorption spectrum, where photons can be absorbed
to any state within the excited state band, no matter how far it is above
the bottom of the band.

Radiative emission is not the only mechanism by which the electrons
in an excited state can drop down to the ground state. The alternative
pathway between the excited state and ground state bands in Fig. 5.1 in-
dicates the possibility of non-radiative relaxation. The electron might,
for example, lose its excitation energy as heat by emitting phonons, or
it may transfer the energy to impurities or defects called ‘traps’. If these
non-radiative relaxation processes occur on a faster time scale than the
radiative transitions, very little light will be emitted.

The luminescent efficiency ηR (sometimes also called the quantum
efficiency) can be calculated by writing down the rate equation for the
population of the excited state when non-radiative processes are possible:(

dN

dt

)
total

= −N

τR
− N

τNR
= −N

(
1
τR

+
1

τNR

)
. (5.4)

The two terms on the right-hand side of eqn 5.4 represent the radiative
and non-radiative rates respectively. τNR is the non-radiative lifetime.
ηR is given by the ratio of the radiative emission rate to the total de-
excitation rate. This is obtained by dividing eqn 5.1 by eqn 5.4 to obtain

ηR =
AN

N(1/τR + 1/τNR)
=

1
1 + τR/τNR

, (5.5)

where we have used the fact that A = τ−1
R . If τR � τNR then ηR ap-

proaches unity and the maximum possible amount of light is emitted. On
the other hand, if τR � τNR then ηR is very small and the light emission
is very inefficient. Thus efficient luminescence requires that the radiative
lifetime should be much shorter than the non-radiative lifetime.

The principles discussed here are very general and apply to a wide
range of light emission phenomena in solids. In the rest of this chapter we
concentrate on the luminescence generated by interband transitions in a
bulk semiconductor. In subsequent chapters we shall consider the light
emission processes in quantum-confined structures (Chapter 6), molec-
ular materials (Chapter 8), and luminescent impurities (Chapter 9).

5.2 Interband luminescence

Interband luminescence occurs in a semiconductor when an electron that
has been excited into the conduction band drops back to the valence
band by the emission of a photon. This simultaneously reduces the num-
ber of electrons in the conduction band and holes in the valence band
by one. Interband luminescence thus corresponds to the annihilation of
an electron-hole pair, and is known as radiative electron-hole recom-
bination. This should be contrasted with interband absorption, which
is equivalent to the creation of an electron-hole pair.
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We noted in Chapter 3 that there are very important differences be-
tween the optical properties of direct and indirect band gap materials.
This is particularly true when we come to consider the interband emis-
sion processes. We must therefore consider them separately, beginning
with direct gap materials.

5.2.1 Direct gap materials
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k
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k
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Fig. 5.2 Schematic diagram of the in-
terband luminescence process in a di-
rect gap semiconductor. The shading
indicates that the states are occupied
by electrons. The filled states at the
bottom of the conduction band and the
empty states at the top of the valence
band are created by injecting electrons
and holes into the semiconductor.

Figure 5.2 shows the band diagram for an interband luminescence pro-
cess in a direct gap semiconductor. The photons are emitted when elec-
trons at the bottom of the conduction band recombine with holes at the
top of the valence band. As discussed in Chapter 3, the optical transi-
tions between the valence and conduction bands of typical direct gap
semiconductors are dipole-allowed and have large matrix elements. This
implies through eqn B.30 that the radiative lifetime will be short, with
typical values in the range 10−8–10−9 s. (See Exercise 5.3.) The lumi-
nescent efficiency is therefore expected to be high.

The processes by which the electrons and holes are injected into the
bands will be discussed in Sections 5.3 and 5.4. We shall also see in
Section 5.3.1 that the injected electrons and holes relax very rapidly
to the lowest energy states within their respective bands by emitting
phonons. This means that the electrons accumulate at the bottom of
the conduction band before they recombine, as indicated in Fig. 5.2. By
contrast, holes move upwards on energy band diagrams when they relax.
This is because band diagrams show electron energies, rather than hole
energies, so that the hole energy is zero at the top of the valence band
and increases as we move further down into the valence band. Holes
therefore accumulate at the top of the valence band after relaxation.

Since the momentum of the photon is negligible compared to the mo-
mentum of the electron, the electron and hole that recombine must have
the same k vector (cf eqn 3.12). Therefore, the transition is represented
by a downward vertical arrow on the band diagram, as indicated in
Fig. 5.2. The emission takes place near k = 0, and corresponds to a
photon of energy Eg. No matter how we excite the electrons and holes
in the first place, we always obtain luminescence at energies close to the
band gap.

Figure 5.3 shows the luminescence and absorption spectra of the direct
gap semiconductor gallium nitride at 4K. The band gap is 3.5 eV at this
temperature. The luminescence spectrum consists of a narrow emission
line close to the band gap energy, while the absorption shows the usual
threshold at Eg with continuous absorption for hν > Eg.

The data shown in Fig. 5.3 illustrate the point that the emission and
absorption spectra are not the same, even though they are determined
by the same matrix element and density of states. The band gap cor-
responds to the threshold for optical absorption, but to the energy of
the optical emission. This means that the criteria for choosing the best
material to act as an emitter or detector for a particular wavelength are
different. When we are designing an emitter, we must choose a material
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Fig. 5.3 Luminescence spectrum (solid
line) and absorption (dotted line) of
a GaN epilayer of thickness 0.5�m at
4K. The photoluminescence (PL) was
excited by absorption of 4.9 eV pho-
tons from a frequency doubled copper
vapour laser. Unpublished data from
K.S. Kyhm and R.A. Taylor.
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Fig. 5.4 Schematic diagram of the
interband luminescence process in an
indirect gap material. The transition
must involve the absorption or emission
of a phonon to conserve momentum.

that has a band gap corresponding to the desired wavelength. Detectors,
on the other hand, will work at any wavelength provided that the photon
energy exceeds Eg.

5.2.2 Indirect gap materials

Figure 5.4 illustrates the processes that occur during interband emission
in an indirect gap material. This is the reverse of the indirect absorption
process shown in Fig. 3.2(b). In an indirect gap material, the conduction
band minimum and valence band maximum are at different points in the
Brillouin zone. Conservation of momentum requires that a phonon must
either be emitted or absorbed when the photon is emitted.

The requirement of emitting both a phonon and a photon during the
transition makes it a second-order process, with a relatively small tran-
sition probability. The radiative lifetime is therefore much longer than
for direct transitions. We can see from eqn 5.5 that this makes the lumi-
nescent efficiency small, because of the competition with non-radiative
recombination. For this reason, indirect gap materials are generally bad
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light emitters. They are only used when there is no alternative direct gap
material available. Two of the most important semiconductors, namely
silicon and germanium, have indirect band gaps and are therefore not
used as light emitters.

Example 5.1

The band gap of the III–V semiconductor alloy AlxGa1−xAs at k =
0 varies with composition according to Eg(x) = (1.420 + 1.087x +
0.438x2) eV. The band gap is direct for x ≤ 0.43, and indirect for larger
values of x. Light emitters for specific wavelengths can be made by ap-
propriate choice of the composition.
(a) Calculate the composition of the alloy in a device emitting at 800 nm.
(b) Calculate the range of wavelengths than can usefully be obtained
from an AlGaAs emitter.

Solution
(a) The photons at 800 nm have an energy of 1.55 eV. The device will
emit at the band gap wavelength, so we must choose x such that Eg(x) =
1.55 eV. On substituting into the relationship for Eg(x), we find x = 0.11.
(b) The long wavelength limit is set by the smallest band gap that can
be obtained in the alloy, namely 1.420 eV for x = 0. The short wave-
length limit is set by the largest direct band gap that can be obtained,
namely 1.97 eV for x = 0.43. The useful emission range is therefore 1.42–
1.97 eV, or 630–870 nm. Alloy compositions with x > 0.43 are not useful
because indirect gap materials have very low luminescent efficiencies.

5.3 Photoluminescence

In this section we consider the re-emission of light by interband lumi-
nescence after a direct gap semiconductor has been excited by a photon
with energy greater than Eg. As noted at the start of Section 5.1, this
process is called photoluminescence.

5.3.1 Excitation and relaxation

The band diagram corresponding to the photoluminescence process in a
direct gap material is given in Fig. 5.5(a). This is a more detailed version
of the diagram already given in Fig. 5.2. Photons are absorbed from
an excitation source such as a laser or lamp, and this injects electrons
into the conduction band and holes into the valence band. This will be
possible if the frequency νL of the source is chosen so that hνL is greater
than Eg.

It is apparent from Fig. 5.5(a) that the electrons are initially created
in states high up in the conduction band. The electrons do not remain in
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Fig. 5.5 (a) Schematic diagram of the
processes occurring during photolumi-
nescence in a direct gap semiconductor
after excitation at frequency νL. The
electrons and holes rapidly relax to the
bottom of their bands by phonon emis-
sion before recombining by emitting a
photon. (b) Density of states and level
occupancies for the electrons and holes
after optical excitation. The distribu-
tion functions shown by the shading ap-
ply to the classical limit where Boltz-
mann statistics are valid. Note that the
distribution functions and density of
states are not on the same scale: the
level occupancies are always small in
the Boltzmann limit.

these initial states for very long, because they can lose their energy very
rapidly by emitting phonons. This process is indicated by the cascade
of transitions within the conduction band shown in Fig. 5.5(a). Each
step corresponds to the emission of a phonon with the correct energy
and momentum to satisfy the conservation laws. The electron–phonon
coupling in most solids is very strong and these scattering events take
place on time scales as short as ∼ 100 fs (i.e. ∼ 10−13 s). This is much
faster than the radiative lifetimes which are in the nanosecond range,
and the electrons are therefore able to relax to the bottom of the con-
duction band long before they have had time to emit photons. The same
conditions apply to the relaxation of the holes in the valence band.

After the electrons and holes have relaxed as far as they can by phonon
emission, they must wait at the bottom of the bands until they can emit
a photon or recombine non-radiatively. This leaves time to form thermal
distributions, as sketched in Fig. 5.5(b). The shading indicates the occu-
pancy of the available states. These occupancy factors can be calculated
by applying statistical physics to the electron and hole distributions.

When we apply statistical mechanics to
the carriers generated by optical exci-
tation, it is important to realize that
we are dealing with a non-equilibrium
situation: there are more electrons and
holes present than there would nor-
mally be just from the thermal ex-
citation of electrons across the band
gap. The system is therefore in a state
of ‘quasi-equilibrium’. This means that
the electrons and holes form thermal
distributions but with separate Fermi
energies. This should be contrasted
with full thermal equilibrium in which
the electrons and holes share the same
Fermi energy. Full thermal equilibrium
can only be restored by turning off the
excitation source, or by waiting for the
excess electrons and holes created by a
pulsed light source to recombine.

The distributions of the optically excited electrons and holes in their
bands can be calculated by Fermi–Dirac statistics. The total number
density Ne of electrons is determined by the power of the illumination
source (see Exercises 5.6 and 5.7), and must satisfy the following equa-
tion:

Ne =
∫ ∞

Eg

gc(E)fe(E) dE , (5.6)

where gc(E) is the density of states in the conduction band and fe(E) is
the Fermi–Dirac distribution for the electrons. gc(E) is given by eqn 3.16
with m∗ replaced by m∗

e :

gc(E) =
1

2π2

(
2m∗

e

�2

)3/2

(E − Eg)1/2 , (5.7)
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and fe(E) is given by the Fermi–Dirac formula at temperature T :

fe(E) =
1

exp (E − Ec
F)/kBT + 1

. (5.8)

Note that we have added a superscript c to the Fermi energy EF to
indicate that it only applies to the electrons in the conduction band.
This is needed because we are in a situation of quasi-equilibrium in
which there is no unique Fermi energy, and the electrons and holes have
different Fermi levels. The Fermi–Dirac function of the holes has the
same form as eqn 5.8, and fh(E) gives the probability that the state
is occupied by a hole. This is equal to the probability that the state is
unoccupied by an electron.

The Fermi integrals can be put in a more transparent form by changing
the variables such that we start the electron energy at the bottom of the
conduction band. We then combine eqns 5.6–5.8 to obtain

Ne =
∫ ∞

0

1
2π2

(
2m∗

e

�2

)3/2

E1/2

[
exp

(
E − Ec

F

kBT

)
+ 1

]−1

dE , (5.9)

where Ec
F is now measured relative to the bottom of the conduction

band. In the same way, we can write

Nh =
∫ ∞

0

1
2π2

(
2m∗

h

�2

)3/2

E1/2

[
exp

(
E − Ev

F

kBT

)
+ 1

]−1

dE , (5.10)

for the holes, where E = 0 corresponds to the top of the valence band
and the energy is measured downwards. The Fermi energy for the holes
Ev

F is also measured downwards from the top of the valence band. Note
that Ne must equal Nh here because the photo-excitation process creates
equal numbers of electrons and holes.

Equations 5.9 and 5.10 can be used to determine the electron and
hole Fermi energies for a given carrier density. Once these are known,
the occupancy factors required to calculate the emission spectrum using
eqn 5.3 can be computed. Unfortunately, the general solution of eqns 5.9
and 5.10 requires numerical methods. However, the equations simplify
in two important limits. These are discussed separately below.

5.3.2 Low carrier densities

At low carrier densities, the electron and hole distributions will be de-
scribed by classical statistics. The distributions shown in Fig. 5.5(b) are
drawn for this limit. In this situation the occupancy of the levels is small
and we can ignore the +1 in the denominator of eqn 5.8. The occupancies
are then just given by Boltzmann statistics:

f(E) ∝ exp
(
− E

kBT

)
. (5.11)

Equation 5.11 will be valid for the electrons if Ec
F is large and negative.

Exercise 5.9 explores this limit. It is reasonably obvious that it will be
valid at low carrier densities and high temperatures.
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Fig. 5.6 Photoluminescence spectrum
of GaAs at 100K. The excitation source
was a helium–neon laser operating
at 632.8 nm. The inset gives a semi-
logarithmic plot of the same data. Un-
published data from A.D. Ashmore and
M. Hopkinson.

The frequency dependence of the emission spectrum in the classical
limit can be calculated if we assume that the matrix element in eqn 5.3 is
independent of frequency. We can then evaluate all the factors in eqn 5.3
and obtain: At very low temperatures, the emission

spectrum from a direct gap semicon-
ductor begins to depart from the form
predicted by eqn 5.12, even for very low
carrier densities. This is caused by the
formation of excitons, and the possibil-
ity of radiative recombination involving
impurities.

I(hν) ∝ (hν − Eg)1/2 exp
(
−hν − Eg

kBT

)
. (5.12)

The (hν − Eg)1/2 factor arises from the joint density of states for the
interband transition (cf. eqn 3.24). The final factor arises from the Boltz-
mann statistics of the electrons and holes: see Exercise 5.8. The lumi-
nescence spectrum described by eqn 5.12 rises sharply at Eg and then
falls off exponentially with a decay constant of kBT due to the Boltz-
mann factor. We thus expect a sharply peaked spectrum of width ∼ kBT
starting at Eg.

Figure 5.6 shows the photoluminescence spectrum of GaAs at 100K.
The spectrum was obtained by using 1.96 eV photons from a helium–
neon laser as the excitation source. The spectrum shows a sharp rise at
Eg due to the (hν−Eg)1/2 factor in eqn 5.12, and then falls off exponen-
tially due to the Boltzmann factor. The full width at half maximum of
the emission line is very close to kBT , as expected. The fact that the high
energy decay is exponential is clearly shown by the semi-logarithmic plot
of the same data given in the inset. The slope of the decay is consistent
with the carrier temperature of 100 K.

5.3.3 Degeneracy

At high carrier densities, the classical limit is no longer be valid. The
Fermi energies are positive, and it is essential to use Fermi–Dirac statis-
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tics to describe the electron and hole distributions. This situation is
called degeneracy.

In the extreme limit of T = 0, all the states up to the Fermi energy
are filled and all states above it are empty. The Fermi energies can be
calculated explicitly (see Exercise 5.10) and are given by:

Ec,v
F =

�
2

2m∗
e,h

(3π2Ne,h)2/3 . (5.13)

The distribution of the carriers in this limit is shown in Fig. 5.7. Electron–
hole recombination can occur between any states in which there is an
electron in the upper level and a hole in the lower level. Recombina-
tion is thus possible for a range of photon energies between Eg and
(Eg + Ec

F + Ev
F). We therefore expect to observe a broad emission spec-

trum starting at Eg up to a sharp cut-off at (Eg + Ec
F + Ev

F).
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Fig. 5.7 Occupancy of the conduction
and valence band states in the degen-
erate limit at T = 0. The electrons
and holes have separate Fermi energies
Ec

F and Ev
F respectively which are de-

termined by the number of carriers in-
jected into the bands. The conduction
and valence bands are filled up to their
respective Fermi levels, as shown by the
shading.

At finite temperatures the carriers will still be degenerate provided
that Ec,v

F � kBT , where Ec,v
F is calculated using eqn 5.13. As T increases,

the Fermi–Dirac functions smear out around the Fermi energies, and we
expect to observe that the cut-off at (Eg + Ec

F + Ev
F) will be broadened

over an energy range ∼ kBT .
Figure 5.8 shows the emission spectrum of the III–V alloy semiconduc-

tor Ga0.47In0.53As in the degenerate limit. Ga0.47In0.53As has a direct
gap of 0.81 eV at the lattice temperature TL of 10 K. The spectra were
obtained using the techniques of time-resolved photoluminescence spec-
troscopy described in Section 5.3.5 below. The figure shows the emission
spectrum recorded at two different times after the sample has been ex-
cited with an ultrashort (< 8 ps) pulse from a dye laser operating at
610 nm. Each pulse has an energy of 6 nJ and is able to excite an initial
carrier density of 2 × 1024 m−3.

The spectrum taken 24 ps after the pulse arrives rises sharply at Eg,
and then shows a flat plateau up to ∼ 0.90 eV. The spectrum then grad-
ually falls off to zero at higher energies. The flat plateau is a signature of
the degenerate carriers, while the high energy tail is an indication that
the effective carrier temperature is higher than TL due to the ‘hot carrier’
effect discussed in the next paragraph. In this case, the effective carrier
temperature is 180K. At 250 ps the carrier density is lower because a
significant number of the electrons and holes have recombined, and the
carriers have also cooled to a temperature of 55 K. At still longer times,
the spectrum continues to narrow as the carrier density decreases and
the carriers cool further towards the lattice temperature of 10 K. Even-
tually, the carrier density falls to the point where classical statistics are
appropriate, and the emission only occurs at energies close to Eg. The
analysis of this data is explored in more detail in Exercise 5.14.

Effective temperatures higher than TL are possible in time-resolved
photoluminescence experiments because the carriers are not in full ther-
mal equilibrium with the lattice. The carriers are ‘hot’ in the same sense
that boiling water that has just been poured into a cold cup is hot:
the temperatures are different initially, but gradually converge as heat
flows from the water to the cup. In the case we are considering here, the
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Fig. 5.8 Time-resolved photolumines-
cence spectra of the direct gap III–V
alloy semiconductor Ga0.47In0.53As at
a lattice temperature TL of 10K. The
sample was excited with laser pulses
at 610 nm with an energy of 6 nJ and
a duration of 8 ps. This generated an
initial carrier density of 2 × 1024 m−3.
Spectra are shown for time delays of
24 ps (filled circles) and 250 ps (open
squares). The effective carrier tempera-
ture at the two time delays is indicated.
After Kash and Shah (1984), c© Ameri-
can Institute of Physics, reprinted with
permission.

electrons and holes are created high up the bands. This gives them a
large amount of kinetic energy, which implies that their initial effective
temperature is very high, since the temperature is just a measure of the
distribution of the carriers among the energy levels of the system. The
temperature decreases rapidly as energy flows from the carriers to the
lattice by phonon emission. The cooling towards TL is therefore deter-
mined by the electron–phonon interactions in the material.

5.3.4 Optical orientation

Optical orientation is the phenomenon by which angular momentum
is imparted to electrons by interaction with photons. In Section 3.3.7 we
studied how a net electron spin polarization can be created by excitation
with circularly polarized light, and we now wish to understand how this
affects the polarization of the light that is emitted.

The luminescence polarization is defined by:

P =
I+ − I−

I+ + I−
, (5.14)

where I+ and I− are the intensities of the σ+ and σ− circular polar-
izations respectively. We consider a zinc-blende semiconductor excited
by circularly polarized light, as shown in Fig. 3.8. As explained in Sec-
tion 3.3.7, this creates an initial electron spin polarization of 50%, and
negligible hole spin. The selection rules shown in Fig. 3.8 apply in both
directions, and this leads to an expected luminescence polarization of
25%. (See Exercise 5.15.)

The actual polarization observed experimentally is smaller than 25%
because the electron spin can change during the lifetime of the carriers.
If the carrier lifetime and spin relaxation time are τ and τS respectively,
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then the measured polarization is given by:

P =
P0

1 + τ/τS
, (5.15)

where P0 is the polarization expected if there is no spin relaxation. This
shows that if the spin relaxation is fast (i.e. τS � τ), the measured
polarization will be small, whereas for slow spin relaxation (i.e. τS � τ),
the measured polarization will be close to P0.

The Hanle effect provides an elegant method to determine both τ
and τS in a single experiment. The Hanle effect describes the loss of

The Hanle effect was originally stud-
ied in atomic physics, and refers to
the depolarization of resonance fluores-
cence by external magnetic fields. The
derivation of eqn 5.16 may be found, for
example, in Meier and Zakharchenya
(1984).

optical polarization caused by the precession of the spin in a transverse
magnetic field B. The measured polarization is given by:

P (B) =
P (0)

1 + (ΩTS)2
, (5.16)

where P (0) is the polarization measured at B = 0, as given by eqn 5.15.
Ω is the Larmor precession frequency given by

Ω =
geµBB

�
, (5.17)

where ge is the electron g-factor, and

1
TS

=
1
τ

+
1
τS

. (5.18)

τ and τS are determined by measuring P (0) and the field at which the
polarization drops to half its value at B = 0. (See Exercise 5.16.)

There are a number of different mechanisms that can cause the spin
of an electron to relax in a semiconductor, the most important of these
being:

• the Elliott–Yafet (EY) mechanism. This arises from the spin–
orbit interaction, which mixes the spin up and down wave func-
tions, thereby allowing momentum scattering events to randomize
the spin.

• the Dyakonov–Perel (DP) mechanism. This also arises from the
spin–orbit interaction. In crystals that lack inversion symmetry,
the spin degeneracy of the electrons is lifted for |k| > 0. The split-
ting is equivalent to an effective magnetic field, the axis of which
fluctuates during a momentum scattering event, thereby depolar-
izing the spin by a series of random fractional rotations.

• the Bir–Aronov–Pikus (BAP) mechanism. This mechanism is
important when a population of unpolarized holes is present. Elec-
tron spin flips can then occur by exchange interactions with holes.

By studying the way the polarization changes with the temperature and
doping levels, it is possible to determine which of these mechanisms is
dominant in any particular sample. The EY mechanism, for example,
is expected to be particularly important in narrow gap semiconductors,
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since these have strong spin–orbit interactions, while the BAP mecha-
nism is likely to be important in p-type materials. The DY mechanism
should occur in all zinc-blende samples, and its effectiveness depends in-
versely (i.e. counter-intuitively) on the electron scattering rate. Further
details about electron spin relaxation mechanisms may be found in the
works cited for Further Reading.

5.3.5 Photoluminescence spectroscopy

Photoluminescence spectroscopy is mainly used as a diagnostic and de-
velopment tool in semiconductor research. The usual goal is to develop
electroluminescent devices such as light-emitting diodes and lasers. This
is usually only achieved after the emission mechanisms have been studied
in detail by photoluminescence spectroscopy.
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Fig. 5.9 Experimental arrangement
used for the observation of photolu-
minescence (PL) spectra. The sam-
ple is excited with a laser or lamp
with photon energy greater than the
band gap. The spectrum is obtained
by recording the emission as a func-
tion of wavelength using a computer-
controlled spectrometer and detector.
In photoluminescence excitation spec-
troscopy (PLE), the detection wave-
length is fixed and the excitation wave-
length is scanned. In time-resolved pho-
toluminescence spectroscopy, a pulsed
laser is used, and the emission at each
wavelength is recorded on a fast detec-
tor as a function of time after the pulse
has arrived.

Photoluminescence spectra can be recorded with an experimental ar-
rangement such as the one shown in Fig. 5.9. The sample is mounted in
a variable temperature cryostat and is illuminated with a laser or bright
lamp with photon energy greater than Eg. If a liquid helium cryostat is
used, sample temperatures from 2 K upwards are easily obtained. The
luminescence is emitted at lower frequencies and in all directions. A
portion is collected with a lens and focused onto the entrance slit of a
spectrometer. The spectrum is recorded by scanning the spectrometer
and measuring the intensity at each wavelength with a sensitive detec-
tor such as a photomultiplier tube. Alternatively, the whole spectrum is
recorded at once by using an array of detectors such as a charge-coupled
device (CCD).

A number of useful variations of the basic photoluminescence tech-
nique have been developed over the years. In photoluminescence ex-
citation spectroscopy (PLE), the sample is excited with a tunable
laser, and the intensity of the luminescence at the peak of the emission
is measured as the laser wavelength is tuned. Since the shape of the
emission spectrum is independent of the way the carriers are excited,
the signal strength is simply proportional to the carrier density, which
in turn is determined by the absorption coefficient. (See Exercise 5.6.)
Hence the signal is proportional to the absorption coefficient at the laser
wavelength. This might seem to be a very complicated way to measure
the absorption, but it is actually very useful. Many semiconductor sam-
ples are grown as thin layers on top of a thick substrate which is opaque
at the wavelengths of interest. This makes it impossible to perform direct
transmission measurements, and the use of the PLE technique allows the
absorption spectrum to be measured in conditions where it would not
be possible otherwise.

In time-resolved photoluminescence spectroscopy the sample
is excited with a very short light pulse and the emission spectrum is
recorded as a function of time after the pulse arrives. The spectra are
obtained using the arrangement shown in Fig. 5.9 but with an ultra-
fast pulse laser as the excitation source. Lasers emitting pulses shorter
than 1 ps are now readily available, and the time resolution is usually
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Fig. 5.10 (a) Layer structure and (b)
circuit diagram for a typical electrolu-
minescent device. The thin active re-
gion at the junction of the p- and n-
layers is not shown, and the dimen-
sions are not drawn to scale. The thick-
ness of the epitaxial layers will be only
∼ 1�m, whereas the substrate might be
∼ 500�m thick. The lateral dimensions
of the device might be several millime-
tres.
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limited by the response time of the detector. Time resolutions down
to ∼ 100 ps can be obtained with fast photon-counting photomultiplier
tubes or avalanche photodiodes, while resolutions down to 1 ps or better
are possible with ‘streak camera’ or ‘up-conversion’ techniques. The time
dependence of the emission spectrum gives direct information about the
carrier relaxation and recombination mechanisms, and allows the radia-
tive lifetimes to be measured. Figure 5.8 gives an example of the data
that can be obtained by using this technique.

5.4 Electroluminescence

Electroluminescence is the process by which luminescence is generated
while an electrical current flows through an opto-electronic device. There
are two main types of device:

• light-emitting diodes (LEDs)
• laser diodes.

We shall look at both types of device here, concentrating on inorganic
semiconductors, and postponing the discussion of molecular LEDs to
Section 8.4. We conclude by briefly considering the related technique of
cathodoluminescence.

5.4.1 General principles of electroluminescent
devices

Figure 5.10 shows the layer structure and circuit diagram for a typical
electroluminescent device. The device consists of several epitaxial layers
grown on top of a thick crystal substrate. The epitaxial layers consist
of a p–n diode with a thin active region at the junction. The diode is
operated in forward bias with a current flowing from the p-layer through
to the n-layer underneath. The luminescence is generated in the active
region by the recombination of electrons that flow in from the n-type
layer with holes that flow in from the p-type side.

The microscopic mechanisms that determine the emission spectrum
are exactly the same as the ones discussed in the context of photolumi-
nescence in Sections 5.3.1–5.3.3. The only difference is that the carriers
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are injected electrically rather than optically. At room temperature we
therefore expect a single emission line of width ∼ kBT at the band gap
energy Eg. Hence Eg determines the emission wavelength.

We pointed out in Section 5.2 that the radiative efficiency of indirect
gap materials is low. Modern commercial electroluminescent devices are
therefore made from direct gap compounds. Any direct gap semiconduc-

In the past, some indirect gap materi-
als have been used for lack of practi-
cal direct gap alternatives. For exam-
ple, gallium phosphide was used for yel-
low and green LEDs, and silicon car-
bide for blue ones. The active regions of
these devices were often doped to pro-
mote recombination via impurities and
hence increase the luminescent quan-
tum efficiency. The advent of efficient
direct gap nitride LEDs in 1995 has
made these indirect gap devices obso-
lete.

tor can, in principle, be used for the active region, but in practice only a
few materials are commonly employed. The main factors that determine
the choice of the material are:

(1) the size of the band gap;
(2) constraints relating to lattice matching;
(3) the ease of p-type doping.

The first point is obvious: the band gap determines the emission wave-
length. The second and third points are practical ones relating to the
way the devices are made. These are discussed further below.

The term lattice matching relates to the relative size of the lattice
parameters of the epitaxial layers and the substrate. The thin epitaxial
layers are grown on top of a substrate crystal, as shown in Fig. 5.10(a).
This is done for practical reasons. It is hard to grow large crystals with
sufficient purity to emit light efficiently. We therefore grow thin ultra-
pure layers on top of a substrate of poorer optical quality by various
techniques of crystal epitaxy. The crystal growth conditions constrain
the epitaxial layers to form with the same unit cell size as the substrate
crystal. This means that the epitaxial layers will be highly strained unless
they have the same lattice constant as the substrate, that is, that we
have ‘lattice matching’ between the epitaxial layers and the substrate. If
this condition is not satisfied, crystal dislocations and other defects are
likely to form in the epitaxial layers, leading to a severe degradation of
the optical quality.

Epitaxy is the name given to any
crystal growth technique involving the
formation of thin high-quality layers
on top of a thicker substrate crys-
tal. The substrate acts as a sup-
port for the epitaxial layers, and also
serves as a heat sink where needed.
There are a number of techniques
commonly used. Medium-quality crys-
tals are grown by liquid-phase epitaxy
(LPE), but the highest quality materi-
als are grown by metal–organic vapour-
phase epitaxy (MOVPE)—also called
metal–organic chemical vapour deposi-
tion (MOCVD)—and molecular beam
epitaxy (MBE). These techniques are
crucial to the successful growth of the
high quality quantum well structures
described in the next chapter.

Figure 5.11 plots the band gap of a number of III–V materials used
in electroluminescent devices against their lattice constant. The lattice
constants of the commonly used substrate crystal are indicated at the
top of the figure. The materials separate into two distinct groups. On
the right we have the arsenic and phosphorous compounds which crys-
tallize with the cubic zinc-blende structure, while on the left we have
the nitride compounds which have the hexagonal wurtzite structure. We
shall discuss the cubic materials first, and then consider the nitrides
afterwards.

For many years, the opto-electronics industry was mainly based on
GaAs and its alloys. GaAs emits in the infrared at 870 nm, and by
mixing it with AlAs to form AlxGa1−xAs, light emitters for the range
630–870 nm can be produced. (See Example 5.1.) AlGaAs can easily
be grown lattice-matched to GaAs substrates because of the convenient
coincidence that the lattice constants of GaAs and AlAs are almost
identical. AlGaAs emitters operating at 850 nm are widely used in lo-
cal area fibre-optic networks and infrared free-space data links, while
devices with higher Al content are used in red LEDs.
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Fig. 5.11 Band gap of selected III–
V semiconductors as a function of the
their lattice constant. The materials in-
cluded in the diagram are the ones com-
monly used for making LEDs and laser
diodes. The lattice constants of read-
ily available substrate crystals are indi-
cated along the top axis. The nitride
materials on the left grow with the
hexagonal wurtzite structure, whereas
the phosphides and arsenides on the
right have the cubic zinc-blende struc-
ture. Data from Madelung (1996).
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AlGaAs is an example of a ‘ternary’ alloy which contains three el-
ements. ‘Quaternary’ alloys such as (AlyGa1−y)xIn1−xP can also be
formed. All of these arsenic and phosphorous alloys suffer from the prob-
lem that they become indirect as the band gap gets larger. This limits
their usefulness to the red and near-infrared spectral range.

Table 5.1 Band gap energy Eg

and emission wavelength λg for
several compositions of the direct
band gap quaternary III–V alloy
GaxIn1−xAsyP1−y . The compo-
sitions indicated all satisfy the
lattice-matching condition for InP
substrates, namely x ≈ 0.47y. Data
from Madelung (1996).

x y Eg (eV) λg (�m)

0 0 1.35 0.92
0.27 0.58 0.95 1.30
0.40 0.85 0.80 1.55
0.47 1 0.75 1.65

Applications in the fibre optics industry require light-emitting devices
that operate around 1.3 µm and 1.55 µm. These are the wavelengths at
which silica fibres have the lowest dispersion and loss respectively. Emit-
ters for these wavelengths tend to be made from the quaternary alloy
GaxIn1−xAsyP1−y. Lattice matching to InP substrates can be achieved
if x ≈ 0.47y. This allows a whole range of direct gap compounds to be
made with emission wavelengths varying from 0.92 µm to 1.65 µm. See
Table 5.1.

Until fairly recently, it was very difficult to make efficient electrolumi-
nescent devices for the green and blue spectral regions from III–V com-
pounds. This is because of the problem that has already been mentioned,
namely that the arsenic and phosphorous compounds become indirect
as the band gap gets larger. However, in 1995 Shuji Nakamura at Nichia
Chemical Industries in Japan made an important breakthrough and re-
ported the successful development of LEDs based on gallium nitride
compounds. GaN has a direct band gap of 3.5 eV at 4 K (see Fig. 5.3)
and 3.4 eV at room temperature. By alloying it with InN, the emissionThe value of the band gap of InN has

been the subject of some controversy.
Older texts (including the first edition
of this book) quote values around 2 eV,
but recent results indicate that the gap
is much smaller.

wavelength can be varied from the ultraviolet to the red spectral regions.
This enables the entire visible spectrum to be covered by using nitrides
for the blue and green colours, and AlGaInP alloys for the reds.

It is interesting to consider why it took so long to develop the nitride
devices. It was well known that the nitrides would in principle make good
blue/green emitters, but no commercial devices were available. The rea-
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son for this relates to the third point on our list of factors affecting the
choice of electroluminescent materials, namely the difficulty of p-type
doping. This is a problem that has also dogged other wide band gap ma-
terials. For example, direct gap II–VI compounds like ZnSe and CdSe
should also, in principle, make good LEDs for the blue/green/yellow
spectral regions, but they have never found widespread commercial ap-
plication due to the doping problem.

P-type doping is difficult in wide band gap semiconductors because
they have very deep acceptor levels. The energies of the acceptors are
given by eqn 7.29 with m∗

e replaced by m∗
h. The high value of m∗

h and the
relatively small value of εr in wide gap materials increases the acceptor
energies, and hence reduces the number of holes that are thermally ex-
cited into the valence band at room temperature. This last point follows
from the Boltzmann factor (eqn 5.11) with E equal to the acceptor bind-
ing energy, which is significantly larger than kBT . The low hole density
gives the layers a high resistivity, which causes ohmic heating when the
current flows, and hence device failure. Nakamura’s breakthrough came
after discovering new techniques to activate the holes in p-type GaN by
annealing the layers in nitrogen at 700 ◦C.

There is another point that is surprising about the development of
nitride LEDs. Lattice-matching considerations suggest that the devices
should ideally be grown on silicon carbide substrates, or, better still,
GaN itself. (See Fig. 5.11.) However, both of these materials are expen-
sive, and the commercial devices tend to be grown on cheaper sapphire
substrates. Conventional wisdom would suggest that the radiative effi-
ciency should be low due to the large defect density arising from the
lattice mismatch. However, the radiative efficiency can in fact be very
high. One factor that has made this possible is the growth of a thick
‘buffer’ layer immediately above the substrate, which has the effect of
reducing the number of crystal dislocations in the active region. An-
other factor is the relatively poor diffusion coefficients of the electrons
and holes in GaN, combined with the high radiative probability. The
electrons and holes then tend to recombine radiatively before they have
time to diffuse to a defect and recombine non-radiatively.

In the next chapter we shall describe how the use of quantum well
layers has led to further developments in the field of electroluminescent
materials. In fact, many commercial devices—especially laser diodes, but
also many LEDs—now routinely use quantum wells in the active region.
Another important recent breakthrough has been the combination of
nitride light-emitting diodes with phosphor technology to make efficient
white light sources. These devices, which form the basis of the solid-state
lighting industry, will be considered in Section 9.5.

5.4.2 Light-emitting diodes

The operating principle of a light-emitting diode (LED) can be under-
stood with reference to the band diagram shown in Fig. 5.12. The p-
and n-regions are both very heavily doped to produce degenerate distri-
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Fig. 5.12 Band diagram of a light-
emitting diode at (a) zero bias, and
(b) forward bias V0 ≈ Eg/e. The de-
vice consists of a p–n diode with heav-
ily doped p- and n-regions. The dashed
lines indicate the positions of the Fermi
levels in the p- and n-regions, which
must be aligned when V0 = 0. Light is
emitted in (b) when the electrons in the
n-region recombine with holes in the p-
region at the junction.
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butions of holes in the p-region and electrons in the n-region. Note that
this is a different type of degeneracy to that considered in Section 5.3.3.
Degeneracy here means that the carrier density produced by the doping
is so large that the Fermi energies in the p- and n-regions are positive
with respect to the band edges. There is full thermal equilibrium at
V0 = 0, with a unique Fermi energy for the whole device, and the bands
therefore align as shown in Fig. 5.12(a). At the junction, a depletion
region is formed, with neither electrons nor holes present. No light can
be emitted, because there is no point within the device where there is a
significant population of both electrons and holes.

The situation is different when a forward bias of V0 ∼ Eg/e is applied
to drive a current through the device. In this non-equilibrium condition,
the Fermi levels in the p- and n-regions shift relative to each other as
shown in Fig. 5.12(b). The depletion region shrinks, allowing the elec-
trons in the n-region to diffuse into the p-region, and vice versa. This cre-
ates a region at the junction where both electrons and holes are present.
The electrons recombine with the holes, emitting photons at energy Eg

by interband luminescence. The electrons and holes that recombine are
replenished by the current flowing through the device from the external
circuit, which was given previously in Fig. 5.10(b).
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Fig. 5.13 Electroluminescence spec-
trum of a GaAs LED at room tempera-
ture. Unpublished data from A.D. Ash-
more.

Figure 5.13 shows the spectrum of a forward biased GaAs p–i–n diode
with a current of 1 mA flowing through the device. The light is gener-
ated in the thin i-region at the junction between the p- and n-regions. As
mentioned previously, GaAs has a band gap of 1.42 eV at room temper-
ature, which gives emission in the near-infrared around 870 nm. The full
width at half maximum of the emission line is 58 meV, which is about
twice kBT at 293 K.

5.4.3 Diode lasers

Semiconductor lasers are more difficult to make than LEDs, but they
give superior performance in terms of their output efficiency, spectral
linewidth, beam quality, and response speed. They are therefore used
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for the more demanding applications, leaving the simpler ones for the
cheaper LED devices. They are mainly made from GaAs-based materials,
and operate in the red and near-infrared spectral regions. However, blue
laser diodes have recently become available following the development
of efficient nitride based emitters.

The acronym ‘laser’ stands for ‘Light Amplification by Stimulated
Emission of Radiation’. As the name suggests, laser operation is based on
the quantum-mechanical process of stimulated emission. This should
be distinguished from the process of spontaneous emission that is re-
sponsible for luminescence. (See Section B.1 in Appendix B.) Stimulated
emission causes an increase in the photon number as the light interacts
with the atoms of the medium, which in turn leads to optical amplifi-
cation. This contrasts with the process of absorption which reduces the
number of photons, and hence causes attenuation.

Consider the interaction between a light wave of frequency ν and a
medium containing atoms with an electronic transition at energy hν,
as illustrated in Fig. B.2. The absorption processes cause beam atten-
uation, while stimulated emission causes amplification. The transition
rates for the two processes are given by eqns B.5 and B.6 respectively.
In the normal conditions of thermal equilibrium, the population of the
lower level N1 will be greater than the population of the upper level
N2 by the Boltzmann factor given in eqn B.8. This means that the
absorption rate exceeds the stimulated emission rate, and there is net
beam attenuation. However, if we were somehow to arrange for N2 to be
larger than N1, then the reverse would be true. The stimulated emission
rate would exceed the absorption rate, and there would be net beam
amplification. The non-equilibrium condition with N2 > N1 is called
population inversion. It is a necessary condition for laser oscillation
to occur.

In Section 5.3.1 we explained how the carrier distributions after in-
jection of electrons and holes only reach quasi-equilibrium rather than
full thermal equilibrium. The top of the valence band is empty of elec-
trons, while the bottom of the conduction band is filled with them. We
therefore have population inversion at the band gap frequency Eg/e.
This gives rise to net optical gain, which can be used to obtain laser
operation if an optical cavity is provided.

h�

R
1

R
2

l

h�

R
1

R
2

l

Fig. 5.14 Schematic diagram of a laser
cavity formed by reflections from the
end surfaces of the gain medium of
length l. The reflectivities of the sur-
faces are taken to be R1 and R2 respec-
tively, with R1 � R2.

Figure 5.14 shows a schematic diagram of a laser cavity formed from a
gain medium with mirrors at either end. This is the typical arrangement
for a semiconductor laser diode, which usually consists of just the semi-
conductor chip itself. The reflectivities of the semiconductor–air surfaces
at the edge of the crystal are typically around 30%. (See Exercise 5.18.)
This may be sufficient in itself to obtain lasing, although in what follows
we assume that the reflectivities R1 and R2 at the two ends are different,
and that R1 � R2.

On passing a current through the p–n junction of a laser diode, light
at frequency ν ≈ Eg/h is generated by electroluminescence. This light is
reflected back and forth within the cavity, and experiences gain due to
the population inversion between the conduction and valence bands. At
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some particular value of the injection current Iin called the threshold
current Ith, the laser will begin to oscillate. For current values above
Ith, the light output power of the laser increases linearly with Iin. This is
illustrated in Fig. 5.15(a). The output power is coupled out of the cavity
by transmission through the mirror with the lower reflectivity, which is
called the output coupler of the laser.

Once the laser is oscillating, the emission spectrum will be determined
by the resonant longitudinal modes of the optical cavity. The reso-
nant modes must satisfy the condition that they form standing waves
between the mirrors, and hence that there are an integer number of half
wavelengths within the cavity. This condition can be written:

integer × λ′

2
= l , (5.19)

where λ′ is the wavelength inside the crystal, which is equal to λ/n, λ
being the air wavelength and n the refractive index. This means that
the frequencies of the longitudinal modes must satisfy:

ν = integer × c

2nl
. (5.20)

The laser will oscillate at one or several of these resonant frequencies.
Some semiconductor lasers oscillate on just one single longitudinal mode,
and have emission linewidths in the MHz range. This is many orders of
magnitude smaller than that of the equivalent LED.

The condition for stable oscillation of the laser is that the light in-
tensity in the cavity should not change with time. This implies that the
gain in the laser medium must exactly balance any losses suffered by the
light during a round trip of the cavity. This condition allows us to work
out the value of the gain in the medium when the laser is oscillating.
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Fig. 5.15 (a) Power output and (b)
gain coefficient γν as a function of in-
jection current Iin in a semiconductor
laser diode. Ith is the threshold injec-
tion current, and γth is the threshold
gain required for stable laser oscillation.
Note that these are idealized curves,
and that real devices may depart some-
what from the behaviour shown here.

We assume that there is population inversion inside the medium, and
hence that there is optical amplification at the transition frequency ν.
We define the incremental gain coefficient γν as:

dI = +γν dx × I(x) . (5.21)

This is exactly the same definition as for the absorption coefficient in
eqn 1.3, except that the intensity is now growing with distance rather
than diminishing. Integration of eqn 5.21 yields:

I(x) = I0eγνx . (5.22)

We follow the light at frequency ν around a round trip of the cavity
shown in Fig. 5.14. In stable laser oscillation, the increase of the intensity
due to the gain must exactly balance the losses due to the imperfect
reflectivity of the end mirrors and any other losses that may be present
in the medium. This condition may be written:

R1 R2 e2γν l e−2αbl = 1 . (5.23)

The factor of 2 in the two exponentials allows for the fact that the
light passes through the gain medium twice during a round trip. The
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attenuation coefficient αb in eqn 5.23 accounts for scattering losses and
absorption due to processes other than interband transitions, for exam-
ple impurity absorption. The oscillation condition in eqn 5.23 can be
re-written:

γth = αb − 1
2l

ln(R1R2) . (5.24)

This defines the threshold gain γth required to make the laser oscillate.
Direct gap semiconductors such as GaAs have very large gain coefficients
due to their high density of states and short radiative lifetimes. This
makes it possible to overcome the output coupling losses with cavity
lengths of order 1mm or less.

We assume that the gain coefficient increases linearly with the injec-
tion current Iin, as indicated in Fig. 5.15(b). When Iin = Ith, the gain
reaches the value γth defined by eqn 5.24, at which point the laser begins
to oscillate. Once the laser is oscillating, the gain must be clamped at
the value of γth, because otherwise the gain would exceed the losses,
and the stability condition set out in eqn 5.23 would not hold. Thus for
Iin > Ith, the extra electrons and holes injected into the junction do not
produce any more gain, but recombine directly by stimulated emission,
and cause the output power to increase, as indicated in Fig. 5.15(a).

The output power Pout above threshold can be written:

Pout = η
hν

e
(Iin − Ith). (5.25)

where η is the quantum efficiency. η defines the fraction of injected
electron-hole pairs that generate laser photons. The quantum efficiency
determines the slope efficiency in watts per amp through

slope efficiency =
Pout

(Iin − Ith)
=

ηhν

e
. (5.26)

In an ideal laser diode we would have η = 1 and the slope efficiency
would be equal to the theoretical maximum of hν/e. Many of the best
diode lasers come quite close to this ideal limit.

One of the main reasons why η might be less than unity in a real
laser diode relates to issues of optical confinement and electrical
confinement. The device will not work efficiently unless we can arrange
that the injection current is confined to the same part of the device
where the light is confined. This is not necessarily an easy task due to
the inherently planar nature of semiconductor lasers. The devices have New types of lasers called vertical-

cavity surface-emitting lasers have dif-
ferent geometries to the planar lasers
discussed here. The light is emitted
from the top of the chip, rather than
from its sides. See the references given
in the Further Reading list for more de-
tails.

very small dimensions (e.g. 1 µm) in the vertical (z) direction, and much
larger directions (e.g. several hundred microns) in the horizontal x, y
plane. The light is generated in the thin active region, and is emitted
from the edge of the chip. In such a planar structure, the light tends to
spread out in the y, z plane, while the current tends to spread out in
the x, y direction. This leads to the possibility that the current and light
might not overlap properly in the x, y plane, in which case we would
have poor quantum efficiency.

There are many different ways to achieve optical and electrical con-
finement, and we can understand the basic principles by looking at a
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Fig. 5.16 Schematic diagram of an
oxide-confined GaAs–AlGaAs hetero-
junction stripe laser. The current flows
in the −z direction, while the light
propagates in the ±x direction. The
stripe is defined by the gap in the in-
sulating oxide layers deposited on the
top of the device during the fabrication
process. The active region is the intrin-
sic GaAs layer at the junction between
the n- and p-type AlGaAs cladding lay-
ers.
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specific example. Figure 5.16 gives a schematic diagram of an oxide-
confined GaAs–AlGaAs heterostructure stripe laser. The ‘stripe’ is de-
fined by the gap in the insulating oxide layers deposited on the top of
the device during the fabrication process. The current flows in the −z
direction, between the top and bottom metal contacts. The top contact
only connects to the p-region in between the oxide layers, and so the
current is confined to the long thin rectangular strip of the x, y plane
defined by the fabrication process.

The light, on the other hand, propagates in the ±x direction. The
shape of the laser mode in the y, z plane is determined by waveguide
effects. This refers to the confinement of a light beam in the direction
perpendicular to its propagation instead of the usual divergence due to
diffraction. The confinement in the z direction is achieved through the
tendency of the light to propagate in the region with the largest refrac-
tive index, which can be understood in terms of repeated total internal
reflections at the interfaces between the high and low refractive index
materials. This vertical confinement is easily achieved in heterojunc-
tion devices such as the one shown in Fig. 5.16. In the example given,A heterojunction is one with different

materials at the junction, and contrasts
with a homojunction, where all the ma-
terials are the same. The names are
derived from the Greek words heteros,
meaning ‘other’, and homos meaning
‘same’. The heterojunction laser was
independently invented by Zhores I.
Alferov and Herbert Kroemer in 1963,
for which they were awarded the Nobel
Prize for physics in 2000.

the active region is made of GaAs, which has a higher refractive index
than the AlGaAs ‘cladding’ layers on either side.

The optical confinement in the y direction is more difficult. It is ei-
ther achieved by index guiding or gain guiding. Index guiding is the
same effect as that used to produce the vertical confinement. The lat-
eral patterning of the top of the chip can produce small variations in
the effective refractive index in the y direction through strain or other
effects. Gain guiding, on the other hand, follows as a consequence of cur-
rent confinement. The semiconductor layers have very strong absorption
at the laser wavelength except in the regions where there is gain due
to population inversion. Hence the optical mode will be extremely lossy
except in the gain regions defined by the current confinement. This is
the case with the example shown in Fig. 5.16.

The reader is referred to the references given in the Further Reading
list for more detailed information about the many different types of
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semiconductor laser that have been made. In the next chapter, we shall
explain how the use of quantum wells in the active region has led to
superior performance and greater flexibility in the emission wavelength.

5.4.4 Cathodoluminescence

Cathodoluminescence is the phenomenon by which light is emitted from
a solid in response to excitation by cathode rays, that is: electron beams
(e-beams). Since the light is generated in response to the electron current
of the e-beam, it can be considered as a type of electroluminescence,
although some texts list it as a separate sub-category of luminescence.
Cathodoluminescence is extensively used in cathode ray tubes, and it is
also a powerful research tool.

The basic processes that occur when an e-beam strikes a crystal are
illustrated in Fig. 5.17. The electrons in the e-beam are called primary
electrons, and have an energy which is determined by the applied volt-
age, which might typically be 1–100 kV. Some of the primary electrons
are scattered elastically by the atoms (i.e. without significant energy
loss) and give rise to high energy back-scattered electrons. These back-
scattered electrons can be collected and used to from an image of the
sample, as happens in an electron microscope. The remaining electrons
are scattered inelastically many times as they penetrate the crystal, and
their direction gets randomized in the process. The region of the crys-
tal that interacts with the e-beam is called the excitation volume, and
the distance the beam travels is called the penetration depth (or elec-
tron range Re). The penetration depth increases with increasing primary
electron energy, and typical values of Re are in the range 1–10 µm. How-
ever, Re can be significantly less than 1 µm for e-beam energies below
∼ 10 keV.

back-scattered

electrons

excitation

volume
penetration

depth (Re)

electron

beamVACUUM

CRYSTAL cathodoluminescence

back-scattered

electrons

excitation

volume
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Fig. 5.17 Generation of cathodolumi-
nescence following excitation of a crys-
tal by an electron beam.

The electrons that penetrate the surface transfer their energy to the
crystal by exciting electron-hole pairs. The number of electron-hole pairs
generated per primary electron is given by:

N eh = (1 − γ)
Ep

Ei
, (5.27)

where γ is the fractional energy loss due to back scattering, Ep is the
energy of the primary electron, and Ei is the ionization energy (i.e.,
the energy required to form an electron-hole pair.) The electron-hole
pairs are produced by a complicated multi-step process involving the
re-emission and subsequent inelastic scattering of secondary electrons.
However, for a wide range of materials it has been found that Ei is
given by the following simple semi-empirical formula:

Ei = 2.8Eg + E′ , (5.28)

where E′ depends only on the material, and has a magnitude in the range
0–1 eV. A primary electron with an energy of ∼ 10 keV can therefore
generate thousands of electron-hole pairs in a semiconductor with a band
gap of 1–3 eV. These electrons and holes are created high up in their
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bands, and emit photons in all directions with energy �ω � Eg after
having relaxed to the bottom of their bands. It is these photons that
comprise the cathodoluminescence signal.

As a research tool, cathodoluminescence is usually studied by collect-
ing and detecting the light emitted by the sample in an electron micro-
scope. It is particularly useful for investigating wide band gap materials
and nanostructures. In the former case, photoluminescence experiments
may be impractical due to the lack of an excitation source with a suit-
ably high photon energy, leaving cathodoluminescence as the only viable
technique for studying the light emission processes. In the latter case,
the ability to focus the e-beam to a very small spot allows the selective
excitation of structures with submicron dimensions. This spatial selec-
tivity is limited by the spreading of the electrons within the excitation
volume, but resolutions of ∼ 100 nm or less can be achieved with low
energy beams (e.g. 5 keV).

In commercial applications, cathodoluminescence is widely used in
cathode ray tubes. In these devices an electron beam is scanned across
a screen coated with a light-emitting material called a phosphor. In
monochrome displays such as those found in oscilloscopes, a singe beam
and a single phosphor is used. However, in colour displays such as those
used in some computer monitors, three separate e-beams must be used,
together with three different phosphors: one for each primary colour,
namely red, green and blue. Each pixel of the screen consists of red, green
and blue sub-pixels, and by addressing these with separate e-beams, the
full range of colours can be obtained. Further details of the physics of
phosphors may be found in Section 9.5.

Chapter summary

• Luminescence is the generic name for light emission by sponta-
neous emission in solids. Photoluminescence is the re-emission of
light following absorption of higher-energy photons. Electrolumi-
nescence is the luminescence generated by electrical excitation.

• The emission rate is proportional to the matrix element for the
transition, the density of states, and the occupancy factors of the
upper and lower levels.

• Transitions with high absorption coefficients have short radiative
lifetimes. Efficient luminescence is only obtained when the radiative
lifetime is shorter than the non-radiative lifetime.

• Interband luminescence occurs when an electron in the conduction
band drops to the valence band with the emission of a photon. The
process is equivalent to the recombination of an electron-hole pair.
The transition is represented by a downward vertical arrow on the
band diagram.
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• The interband luminescence spectrum is usually independent of the
way the material is excited. The emission wavelength corresponds
to the fundamental band gap of the material.

• Direct gap materials have short radiative lifetimes (∼ 1 ns) and are
strong emitters. Indirect gap materials have much longer radiative
lifetimes and are generally very inefficient emitters.

• The carriers generated by photoexcitation rapidly relax to the bot-
tom of their bands before recombining, and come to a state of
quasi-equilibrium with separate Fermi energies for the electrons
and holes. The luminescence spectrum can be calculated from the
thermal distributions of the carriers.

• The depolarization of the luminescence following excitation by cir-
cularly polarized light gives information about electron spin relax-
ation processes.

• Light-emitting diodes consist of p–n diodes with the light-emitting
material in the active region at the junction between the p- and
n-layers. Light is emitted when the diode is forward biased. LEDs
are usually made from direct gap semiconductors.

• The injection of electrons and holes into the conduction and valence
bands can produce population inversion at the band gap frequency.
This can support laser operation if the gain due to stimulated emis-
sion balances the round trip losses in the optical cavity.

• Semiconductor lasers are usually planar structures with the light
emitted from the edge of the chip. The cavity is formed between
the end mirrors at the air–semiconductor interfaces.

• The light emitted following excitation by cathode rays is called
cathodoluminescence.

Further reading

A good introductory overview of luminescent processes
in solids may be found in Elliott and Gibson (1974). In-
terband luminescence in semiconductors is discussed in
Pankove (1971) and Yu and Cardona (1996). More de-
tailed discussions may be found in Landsberg (1991) or
Voos et al. (1980).

The definitive work on optical orientation experiments
performed up to 1984 is Meier and Zakharchenya (1984).
More recent work is reviewed in Awschalom et al. (2002),
Dyakonov (2008), and Kusrayev & Landwehr (2008).
An authoritative discussion of time-resolved luminescence
spectroscopy may be found in Shah (1999).

The physics of electroluminescence is discussed in most
opto-electronics texts, for example Bhattacharya (1997),
Chuang (1995), Sze (1981), Sze (1985), or Wilson and
Hawkes (1998). A thorough account of the principles of
light-emitting diodes may be found in Schubert (2006).
The development of nitride light emitters is discussed
in Nakamura et al. (2000), while detailed information
about semiconductor laser diodes may be found in Sil-
fvast (2004), Svelto (1998), or Yariv (1997). The physics
of cathodoluminescence is covered in depth in Yacobi and
Holt (1990) or Gustafsson et al. (1998).
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Exercises
(5.1) Explain why it is difficult to make light-emitting

devices out of indirect gap materials.

(5.2) When a direct gap semiconductor is excited by ab-
sorption of photons with energy greater than the
band gap, it is generally found that the lumines-
cence spectrum is independent of the excitation
frequency. Explain this phenomenon.

(5.3)∗The wave functions for atomic hydrogen may be
written in the form:

Ψnlm(r, θ, φ) = Rnl(r) Yl,m(θ, φ) .

The radial wave functions for the 1s and 2p states
are given by:

R10(r) =
2

a
3/2
H

e−r/aH ,

and

R21(r) =
r√

24a
5/2
H

e−r/2aH ,

where aH is the Bohr radius of hydrogen. The
spherical harmonic functions of the same states
are given by

Y0,0(θ, φ) =
1√
4π

,

Y1,0(θ, φ) =

�
3

4π
cos θ ,

and

Y1,±1(θ, φ) = ∓
�

3

8π
e±iφ sin θ .

Use eqn B.31 in Appendix B to calculate the Ein-
stein A coefficient for the 2p → 1s transition.
Hence calculate the radiative lifetime of the 2p
state.

(5.4) The radiative lifetime τR of the laser transition in
titanium doped sapphire is 3.9�s. The lifetime τ
of the excited state is measured to be 3.1�s at
300K and 2.2�s at 350 K. Explain why τ is differ-
ent from τR, and suggest a reason why τ decreases
with increasing temperature. Calculate the radia-
tive efficiencies at the two temperatures.

(5.5) A semiconductor crystal is found to emit efficiently
at 540 nm when excited with the 488 nm line from
an argon ion laser. Use the data in Table D.3 to
make a guess at what the crystal is.

(5.6) A continuous wave laser beam is incident on a ma-
terial which has an absorption coefficient of α at
the laser frequency ν.
(a) Show that electron-hole pairs are generated at
a rate equal to Iα/hν per unit volume per unit
time, where I is the intensity in the material.
(b) By considering the balance between carrier
generation and recombination in steady state con-
ditions, show that the carrier density N within the
illuminated volume is equal to Iατ/hν, where τ
is the recombination lifetime of the electrons and
holes.
(c) Calculate N when a laser beam of power 1mW
is focused to a circular spot of radius 50�m on an
anti-reflection coated sample with an excited state
lifetime of 1 ns. Take the absorption coefficient to
be 2× 106 m−1 at the laser wavelength of 514 nm.

(5.7) A very short laser pulse at 780 nm is incident on
a thick crystal which has an absorption coefficient
of 1.5×106 m−1 at this wavelength. The pulse has
an energy of 10 nJ and is focused to a circular spot
of radius 100�m.
(a) Calculate the initial carrier density at the front
of the sample.
(b) If the radiative and non-radiative lifetimes of
the sample are 1 ns and 8 ns respectively, calculate
the time taken for the carrier density to drop to
50% of the initial value.
(c) Calculate the total number of luminescent pho-
tons generated by each laser pulse.

(5.8) Explain why the emission probability for an in-
terband transition is proportional to the product
of the electron and hole occupancy factors fe and
fh respectively. In the classical limit where Boltz-
mann statistics apply, show that the product fefh

is proportional to exp (−(hν − Eg)/kBT ).

(5.9) In the classical limit, show that the number of elec-
trons in the conduction band of a semiconductor
is given by

Ne =
eEc

F/kBT

2π2

�
2m∗

ekBT

�2

�3/2 � ∞

0

x1/2e−xdx .

Given that
�∞
0

x1/2e−xdx =
√

π/2, evaluate Ec
F

at 300 K for GaAs (m∗
e = 0.067m0) when (a)

Ne = 1 × 1020 m−3 and (b) Ne = 1 × 1024 m−3.
Discuss whether the approximations used to de-
rive this equation are justified in the two cases.

∗Exercises marked with an asterisk are more difficult.
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(5.10) Show that at T = 0 the Fermi integrals given in
eqns 5.9 and 5.10 simplify to:

Ne,h =

� E
c,v
F

0

1

2π2

�
2m∗

e,h

�2

�3/2

E1/2 dE .

Evaluate the integral to derive eqn 5.13.

(5.11) A laser excites a semiconductor which has m∗
e =

0.1m0 and m∗
h = 0.5m0. Calculate the electron

and hole Fermi energies for carrier densities of
(a) 1 × 1021 m−3, and (b) 1 × 1024 m−3, on the
assumption that the distributions are degenerate.
Write down a condition on the temperature for
the degeneracy conditions to apply in each case
and comment on the answers you obtain.

(5.12) Show that in the degenerate limit during photo-
luminescence, the k vectors corresponding to the
conduction and valence band Fermi energies are
the same, even though the Fermi energies are dif-
ferent.

(5.13)∗The photoluminescence spectrum of CdTe, which
has a direct band gap at 1.61 eV and a refrac-
tive index of 2.7, is measured using the appara-
tus shown in Fig. 5.9. An argon ion laser of power
1mW and photon energy 2.41 eV is focused to a
small spot on the sample. The luminescence is col-
limated with a lens of diameter 25 mm and focal
length 100 mm.
(a) Calculate the solid angle subtended by the lens
at the sample.
(b) Estimate the fraction of the photolumines-
cence collected by the lens. Assume that the lu-
minescence is emitted uniformly in all directions
inside the crystal, and is then both reflected and
refracted at the front surface.
(c) Calculate the total luminescent power emitted
by the atoms in terms of the radiative quantum
efficiency ηR of the sample.
(d) Hence estimate the luminescent power col-
lected by the collimation lens in terms of ηR.

(5.14)∗Figure 5.8 shows the emission spectrum from the
direct gap semiconductor Ga0.47In0.53As at two
time delays after 2 × 1024 m−3 carriers have been
excited using an ultrashort laser pulse.
(a) Calculate the electron Fermi energy for the ini-
tial carrier density if T = 0. (m∗

e = 0.041m0.)
(b) Calculate the hole Fermi energy in the same
conditions, on the assumption that the densities
of states from the light- and heavy-hole bands
can just be added together. (m∗

hh = 0.47m0 and
m∗

lh = 0.05m0.)
(c) The effective carrier temperature for the 24 ps

spectrum is 180K. Are the carriers degenerate?
(d) Explain the shape of the 24 ps spectrum, given
that the band gap of Ga0.47In0.53As is 0.81 eV.
(e) Use the data at 250 ps to obtain a rough es-
timate of the carrier density at this time delay.
Estimate the average lifetime of the carriers.

(5.15) Consider a zinc-blende III–V semiconductor with
an initial electron spin polarization of 50% and
zero hole polarization. By considering the relative
populations of the electron spin levels, and the rel-
ative weights of the possible transitions, show that
luminescence is expected to have a circular polar-
ization of 25%.

(5.16) Optical orientation and Hanle effect experiments
are performed on a sample with electron g-factor
ge. Derive expressions for the carrier lifetime τ and
spin lifetime τS in terms of the degree of polariza-
tion at zero field (i.e. P (0)/P0) and the Hanle half
field B1/2 (i.e. the field for which P (B) = P (0)/2).

(5.17) GaP has an indirect gap at 2.27 eV and a direct
gap at 2.78 eV. The band gap of the alloy semicon-
ductor GaAsxP1−x varies approximately linearly
with composition, and is direct for x ≤ 0.45. The
band gap of GaAs is 1.42 eV.
(a) What is the shortest wavelength that can
be produced efficiently by a GaAsxP1−x light-
emitting diode?
(b) Estimate the composition of the alloy in an
LED emitting at 670 nm.

(5.18) GaAs has a refractive index of 3.5 at its band gap.
(a) Calculate the reflectivity at the interface be-
tween the air and the GaAs crystal.
(b) Calculate the frequency separation of the lon-
gitudinal modes of a GaAs laser diode of length
1mm.
(c) The laser diode of part (b) is coated so that one
end of the chip has a reflectivity of 95%. The other
end is uncoated. Calculate the threshold gain co-
efficient for the laser if the scattering and other
impurity losses are negligibly small.

(5.19) A laser diode emits at 830 nm when operating at
an injection current of 100mA.
(a) Calculate the maximum possible power that
can be emitted by the device.
(b) Calculate the power conversion efficiency, if the
actual power output is 50mW and the operating
voltage is 1.9 V.
(c) The threshold current of the laser is 35mA.
What is the slope efficiency and the quantum effi-
ciency?

(5.20) Show that the electron-hole pair density gener-
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ated when an electron beam with current density
J strikes a sample is given by:

N =
J τ

e Re
(1 − γ)

Ep

Ei

where τ is the carrier lifetime, Re is the penetra-
tion depth, and the other symbols are defined in
eqn 5.27.
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In this chapter we give an overview of the optical properties of quantum-
confined semiconductors. These are artificial structures in which the elec-
trons and holes are confined in one or more directions. The structures
that we consider generally have sizes in the nanometre range, and may
thus be considered as examples of nanostructures. We concentrate
mainly on quantum wells, in which the confinement is just in one di-
mension, since these illustrate the main points most clearly. We then
give an introduction to the physics of quantum dots, which is a subject
that has advanced very rapidly since the first edition of this book. As we
shall see, quantum wells and dots have very interesting optical properties
that readily lend themselves to applications in opto-electronics. Further-
more, the physical principles that we shall study here for inorganic semi-
conductors can readily be adapted to other types of quantum-confined
systems, such as the carbon nanostructures considered in Section 8.5.

The optical properties of quantum-confined semiconductors are de-
rived from the physics of interband absorption, excitons, and interband
luminescence discussed in Chapters 3–5. We presuppose here that these
subjects have been fully assimilated, and the new material in this chap-
ter provides a good opportunity to practise and develop the principles
that have been learnt previously.

6.1 Quantum-confined structures

The optical properties of solids do not usually depend on the size of the
crystal. Rubies, for example, have the same red colour irrespective of
how big they are. This statement is only true as long as the dimensions
of the crystal are large. If we make very small crystals, then the optical
properties do in fact depend on the size. A striking example of this is
semiconductor-doped glasses. As discussed in Section 6.8.2, these contain
very small semiconductor nanocrystals within a colourless glass host, and
the colour can be altered just by changing the size of the crystals.

The size dependence of the optical properties in very small crystals
is a consequence of the quantum confinement effect. The Heisenberg
uncertainty principle tells us that if we confine a particle to a region
of the x axis of length ∆x, then we introduce an uncertainty in its
momentum given by:

∆px ∼ �

∆x
. (6.1)

If the particle is otherwise free, and has a mass m, the confinement in
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Table 6.1 Number of degrees of freedom tabulated against the dimensionality of the
quantum confinement. The final column shows the functional form of the density of
states for free electrons.

Structure Quantum Number of Electron
confinement free dimensions density of states

Bulk none 3 E1/2

Quantum well/superlattice 1-D 2 E0

Quantum wire 2-D 1 E−1/2

Quantum dot/box 3-D 0 discrete

the x direction gives it an additional kinetic energy of magnitude

Econfinement =
(∆px)2

2m
∼ �

2

2m(∆x)2
. (6.2)

This confinement energy will be significant if it is comparable to or
greater than the kinetic energy of the particle due to its thermal motion
in the x direction. This condition may be written:The principle of equipartition of energy

tells us that we have a thermal energy
of kBT/2 for each degree of freedom of
the motion.

Econfinement ∼ �
2

2m(∆x)2
>

1
2
kBT , (6.3)

and tells us that quantum size effects will be important if

∆x �

√
�2

mkBT
. (6.4)

This is equivalent to saying that ∆x must be comparable to or smaller
than the de Broglie wavelength λdeB ≡ h/px for the thermal motion.

The criterion given in eqn 6.4 gives us an idea of how small the struc-
ture must be if we are to observe quantum confinement effects. At room
temperature, we find that we must have ∆x � 5 nm for an electron in
a typical semiconductor with m∗

e = 0.1m0. Thus a ‘thin’ semiconductor
layer of thickness 1 µm is not thin by the standards of the electrons. It
is in fact a bulk crystal that would not exhibit any quantum size effects
except at extremely low temperatures. (See Exercise 6.1.) To observe
quantum size effects we need thinner layers.

Quantum-confined structures are generally classified by their dimen-
sionality. Table 6.1 summarizes the three basic types of quantum-confined
structures that can be produced, for which the following nomenclature
is usually adopted:

Certain types of quantum well struc-
tures are called superlattices (see Sec-
tion 6.2), while quantum dots are some-
times called quantum boxes.

• quantum wells: 1-D confinement;
• quantum wires: 2-D confinement;
• quantum dots: 3-D confinement.

Table 6.1 also lists the number of degrees of freedom associated with the
type of quantum confinement. The electrons and holes in bulk semicon-
ductors are free to move within their respective bands in all three direc-
tions, giving them three degrees of freedom, and hence three-dimensional
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Fig. 6.1 Schematic representation of
quantum wells, wires, and dots. The
generic shape of the density of states
function for electrons in the conduction
band of a semiconductor with band gap
Eg is shown for each type of structure.

(3-D) physics. The electrons and holes in a quantum well, by contrast,
are confined in one direction, and therefore only have two degrees of free-
dom. This means that they effectively behave as 2-D materials. Similarly,
quantum wire structures have 1-D physics, while quantum dots have ‘0-
D’ physics. This last point means that the motion of the electrons and
holes is quantized in all three dimensions, so that they are completely
localized in the quantum dot. Quantum wells, wires, and dots are thus
all examples of low-dimensional structures.

The quantization of the motion of the electrons and holes has two
main consequences:

(1) The energy of a particle at rest is increased by the quantum con-
finement energy.

(2) The functional form of the density of states is changed.

These two points will be discussed at length throughout the chapter,
and at this stage it is useful just to make some general comparisons, as
illustrated schematically in Fig. 6.1.

The conduction band electrons in a bulk semiconductor can have any
energy above the band gap energy Eg and the density of states is pro-
portional to (E − Eg)1/2. This is a consequence of the free motion in

See, for example, eqn 3.16, which shows
that the density of states for free elec-
trons varies as E1/2 in three dimen-
sions. For an electron in the conduc-
tion band of a semiconductor, the en-
ergy must be measured relative to the
bottom of the conduction band. Note
that the (E − Eg)1/2 dependence only
applies within the parabolic band ap-
proximation.

all three dimensions. The density of states for a quantum well is deter-
mined by the 2-D free motion and the shift of the energy due to the
quantum confinement. As shown in Exercise 6.3, the density of states
is independent of the energy, and so we have a sequence of steps in
the density of states for each quantized level. Note that the band edge
is effectively shifted to higher energy by the quantized energy for the
quantum-confined motion in the third direction.

The argument can be repeated for 1-D quantum wire and 0-D quan-
tum dot systems. In the case of quantum wires, the density of states has
an E−1/2 dependence (see Exercise 6.4) which leads to peaks at each
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new quantized state as shown in Fig. 6.1. In quantum dots the motion
is quantized in all three directions and there are no continuous bands at
all. The density of states consists of a series of Dirac δ-functions at each
quantized level, as illustrated in Fig. 6.1. In this sense, quantum dots
behave like ‘artificial atoms’ in which the electrons have discrete energies
rather than continuous bands as is the norm in solid-state physics.

The very small crystal dimensions required to observe quantum con-
finement effects have to be produced by special techniques.

• Quantum wells are made by techniques of advanced epitaxial crys-
tal growth. This will be explained in Section 6.2.

• Quantum wires are made by lithographic patterning of quantum
well structures, or by epitaxial growth on patterned substrates.

• Quantum dots can be made by lithographic patterning of quan-
tum wells or by spontaneous growth techniques, as discussed in
Section 6.8.

In the sections that follow, we mainly concentrate on quantum well struc-
tures. This is because they illustrate the physical principles very well,
and are already widely used in many commercial opto-electronic devices.
We also briefly consider the optical properties of quantum dots. We do
not mention quantum wires further here, due to the difficulties associ-
ated with making them, although we shall return to 1-D materials when
we consider carbon nanotubes in Section 8.5.3.

6.2 Growth and structure of quantum
wells

Semiconductor quantum wells are examples of heterostructure crys-
tals. Heterostructures are artificial crystals that contains layers of dif-
ferent materials grown on top of a thicker substrate crystal. The struc-
tures are made by the specialized epitaxial crystal growth techniques
introduced previously in Section 5.4.1. The two most important ones
are molecular beam epitaxy (MBE) and metal–organic chemical
vapour deposition (MOCVD), which is also called metal–organic
vapour-phase epitaxy (MOVPE) by some authors. The layer thick-
nesses of the crystals grown by these techniques can be controlled with
atomic precision. This makes it easy to achieve the thin layer thick-
nesses required to observe quantum confinement of the electrons in a
semiconductor at room temperature.

Figure 6.2(a) shows a schematic diagram of the simplest type of quan-
tum well that can be grown. In this particular case, a GaAs/AlGaAs
structure grown on a GaAs substrate is shown. The structure consists of
a GaAs layer of thickness d sandwiched between much thicker layers of
the alloy semiconductor AlGaAs. d is chosen so that the motion of the
electrons in the GaAs layer is quantized according to the criterion given
in eqn 6.4. We set up axes so that the z axis corresponds to the crystal
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Fig. 6.2 (a) Schematic diagram of
a single GaAs/AlGaAs quantum well.
The quantum well is formed in the
thin GaAs layer sandwiched between
AlGaAs layers which have a larger
band gap. The lower half of the fig-
ure shows the spatial variation of the
conduction band (CB) and the valence
band (VB). (b) Schematic diagram of a
GaAs/AlGaAs multiple quantum well
(MQW) or superlattice structure. The
distinction between an MQW and a su-
perlattice depends on the thickness b
of the barrier separating the quantum
wells.

growth direction, while the x and y axes lie in the plane of the layers.
We thus have quantized motion in the z direction, and free motion in
the x, y plane.

The bottom half of Fig. 6.2(a) shows the spatial variation of the con-
duction and valence bands that corresponds to the change of the com-
position along the z direction. The band gap of AlGaAs is larger than
that of GaAs, and the bands line up so that the lowest conduction and
valence band states of the GaAs lie within the gap of the AlGaAs. This
means that electrons in the GaAs layer are trapped by potential barriers
at each side due to the discontinuity in the conduction band. Similarly,
holes are trapped by the discontinuity in the valence band. These bar-
riers quantize the states in the z direction, but the motion in the x, y
plane is still free. We thus effectively have a 2-D system in which the
electrons and holes are quantized in one direction and free in the other
two.

Epitaxial techniques are very versatile, and they allow the growth of
a great variety of quantum well structures. Figure 6.2(b) shows one such
variant derived from the single well structure shown in Fig. 6.2(a). The
crystal consists of a series of repeated GaAs quantum wells of width d
separated from each other by AlGaAs layers of thickness b. This type of
structure is either called a multiple quantum well (MQW) or a su-
perlattice, depending on the parameters of the system. The distinction
depends mainly on the value of b.

MQWs have large b values, so that the individual quantum wells are
isolated from each other, and the properties of the system are essen-
tially the same as those of single quantum wells. They are often used
in optical applications to give a usable optical density. It would be very
difficult to measure the optical absorption of a single 10 nm thick quan-
tum well, simply because there is so little material to absorb the light.
By growing many identical quantum wells, the absorption will increase
to a measurable value.
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Superlattices, by contrast, have much thinner barriers. The quantum
wells are then coupled together by tunnelling through the barrier, and
new extended states are formed in the z direction. Superlattices have
additional properties over and above those of the individual quantum
wells.

Quantum well structures of the type shown in Fig. 6.2 can only be
made if the properties of the constituent compounds are favourable to
the formation of the artificial crystals. We have already noted in Sec-
tion 5.4.1 that the unit cell size of GaAs and AlAs (and hence also the
AlxGa1−xAs alloy) are almost identical: see Fig. 5.11. This means that
both the GaAs and AlGaAs layers in the quantum well structure are lat-
tice matched to the GaAs substrate, enabling dislocation-free crystals to
be grown.

In recent years it has been realized that it is also possible to make
quantum wells from materials with different unit cell sizes. This allows
much more flexibility in the combinations of materials that can be used.
The mismatch in the lattice constants introduces strain into the struc-
ture, but high-quality crystals can still be grown provided the total layer
thickness is kept below a critical value. We briefly mention the applica-
tion of these non-lattice-matched quantum wells in light-emitting diodes
and laser diodes in Section 6.6.

6.3 Electronic levels

The wave functions and energies of the quantized states in the con-
duction and valence bands of a quantum well can be calculated by us-
ing Schrödinger’s equation and the effective mass approximation. For-
tunately, we do not have to solve the Schrödinger equation in three
dimensions because the problem separates naturally between the free
motion in the x, y plane and the quantized motion in the z direction. In
this section, we first explain how this separation of variables works, and
then go on to discuss the quantized states in the z direction in two dif-
ferent approximations. We treat the electron and holes separately here,
postponing till Section 6.4 the discussion of the effects of electron-hole
Coulomb interaction that leads to the formation of excitons.

6.3.1 Separation of the variables

The electrons and holes in a quantum well layer are free to move in the
x, y plane but are confined in the z direction. This allows us to write the
wave functions in the form:

Ψ(x, y, z) = ψ(x, y) ϕ(z) , (6.5)

and then solve separately for ψ(x, y) and ϕ(z). The states of the system
are described by two parameters: a wave vector k to specify the free
motion in the x, y plane, and a quantum number n to indicate the energy
level for the z direction. The total energy is then obtained by adding
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together the separate energies for the z and x, y motion, according to:

Etotal(n,k) = En + E(k), (6.6)

where En is the quantized energy of the nth level.
We can deal with the x, y plane motion very quickly. Since the motion

is free, the electron and hole wave functions are described by plane waves
of the form:

ψk(x, y) =
1√
A

eik · r, (6.7)

where k is the wave vector of the particle, and A is the normalization
area. Note that k and r only span the two-dimensional x, y plane here.
The energy corresponding to this motion is just the kinetic energy de-
termined by the effective mass:

E(k) =
�
2k2

2m∗ . (6.8)

The total energy for an electron or hole in the nth quantum level is
therefore given by:

Etotal(n,k) = En +
�

2k2

2m∗ . (6.9)

6.3.2 Infinite potential wells

The calculation of the wave functions and energies for the quantized
states in the z direction is determined by the spatial dependence of the
conduction and valence bands. We begin by considering the simplest
case in which we assume that the confining barriers are infinitely high.
This allows us to model the states by those of a 1-D potential well with
infinite barriers, as shown in Fig. 6.3.

We consider a quantum well of thickness d and define position and
energy coordinates such that the potential is zero for −d/2 < z < +d/2
(i.e. inside the well) and ∞ elsewhere, as indicated in Fig. 6.3. The choice
of z = 0 at the centre of the well is convenient, since it corresponds to
the symmetry axis of the potential. The Schrödinger equation within the
well is:

− �
2

2m∗
d2ϕ(z)

dz2
= Eϕ(z) . (6.10)

Since the barriers are infinitely high, there is no probability that the
particle can tunnel out of the well. The solutions of eqn 6.10 are therefore
subject to the boundary condition that ϕ = 0 at the interfaces.

It can be checked by substitution that the normalized wave functions
that satisfy eqn 6.10 and the boundary conditions are of the form:

ϕn(z) =

√
2
d

sin
(
knz +

nπ

2

)
, (6.11)

where n is an integer that gives the quantum number of the state, and

kn =
nπ

d
. (6.12)
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This form of wave function describes a standing wave inside the well
with nodes at the interfaces. The energy that corresponds to the nth
level is given by

En =
�

2k2
n

2m∗ =
�

2

2m∗
(nπ

d

)2

. (6.13)

The wave functions of the first three levels are shown in Fig. 6.3. Equa-
tion 6.13 describes an infinite ladder of levels with quantization energy
increasing in proportional to n2 in units of (�2π2/2m∗d2). The ground
state is the n = 1 level, and the levels of higher n are the excited states
of the system.0
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Fig. 6.3 The infinite one-dimensional
potential well. The first three energy
levels and corresponding wave func-
tions are shown.

The energies of the first two levels for an electron with m∗ = 0.1m0

in a 10 nm quantum well are 38meV and 150meV respectively. These
values should be compared to the thermal energy kBT , which is 25 meV
at room temperature. It is clear that the quantization energy is greater
than the thermal energy at room temperature, and thus that the quan-
tum description of the motion is appropriate. The comparison of the
quantization energies to the thermal energy gives a criterion to decide
whether a particular quantum well will in fact exhibit quantum effects
at a particular temperature. This criterion can be compared to the one
based on the Heisenberg uncertainty principle given in eqn 6.4. It is
easy to show that the two criteria predict a crossover from classical to
quantum behaviour at roughly the same value of d. (See Exercise 6.2.)

Although real semiconductor quantum wells have finite barriers, the
infinite barrier model is a good starting point for a discussion of their
properties. The accuracy of the model will be best for states with small
quantization energies in material combinations that give rise to high
barriers at the interfaces. A few useful general points emerge from the
analysis:

(1) The energy of the levels is inversely proportional to the effective
mass and the square of the well width. This means that low mass
particles in narrow quantum wells have the highest energies.

(2) Since the energy depends on the effective mass, the electrons, heavy
holes, and light holes will all have different quantization energies.
In the valence band, the heavy holes will have the lowest energy,
and are dominant in most situations because they form the ground-
state level.

In a bulk semiconductor like GaAs, the
heavy and light hole states are degen-
erate at k = 0. This is a consequence
of the high symmetry of the cubic lat-
tice. The lifting of this degeneracy is
caused by the difference in the effec-
tive masses, but it can also be seen as a
consequence of the lower symmetry of
the quantum well. The bulk crystals are
isotropic, but quantum wells are not:
the z direction is physically distinguish-
able from the other two. As explained in
Section 1.5.1, we therefore expect cer-
tain degeneracies to be lifted, in the
same way that a magnetic field splits
the heavy- and light-hole states of bulk
GaAs via their different magnetic ener-
gies.

(3) The wave functions can be identified by their number of nodes,
i.e. the number of zero crossings within the well. It is evident from
Fig. 6.3 that the nth level has (n − 1) nodes.

(4) The states are also labelled by their parity with respect to inver-
sion about the centre of the well, that is, whether ϕ(−z) = +ϕ(z)
(even parity) or ϕ(−z) = −ϕ(z) (odd parity). States of odd n have
even parity, and vice versa.

These points also apply to more realistic models of quantum wells in
which the barriers at the interfaces are only of finite height. As we shall
see below, the infinite well model overestimates the quantization energy.
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In real quantum wells with finite barriers, the particles are able to tunnel
into the barriers to some extent, and this allows the wave functions to
spread out further, thereby reducing the confinement energy.

6.3.3 Finite potential wells

Figure 6.4 shows the band diagram of a more realistic quantum well
which has a finite potential barrier of height V0 at each interface. There
are now only a finite number of bound states with energy E < V0.
These bound states are labelled by a quantum number n, and it can be
shown that there is always at least one, no matter how small V0 is: see
Exercise 6.5.

The Schrödinger equation within the quantum well is the same as
before (eqn 6.10). We therefore have sine and cosine solutions of the
form:

ϕw(z) = C sin(kz) (6.14)

and
ϕw(z) = C cos(kz) , (6.15)

where
�

2k2

2m∗
w

= E . (6.16)

Note that we have added a subscript ‘w’ to the effective mass to clarify
that it is the value for the semiconductor used in the quantum well layer.
By comparison with eqn 6.11 and also Fig. 6.3, we see that the bound
states with odd values of n have cosine solutions, while those with even
n have sine solutions with a node at z = 0. The wave functions given in
eqns 6.14 and 6.15 are valid for −d/2 ≤ z ≤ +d/2.
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Fig. 6.4 First two bound states of a
finite potential well of depth V0 and
width d.

We now consider the extension of the wave functions into the barrier
regions. This occurs because the finite potential discontinuity allows the
electrons and holes to tunnel into the barriers. We therefore no longer
have nodes at the interfaces. The Schrödinger equation in the barrier
regions is given by:

− �
2

2m∗
b

d2ϕ(z)
dz2

+ V0ϕ(z) = Eϕ(z), (6.17)

where m∗
b is the effective mass of the barrier material. In general, m∗

b

and m∗
w will not be the same because the materials that constitute the

quantum well and barrier regions have different band structures. The
solutions of eqn 6.17 are exponentials of the form:

ϕb(z) = C′ e±κz (6.18)

where κ satisfies:
�
2κ2

2m∗
b

= V0 − E . (6.19)

For bound states we require that the solutions decay in the barrier, and
so we choose ϕ(z) = C ′ exp(−κz) for z ≥ +d/2 and ϕ(z) = C ′ exp(+κz)
for z ≤ −d/2.
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The wave functions and energies of the bound states can be found by
applying the appropriate boundary conditions at the interfaces. These
tell us that both the wave function ϕ(z) and the particle flux (1/m∗)dϕ/dz
must be continuous at ±d/2. Hence we must have

ϕw(±d/2) = ϕb(±d/2) , (6.20)

and
1

m∗
w

(
dϕw

dz

)
z=±d/2

=
1

m∗
b

(
dϕb

dz

)
z=±d/2

. (6.21)

The wave functions must have symmetry about z = 0, so we just con-
centrate on z = +d/2. We consider the solutions with cosine solutions
in the quantum wells first. The wave function continuity requires that

C cos(kd/2) = C′ exp(−κd/2) , (6.22)

while flux continuity requires that

−C
k

m∗
w

sin(kd/2) = −C ′ κ

m∗
b

exp(−κd/2) . (6.23)

On dividing eqn 6.23 by eqn 6.22, we find:

tan(kd/2) =
m∗

wκ

m∗
bk

. (6.24)

On following a similar procedure for the solutions with sine solutions in
the quantum well, we find:

tan(kd/2) = −m∗
bk

m∗
wκ

. (6.25)

On substituting the values of k and κ from eqns 6.16 and 6.19, we can
now solve for the energy E of the bound states, and hence find the
wave functions. Unfortunately, there is no analytic solution for E. The
equations have to be solved numerically or graphically. An example of
how this is done is given in Example 6.1.

It is useful to make a few general observations about the solutions, as
we did for the case of the infinite well in the previous section.

(1) The spreading of the wave functions into the barrier by tunnelling
increases k and hence reduces the quantum confinement energy
compared to a well with infinite barriers.

(2) The decay constant can be found by substituting En for E in
eqn 6.19. This means that the levels near the top of the well withThe possibility of tunnelling into the

barriers gives rise to a whole series of
electronic and opto-electronic quantum
well tunnelling devices.

En close to V0 tunnel more into the barrier regions because they
have a smaller decay constant.

(3) The eigenstates can be identified by the number of nodes, just as
for infinite wells. The nth bound state has (n−1) nodes. The poten-
tial energy has even symmetry about z = 0, and so the eigenstates
have well-defined parities.
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Figure 6.4 sketches the wave functions of a typical finite well with two
bound states. The similarity between these wave functions and the first
two states of the infinite well shown in Fig. 6.3 is apparent. The main
difference is that the wave functions of the finite well spread out more
by tunnelling into the barrier, whereas the wave functions of the infinite
well stop abruptly at the interfaces.

It is useful to compare directly the predictions of the finite and infi-
nite well models. Table 6.2 tabulates the energies of the bound states
of a 10 nm GaAs quantum well with Al0.3Ga0.7As barriers for the two
models. In all cases, the infinite well model overestimates the quantiza-
tion energy. The discrepancy gets worse for the higher levels. Note that
the quantization energies of the heavy holes are smaller than those of
the electrons because of their heavier effective mass. Note also that the
separation of the first two electron levels is more than three times the
thermal energy at room temperature, where kBT ∼ 25meV. This con-
firms that we expect to observe 2-D physics for the electrons at 300K.
The quantum confinement of the heavy holes is less good, but is still
acceptable since E2 − E1 is comparable to kBT at 300K. Although the
infinite well model overestimates the confinement energies, it is a useful
starting point for the discussion of the physics because of its simplicity.

Table 6.2 Bound states of a 10 nm
GaAs/Al0.3Ga0.7As quantum well
calculated using the finite and infinite
well models. The states are labelled
by the particle type (e for electron, hh
for heavy hole and lh for light hole)
and by the quantum number n. All
energies are in meV.

State Finite well Infinite well

e1 32 57
e2 120 227
e3 247 510

hh1 7 11
hh2 30 44
hh3 66 100
hh4 112 177

lh1 21 40
lh2 78 160

Example 6.1

Calculate the energy of the first electron bound state in a GaAs/AlGaAs
quantum well with d = 10 nm and V0 = 0.3 eV. Take m∗

w = 0.067m0 and
m∗

b = 0.092m0. Compare this value to the one calculated for an infinite
quantum well.

Solution
The first bound state has a maximum at z = 0, and so we look for the
solutions with cosine wave function in the well region. By making the
substitution x = kd/2, we can use eqns 6.16 and 6.19 to recast eqn 6.24
in the form:

x tanx =
(

m∗
w

m∗
b

)1/2 √
ξ − x2 , (6.26)

where
ξ =

m∗
wd2V0

2�2
, (6.27)

and
E =

2�
2x2

m∗
wd2

. (6.28)

Our task is thus to solve eqn 6.26, with(
m∗

w

m∗
b

)1/2

=
(

0.067
0.092

)1/2

= 0.85 ,

and
ξ =

0.067m0 × (10−8)2 × 0.30 eV
2�2

= 13.2 .
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Figure 6.5 plots the functions y = x tanx and y = 0.85
√

13.2 − x2

on the same scales, and shows that the first value of x where the two
functions are the same is x = 1.18. Hence from eqn 6.28 we find the
required bound state energy:

E =
2�

2(1.18)2

0.067m0 × (10−8)2
= 31.5meV .

This value of E can be compared to that given by eqn 6.13 for an infinite
well:

E1 =
�

2π2(1)2

2 × 0.067m0 × (10−8)2
= 57meV .

The infinite well model thus overestimates the energy of the bound state
by a factor of 1.8.
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Fig. 6.5 Graphical solution of eqn 6.26
for the parameters given in Exam-
ple 6.1.

6.4 Quantum well absorption and excitons

In Sections 3.2 and 3.3 of Chapter 3 we used Fermi’s golden rule to
calculate the absorption spectrum of a bulk semiconductor. Then in
Section 4.2 of Chapter 4 we studied how the spectrum is altered by
excitonic effects. We now follow a similar approach for quantum wells,
beginning with the selection rules and density of states for the optical
transitions, and then moving on to consider the excitonic effects.

6.4.1 Selection rules

We consider a quantum well irradiated by light of angular frequency ω
propagating in the z direction, as shown in Fig. 6.6. The photons are
absorbed by exciting electrons from an initial state |i〉 at energy Ei in
the valence band to a final state |f〉 at energy Ef in the conduction band.
Conservation of energy requires that Ef = (Ei + �ω).

We are using Dirac notation here. See
the marginal comment on p. 65.

Fermi’s golden rule tells us that the absorption rate is determined by
the density of states and the square of the electric-dipole matrix element.
(See Section B.2 in Appendix B.) The transition rate can be calculated
by combining eqns 3.2, 3.3 and 3.6 to obtain:

Wi→f =
2π

�
| 〈f| − er·E |i〉 |2 g(�ω), (6.29)

where r is the position vector of the electron, E is the electric field
amplitude of the light wave, and g(�ω) is the density of states. We have
simplified the form of the electric-dipole perturbation here by setting
the e±ik · r factor of the light in eqn 3.6 equal to unity. As discussed
in connection with eqn 3.12, this approximation is justified because the
photon wave vector is negligible in comparison to that of the electron.

We first consider the matrix element for the transition. This will allow
us to work out important selection rules. With photons incident in the
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z direction as shown in Fig. 6.6, the polarization vector of the light is
in the x, y plane. We therefore have to evaluate matrix elements of the
form:

M = 〈f|x|i〉 =
∫

Ψ∗
f (r)xΨi(r) d3r . (6.30)

When we considered matrix elements of this type in Section 3.2, it made
no difference whether we evaluated 〈f|x|i〉 or 〈f|y|i〉 or 〈f|z|i〉. This was
a consequence of the isotropy of the cubic semiconductors that we were
considering. In the case of the quantum well, however, the x and y direc-
tions are equivalent, but the z direction is physically different. Therefore,
for quantum wells we have: We discuss the effect of having the

light polarized in the z direction in Sec-
tion 6.7.〈f|x|i〉 = 〈f|y|i〉 �= 〈f|z|i〉 . (6.31)

In this section we concentrate on x, y polarized light, which is the usual
experimental arrangement.

We are interested in evaluating eqn 6.30 for transitions between bound
quantum well states in the valence and conduction bands. Figure 6.7 il-
lustrates the type of transition we are considering. The figure specifically
shows a transition from an n = 1 hole level to an n = 1 electron level,
and from an n = 2 hole level to an n = 2 electron level.

We consider a general transition from the nth hole state to the n′th
electron state. In analogy to the Bloch functions of eqns 3.7 and 3.8, we
can use eqns 6.5 and 6.7 to write the initial and final quantum well wave
functions in the form:

Ψi ≡ |i〉 =
1√
A

uv(r)ϕhn(z) eikxy·rxy (6.32)

Ψf ≡ |f〉 =
1√
A

uc(r)ϕen′(z) eik′
xy·rxy . (6.33)

The three factors in these wave functions denote the envelope function
for the valence or conduction band as appropriate, the bound states
of the quantum well in the z direction, and the plane waves for the
free motion in the x, y plane. We have written explicit subscripts to
show that the plane waves only span the 2-D x, y coordinates. A is the
normalization area in the x, y plane.

quantum well

��

z

quantum well

��

z

Fig. 6.6 Photons incident on a quan-
tum well with light propagating in the
z direction.

The momentum of the photon is very small in comparison to that
of the electrons, and so conservation of momentum in the transition
requires that kxy = k′

xy. This is the 2-D equivalent of eqn 3.12 for 3-D
bulk semiconductors. Therefore, on substituting eqns 6.32 and 6.33 into
eqn 6.30, we see that the matrix element breaks into two factors:

M = Mcv Mnn′ (6.34)

where Mcv is the valence–conduction band dipole moment:

Mcv = 〈uc|x|uv〉 =
∫

u∗
c(r)xuv(r) d3r, (6.35)

and Mnn′ is the electron-hole overlap given by:

Mnn′ = 〈en′|hn〉 =
∫ +∞

−∞
ϕ∗

en′(z)ϕhn(z) dz. (6.36)



154 Quantum confinement

It will usually be the case that the constituent material of the quan-
tum well (e.g. GaAs) has strongly allowed electric-dipole transitions be-
tween the conduction and valence bands. We considered this point in
Section 3.3.1. Therefore, we can assume that Mcv is large and non-zero.
Hence the matrix element for the optical transitions is proportional to
the overlap of the electron and hole states given by eqn 6.36. This allows
us to work out some straightforward selection rules on ∆n = (n′ − n).

n = 2n = 1

conduction band

valence band

n = 2n = 1

conduction band

valence band

Fig. 6.7 Interband optical transitions
in a quantum well. The n = 1 and n = 2
transitions are indicated.

Consider first an infinite quantum well with wave functions of the form
given by eqn 6.11. The overlap factor is:

Mnn′ =
2
d

∫ +d/2

−d/2

sin
(
knz +

nπ

2

)
sin

(
kn′z +

n′π
2

)
dz. (6.37)

This is unity if n = n′ and zero otherwise. (See Exercise 6.7.) Hence we
obtain the following selection rule for an infinite quantum well:

∆n = 0. (6.38)

This is why we only showed ∆n = 0 transitions in Fig. 6.7.
In finite quantum wells the electron and hole wave functions with

differing quantum numbers are not necessarily orthogonal to each other
because of their different decay constants in the barrier regions. This
means that there are small departures from the selection rule of eqn 6.38.
However these ∆n �= 0 transitions are usually weak, and are strictly
forbidden if ∆n is an odd number, because the overlap of states with
opposite parities is zero. (See Exercise 6.7.)

6.4.2 Two-dimensional absorption

The shape of the absorption spectrum in a quantum well can be under-
stood by applying the selection rules we have just derived. If we increase
the photon energy from zero, no transitions will be possible until we
cross the threshold for exciting electrons from the ground state of the
valence band (the n = 1 heavy-hole level) to the lowest conduction band
state (the n′ = 1 electron level). This is a ∆n = 0 transition and is
therefore allowed. This threshold occurs at a photon energy given by

�ω = Eg + Ehh1 + Ee1, (6.39)

where Eg is the band gap of the quantum well material. This immediately
gives us a very important result. The optical absorption edge of the
quantum well has been shifted by (Ehh1 + Ee1) compared to the bulk
semiconductor. Since the confinement energies can be varied by choice of
the well width, this gives us a way to tune the frequency of the absorption
edge.

The right-hand side of Fig. 6.8 shows the E–kxy diagram for the tran-
sition between the n = 1 levels. The bands have parabolic dispersions
according to eqn 6.9. Conservation of momentum and the negligible k
vector of the photon imply that the electron and hole states have the
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Fig. 6.8 The n = 1 interband optical
transition in a quantum well at finite
kxy .

same kxy values. The energy of the transition shown by the vertical
arrow is given by:

�ω = Eg +

(
Ehh1 +

�
2k2

xy

2m∗
hh

)
+

(
Ee1 +

�
2k2

xy

2m∗
e

)

= Eg + Ehh1 + Ee1 +
�

2k2
xy

2µ
, (6.40)

where µ is the electron-hole reduced effective mass defined in eqn 3.22.
This makes it clear that the transitions with �ω = (Eg + Ehh1 + Ee1)
occur at kxy = 0.

Equation 6.40 can be compared directly to eqn 3.23 for the bulk semi-
conductor. We have already noted the shift of the absorption threshold
from Eg to (Eg + Ehh1 + Ee1). The other crucial difference is that the
wave vector in eqn 6.40 for the quantum well spans only the 2-D x, y
coordinates, instead of the full 3-D x, y, z space. This has a very impor-
tant consequence for the joint density of states factor that enters the
transition rate in eqn 6.29. The 3-D bulk semiconductor had a parabolic
density of states given by eqn 3.16, which led to the absorption edge
given in eqn 3.25. By contrast, the joint density of states for a 2-D ma-
terial is independent of energy and is given by (see Exercise 6.3):

g2D(E) =
µ

π�2
. (6.41)

This means that the absorption coefficient will have a step-like structure,
being zero up to the threshold energy given in eqn 6.39, and then having
a constant non-zero value for larger photon energies.

The argument above can be repeated for the other allowed optical
transitions in the quantum well. The next ∆n = 0 transition for the
heavy-hole states occurs at an energy of (Eg + Ehh2 + Ee2) which cor-
responds to exciting an electron from the n = 2 heavy-hole state to the
n′ = 2 electron level. Once the photon energy crosses this threshold, the
absorption coefficient will show a new step. There will also be other steps
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corresponding to transitions from the light-hole states to the conduction
band.

n = 1

n = 2

n = 3

0 5 10

(���Eg) in units of (h 2

8d 2��

A
b

so
rp

ti
o

n
co

ef
fi

ci
en

t

3-D

2-D
n = 1

n = 2

n = 3

0 5 10

(���Eg) in units of (h 2

8d 2��

A
b

so
rp

ti
o

n
co

ef
fi

ci
en

t

3-D

2-D

Fig. 6.9 The absorption coefficient for
an infinite quantum well of width d
compared to the equivalent bulk semi-
conductor. µ is the electron-hole re-
duced mass. Excitonic effects are ig-
nored.

The functional form of the absorption coefficient for an infinite quan-
tum well is shown in Fig. 6.9. The confinement energies of the electron
and hole states are given by eqn 6.13, and the ∆n = 0 selection rule is
strictly obeyed. The threshold energy for the nth transition is thus given
by:

�ω = Eg +
�

2n2π2

2m∗
ed

2
+

�
2n2π2

2m∗
hd2

= Eg +
�

2n2π2

2µd2
. (6.42)

The spectrum therefore consists of a series of steps with threshold en-
ergies given by eqn 6.42. For comparison, the energy-dependence of the
absorption coefficient for the equivalent bulk semiconductor is also plot-
ted in Fig. 6.9. The shift of the absorption edge by the confinement
energy is evident, together with the change of shape from the parabola
of the bulk semiconductor to the step-like structure for the quantum
well caused by the change in the density of states on going from 3-D to
2-D.

Example 6.2

Estimate the difference in the wavelength of the absorption edge of a
20 nm GaAs quantum well and bulk GaAs at 300 K.

Solution
We see from eqn 6.39 that the absorption edge of a quantum well occurs
at Eg + Ehh1 + Ee1. We can estimate the confinement energies by using
the infinite potential well model. By using eqn 6.13 and the effective
mass data for GaAs given in Table D.2, we find that Ehh1 = 2 meV and
Ee1 = 14meV. These energies are small compared to typical quantum
well barrier heights, and so the infinite well approximation should be
reasonably accurate. The band edge therefore shifts from 1.424 eV to
(1.424 + 0.002 + 0.014) = 1.440 eV. This corresponds to a blue shift of
10 nm.

6.4.3 Experimental data

Figure 6.10 shows the absorption spectrum of a high-quality GaAs MQW
structure containing 40 quantum wells of width 7.6 nm. The barriers were
made of AlAs, and the sample temperature was 6 K. It is clear that the
predicted step-like behaviour shown in Fig. 6.9 is well reproduced in the
data, although the experimental spectrum is complicated by excitonic
effects, which give rise to the strong peaks in the absorption at the
edge of each step. These excitonic effects will be discussed further in
Section 6.4.4, and we concentrate for now on the gross features of the
absorption spectrum.
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Fig. 6.10 Absorption coefficient of a
40 period GaAs/AlAs MQW structure
with 7.6 nm quantum wells at 6K in ar-
bitrary units. After Fox (1996), c© Tay-
lor & Francis Ltd, reprinted with per-
mission.

The most pronounced steps in the spectrum are due to the ∆n = 0
transitions. The first of these occurs for the n = 1 heavy-hole transition
at 1.59 eV. This is closely followed by the step due to the n = 1 light-hole
transition at 1.61 eV. This should be compared with the low temperature
band edge absorption spectra of bulk GaAs shown in Figs 4.3 and 4.4.
We see that the band edge has been shifted in the quantum well by
0.07 eV.

The steps at the band edge are followed by a flat spectrum up to
1.74 eV in which the absorption is practically independent of energy.
At 1.77 eV there is a further step in the spectrum due to the onset of The two weak peaks identified by ar-

rows are caused by parity-conserving
∆n �= 0 transitions. The one at 1.69 eV
is the hh3 → e1 transition, while that
at 1.94 eV is the hh1 → e3 transition.

the n = 2 heavy-hole transition. This is followed by the step for the
n = 2 light-hole transition at 1.85 eV. Further steps due to the n = 3
heavy- and light-hole transitions are observed at 2.03 eV and 2.16 eV
respectively.

6.4.4 Excitons in quantum wells

We now return to consider the excitonic effects that give rise to the
sharp peaks that are very prominent in the experimental data shown in
Fig. 6.10. As discussed in Chapter 4, excitons are bound electron-hole
pairs held together by their mutual Coulomb attraction. Since the optical
transition can be considered as the creation of an electron-hole pair, the
Coulomb attraction increases the absorption rate because it enhances the
probability of forming the electron-hole pair. Hence we observe peaks at
the resonant energies for exciton formation. These peaks occur at the
sum of the single particle energies less the binding energy of the bound
pair. Detailed analysis of the data shown in Fig. 6.10 reveals that the
binding energies of the quantum well excitons are about 10 meV. This
is substantially higher than the value of 4.2meV in bulk GaAs. (See
Section 4.2.)

The enhancement of the excitonic binding energy in the quantum well
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Fig. 6.11 Absorption spectrum of a
GaAs/Al0.28Ga0.72As MQW at room
temperature. The structure contained
77 GaAs quantum wells of width
10 nm. The absorption spectrum of
bulk GaAs at the same temperature
is shown for comparison. After Miller
et al. (1982), c© American Institute of
Physics, reprinted with permission.
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is a consequence of the quantum confinement of the electrons and holes.
This forces the electrons and holes to be closer together than they wouldThe reason why the exciton binding en-

ergy is not enhanced by a factor of four
is that a real quantum well is not a
perfect 2-D system. The quantum well
has a finite width, and the wave func-
tions extend into the barriers due to
tunnelling.

be in a bulk semiconductor, and hence increases the attractive potential.
It is possible to show that the binding energy of the ground-state exciton
in an ideal 2-D system is enhanced by a factor of four compared to the
bulk material. (See Exercise 6.10.) This should be compared with the
factor of ∼ 2.5 deduced from the experimental data. Although we do
not observe perfect 2-D enhancement of the binding energy, the increase
is still substantial. The enhancement of the excitonic effects in quantum
wells is very useful for device applications, as we discuss further in the
next section.

One of the most useful consequences of the enhancement of the exciton
binding energy in quantum wells is that the excitons are still stable at
room temperature. This contrasts with bulk GaAs, which only shows

A striking difference between the quan-
tum well and bulk absorption shown in
Fig. 6.11 is the lifting of the degener-
acy of the heavy- and light-hole states.
The bulk sample shows a single exci-
tonic shoulder at the band edge, but
the quantum well shows two separate
peaks. As discussed in point (2) of Sec-
tion 6.3.2, this follows from the differ-
ent effective masses of the heavy and
light holes, and it highlights the lower
symmetry of the quantum well sample.

strong excitonic effects at low temperatures. This can be clearly seen in
the data shown in Fig. 6.11, which compares the absorption coefficient of
a GaAs MQW structure with 10 nm quantum wells to that of bulk GaAs
at room temperature. The bulk sample merely shows a weak shoulder at
the band edge, but the MQW shows strong peaks for both the heavy-hole
and the light-hole excitons. The more or less flat absorption coefficient
expected for quantum wells above these peaks is also evident.

6.4.5 Spin injection in quantum wells

In Section 3.3.7 we studied how the excitation of a bulk semiconduc-
tor with circularly polarized light can lead to the generation of spin-
polarized electrons. In the case of a III–V semiconductor with the zinc-
blende structure such as GaAs, we found that the maximum spin polar-
ization that can be generated is 50%. We now wish to reconsider this
situation for the case of a quantum well. As we shall see, the lifting of
the degeneracy of the heavy- and light-hole bands now makes it possible
to generate fully spin-polarized electrons.

Figure 6.12 shows the optical transitions that can occur in a quantum
well such as GaAs/AlGaAs in the presence of circularly polarized light.
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Fig. 6.12 Selection rules for circularly
polarized light in a quantum well with
the zinc-blende band structure. This di-
agram should be compared carefully to
Fig. 3.8, which applies to bulk semicon-
ductors. Note especially that the heavy-
and light-hole transitions are no longer
degenerate.

As discussed in Section 3.3.7, the valence-band states are derived from
atomic p states split by the spin–orbit interaction, with the heavy- and
light-hole levels corresponding respectively to the MJ = ±3/2 and MJ =
±1/2 sub-levels of the J = 3/2 level. The conduction band has s-like
atomic character, with MJ = ±1/2 corresponding to spin up and down.
The σ± transitions have selections rules of ∆MJ = ±1 in absorption,
which means that the transitions between the different sub-levels have
the well defined circular polarizations indicated in Fig. 6.12.

Figure 6.12 should be compared carefully to the equivalent one for
bulk GaAs given in Fig. 3.8. The key difference is that the energies of
the quantum well states are all shifted by the quantum confinement.
The heavy- and light-hole levels are therefore no longer degenerate, and
the energies of the hh1 → e1 and lh1 → e1 transitions are split by
the difference in the hh1 and lh1 confinement energies. Hence by using
circularly polarized light with energy in the range:

Eg + Ee1 + Ehh1 ≤ �ω < Eg + Ee1 + Elh1 , (6.43)

it is possible to excite electrons with 100% spin polarization. The direc-
tion of the electron spin is determined by the polarization of the light,
with σ− or σ+ light corresponding respectively to spin-up or spin-down
electrons.

The splitting of the heavy- and light-hole states caused by the quan-
tum confinement has another important consequence. In a bulk semi-
conductor, the degeneracy of the heavy- and light-hole bands at k = 0
means that the hole states have a mixed character, and therefore that
the hole spin relaxation is very fast. This is no longer the case in a quan-
tum well, where the MJ = ±3/2 heavy-hole states are pure eigenstates,
and circularly polarized photons with energy in the range set by eqn 6.43
create 100% spin-polarized heavy holes as well as electrons. When con-
sidering the spin relaxation processes in quantum wells, we therefore
have to think about the holes as well as the electrons.
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Fig. 6.13 Electron and heavy-hole
wave functions for the first quantized
levels of a 10 nm GaAs/Al0.3Ga0.7As
quantum well at (a) zero field, and (b)
Ez = 107 V m−1. The energies are de-
fined relative to the top of the valence
band at the centre of the well (i.e. at
z = 0), and the band gap of GaAs
is taken to be 1425meV. In both dia-
grams the normalized probability den-
sities (i.e. ϕ∗ϕ) are plotted, and the
numbers adjacent to the e1 and hh1
states give the level energies. The field
direction in (b) is from left to right.
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The mechanisms for spin relaxation in quantum wells are the same as
those in bulk semiconductors, namely the EY, DP, and BAP processes.
(See Section 5.3.4 for an explanation of these acronyms.) However, their
relative importance can be affected by the quantum confinement. For
example, the enhancement of excitonic effects in quantum wells and
the fact that the heavy- and light-hole states are no longer degenerate
means that we usually have to consider the spin relaxation of excitons
rather than of individual electrons or holes. As a consequence, the BAP
mechanism, which relies on electron-hole exchange, is more important
in quantum wells than in the bulk. The reader is referred to the Further
Reading list for a detailed discussion of the different spin relaxation
processes that can occur.

6.5 The quantum-confined Stark effect

The quantum-confined Stark effect de-
scribes the response of a quantum-
confined system to an external electric
field. This makes it a type of electro-
optic effect. As we discuss here, the re-
sponse can be either linear or quadratic.

In Section 4.3.1 of Chapter 4 we considered the effects of a DC elec-
tric field on the excitons in bulk GaAs. We found that relatively small
electric fields can ionize the excitons by pushing the electrons and holes
in opposite directions. The situation in quantum wells is different if the
field is applied along the z direction. The field still pushes the elec-
trons and holes in opposite directions, but the barriers prevent the ex-
citon from breaking apart. Hence the excitons are stable up to very
high field strengths. These quantum-confined excitons interact with the
field and shift to lower energy. In atomic physics, the shift of the en-
ergy levels in an electric field is called the Stark effect. The shift of the
quantum-confined energy levels in a quantum well is therefore called the
quantum-confined Stark effect.

When an electric field Ez is applied to a semiconductor along the z
axis, the potential energy of the electron is given by:

∆E = −pzEz , (6.44)

where pz is the z component of the electron dipole. The electron is
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negatively charged, and so we can write:

pz = −ez , (6.45)

where e is the modulus of the electron charge and z is the position along
the z axis. The potential energy of the electron is then given by

∆Ee = +ezEz . (6.46)

The application of the field therefore causes the potential energy of the
electron to change linearly as a function of distance along the z axis.

Figure 6.13 illustrates the quantum-confined Stark effect for the first
electron and heavy-hole states of a GaAs/Al0.3Ga0.7As quantum well
with a thickness of 10 nm. Figure 6.13(a) shows the probability densi-
ties for the e1 and hh1 wave functions at zero field, while Fig. 6.13(b)
shows the equivalent quantities at Ez = 107 V m−1. In part (b) the linear
increase of the valence and conduction band energy as a function of z
is caused by adding a potential of the form given by eqn 6.46 to the
potential well shown in part (a). The energies of the e1 and hh1 levels
are indicated in both parts, with the zero of energy defined as the top
of the valence band at the centre of the well (i.e. at z = 0).

A number of important points are immediately obvious from compar-
ison of Figs. 6.13(a) and (b).

(1) For the electrons we have a confinement energy of (Ee1−EGaAs
g ) =

(1455.0 − 1425) = 30.0meV at Ez = 0 and (1447.9 − 1425) =
22.9meV at Ez = 107 V m−1, while for the holes the equivalent
energies are 7.4meV and −9.4meV respectively. The field thus
causes a decrease of the energies of the confined states.

(2) The Stark shift of the levels causes the energy difference between
the e1 and hh1 levels (i.e. Ee1−Ehh1) to decrease from 1462.4meV
at zero field to 1438.7 meV at Ez = 107 V m−1. We thus expect a
red shift of the transition energy.

Hole energies are measured downwards
on electron band diagrams, and the
confinement energy is therefore defined
as −[Ehh1 − Ev(z = 0)]. The fact that
this comes out to be negative at Ez =
107 V m−1 is not significant. The hole
level actually lies 40.6 meV above the
bottom of the well, which occurs at
z = +5 nm.(3) At zero field the wave functions are symmetric about the centre

of the well, but the application of the field breaks the symmetry
and causes the electron and hole probability densities to shift in
opposite directions.

The e1–hh1 overlap is less than 100%
at Ez = 0 because of the difference in
the effective masses and barrier heights,
which both affect the barrier penetra-
tion due to tunnelling. Perfect overlap
is only expected for infinite barriers: see
Exercise 6.7.

(4) The electron-hole overlap (see eqn 6.36) at zero field is nearly per-
fect with |〈ϕe1|ϕhh1〉|2 = 0.99. The skewing of the electron and hole
wave functions in opposite directions at Ez = 107 V m−1 reduces
the overlap to 0.38.

From these points it is apparent that the quantum-confined Stark effect
is expected to cause a red shift of the lowest energy transition and a
reduction in its oscillator strength.

The wave functions and level energies shown in Fig. 6.13 were cal-
culated on a computer by numerical methods, which is the only option
available for quantum wells with finite barriers. For infinite potential
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wells, however, analytic solutions exist. Perturbation theory gives the
shift to the n = 1 level in a small electric field as (see Exercise 6.14):

∆E = −24
(

2
3π

)6
e2E2

zm
∗d4

�2
, (6.47)

where d is the well width, and Ez is the component of the field in the z
direction. This result is analogous to the quadratic Stark effect in atomic
hydrogen: the levels shift to lower energy in proportion to −E2

z.

An exact solution exists for a particle
confined in an infinite potential well
with an electric field applied. See, for
example, Miller (2008). Since this solu-
tion makes use of Airy functions, the
mathematics is somewhat complicated,
and is not discussed further here.

The quadratic red shift of the levels can be understood as follows.
The expectation value of the energy shift caused by the field is given by
eqn 6.44 as:

〈∆E〉 = −〈pz〉Ez , (6.48)

where 〈pz〉 is the expectation value of the electron dipole. It follows from
eqn 6.45 that 〈pz〉 is given by:

〈pz〉 = −e〈ze〉 , (6.49)

where 〈ze〉 is the expectation value of the electron’s position along the
z axis:

〈ze〉 =
∫ +∞

−∞
ϕe(z)∗ z ϕe(z) dz . (6.50)

At zero field, the n = 1 electron wave function is symmetric about
the centre of the well. This implies that both 〈ze〉 and 〈pz〉 are zero
when no field is applied. With a finite field applied in the positive z
direction, the electrons are pushed towards negative z, and 〈ze〉 acquires
a negative value. This shifting of the average electron position in the
opposite direction to the field is clearly shown by the e1 wave function in
Fig. 6.13(b). The shift of the electron creates a positive dipole which has
a magnitude that is proportional to Ez at small fields. Hence 〈pz〉 ∝ +Ez

and therefore 〈∆E〉 ∝ −E2
z. The same argument can be applied to the

holes.
We have seen in Section 6.4.4 that the absorption edge of a quantum

well is actually dominated by excitonic effects. The shift of the exciton
transition energy will be given by the sum of the shifts of the electron
and hole levels, less any reduction in the exciton binding energy caused
by the field. The latter effect is relatively small, and so the shift in the
transition energy is well approximated by the sum of the shifts of the
electron and hole levels:

∆(�ω) = 〈∆Ee〉 + 〈∆Eh〉 ,

= − (〈pe
z〉 + 〈ph

z〉
) Ez ,

= − (−e〈ze〉 + e〈zh〉) Ez ,

= −e (〈zh〉 − 〈ze〉) Ez .

(6.51)

This shows that it is the displacement of the electron relative to the hole
that causes the red shift of the transition. Furthermore, eqn 6.47 makes it
clear that it is the hole that contributes the most to the energy shift, due
to its larger effective mass. As discussed above, at small fields we would
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expect the wave function displacements to be proportional to Ez, giving
rise to a quadratic Stark shift. However, this cannot continue indefinitely,
because the displacement of the electron relative to the hole is limited by
the width of the well. Hence the electron-hole dipole saturates at a value
of order +ed at large fields, and the energy shift becomes linear in Ez.
There is some analogy here with the linear Stark effect of atomic physics,
although the explanation is qualitatively different. In fact, Fig. 6.13(b)
is close to the linear saturation limit, since a large field was deliberately
chosen to exaggerate the electron-hole displacement.
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Fig. 6.14 Experimental set-up re-
quired to observe the quantum-confined
Stark effect. The quantum wells are
grown in the i-region of a p–i–n diode,
and the device is operated in reverse
bias. This produces a strong electric
field Ez across the quantum wells. The
photocurrent generated when light is
incident is determined by the absorp-
tion of the MQW layer.

The quantum-confined Stark effect can be observed by growing the
quantum wells in the i-region of a p–i–n diode, as shown in Fig. 6.14. By
operating the diode in reverse bias like a photodiode, strong DC electric
fields can be applied in the growth direction. The magnitude of the field
is given by eqn E.3 in Appendix E:

Ez =
|Vbi − V0|

li
, (6.52)

where Vbi is the built-in voltage of the diode, V0 is the applied bias, and
li is the i-region thickness. V0 is negative in reverse bias, and thus the
applied voltage augments the field due to the built-in voltage. As dis-
cussed in Section 4.3.1, the photocurrent generated in the device follows
the frequency dependence of the absorption.

Figure 6.15 shows the photocurrent spectra of a GaAs/Al0.3Ga0.7As
MQW p–i–n diode at bias voltages of 0V and −10 V. The well width was
9.0 nm, and the temperature was 300K. The i-region thickness was 1 µm,
and Vbi was 1.5 V. From eqn 6.52, we see that the voltages correspond
to field strengths of 1.5× 106 V m−1 and 1.15× 107 V m−1 respectively.
The n = 1 heavy- and light-hole exciton lines are clearly resolved at
both field strengths, despite the fact that the temperature is 300 K and
that Ez considerably exceeds the exciton ionization field of bulk GaAs,
which, as discussed in Section 4.3.1, is of order 6 × 105 V m−1.

The spectrum at −10V shows a clear red-shift for both the heavy-
and light-hole excitons. As expected, the shift is larger for the heavy hole
excitons due to their larger mass. The decrease in the exciton absorption
at the higher field strength is caused by the reduction in the electron-hole
overlap integral, as discussed in point (4) above. Two parity-forbidden The parity forbidden transitions with

∆n equal to an odd number become al-
lowed when the field is applied due to
the lowering of the symmetry of the sys-
tem. (See Exercise 6.17.)

transitions are clearly identified in Fig. 6.15, namely the hh2 → e1 and
hh1 → e2 lines.

The ability to control the shape of the absorption spectrum by apply-
ing a voltage opens the possibility for making different types of electro-
optic devices. The absorption at 1.44 eV (864 nm) in the quantum wells
studied in Fig. 6.15 can be switched on and off by applying the bias.
This allows us to make a voltage-tunable photodetector using the same
arrangement as that shown in Fig. 6.14. The same device can also func-
tion as an intensity modulator by introducing a voltage-dependent loss
on a 864 nm beam transmitted through the quantum wells. Moreover,
the change of the absorption must also produce a change in the refrac-
tive index via the Kramers–Kronig relationships (see Section 2.3), and
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Fig. 6.15 Photocurrent spectra for a
GaAs/Al0.3Ga0.7As MQW p–i–n diode
with a 1�m thick i-region at room
temperature. (a) V0 = 0, (b) V0 =
−10V. The quantum well thickness was
9.0 nm. The transitions are labelled by
the electron and hole states that par-
ticipate. After Fox (1996), c© Taylor &
Francis Ltd, reprinted with permission. Energy (eV)
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so we can also use the device as a phase modulator.

6.6 Optical emission

The use of quantum well structures in electroluminescent devices is their
main commercial application at present. By inserting quantum wells
into the active region, a greater range of emission wavelengths can be
obtained, together with an increase in the efficiency of the device.

The general principles of light emission in semiconductors were dis-
cussed in Chapter 5. The light is generated when electrons in the con-
duction band recombine with holes in the valence band. We saw in Sec-
tions 5.2–5.4 that the luminescence spectrum generally consists of a peak
at the band gap energy with a width determined by the carrier density
and the temperature.

The shape of the emission spectrum is
only slightly affected by reducing the
dimensionality of the system from 3-
D to 2-D. The low-intensity emission
spectrum of a bulk semiconductor is
given by eqn 5.12. In a quantum well,
the (hν − Eg)1/2 factor from the 3-D
density of states will be replaced by the
unit step function derived from the 2-D
density of states. In both 3-D and 2-D
the net result is that we get a peak of
width ∼ kBT starting at the threshold
energy for absorption.

The physical processes responsible for light emission in quantum wells
are essentially the same as those in bulk semiconductors. The electrons
and holes injected electrically or optically rapidly relax to the bottom
of their bands before emitting photons by radiative recombination. In a
quantum well, the lowest levels available to the electrons and hole corre-
spond to the n = 1 confined states. Hence the low-intensity luminescence
spectrum consists of a peak of spectral width ∼ kBT at energy

hν = Eg + Ehh1 + Ee1 . (6.53)

This shows that the emission peak is shifted by the quantum confine-
ment of the electrons and holes to higher energy compared to the bulk
semiconductor.

Figure 6.16 shows the photoluminescence spectrum of a 2.5 nm ZnCdSe
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Fig. 6.16 Emission spectrum of a
2.5 nm Zn0.8Cd0.2Se/ZnSe quantum
well at 10K and at room temperature.
The spectra have been normalized so
that their peak heights are the same.
Unpublished data from C.J. Stevens
and R.A. Taylor.

quantum well with a cadmium concentration of 20%. Zn0.8Cd0.2Se is a
II–VI alloy semiconductor with a direct band gap of 2.55 eV at 10K,
which corresponds to the blue/green spectral region. The barriers of the
quantum wells are made from ZnSe, which has a band gap of 2.82 eV.
The spectrum at 10 K peaks at 2.64 eV (470 nm) and has a full width
at half maximum of 16 meV. The emission energy is about 0.1 eV larger
than the band gap of the bulk material, and the linewidth is limited
by the inevitable fluctuations in the well width that occur during the
epitaxial growth. (See Exercise 6.18.) At room temperature the peak
emission energy has shifted to 2.55 eV (486 nm) and the spectrum has
broadened so that the linewidth is about 48 meV (∼ 2kBT ).

The shift to lower energy between 10K
and 300K is caused by reduction of
the ZnCdSe band gap with tempera-
ture. The emission energy is still about
0.1 eV above the band gap of the bulk
Zn0.8Cd0.2Se at 300K.

As mentioned at the start of this section, the use of quantum wells
in light-emitting devices is one of the main motivations for their devel-
opment. Quantum wells offer three main advantages over the equivalent
bulk materials:

• The shift of the luminescence peak by the confinement energy
(Ee1 + Ehh1) allows the wavelength of light-emitting devices to
be tuned by choice of the well width.

• The increased overlap between the electron and hole wave func-
tions in the quantum well means that the emission probability
is higher. This shortens the radiative lifetime, and the radiative
recombination wins out over competing non-radiative decay mech-
anisms. The radiative efficiency is therefore higher in the quantum
wells, which makes it easier to make bright light-emitting devices.

The blue and green emitting GaN-
based structures grown on sapphire
substrates mentioned in Section 5.4.1
are typical examples of a non-lattice-
matched opto-electronic device. The
commercial devices actually incorpo-
rate quantum wells in the active re-
gion. Other important examples in-
clude the 980 nm GaxIn1−xAs quan-
tum well lasers grown on GaAs sub-
strates for use with optical fibre ampli-
fiers: see Fig. 9.14 in Section 9.4.

• The total thickness of the quantum wells in an electrolumines-
cent device is very small (∼ 10 nm). This is well below the critical
thickness for dislocation formation in non-latticed-matched epitax-
ial layers. This allows the use of non lattice-matched combinations
of materials, and hence gives even greater flexibility in emission
wavelengths that can be obtained.

Electroluminescent devices can easily be made from quantum wells by
incorporating them in the active region at the junction of a p–n diode,
as discussed in Section 5.4 for bulk materials. The devices are operated



166 Quantum confinement

in forward bias, and the light is emitted when the electrons and holes
injected by the current recombine at the junction. GaAs quantum wells
emitting around 800 nm are widely used as the lasers in compact disc
players and printers. GaAs-based alloys are used to shift the wavelength
into the red spectral region or into the infrared to match the optimal
wavelengths for optical fibre systems at 1.3 µm and 1.55 µm. (See Exer-
cise 6.19.)

Example 6.3

Estimate the emission wavelength of a 15 nm GaAs quantum well laser
at 300 K.

Solution
The emission wavelength is given by eqn 6.53. We estimate the con-
finement energies from eqn 6.13. Using the effective mass data given in
Table D.2, we find Ehh1 = 3 meV and Ee1 = 25 meV. The emission en-
ergy is therefore 1.424 + 0.003 + 0.025 = 1.452 eV, which corresponds to
a wavelength of 854 nm.

6.7 Intersubband transitions

An intersubband transition is one in which we excite electrons and
holes between the levels (or ‘subbands’) within the conduction or valence
band. This contrasts with the interband transitions that we have been
considering up till now in which the electrons move from the valence
band to the conduction band and vice versa. Figure 6.17 illustrates a
typical intersubband absorption transition in which an electron in the
n = 1 level of a quantum well is excited to the n = 2 level by absorption
of a photon.

n = 1

n = 2

electrons

��
n = 1

n = 2

electrons

��

Fig. 6.17 The e1 → e2 intersubband
transition in an n-doped quantum well.

A quick glance at Table 6.2 tells us that intersubband transitions occur
at much lower photon energies than interband transitions. For example,
the energy spacing between the n = 1 and n = 2 electron levels in a
10 nm GaAs/AlGaAs quantum well is of order 0.1 eV. This corresponds
to an infrared wavelength of about 12 µm. We can therefore use intersub-
band transitions to make detectors and emitters for the infrared spectral
region by using GaAs quantum wells. This offers potential advantages
over narrow gap semiconductors both in terms of performance and ease
of fabrication.

Intersubband transitions are excited by light polarized along the z
direction. The matrix element for such a transition from the nth to the
n′th subband is 〈n|z|n′〉, and the selection rule on ∆n = (n−n′) is that
∆n must be an odd number. (See Exercise 6.20.)

The requirement that the polarization must be along the z direction
creates some technical difficulties. If the light is incident normal to the
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surface as shown in Fig. 6.6, there is no polarization component along
the z direction. To create a z component, the light must be incident at
an angle. However, it is only possible to couple about 10% of the light to
the intersubband transitions in this way, due to the high refractive index
of semiconductors like GaAs. (See Exercise 6.21.) A better solution is
to incorporate a metallic grating on the top of the sample. This can
produce a substantial z component even for light incident normal to the
surface.

Intersubband detectors have been under development for applications
in infrared imaging since the late 1980s. They are made with n-doped
quantum wells so that there is a large population of electrons in the
n = 1 level of the conduction band to absorb the light. In 1994 an in-
tersubband laser called the ‘quantum cascade laser’ was reported. These
intersubband lasers normally work at wavelengths in the infrared spec-
tral region (i.e ∼ 5 − 15 µm), and are required for many important ap-
plications such as atmospheric sensing. The lower wavelength limit is Experimental results show that the

condition T � (E2 − E1)/kB is actu-
ally too strict, and that quantum cas-
cade lasers can operate at temperatures
above this limit because they are non-
equilibrium systems. Nevertheless, the
highest operating temperature achieved
at longer wavelengths does indeed scale
with the laser frequency.

determined by the difference in the conduction band energies of the com-
ponent semiconductors, while the upper wavelength limit is ultimately
limited by the operating temperature, since the energy level spacing
must satisfy E2 −E1 � kBT to prevent thermal occupation of the upper
level. In 2002 an important breakthrough was achieved when the max-
imum wavelength for a quantum cascade laser was extended into the
terahertz frequency range, that is ν � 10THz ≡ λ � 30 µm. Terahertz
frequency sources are important for imaging and short-range wireless
network applications.

6.8 Quantum dots

We mentioned in Section 6.1 that other types of quantum-confined semi-
conductor structures can be made in addition to quantum wells. With
reference to Table 6.1 and Fig. 6.1, we see that if we confine the elec-
trons in all three directions, we have a quantum dot structure. With
dimensions in the nanometre range, these quantum dots typically con-
tain 104–106 atoms. It has been discovered that quantum dots can form
spontaneously in some materials during epitaxial growth and colloidal
synthesis. This makes it relatively easy to fabricate them, and accounts
for the tremendous expansion in quantum dot research in recent years.
Examples of these spontaneous dots will be given below, after first con-
sidering a few general principles of the physics of quantum dots.

6.8.1 Quantum dots as artificial atoms

In a quantum dot, the motion of the electrons and holes is confined
in all three directions, so that it is appropriate to refer to a dot as as a
zero-dimensional structure. The electron and holes states are completely
quantized, and the energy spectrum consists of a series of discrete lines,
as illustrated schematically in Fig. 6.1. We have seen that the confine-
ment of the electrons and holes in quantum wells gives rise to a host
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of interesting optical effects and improvements in the performance of
opto-electronic devices. It is thus to be expected that the increased de-
gree of confinement in quantum dots should give further benefits. For
example, by confining the carriers in all three dimensions, we increase
the electron-hole overlap and thus increase the radiative quantum effi-
ciency. Furthermore, the discrete nature of the density of states reduces
the thermal spread of the carriers within their bands.

(a)

(b)

(c) z

(a)

(b)

(c) zz

Fig. 6.18 Three different quantum dot
shapes: (a) rectangular box, (b) sphere,
(c) inverted lens.

The task of calculating the level energies in a quantum dot is quite
complicated, since many different shapes are possible. We consider below
the shapes shown schematically in Fig. 6.18, namely the rectangular box,
sphere, and inverted lens. These examples will serve to illustrate three
important general points about quantum dots:

(1) The energy spectrum and density of states are generically simi-
lar to those of an atom, with quantized states at discrete ener-
gies. Quantum dots are therefore sometimes described as ‘artificial
atoms’.

(2) The confinement energy scales as 1/d2 where d is the size of the
dot. This is consistent with the general argument about quantum
confinement that leads to eqn 6.3.

(3) The ground state is unique, but the excited states are degenerate.
The ground state can therefore accommodate just two electrons
(spin-up and spin-down) while the exited states can accommodate
more.

Rectangular box dots

The simplest shape to consider is that of a rectangular box with di-
mensions (dx, dy, dz), as shown in Fig. 6.18(a). In this case the problem
separates, with the motion for each of the three axes given by a quantum
well Schrödinger equation. If we assume that there are infinite potential
barriers at the edges of the box, then the energy levels are given by (cf.
eqn 6.13):

E(nx, ny, nz) =
π2

�
2

2m∗

(
n2

x

d2
x

+
n2

y

d2
y

+
n2

z

d2
z

)
, (6.54)

where the integer quantum numbers nx, ny and nz specify the quantized
levels in each direction. The energy spectrum of a cubic dot with dx =
dy = dz is considered in Exercise 6.22. The ground state is unique, but
the first and second excited states are both triply degenerate.

Spherical dots

Spherical dots can be modelled by assuming that the electron experiences
a potential of −V0 inside the dot and zero elsewhere. The spherical
symmetry of the problem makes it convenient to work in spherical polar
co-ordinates (r, θ, φ). The Schrödinger equation for a dot of radius R0 is
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then given by: [
− �

2

2m∗∇2 + V (r)
]

Ψ(r) = EΨ(r) , (6.55)

where V (r) = −V0 for r ≤ R0, and V (r) = 0 for r > R0. Since the
potential only depends on r, the wave function can be separated into
radial and angular components with:

Ψ(r) = Rnl(r)Ylm(θ, φ) . (6.56)

The angular wave functions Ylm(θ, φ) are the spherical harmonic func-
tions that appear in all ‘central field’ problems (i.e. those in which the
force points along the radial direction from the origin, so that V (r) is a
function of r only). The energy is found by solving the radial Schrödinger

The notation used to designate angu-
lar momentum states is summarized in
Section C.2. The subscripts l and m re-
fer to the orbital and magnetic quan-
tum numbers respectively. In atomic
physics, the properties of the Coulomb
potential in the hydrogen atom require
that l ≤ (n − 1), where n is the princi-
pal quantum number. Since we do not
have a Coulomb potential here, this re-
striction does not apply.

equation:[
− �

2

2m∗
1
r2

d
dr

(
r2 d

dr

)
+

�
2l(l + 1)
2m∗r2

+ V (r)
]

Rnl(r) = Enl Rnl(r) ,

(6.57)
where n is an integer. The energy can in general be written in the form:

Enl =
�

2

2m∗
C2

nlπ
2

R2
0

. (6.58)

The values of Cnl for the first five bound states of an infinite well with
V0 = ∞ are listed in Table 6.3. It is a straightforward exercise to show
that Cnl is an integer when l = 0. (See Exercise 6.23.)

Table 6.3 First five bound states of
a spherical potential well with an in-
finite barrier. g denotes the degen-
eracy including the spin. After Bim-
berg et al. (1999).

Level n l g Cnl

Ground 1 0 2 1
1st excited 1 1 6 1.43
2nd excited 1 2 10 1.83
3rd excited 2 0 2 2
4th excited 1 3 14 2.22

Inverted lens dots

Quantum dots with the inverted lens shape shown in Fig. 6.18(c) are
assumed to have cylindrical symmetry about the z (vertical) axis. This
makes is convenient to work in cylindrical polar co-ordinates (r, φ, z),
and to separate the lateral and vertical motions. It is further assumed
that the size of the dots is much smaller in the z direction than in
the lateral direction, and that the lateral potential approximates to a
shallow harmonic oscillator with V (r, φ) ∝ r2 for small r. With these
approximations, we may write the wave function in the form Ψ(r) =
ψ(r, φ)ϕ(z), and obtain separate Schrödinger equations for the lateral
and vertical motions:[

− �
2

2m∗ ∇2
xy +

1
2
m∗ω2

0r2

]
ψ(r, φ) = Exyψ(r, φ) , (6.59)[

− �
2

2m∗
d2

dz2
+ V (z)

]
ϕ(z) = Ezϕ(z) , (6.60)

with total energy given by:

E = Exy + Ez . (6.61)

Consider first the vertical (z) motion. Equation 6.60 describes a poten-
tial well, which will have bound-state solutions with quantized energies.



170 Quantum confinement

Since the dimensions are very small, it is likely that there will only be
one bound state, or if there are more, that the energy difference to the
second level will be much larger than the energy separation of the levels
associated with the lateral motion. It is therefore reasonable to assume
that we only need to consider one bound state for the vertical motion
with energy Ez

1 .
Now consider the lateral motion. The Schrödinger equation of eqn 6.59

describes a two-dimensional harmonic oscillator. By reverting to Carte-
sian co-ordinates, it is easy to show that the energy is given by:

Exy = (n + 1)�ω0 , (6.62)

where n = 0, 1, 2 · · · . (See Exercise 6.25.) The total energy is therefore
given by:

En = Ez
1 + (n + 1)�ω0 . (6.63)

The nth level has n degenerate sub-levels which are identified by the
quantum number m. This quantifies the angular momentum about the
z axis, and can take integer values from −n to +n in steps of two. The
allowed values of m for the first three levels are shown in Fig. 6.19.
In analogy with atomic physics, the levels are often labelled as ‘s’, ‘p’,
‘d’, etc., shells, although the analogy is not exact, since the notation
originates from the analysis of 3-D central fields.
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Fig. 6.19 First three energy levels of
a two-dimensional harmonic oscillator.
The allowed values of m are indicated,
together with the functional form of the
potential.

The arguments above can be generalized to dots with more compli-
cated shapes but which still satisfy the criterion that the vertical dimen-
sions are significantly smaller than the lateral ones, and that the lateral
confining potential is relatively weak. In this case it will normally be the
case that we only need to consider the first bound state for the vertical
motion, and the first few excited states arise from the lateral motion.
When the cylindrical symmetry about the z axis is lost (e.g. if the dot
has an elliptical shape in the x–y plane), we would no longer expect the
sub-levels of the nth level to be degenerate.

6.8.2 Colloidal quantum dots

One of the ways that quantum dots can be made is by techniques of
colloidal synthesis. The resulting dots, which are commonly made from
II–VI or III–V semiconductors, are spherical in shape, and can be studied
in solution or in the solid state. In the latter case, the dots are either
deposited as thin films on transparent substrates or are doped into a
glass.

Figure 6.20 shows the absorption spectra of two different types of II–
VI colloidal dots. Figure 6.20(a) shows the data for CdSe dots deposited
on sapphire substrates at 10K, while Fig. 6.20(b) shows that for CdTe
dots in solution at room temperature. In both cases, the spectra for
several different sizes of dots are shown. The diameters quoted represent
the average values. In practice there is always a spread of sizes, and
this causes broadening of the optical spectra. In fact, a large part of the
art of making colloidal quantum dots is precisely in obtaining good size
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Fig. 6.20 (a) Absorption spectra of
close-packed CdSe colloidal quantum
dots deposited on sapphire substrates
at 10K. The dot diameters were: (A)
3.03 nm, (B) 3.94 nm, (C) 4.80 nm, and
(D) 6.21 nm. (b) Close-up of the band
edge of CdTe colloidal quantum dots
in solution at room temperature. After
Kagan et al. (1996), c© American Phys-
ical Society, and De Giorgi et al. (2005),
c© Elsevier, reprinted with permission.

control. For example, the standard deviation of the diameters of the dots
shown in Fig. 6.20(a) was < 5%.

In both sets of spectra in Fig. 6.20, there is a clear size-dependent
shift of the absorption edge relative to the band gap. (Eg = 1.85 eV for
CdSe at 10 K and 1.50 eV for CdTe at room temperature.) Excitonic
peaks associated with the confined electron and hole states are clearly
resolved at both temperatures. The absorption edge occurs at the energy
of the exciton from the first confined state of the electrons and holes. If
we make the assumption that C10 ≈ 1 for both the electrons and holes,
then eqn 6.58 implies that the band edge should occur at:

�ω ≈ Eg +
2π2

�
2

µd2
− EX , (6.64)

where µ is the electron-hole reduced mass, d is the dot diameter, and
EX is the exciton binding energy. The shift of the absorption edge in
proportion to 1/d2 is a very clear demonstration of the quantum size
effects that we have been discussing throughout this chapter. Note that
the magnitude of the quantum size effect is very large, with a shift of
over 0.6 eV for the CdSe sample with d = 3.03 nm.

One application of colloidal dots is in semiconductor-doped glasses.
As mentioned in Section 1.4.5, II–VI semiconductors such as CdS, CdSe,
ZnS, and ZnSe can be introduced into a glass during the melt process,
and colloidal quantum dots can be formed in the right conditions. The
size of the dots depends on the way the glass is produced, and good
uniformity can be achieved with careful preparation. The size-dependent
shift of the absorption shown in Fig. 6.20 provides a way to control the
colour of filters made from semiconductor-doped glass. In this way it is
possible to make colour-glass filters spanning most of the visible spectral
region just by altering the size of the dots.

Another important application of colloidal quantum dots is in fluo-
rescence imaging in chemistry and biology. The dots are prepared in
solution and are attached to the molecules under study by synthetic
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techniques. By exploiting their high luminescence efficiency and tun-
able emission energy, the dots can act as ‘marker tags’ to identify the
molecule under optical illumination. Organic dyes were formerly used
for this application, but quantum dots give sharper lines, and are also
more convenient to use.

6.8.3 Self-assembled epitaxial quantum dots

InAs

quantum dot

200 nm

(a)

(b)

10 nmGaAs

InAs

quantum dot

200 nm

(a)

(b)

10 nmGaAs

Fig. 6.21 (a) Plan view of an uncapped
layer of InAs quantum dots formed dur-
ing Stranski–Krastanow growth on a
GaAs crystal. (b) Side image of one of
the InAs dots looking down the edge of
the wafer. The mottled pattern above
the dot originates from the adhesive
used to hold the sample in position.
Both images were taken with a trans-
mission electron microscope. After M.
Hopkinson (unpublished), and Fry et
al. (2000), c© American Physical Soci-
ety, reprinted with permission.

In the 1990s it was discovered that quantum dots would spontaneously
form during epitaxial crystal growth in the Stranski–Krastanow regime.
Many different types of III–V and II–VI quantum dots have now been
made in this way by using MBE or MOCVD. The fact that the dots
can be formed directly during epitaxial growth means that they can
easily be incorporated into laser diode structures, and the 0-D physics
causes a reduction in both the magnitude of the threshold current and
its sensitivity to the temperature.

The most common example of Stranski–Krastanow dots is InAs in
GaAs. InAs is a narrow gap semiconductor with a unit cell size that is
7% larger than that of GaAs. The dots are formed when thin layers of
InAs molecules are deposited on GaAs during MBE growth. The InAs
molecules try to adopt the lattice constant of the GaAs, and this leads
to the formation of a highly strained layer called the ‘wetting layer’ on
the surface of the crystal. The energy required to strain the layer is so
large that it ceases to be favourable to form a uniform layer when the
thickness exceeds only a few atoms. Instead, the InAs molecules coalesce
into clusters, leading to the formation of InAs quantum dots on top of
the wetting layer. By depositing layers of GaAs on top of the dots, the
electrons and holes are then confined in both the vertical and lateral
directions.

Figure 6.21 shows transmission electron microscope (TEM) images of
InAs quantum dots grown by the Stranski–Krastanow technique. Part
(a) shows a plan view, while part (b) shows a side view looking down
the wafer edge at higher resolution. The TEM images show that the
lateral and vertical dimensions of the dot are both in the nanometre
range, leading to strong confinement in all directions. It is apparent
from Figs 6.21(a) and (b) that the shape of the dots approximates to
the inverted lens modelled in Section 6.8.1. The uniformity of the size
distribution is apparent in Fig. 6.21(a): most of the dots are roughly of
the same size, but some variation is clearly visible.

The appropriateness of describing quantum dots as ‘artificial atoms’
becomes most clear when techniques are used to isolate the optical spec-
tra of individual dots. Figure 6.22 illustrates typical spectra than can be
observed in this way. The lower spectrum in Fig. 6.22(a) shows the pho-
toluminescence spectrum obtained when an InAs/GaAs quantum dot
wafer is excited by a laser with a large spot size. Several million dots fall
within the illuminated area, and this results in a broad spectrum that
reflects the size distribution of the dots. Note that the quantum confine-
ment increases the emission energy by almost 1 eV from the band gap
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Fig. 6.22 (a) Photoluminescence (PL) spectra of InAs/GaAs self-organized quantum dots at 10 K. The spectrum obtained for
a large area laser spot is compared to that obtained through a nano-aperture similar to the one shown in the inset. (b) Voltage
dependence of the PL and photocurrent (PC) spectra of a single InGaAs/GaAs quantum dot incorporated into a Schottky
diode at 10K. The spectra were observed through a nano-aperture of diameter 800 nm, and are given for bias voltages from
0.6V to 2.6 in steps of 0.2V. After J.J. Finley & M.S. Skolnick (unpublished), and Oulton et al. (2002), c© American Physical
Society, reprinted with permission.

of bulk InAs (0.4 eV). The upper spectrum in Fig. 6.22(a) illustrates
the results obtained when exciting the dots through a nano-aperture of
diameter 200 nm. This size of the aperture is chosen so that the light
from only a few dots, at most, is collected. The spectrum breaks up into
a series of sharp emission lines from the ground- and excited-state exci-
tons of individual quantum dots. If there is more than one dot under the
aperture, the change of the dot energy due to inevitable size and shape
variations allows the lines of individual dots to be identified by spectral
selection.

Some of the lines observed in the spec-
trum of the single dot might arise from
charged excitons. For example, the dot
might trap a free electron from the con-
duction band, and then a negatively
charged exciton containing two elec-
trons and one hole can be formed when
an electron-hole pair is excited by a
photon. The energies of these charged
excitons are slightly shifted from those
of the neutral ones by Coulomb inter-
actions.

The width of the exciton line from a single quantum dot is ultimately
limited by the radiative lifetime. With typical values of τR being around
1 ns, linewidths as small as a few µeV have been observed. Since a sin-
gle quantum dot can only emit one photon at a time on a particular
transition, it can act as a single-photon source, with many potential
applications in quantum optics.

Figure 6.22(b) shows the voltage dependence of the excitonic spectra
from a single InGaAs/GaAs quantum dot embedded within a Schot-
tky diode at 10 K. A combination of photoluminescence (PL) and pho-
tocurrent (PC) techniques were used, with a tunable Ti:sapphire as the
excitation source. For the PL spectra, the excitation energy was set at
∼ 1.35 eV (i.e. well above the exciton energy), while for the PC measure-
ments, the laser was tuned through the exciton line. The bias voltage
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controls the electric field across the quantum dot. At low bias voltages,
the field is small, and the excitons recombine by emitting photons. As the
bias voltage is increased, the field increases, which leads to an increased
probability that the electrons and holes tunnel out of the dot before re-
combining. This causes a reduction of the luminescence efficiency, with
a concomitant increase in the photocurrent efficiency. At the same time,
the exciton shifts to lower energy due to the quantum-confined Stark
effect, and the line strength decreases due to the field-induced reduction
in the electron-hole overlap.

All of these effects are clearly observed in Fig. 6.22(b). The most ob-
vious feature of the data is the red shift with increasing voltage due to
the quantum-confined Stark effect. The PL efficiency is high at 0.6V
but then drops rapidly above 1.0 V. At the same time, the PC efficiency
rises above 1.0 V, reaching its maximum value (assumed to be unity) at
1.8V. The line intensity then decreases again as the electron-hole over-
lap decreases, and broadening is observed as the lifetime of the exciton
shortens due to tunnelling of electrons and holes out of the dot. These
results are typical for many other types of III–V and II–VI quantum
dots.

Chapter summary

• Quantum confinement occurs when the dimensions of the structure
are small enough that the confinement energy is greater than the
thermal energy at that temperature.

• A structure with confinement in one dimension is called a quantum
well. Structures with confinement in two or three dimension are
called quantum wires and quantum dots respectively.

• Semiconductor quantum wells are made by epitaxial growth of very
thin layers. The quantum confinement arises from the potential
barriers at the interfaces between different semiconductors due to
their different band gaps. The electrons and holes exhibit two-
dimensional physics.

• A multiple quantum well is a crystal containing many quantum
wells that are separated from each other. A superlattice is a simi-
lar structure but with thinner barriers, so that adjacent wells are
coupled together by tunnelling through the barriers.

• The energies of the confined states in a quantum well can be calcu-
lated by modelling the system as a one-dimensional potential well
with a depth determined by the difference in the band gaps of the
constituent semiconductors.
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• The quantum confinement shifts the absorption edge of a quantum
well to higher energy compared to the bulk semiconductor. The
absorption spectrum is mainly determined by the 2-D density of
states of the quantum well and consists of a series of steps. The
splitting of the heavy- and light-hole bands allows the generation of
100% spin polarized electrons by absorption of circularly polarized
light.

• Excitonic effects are enhanced in quantum wells. Exciton absorp-
tion peaks are readily observed at room temperature in the ab-
sorption spectra.

• The quantum-confined Stark effect is the shift of the quantum well
levels induced by an electric field, which causes a red shift in the
band edge and exciton energies. The effect can be used to make
optical modulators.

• The emission energy for luminescence is larger than in a bulk semi-
conductor due to the quantum confinement of the electrons and
holes. Quantum wells make bright light-emitting devices, and the
emission wavelength can be tuned by choice of the quantum well
parameters.

• Intersubband transitions occur when electrons are excited between
the subbands of a quantum well by absorption of a photon. The
transitions occur at infrared wavelengths.

• Quantum dots exhibit zero-dimensional physics, with fully quan-
tized energies and a discrete density of states. The dots can be
made by colloidal synthesis or by self-organization during epitax-
ial growth in the Stranski–Krastanow regime. The absorption and
emission spectra show broad lines due to variations in the dot sizes,
but very sharp lines can be observed by isolating the spectra of in-
dividual quantum dots by nano-aperture techniques.

Further reading

The seminal paper on semiconductor quantum wells is
Esaki and Tsu (1970). Complementary introductory read-
ing to the treatment given here may be found in Burns
(1985) or Singleton (2001). The subject is treated at a
more thorough level in Yu and Cardona (1996), or in a
number of specific quantum well texts, such as Bastard
(1990), Jaros (1989), Kelly (1995), Singh (1993), or Weis-
buch and Vinter (1991).

The spin dynamics of electrons, holes, and excitons in
quantum wells is discussed in the collection of articles in
Awschalom et al. (2002) and Dyakonov (2008). A specific
review of the subject may be found in Viña (1999).

The Stark effect in hydrogen is covered in most quan-

tum mechanics texts, for example Gasiorowicz (1996) or
Schiff (1969), and also in atomic physics texts, such as
Woodgate (1980). A thorough discussion of the effects of
electric fields on particles confined in potential wells may
be found in Miller (2008), while Chuang (1995) covers the
physics of the quantum-confined Stark effect in depth.

Blood (1999) gives a review of the use of quantum
wells in visible-emitting diode lasers. The physics of in-
tersubband transitions is discussed in Helm (2000), Liu
and Capasso (2000a), and Liu and Capasso (2000b). The
terahertz quantum cascade laser is reviewed in Williams
(2007), and a collection of articles describing the signifi-
cance of terahretz technology may be found in Davies et
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al. (2004).
The physics of quantum dots is described by Bimberg

et al. (1999), Harrison (2005), and Woggon (1997). Mur-
ray et al. (2000) give a detailed description of the synthe-

sis and characterization of colloidal quantum dots, while a
discussion of the spectra of single quantum dots and their
application in quantum optics may be found in Michler
(2003).

Exercises

(6.1) Estimate the temperature at which quantum size
effects would be important for a semiconductor
layer of thickness 1�m if the effective mass of the
electrons is 0.1m0.

(6.2) A particle of mass m∗ is confined to move in
a quantum well of width d with infinite barri-
ers. Show that the energy separation of the first
two levels is equal to kBT/2 when d is equal to
d = (3h2/4m∗kBT )1/2. Evaluate d for electrons of
effective mass m0 and 0.1m0 at 300 K. Hence show
that this value of d is smaller than the value of ∆x
given in eqn 6.4 by a factor of

√
3π2.

(6.3) Consider a gas of spin 1/2 particles of mass m
moving in a two-dimensional layer. Apply Born–
von Karman periodic boundary conditions (i.e.
eikx = eik(x+L), etc, where L is a macroscopic
length) to show that the density of states in k-
space is 1/(2π)2. By considering the incremental
area enclosed by two circles in k-space differing
in radius by dk, show that the number of states
with k vectors between k and k + dk is given by
g(k)dk = (k/2π)dk. Hence show that if the en-
ergy dispersion is given by E(k) = �

2k2/2m, the
density of states in energy space is given by

g2D(E) dE =
m

π�2
dE .

(6.4) Repeat Exercise 6.3 for a gas of free spin 1/2 par-
ticles of mass m moving in a one-dimensional wire
to show that the density of states in energy space
is given by:

g1D(E) dE =
�

m/2�2π2E−1/2 dE .

(6.5) Explain, with reference to eqn 6.26, why a finite
quantum well will always have at least one bound
state, no matter how small V0 is.

(6.6) Calculate the energy of the first heavy-hole bound
state of a GaAs/AlGaAs quantum well with d =

10nm. Take V0 = 0.15 eV, m∗
w = 0.34m0 and

m∗
b = 0.5m0. How does this energy compare to

that of an equivalent well with infinite barriers?

(6.7) Consider the electron-hole overlap integral Mnn′

for a quantum well given by:

Mnn′ =

� +∞

−∞
ϕ∗

en′(z) ϕhn(z) dz.

(a) Show that M ′
nn is unity if n = n′ and zero

otherwise in a quantum well with infinite barriers.
(b) Show that Mnn′ is zero if (n − n′) is an odd
number in a quantum well with finite barriers.

(6.8) Draw a sketch of the energy dependence of the ab-
sorption spectrum of a 5 nm GaAs quantum well
at 300K between 1.4 eV and 2.0 eV. Assume that
the confining barriers are infinite and ignore ex-
citonic effects. See Table D.2 for band structure
data on GaAs.

(6.9) Discuss how the spectrum in Exercise 6.8 would
change if (a) the barrier height were finite, and
(b) excitonic effects were included.

(6.10)∗The variational technique introduced in Exer-
cise 4.4 can be used to calculate the energy and
radius of a 2-D exciton.1 The Hamiltonian for the
relative motion of an electron-hole pair in a 2-D
material is given in polar coordinates by

Ĥ = − �
2

2µ

�
1

r

∂

∂r

�
r

∂

∂r

�
+

1

r2

∂2

∂φ2

�
− e2

4πε0εrr
,

where r2 = (x2 + y2). As for the 3-D exciton con-
sidered in Exercise 4.4, we guess a trial wave func-
tion with a 1s-like radial dependence:

Ψ(r, φ) =

�
2

πξ2

�1/2

exp

�
−r

ξ

�
,

where ξ is the variational parameter.
(a) Verify that the trial wave function is properly

∗Exercises marked with an asterisk are more difficult.

1The 2-D exciton problem can also be solved exactly using Laguerre polynomials, but the variational approach is easier.
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normalized.
(b) The variational energy 〈E〉var is given by:

〈E〉var =

� ∞

r=0

� 2π

φ=0

Ψ∗ĤΨ r drdφ .

Show that 〈E〉var is given by:

〈E〉var =
�

2

2µξ2
− e2

2πεrε0ξ
.

(c) Vary 〈E〉var with respect to ξ to obtain the
best estimate for the energy. Show that this is four
times larger than that of the equivalent bulk semi-
conductor.
(d) Show the Bohr radius of the 2-D exciton,
namely the value of ξ that minimizes 〈E〉var, is
half that of the equivalent 3-D exciton.

(6.11)∗Discuss qualitatively how you would expect the
exciton binding energy in a GaAs/Al0.3Ga0.7As
quantum well to vary with the quantum well thick-
ness, given that the binding energy of the exci-
tons in bulk GaAs and Al0.3Ga0.7As are 4 meV
and 6 meV respectively.
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Fig. 6.23 Photoluminescence excitation (PLE) spec-
trum of a GaAs/AlAs quantum well at 4 K. Unpub-
lished data from R.A. Taylor.

(6.12) Figure 6.23 shows the absorption spectrum of a
GaAs/AlAs quantum well at 4K measured by us-
ing the photoluminescence excitation technique.
Relevant band structure data for GaAs is given
in Table D.2.
(a) Explain the principles of photoluminescence
excitation spectroscopy.
(b) Account for the shape of the absorption spec-
trum.
(c) Estimate the width of the quantum wells by
assuming that they behave like a perfect 2-D sys-
tem with infinite barriers. Would you expect the

true well width to be larger or smaller than the
answer you have worked out this way?
(d) Deduce the binding energies of the heavy- and
light-hole excitons, and comment on the values you
obtain.

(6.13) Discuss the variation of the electron spin polar-
ization created with σ+ light in a GaAs/AlGaAs
quantum well as the photon energy is varied above
the fundamental absorption edge.

(6.14)∗The Stark shift of the confined levels in a quan-
tum well can be calculated by using second-order
perturbation theory. Consider the interaction be-
tween the electrons in a quantum well of width d
and a DC electric field of strength Ez applied along
the z (growth) axis. Equation 6.46 shows that the
perturbation is of the form H ′ = eEzz.
(a) Explain why the first-order shift of the energy
levels, given by:

∆E(1) =

� +∞

−∞
ϕ(z)∗ H ′ ϕ(z) dz,

is zero.
(b) The second-order energy shift of the n = 1
level is given by:

∆E(2) =
�
n>1

|〈1|H ′|n〉|2
E1 − En

,

where

〈1|H ′|n〉 =

� +∞

−∞
ϕ1(z)∗ H ′ ϕn(z) dz.

This can be evaluated exactly if we have infi-
nite confining barriers. Within this approximation,
show that the Stark shift is given approximately
by:

∆E = −24

�
2

3π

�6
e2E2

zm∗d4

�2
.

(6.15) The magnitude of the n = 1 heavy-hole exciton
red shift is 10.5 nm at −10V for the MQW diode
studied in Fig. 6.15. The p–i–n sample has an i-
region thickness of 1.0�m and a built-in voltage
of 1.5 V.
(a) Compare the magnitude of the Stark shift to
that predicted in Fig. 6.13, and account for any
difference.
(b) Estimate the magnitude of the red shift at
−5V.
(c) Estimate the average relative displacement
of the electron and hole probability densities at
−10V.
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Table 6.4 Dependence of the n = 1 heavy-hole tran-
sition on the electric field strength Ez for two GaAs
quantum well samples. Sample A had a well width of
10 nm, while sample B had a well width of 18 nm. The
transition energies are given in eV.

Ez (Vm−1) A B

0 1.548 1.524
3 × 106 1.547 1.518
6 × 106 1.543 1.497
9 × 106 1.535 1.470

(6.16) Table 6.4 gives experimental data for the red
shift of the n = 1 heavy-hole transition due to
the quantum-confined Stark effect in two GaAs
quantum well samples with well widths of 10 nm
and 18 nm respectively. Compare the experimen-
tal data with the predictions of Exercise 6.14(b),
and account qualitatively for any major discrep-
ancies. Band structure data for GaAs is given in
Table D.2.

(6.17) A DC electric field of magnitude Ez is applied
along the growth (z) axis of a quantum well. Use
symmetry arguments to explain why transitions
between confined electron and holes states with
∆n equal to an odd number are forbidden at
Ez = 0, but not at finite Ez.

(6.18) By assuming that the confinement energy varies as
d−2, estimate the shift in the luminescence emis-
sion energy caused by a ±5% change in d for a
2.5 nm ZnCdSe quantum well, given that the to-
tal confinement energy for the electrons and holes
at d = 2.5 nm is 0.1 eV. Compare this value to
the measured linewidth of the 10K data shown in
Fig. 6.16, and comment on the answer. The unit
cell size of the crystal is 0.28 nm, and the elec-
tron and hole effective masses of Zn0.8Cd0.2Se are
0.15m0 and 0.5m0 respectively.

(6.19) A Ga0.47In0.53As quantum well laser is designed
to emit at 1.55�m at room temperature. Estimate
the width of the quantum wells within the device.
(Eg = 0.75 eV, m∗

e = 0.041m0, m∗
hh = 0.47m0.)

(6.20)∗The matrix element for an intersubband transition
between the nth and n′th subbands of a quantum
well is given by:

〈n|z|n′〉 =

� +∞

−∞
ϕ∗

n(z) z ϕn′(z) dz.

(a) By considering the parity of the states, prove
that ∆n = (n − n′) must be an odd number.
(b) Compare the relative strengths of the 1 → 2

and the 1 → 4 transitions in a 20 nm GaAs quan-
tum well with infinite barriers. What is the wave-
length of the 1 → 2 transition? (m∗

e = 0.067m0.)

(6.21) Linearly polarized light is incident on a quantum
well sample at an angle θ to the normal (z) di-
rection. The polarization direction lies within the
plane of incidence. What is the maximum fraction
of the power in the beam that can be absorbed by
intersubband transitions if the refractive index of
the crystal is 3.3?

(6.22) Write down the energies of the first seven quan-
tized energies of a cubic quantum dot with infinite
barriers of dimension d. What is the degeneracy of
each level?

(6.23) Show that R(r) = sin kr/r is a solution of the
radial equation of a spherical dot for states with
l = 0. By requiring that R(R0) = 0 in a dot with
infinite barriers, show that the confinement energy
of states with l = 0 is equal to (�2/2m∗)(nπ/R0)

2,
where n is an integer.

(6.24) Compare the confinement energies of the ground
states of cubic and spherical dots of the same vol-
ume and with infinite potential barriers in both
cases.

(6.25) Consider a two-dimensional harmonic oscillator
with a Schrödinger equation given by:

�
− �

2

2me
�

2
2D +

1

2
meω

2
0r2

�
ψ(�) = Eψ(�) ,

with r2 = x2 + y2. The form of the operator �2
2D

is:

�
2
2D =

1

r

∂

∂r

�
r

∂

∂r

�
+

1

r2

∂2

∂φ2

in polar co-ordinates, and

�
2
2D =

∂2

∂x2
+

∂2

∂y2

in Cartesian co-ordinates.
(a) By working in Cartesian co-ordinates, show
that the Schrödinger equation separates into two
quantum harmonic oscillator equations for the x
and y motion, and hence that:

E = (n + 1)�ω0 ,

where n = nx + ny, nx and ny being the quantum
numbers for the x and y axis harmonic oscillators.
Hence write down the first five energy levels and
their degeneracies.
(b) By working in polar co-ordinates, show that
the solutions take the form ψ(r, φ) = R(r)eimφ,



Exercises 179

where m is an integer.
(c)∗ The wave functions of a 1-D harmonic oscil-
lator are given by:

ψn(x) =

�
1√

π2nn!

�1/2

Hn(ξ) e−ξ2/2 ,

where ξ =
√

αx, α = meω0/�, and Hn(ξ) are the
Hermite polynomials with H0(ξ) = 1, H1(ξ) = 2ξ,
H2(ξ) = 2 − 4ξ2, etc. Similarly, the first six wave
functions ψn,m(r, φ) of the 2-D harmonic oscillator

in polar co-ordinates are of the form:

ψ0,0(r, φ) ∝ exp(−αr2/2)

ψ1,±1(r, φ) ∝ r exp(−αr2/2) e±iφ

ψ2,0(r, φ) ∝ (αr2 − 1) exp(−αr2/2)

ψ2,±2(r, φ) ∝ r2 exp(−αr2/2) e±i2φ .

By comparing the wave functions with the same
energies in polar and Cartesian co-ordinates, ver-
ify that the allowed values of m for the first three
levels are as shown in Fig. 6.19.
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In this chapter we investigate the optical properties associated with free
electrons. As the name suggests, these are systems in which the electrons
experience no restoring force from the medium when driven by the elec-
tric field of a light wave. The two main solid-state systems that exhibit
strong free electron effects are:

• Metals. Metals contain large densities of free electrons that orig-
inate from the valence electrons of the metal atoms.

• Doped semiconductors. n-type semiconductors contain free elec-
trons, while p-type materials contain free holes. The free carrier
density is determined by the concentration of impurities used for
the doping.

We begin our discussion of the optical properties by using the Drude–
Lorentz model introduced in Section 2.1.3 of Chapter 2. This will enable
us to explain the main optical property of metals that we mentioned
in Section 1.4.3, namely that they reflect strongly in the visible spec-
tral region. We then apply our knowledge of interband transitions from
Chapter 3 to obtain a better understanding of the detailed form of the
reflectivity spectra of metals such as aluminium and copper. Next we ap-
ply the Drude–Lorentz model to doped semiconductors to explain why
doping causes infrared absorption. We then consider the collective oscil-
lations of the whole free carrier gas, which will naturally lead us to the
notion of plasmons, both bulk and surface. Finally, we conclude with a
brief discussion of negative refraction.

7.1 Plasma reflectivity

A neutral gas of charged particles is called a plasma. Metals and doped
semiconductors can be treated as plasmas because they contain equal
numbers of fixed positive ions and free electrons. The free electrons ex-
perience no restoring forces when they interact with electromagnetic
waves. This contrasts with bound electrons that have natural resonant
frequencies in the near-infrared, visible, or ultraviolet spectral regions
owing to the restoring forces of the medium.

In this section we derive a formula for the relative permittivity of
an electron plasma using the classical oscillator model discussed in Sec-
tion 2.2 of Chapter 2. As noted in Section 2.1.3, this approach com-
bines the Drude model of free electron conductivity with the Lorentz
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liuhui
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model of dipole oscillators, and is therefore known as the Drude–
Lorentz model.

We begin by considering the oscillations of a free electron induced by
the AC electric field E(t) of an electromagnetic wave. The equation of
motion for the displacement x of the electron is: We have assumed here that the light

is polarized along the x direction. The
model is not affected by this arbitrary
choice provided that the medium is
isotropic.

m0
d2x

dt2
+ m0γ

dx

dt
= −eE(t) = −eE0e−iωt, (7.1)

where ω is the angular frequency of the light, and E0 is its amplitude. The
first term represents the acceleration of the electron, while the second is
the frictional damping force of the medium. The term on the right-hand
side is the driving force exerted by the light. Equation 7.1 is the same
as the equation of motion for a bound oscillator given in eqn 2.5, except
that there is no restoring force term because we are dealing with free
electrons.

By substituting x = x0e−iωt into eqn 7.1, we obtain

x =
eE

m0(ω2 + iγω)
. (7.2)

The polarization P of the gas is equal to −Nex, where N is the number
of electrons per unit volume. By recalling the definitions of the electric
displacement D and the relative permittivity εr (cf. eqns A.2 and A.3),
we can write:

D = εrε0E
= ε0E + P

= ε0E − Ne2E
m0(ω2 + iγω)

.

(7.3)

Therefore:
εr(ω) = 1 − Ne2

ε0m0

1
(ω2 + iγω)

. (7.4)

This equation is identical to eqn 2.14 for the bound oscillator except that
the resonant frequency ω0 is zero and we have not yet considered the
effects of background polarizability. Equation 7.4 is frequently written
in the more concise form:

εr(ω) = 1 − ω2
p

(ω2 + iγω)
, (7.5)

where

ωp =
(

Ne2

ε0m0

)1/2

. (7.6)

ωp is known as the plasma frequency.
We shall see in Section 7.5 that ωp

corresponds to the natural resonant
frequency of the whole free carrier
gas. This contrasts with the resonant
frequency of the individual electrons,
which is of course zero because they are
free.

Let us first consider a lightly damped system. In this case, we put
γ = 0 in eqn 7.5 so that

εr(ω) = 1 − ω2
p

ω2
. (7.7)
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Fig. 7.1 Reflectivity of an undamped
free carrier gas as a function of fre-
quency.
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The complex refractive index ñ of the medium is related to the complex
dielectric constant by ñ =

√
εr (cf. eqn 1.22). This means that ñ is

imaginary for ω < ωp and positive for ω > ωp, with a value of zero
precisely at ω = ωp. The reflectivity R can be calculated from eqn 1.29:The fact that the refractive index is

imaginary below ωp means that the ex-
tinction coefficient κ is large, and hence
that the medium is highly attenuat-
ing. This point will be explained further
in Section 7.2. It is a general property
of systems with high extinction coeffi-
cients that they also have high reflec-
tivities.

R =
∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣
2

. (7.8)

By substituting the frequency dependence of ñ into this formula, we see
that R is unity for ω ≤ ωp, and then decreases for ω > ωp, approaching
zero at ω = ∞. This frequency dependence is plotted in Fig. 7.1.

The basic conclusion is that we expect the reflectivity of a gas of free
electrons to be 100% for frequencies up to ωp. This result is very well
confirmed by experimental data. In Sections 7.3 and 7.4 below we shall
see how the plasma reflectivity effect is observed in both metals and
doped semiconductors.

One of the best examples of plasma re-
flectivity effects is the reflection of ra-
dio waves from the upper atmosphere.
The atoms in the ionosphere are ion-
ized by the ultraviolet light from the
Sun to produce a plasma of ions and
free electrons. The plasma frequency
is in the MHz range, and so the low-
frequency waves used for AM radio
transmissions are reflected, but not the
higher-frequency waves used for FM ra-
dio or television. (See Exercise 7.2.)

Example 7.1

Aluminium is a trivalent metal with 6.0× 1028 m−3 atoms per unit vol-
ume. Account for the shiny appearance of aluminium.

Solution
Aluminium has three valence electrons per atom, and so the free elec-
tron density N is 3 × (6.0 × 1028) = 1.8 × 1029 m−3. We use this value
of N in eqn 7.6 to find that ωp = 2.4 × 1016 rad/s. The free electrons
in aluminium will reflect all frequencies below ωp. Now ωp corresponds
to a wavelength of 2πc/ωp = 79 nm, which is in the ultraviolet spec-
tral region, and this means that all visible wavelengths are reflected.
Aluminium therefore has a shiny surface that can be used for making
mirrors.



7.2 Free carrier conductivity 183

7.2 Free carrier conductivity

In deriving eqn 7.7, we neglected the damping of the free carrier oscil-
lations. We can recast the equation of motion in a way that makes the
physical significance of the damping term more apparent. To do this we
note that ẋ is the electron velocity v. Hence we can rewrite eqn 7.1 as:

m0
dv

dt
+ m0γv = −eE . (7.9)

Since m0v is the momentum p, we see that:

dp

dt
= −p

τ
− eE , (7.10)

where we have replaced the damping rate γ by 1/τ , where τ is the damp-
ing time. This shows that the electron is being accelerated by the field,
but loses its momentum in time τ . In other words, τ is the momentum
scattering time.

In an AC field of the form E(t) = E0e−iωt, we look for solutions to
the equation of motion with x = x0e−iωt. This implies that |v| = ẋ also
has a time variation of the form v = v0e−iωt. On substituting this into
eqn 7.9, we obtain:

v(t) =
−eτ

m0

1
1 − iωτ

E(t). (7.11)

The current density j is related to the velocity and field through:

j = −Nev = σE , (7.12)

where σ is the electrical conductivity. On combining eqns 7.11 and 7.12,
we obtain the AC conductivity σ(ω):

σ(ω) =
σ0

1 − iωτ
, (7.13)

where
σ0 =

Ne2τ

m0
. (7.14)

σ0 is the conductivity measured with DC electric fields. We can thus de-
duce the momentum scattering time from the DC conductivity through
eqn 7.14. For a typical metal or doped semiconductor, this gives values
of τ in the range 10−14 to 10−13 s at room temperature.

By comparing eqns 7.4 and 7.13, we see that the AC conductivity and
the dielectric constant are related to each other through:

εr(ω) = 1 +
iσ(ω)
ε0ω

. (7.15)

Thus optical measurements of εr(ω) are equivalent to AC conductivity
measurements of σ(ω), and the free carrier reflectivity spectrum can be
discussed in terms of the conductivity rather than the dielectric constant.
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At very low frequencies that satisfy ω � τ−1, we can derive a useful
relationship between the conductivity of the free carrier gas and the
absorption coefficient for electromagnetic waves. This can be achieved by
first splitting εr(ω) into its real and imaginary components in accordance
with eqn 1.21, i.e. εr ≡ ε1 + iε2. Equation 7.5 with γ = τ−1 gives:

ε1 = 1 − ω2
pτ2

1 + ω2τ2
(7.16)

ε2 =
ω2

pτ

ω(1 + ω2τ2)
. (7.17)

We then work out n and κ, the real and imaginary parts of the complex
refractive index, by using eqns 1.25 and 1.26, and hence deduce the
absorption coefficient α from κ. Since ωτ � 1 implies that ε2 � ε1, we
can obtain solutions with n ≈ κ = (ε2/2)1/2. Using eqn 1.19 we therefore
obtain:

α =
2ω(ε2/2)1/2

c
=

(
2ω2

pτω

c2

)1/2

. (7.18)

We can put this equation in a more accessible form by noting from
eqn 7.14 that ω2

pτ = σ0/ε0 and from eqn A.28 that c2 = 1/ε0µ0. This
gives:

α = (2σ0ωµ0)
1/2

. (7.19)

Hence we see that the absorption coefficient is proportional to the square
root of the DC conductivity and the frequency.

Equation 7.19 implies that AC electric fields can only penetrate a short
distance into a conductor such as a metal. This well-known phenomenon
is called the skin effect. If the field strength varies as exp(−z/δ) with
the distance z from the surface, then the power falls off as exp(−2z/δ).
By comparison with the definition of α in eqn 1.4, we see that:

δ =
2
α

=
(

2
σ0ωµ0

)1/2

. (7.20)

δ is known as the skin depth.
The fields that decay exponentially in the conductor are called evanes-

cent waves. We have seen in the previous section that we expect the
reflectivity of a metal to be very high for frequencies below ωp. From
what we have seen here, it is now apparent that this only applies if the
thickness l of the medium is much larger than the skin depth. If l is
comparable to, or smaller than, δ, the evanescent fields will not have
decayed fully by the back of the medium, and some of the energy will be
transmitted. Conservation of energy then demands that the reflectivityA treatment of the variation of R with

l may be found, for example, in Born
and Wolf (1999).

R must drop accordingly. This implies that R depends on l when l � δ,
and ultimately drops to zero for a very thin medium.

At higher frequencies the relationship given in eqn 7.19 breaks down
because the approximation ωτ � 1 is no longer valid. In this case we
can derive a different frequency dependence for the attenuation coeffi-
cient. This will be discussed when considering the absorption due to free
carriers in doped semiconductors in Section 7.4.1.
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Example 7.2

The DC electrical conductivity of copper is 6.5 × 107 Ω−1m−1 at room
temperature. Calculate the skin depth at 50Hz and 100 MHz.

Solution
The skin depth is given by eqn 7.20. At a frequency of 50 Hz we have
ω = 2π × 50 = 314 rad/s. On inserting this value of ω into eqn 7.20
and using σ0 = 6.5 × 107 Ω−1m−1, we obtain δ = 8.8mm. At 100MHz,
ω = 6.28 × 108 rad/s, and the skin depth δ is only 6.2 µm.

7.3 Metals

The free electron model of metals was proposed by P. Drude in 1900. The
model provides a basic explanation for why metals are good conductors
of heat and electricity, and is the starting point for more sophisticated
theories. As we shall see here, it is also successful in explaining why
metals tend to be good reflectors. On the other hand, band theory is
needed to explain why some metals (e.g. copper and gold) are coloured.

7.3.1 The Drude model

The Drude free electron model of metals considers the valence electrons
of the atoms to be free. When an electric field is applied, the free elec-
trons accelerate and then undergo collisions with the characteristic scat-
tering time τ introduced in eqn 7.10. The electrical conductivity is there-
fore limited by the scattering, and measurements of σ allow the value of
τ to be determined through eqn 7.14.

The free electron density N in the Drude model is equal to the den-
sity of metal atoms multiplied by their valency. Table 7.1 lists the Drude
free electron densities for a number of common metals. The values of N
are in the range 1028–1029 m−3. These very large free electron densities
explain why metals have high electrical and thermal conductivities. The
plasma frequencies calculated using eqn 7.6 are also tabulated in Ta-
ble 7.1, together with the wavelength λp that corresponds to ωp. It is
apparent that the very large values of N lead to plasma frequencies in
the ultraviolet spectral region.

In the visible spectral region where ω/2π ∼ 1015 Hz, we are usually
in a situation with ω � γ. This is because τ = γ−1 is typically of
order 10−14 s. Therefore the simplification of eqn 7.5 to eqn 7.7 is a
good approximation. With ωp in the ultraviolet, the visible photons have
frequencies below ωp and thus εr is negative. As discussed in Section 7.1,
this means that the reflectivity is expected to be 100% up to ωp. This
explains the first and most obvious optical property of metals, namely
that they tend to be good reflectors at visible frequencies.
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Table 7.1 Free electron density and plasma properties of
some metals. The figures are for room temperature unless
stated otherwise. The electron densities are based on data
taken from Wyckoff (1963). The plasma frequency ωp is
calculated from eqn 7.6, and λp is the wavelength corre-
sponding to this frequency.

Metal Valency N ωp/2π λp

(1028 m−3) (1015 Hz) (nm)

Li (77K) 1 4.70 1.95 154
Na (5K) 1 2.65 1.46 205
K (5K) 1 1.40 1.06 282
Rb (5K) 1 1.15 0.96 312
Cs (5K) 1 0.91 0.86 350
Cu 1 8.47 2.61 115
Ag 1 5.86 2.17 138
Au 1 5.90 2.18 138
Be 2 24.7 4.46 67
Mg 2 8.61 2.63 114
Ca 2 4.61 1.93 156
Al 3 18.1 3.82 79

A striking implication of the free carrier model is that the dielec-
tric constant changes from being negative to positive as we go through
the plasma frequency. This means that the reflectivity ceases to be 100%
above ωp (see Fig. 7.1) and some of the light can be transmitted through
the metal. Thus we expect that all metals will eventually become trans-
mitting if we go far enough into the ultraviolet so that ω > ωp. This
phenomenon is known as the ultraviolet transparency of metals.

In order to observe the ultraviolet transmission threshold at the plasma
frequency, it is necessary that there should be no other absorption pro-
cesses occurring at ωp. This condition is best satisfied in the alkali met-
als. Table 7.2 lists the wavelengths of the ultraviolet transmission edges
observed in the alkalis. The experimental wavelengths can be compared
with those predicted from the calculated plasma frequency tabulated in
Table 7.1. The experimental results are in reasonable agreement with
the predictions, and show the correct trend on descending the periodic
table. The discrepancies can be explained to a large extent by replacing
the free electron mass with the electron effective mass derived from the
band structure of the metal. (See Exercise 7.4.)

Table 7.2 Ultraviolet transmission
threshold wavelength λUV for the alkali
metals. Data from Givens (1958).

Metal λUV (nm)

Li 205
Na 210
K 315
Rb 360
Cs 440

Figure 7.2 shows the measured reflectivity of aluminium as a function
of photon energy from the infrared to the ultraviolet spectral region. As
noted in Example 7.1, the plasma frequency occurs in the ultraviolet
spectral region, and hence the reflectivity is expected to be high for all
visible frequencies. The data show that the reflectivity is over 80% for all
photon energies up to ∼ 15 eV, and then drops off to zero at higher ener-
gies. Thus aluminium shows the characteristic ultraviolet transparency
edge predicted by the Drude model. The relatively featureless reflectivity
at visible frequencies is exploited in commercial mirrors.
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Fig. 7.2 Experimental reflectivity of
aluminium as a function of photon en-
ergy. The experimental data are com-
pared to predictions of the free electron
model with �ωp = 15.8 eV. The dot-
ted curve is calculated with no damp-
ing. The dashed line is calculated with
τ = 8.0 × 10−15 s, which is the value
deduced from DC conductivity. Exper-
imental data from Ehrenreich et al.
(1963), c© American Physical Society,
reprinted with permission.

The plasma frequency for aluminium listed in Table 7.1 corresponds
to a photon energy of 15.8 eV. The dotted line in Fig. 7.2 gives the
reflectivity predicted from eqn 7.7 with �ωp = 15.8 eV. On comparing We shall see in Section 7.5.1 that the

plasma frequency can be determined
directly by using electron energy-loss
spectroscopy.

the experimental and theoretical results, we see that the model accounts
for the general shape of the spectrum, but there are some important
details that are not explained.

An improved attempt to model the experimental data can be made
by including the damping term in the dielectric constant. Example 7.3
explains how this is done. The reflectivity calculated from eqn 7.5 for
the value of τ deduced from the DC conductivity, namely 8.0× 10−15 s,
is plotted as the dashed line in Fig. 7.2. The main difference between
the two calculated curves is that the damping causes the reflectivity
to be less than unity below ωp, and the ultraviolet transmission edge is
slightly broadened. However, this is only a relatively small effect because
ωp � τ−1.

The inclusion of damping makes a small improvement in the fit to the
data, but there are two important features that are still not explained.
Firstly, the reflectivity is significantly lower than predicted, and secondly,
there is a dip around 1.5 eV, where we would have expected a featureless
curve. Both of these points can be explained by considering the interband
absorption rates. These are discussed in the next section.

Example 7.3

The conductivity of aluminium at room temperature is 4.1×107 Ω−1m−1.
Calculate the reflectivity at 500 nm according to the Drude–Lorentz
model.

Solution
We first work out the damping time τ from the conductivity using
eqn 7.14. Taking the value of N = 1.81 × 1029 m−3 from Table 7.1,
we find:

τ =
m0σ0

Ne2
= 8.0 × 10−15 s .
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Table 7.1 also gives us the value of the plasma frequency, namely ωp =
2.4 × 1016 rad/s. The wavelength of 500 nm corresponds to an angular
frequency ω = 2πc/λ = 3.8 × 1015 rad/s. We use these frequencies in
eqns 7.16 and 7.17 to calculate the real and imaginary parts of the
complex dielectric constant:

ε1 = 1 − ω2
pτ2

1 + ω2τ2
= −39 ,

and

ε2 =
ω2

pτ

ω(1 + ω2τ2)
= 1.3 .

We then work out the real and imaginary parts of the complex refractive
index using eqns 1.25 and 1.26. This gives:

n =
1√
2

( − 39 + [(−39)2 + (1.3)2]1/2
)1/2 = 0.10 ,

and
κ =

1√
2

(
+ 39 + [(−39)2 + (1.3)2]1/2

)1/2 = 6.2 .

We finally obtain the reflectivity from eqn 1.29:

R =
(n − 1)2 + κ2

(n + 1)2 + κ2
=

(−0.9)2 + (6.2)2

(1.1)2 + (6.2)2
= 99% .

This shows that the inclusion of the damping reduces the reflectivity by
only 1% in this case.

7.3.2 Interband transitions in metals

The absorption of light by direct interband transitions was discussed in
detail in Chapter 3. Direct transitions involve the promotion of electrons
to a higher band by absorption of a photon with the correct energy. The
electron does not change its k vector significantly because of the very
small momentum of the photon. Thus the transitions appear as vertical
arrows on the E–k band diagram of the solid.

Interband absorption is important in metals because the electromag-
netic waves penetrate a short distance into the surface, and if there is
a significant probability for interband absorption, the reflectivity will
be reduced. We consider below the reflectivity spectra of aluminium and
copper in order to illustrate the effects of interband absorption, and then
make some general comments about other metals such as silver and gold.

Aluminium

The band diagram of aluminium is shown in Fig. 7.3. Aluminium has an
electronic configuration of [Ne]3s23p1 with three valence electrons. The
crystal structure is face-centred cubic, which has a body-centred cubic
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Fig. 7.3 Band diagram of aluminium.
The transitions at the W and K points
that are responsible for the reflectivity
dip at 1.5 eV are labelled. After Segall
(1961), c© American Physical Society,
reprinted with permission.

(bcc) reciprocal lattice, as shown in Fig. D.5 of Appendix D. The first
Brillouin zone is completely full, and the valence electrons spread into
the second, third and slightly into the fourth zones. The band structure
appears quite complex due to the irregular shape of the bcc Brillouin
zone. However, the bands are actually very close to the free electron
model, with significant departures only in the vicinity of the Brillouin
zone boundaries. The bands are filled up to the Fermi energy EF, which
is marked on the diagram. Direct transitions can take place from any
of the states below the Fermi level to unoccupied bands directly above
them on the E–k diagram.

We came across a similar example of
parallel bands when we discussed the
absorption rate at the critical points
in the band structure of silicon in Sec-
tion 3.5.

Fermi’s golden rule given in eqn 3.2 tells us that the absorption rate
is proportional to the density of states for the transition. The dip in the
reflectivity at 1.5 eV which is apparent in Fig. 7.2 is a consequence of
the ‘parallel band’ effect. This occurs when there is a band above the
Fermi level that is approximately parallel to another band below EF. In
this case, the interband transitions from a large number of occupied k
states below the Fermi level will all occur at the same energy. Hence the
density of states at the energy difference between the two parallel bands
will be very high, which will result in a particularly strong absorption
at this photon energy.

Inspection of the band diagram of aluminium shows that the parallel
band effect occurs at both the W and K points of the Brillouin zone.
These transitions have been identified on Fig. 7.3. The energy separa-

The positions of the W and K points
on the fcc Brillouin zone boundary are
shown in Fig. D.5.

tion of the parallel bands is approximately 1.5 eV in both cases. The
enhanced transition rate at this photon energy thus explains the reflec-
tivity dip observed at 1.5 eV in the experimental data. Moreover, we can
see from the band diagram that there will be further transitions between
bands below the Fermi level to unoccupied bands above EF at a whole
range of photon energies greater than 1.5 eV. The density of states for
these transitions will be lower than at 1.5 eV because the bands are not
parallel. However, the absorption rate is still significant, and accounts
for the reduction of the reflectivity to a value below that predicted by
the Drude model in the visible and ultraviolet spectral regions.
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Copper

Copper has an electronic configuration of [Ar]3d104s1. The outer 4s
bands approximate reasonably well to free electron states with a dis-
persion given by E = �

2k2/2m0. They therefore form a broad band
covering a wide range of energies. The 3d bands, on the other hand,
are more tightly bound and are relatively dispersionless, occupying only
a narrow range of energies. The density of states for the two bands is
illustrated schematically in Fig. 7.4. The narrow 3d bands can hold ten
electrons, and therefore their density of states is sharply peaked. The
4s band, which can hold two electrons, is much broader, with a smaller
maximum. The 11 valence electrons of copper fill up the 3d band, and
half fill the 4s band. The Fermi energy therefore lies within the 4s band
above the 3d band. Interband transitions are possible from the filled
3d bands to unoccupied states in the 4s band above EF, as illustrated
in Fig. 7.4. This implies that there will be a well-defined threshold for
interband transitions from the 3d bands to the 4s band.

In atomic physics, transitions between
d and s states are forbidden for electric-
dipole processes. (See Table B.1 in Ap-
pendix B.) The matrix element for
the 3d→4s transitions is therefore rel-
atively small, but this is compensated
by the very high density of states in
the solid, which results in strong ab-
sorption.

Figure 7.5 shows the actual band structure and density of states of
copper. The general features indicated in Fig. 7.4 are clearly shown in
the calculated curves. The 4s band is the parabola starting at the Γ point
at −9 eV, while the 3d bands are the five curves bunched together in the
energy range −5 → −2 eV. The 4s band crosses the 3d bands and then
re-emerges as the single band with energy > −2 eV. It is apparent that
the 3d electrons lie in relatively narrow bands with very high densities
of states, while the 4s band is much broader with a lower density of
states. The Fermi energy lies in the middle of the 4s band above the
3d band. Interband transitions are possible from the 3d bands below
EF to unoccupied levels in the 4s band above EF. The lowest energy
transitions are marked on the band diagram in Fig. 7.5. The transition
energy is 2.2 eV which corresponds to a wavelength of 560 nm.

Figure 7.6 shows the measured reflectivity of copper from the infrared
to the ultraviolet spectral region. Based on the plasma frequency given
in Table 7.1, we would expect near 100% reflectivity for photon energies
below 10.8 eV, which corresponds to an ultraviolet wavelength of 115 nm.
However, the experimental reflectivity falls off sharply above 2 eV owing
to the interband absorption edge discussed above. This explains why
copper has a reddish colour.

Density of states

E

3d band

4s band

EF

optical

transitions

Density of states

E

3d band

4s band

EF

optical

transitions

Fig. 7.4 Schematic density of states
for the 3d and 4s bands of a transition
metal such as copper.

Silver and gold

The arguments used for copper can be applied to the other noble metals.
The important parameter is the energy gap between the d bands and
the Fermi energy, as shown in Fig. 7.4. In gold the interband absorption
threshold occurs at a slightly higher energy than copper, which explains
why it has a yellowish colour. In silver, on the other hand, the interband
absorption edge is around 4 eV. This frequency is in the ultraviolet, and
so the reflectivity remains high throughout the whole visible spectrum.
(See Fig. 1.5.) This explains why silver does not have any particular
colour, and also why it is so widely used for making mirrors. Gold is also
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11. After Moruzzi et al. (1978).

used for mirrors, but only at infrared wavelengths.

7.4 Doped semiconductors

In silicon and germanium, which come
from group IV of the periodic table,
n-type doping is achieved by adding
atoms from group V, while p-type dop-
ing is achieved by adding atoms from
group III. In compound semiconductors
such as the III–Vs, the way the doping
works is more complicated. If the impu-
rity sits on the group III atom site, then
a group II element gives p-type doping,
and a group IV element gives n-type.
On the other hand, if the impurity sits
on the group V atom site, then a group
IV impurity gives p-type doping, while
a group VI element gives n-type. Group
IV doping of a III–V semiconductor can
therefore give either n- or p-type dop-
ing, depending on how the impurities
fit into the crystal.

The controlled doping of semiconductors with impurities is an essential
part of solid-state technology. The general principles are discussed in
Section D.1 of Appendix D. The introduction of donor impurities pro-
vides an excess of electrons, while acceptor impurities lead to a deficit of
electrons, which is equivalent to an excess of holes. Doping that produces
excess electrons is called n-type, while doping that produces excess holes
is called p-type.

Experimental measurements on doped semiconductors show that the
presence of impurities gives rise to new absorption mechanisms and also
to a free carrier plasma reflectivity edge. Our aim here is to explain these
effects by applying a suitably modified version of the free carrier model
and by considering the quantized levels created by the impurity atoms. In
the two subsections that follow, we first consider the free carrier effects,
and then move on to discuss the absorption associated with the impurity
levels.

7.4.1 Free carrier reflectivity and absorption

The free electron model developed in Sections 7.1 and 7.2 can be ap-
plied to doped semiconductors if we make two appropriate modifica-
tions. Firstly, we must account for the fact that the electrons and holes
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Fig. 7.6 Reflectivity of copper from
the infrared to the ultraviolet spectral
region. The reflectivity drops sharply
above 2 eV due to interband transi-
tions. Data from Lide (1996).
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are moving in the conduction or valence band of a semiconductor. This
is easily achieved by assuming that the carriers behave as particles with
an effective mass m∗ rather than the free electron mass m0. Secondly, we
must remember that the semiconductor has a high relative permittivity
at the frequencies of interest even before the dopants are added.

The two modifications mentioned above can be handled if we rewrite
eqn 7.3 in the following form:

D = εrε0E
= ε0E + Pother + Pfree carrier

= εoptε0E − Ne2E
m∗(ω2 + iγω)

.

(7.21)

The term Pother accounts for the polarizability of the bound electrons
before the dopants are added, while the effective mass m∗ accounts for
the band structure of the semiconductor. The carrier density N that
appears in this equation is the density of free electrons or holes generated
by the doping process. Note that the sign of the charge cancels, and so
the only difference between electrons and holes in this treatment is in
the effective mass that is used.

As explained in Section 2.2.2 of Chap-
ter 2, solids have a number of resonant
frequencies, each of which can be mod-
elled by dipole oscillators. There are
resonant frequencies in the infrared due
to the phonons, and others in the near-
infrared, visible, or ultraviolet due to
the bound electrons. The phonon ab-
sorption bands are discussed in detail
in Chapter 10, and occur in the range
30–100�m for a typical III–V semicon-
ductor.

The free carrier effects due to doping are most noticeable in the spec-
tral region 5–30 µm, where we would normally expect the semiconductor
to be completely transparent. Hence the value of εopt that we use in
eqn 7.21 is the one measured in the transparent spectral region below
the interband absorption edge. This value is known from the refractive
index of the undoped semiconductor: εopt = n2. (See eqn 1.27 with κ = 0
below the band edge.)

Equation 7.21 tells us that the frequency dependence of the dielectric
constant is given by:

εr(ω) = εopt − Ne2

m∗ε0
1

(ω2 + iγω)
. (7.22)

This can be rewritten as:

εr(ω) = εopt

(
1 − ω2

p

(ω2 + iγω)

)
, (7.23)
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Fig. 7.7 Infrared reflectivity spectra of
n-type InSb at room temperature for
different values of the free electron den-
sity. After Spitzer & Fan (1957), c©
American Physical Society, reprinted
with permission.

where the plasma frequency ωp is now given by:

ω2
p =

Ne2

εoptε0m∗ . (7.24)

We have written the dielectric constant in this way to make the link to
the Drude model apparent. The difference between the plasma frequency
for the semiconductor given in eqn 7.24 and that given in eqn 7.6 is that
we have replaced m0 by m∗, and we have included εopt to account for
the background polarizability of the undoped semiconductor.

If we assume that the system is lightly damped, then we can ignore the
damping term in eqn 7.23. This then implies that εr is negative below ωp

and positive at higher frequencies. We thus expect to observe a plasma
reflectivity edge at ωp just as we did in metals. Since the carrier density
is much smaller than in metals, the plasma edge occurs at frequencies
in the infrared spectral range. This prediction is very well borne out by
infrared reflectivity data.

Figure 7.7 shows the measured reflectivity of n-type InSb as a func-
tion of the electron density. The fundamental absorption edge at the
band gap of InSb occurs at 6 µm, while the phonon absorption band lies
around 50 µm. Thus we would expect pure InSb to be transparent in the
wavelength range shown and have a featureless reflectivity spectrum.
Instead, the data show a well defined reflectivity edge, which shifts to
shorter wavelengths as the electron density increases, in accordance with
eqn 7.24.

The data shown in Fig. 7.7 demonstrate the phenomenon of the plasma
reflectivity edge more clearly than many of the equivalent results ob-
tained for metals. This is because it is not possible to vary the electron
density in metals. Moreover, in metals the plasma frequencies are much
higher, and the reflectivity edge is frequently obscured by interband
transitions.

One very striking feature of the data is the zero in the reflectivity
at wavelengths just below the plasma edge. This occurs at a frequency
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given by (see Exercise 7.8):

ω2 =
εopt

εopt − 1
ω2

p . (7.25)

By fitting this formula to the data, the effective mass of InSb can be
determined. (See Exercise 7.9.)

At frequencies above ωp, the presence of free carriers leads to the ab-
sorption of light. This effect is called free carrier absorption, and
can be observed in the infrared spectral region below the fundamental
absorption edge at the band gap, where the semiconductor would nor-
mally be transparent. To see how this effect arises, we split the dielectric
constant given in eqn 7.23 into its real and imaginary parts. This gives:

ε1 = εopt

(
1 − ω2

pτ2

1 + ω2τ2

)
, (7.26)

ε2 =
εoptω

2
pτ

ω(1 + ω2τ2)
, (7.27)

where we have made the usual substitution of τ−1 for γ. In a typical
semiconductor, with τ ∼ 10−13 s at room temperature, it is safe to make
the approximation ωτ � 1 at frequencies in the near-infrared. Further-
more, the free carrier term in εr will be small. Therefore we can assume
ε1 ≈ εopt, and that ε2 � ε1. In these conditions we find solutions to
eqns 1.25 and 1.26 with n = √

εopt and κ = ε2/2n. This allows us to
deduce the absorption coefficient using eqn 1.19. The result is:

The skin effect considered in Section 7.2
may also be considered as a type of free
carrier absorption. In the skin effect,
however, we are considering the absorp-
tion at low frequencies below ωp where
the material is highly reflective. We are
now considering absorption above ωp

where the material should be transpar-
ent.

αfree carrier =
εoptω

2
p

ncω2τ
=

Ne2

m∗ε0ncτ

1
ω2

. (7.28)

This shows that the free carrier absorption is proportional to the carrier
density and should vary with frequency as ω−2.

The approximation that τ is indepen-
dent of ω effectively says that the re-
laxation time of the electrons does not
depend on their initial energy. This
is equivalent to the energy indepen-
dent relaxation time approximation of
the Boltzmann equation used in elec-
tron transport theory. It is well known
that this approximation is only valid
in a limited range of conditions. See
Ashcroft and Mermin (1976) for further
details.

Experimental data on a number of n-doped samples lead to the conclu-
sion that αfree carrier ∝ ω−β , where β is in the range 2–3. The departure
of β from the predicted value of 2 is caused by the failure of our as-
sumption that τ is independent of ω. To see why this is important, we
illustrate the physical processes that are occurring during free carrier ab-
sorption in Fig. 7.8. The figure shows the conduction band of an n-type
semiconductor, which is filled up to the Fermi level determined by the
free carrier density. Absorption of a photon excites an electron from an
occupied state below the Fermi level to an unoccupied level above EF.
The photon only has a very small momentum compared to the electron,
and therefore cannot change the electron’s momentum significantly. It
is obvious from Fig. 7.8 that a scattering event must occur to conserve
momentum in the process. Hence the absorption must be proportional
to the scattering rate 1/τ , in accordance with the prediction of eqn 7.28.

The mechanisms that can contribute to the momentum-conserving
process in free carrier absorption include phonon scattering and scat-
tering from the ionized impurities left behind by the release of the free
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Fig. 7.8 A free carrier transition in a
doped semiconductor.
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Fig. 7.9 Intervalence band absorption
in a p-type semiconductor. EF is the
Fermi energy determined by the dop-
ing density. The labelled arrows indi-
cate: (1) transitions from the light-hole
(lh) band to the heavy-hole (hh) band;
(2) transitions from the split-off (SO)
band to the lh band; and (3) transitions
from the SO band to the hh band.

electrons from their dopants. It is a sweeping oversimplification to char-
acterize all the possible scattering processes with a single frequency-
independent scattering time τ deduced from the DC conductivity. Thus
it is hardly surprising that the experimental data do not exactly show
an ω−2 dependence.

The free carrier reflectivity and absorption of p-type semiconductors
can be modelled by a similar treatment to the one developed here for
n-type samples. The only change that has to be made is in the effective
mass that is used in the calculation. Thus we would expect that all
the main results will hold, provided we take account of the fact that the
scattering time for holes is not necessarily the same as that for electrons.
However, p-type samples also show another effect, which is discussed
next.

Figure 7.9 shows the valence band of a p-type III–V semiconductor.
This is a larger scale version of the band structure diagram given pre-
viously in Fig. 3.5, except that now there are unfilled states near k = 0
owing to the p-type doping. Optical transitions can take place in which
an electron is promoted from an occupied state below EF in the light-hole
(lh) band to an empty one in the heavy-hole (hh) band above EF. This is
called intervalence band absorption. Other intervalence band tran- Note that intervalence band transitions

are forbidden at k = 0 since all the hole
bands are derived from p-like atomic
states. The atomic character of the
bands is less well defined for finite k,
and this makes the transitions possible
away from the centre of the Brillouin
zone.

sitions are possible in which an electron is promoted from the split-off
(SO) band to either the lh or hh band. The range of energies over which
these transitions occur can be calculated from the effective masses, the
doping density and the spin–orbit energy ∆ (see Exercise 7.12). The ab-
sorption occurs in the infrared, and measurements of the spectrum can
give values for ∆ and the ratio of the hole effective masses. The absorp-
tion can be a strong process because no scattering events are required

liuhui
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Fig. 7.10 Impurity absorption mech-
anisms in an n-type semiconductor:
(a) transitions between donor levels;
(b) transitions from the valence band to
empty donor levels. The donor level en-
ergy spacings have been exaggerated in
this diagram to make the mechanisms
clearer.
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7.4.2 Impurity absorption

The n-type doping of a semiconductor with donor atoms introduces a
series of hydrogenic levels just below the conduction band. These quan-
tized states are called donor levels, and are illustrated schematically
in Fig. 7.10. The impurity levels give rise to two new absorption mech-
anisms, in addition to the free carrier effects discussed in the previous
section. If the donor states are occupied, it will be possible to absorb pho-
tons by exciting electrons between the levels as illustrated in Fig. 7.10(a).
On the other hand, if the states are empty, then it will be possible to
absorb light by exciting electrons from the valence band to the donor
states as illustrated in Fig. 7.10(b).

We consider first the transitions between the donor levels illustrated
in Fig. 7.10(a). For such a process to occur, the donor levels must be
occupied. This will be the case at low temperatures, when there is in-
sufficient thermal energy to promote the electrons from the donor levels
into the conduction band.

The frequencies of the donor-level transitions can be calculated if the
energies of the impurity states are known. In the simplest model, we
assume that the electron is released into the crystal, and is then attracted
back towards the positively charged impurity atom. The electron and
the ionized impurity then form a hydrogenic system bound together by
their mutual Coulomb attraction. As a first approximation, we can use
the Bohr formula, provided we use the effective mass m∗

e instead of the
free electron mass m0, and also include the dielectric constant εr for the
semiconductor. Hence the energy of the donor levels ED

n will be given
by:

Equation 7.29 is very similar to eqn 4.1
for the exciton binding energy except
that the electron effective mass ap-
pears instead of the reduced electron-
hole mass. This is because we are now
considering the attraction of an elec-
tron to a heavy ion which is bound in
the lattice, instead of that between a
free electron and a free hole. ED

n = − m∗
e

m0

1
ε2r

RH

n2
, (7.29)
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Fig. 7.11 Infrared absorption spec-
trum of n-type silicon doped with phos-
phorus at a density of 1.2 × 1020 m−3.
The temperature was 4.2K. After Ja-
gannath et al. (1981), c© American
Physical Society, reprinted with per-
mission.

where RH is the hydrogen Rydberg energy (13.6 eV) and n is an integer.
At low temperatures we can assume that all the electrons from the

donors will be in the n = 1 ground state impurity level. Optical transi-
tions can then take place in which the electrons are promoted to higher
donor levels or into the conduction band by absorption of a photon.
Figure 7.10(a) illustrates two possible transitions of this type, in which
the electron is promoted to either the n = 2 or the n = 3 donor level.
These transitions give rise to absorption lines analogous to the hydrogen
Lyman series with frequencies given by:

hν =
m∗

e

m0

RH

ε2r

(
1 − 1

n2

)
, (7.30)

where n is the quantum number of the final impurity level. If we insert
typical values into eqn 7.30 we find that the photon energies are in the
range 0.01–0.1 eV. This means that the transitions occur in the infrared
spectral region.

The absolute value of the absorption
coefficient for the impurity transitions
in Fig. 7.11 is around 103 m−1. This
is much smaller than for interband
transitions which typically have val-
ues in the range 106–108 m−1. How-
ever, if we were to assume that the
absorption strength is simply propor-
tional to the number of atoms that con-
tribute, we would expect the impurity
absorption to be weaker than the in-
terband absorption by about a factor
of ∼ 109. The measured ratio is much
larger because the impurity lines are
very sharp, whereas the interband tran-
sitions spread out into bands.

Figure 7.11 shows the absorption spectrum of n-type silicon at liquid
helium temperatures. The sample was doped with phosphorus at a den-
sity of 1.2 × 1020 m−3. The absorption lines correspond to transitions
exciting electrons from the n = 1 shell to higher shells. In the language
of atomic physics, these are 1s → np transitions. These transitions con-
verge at high n to the donor ionization energy of phosphorus in silicon,
which is 45meV.

The spectrum shown in Fig. 7.11 is actually more complicated than
eqn 7.30 would suggest. It consists of two series of transitions, which
are labelled as either np0 or np±. The np0 series obey eqn 7.30 very
well, but the np± transitions have a different frequency dependence.
This complexity is caused by the anisotropy of the effective mass of
silicon. The frequency dependence of the two series can be modelled by
assigning different effective Rydberg energies for the ‘0’ and ‘±’ states.
(See Exercise 7.13.)

We now consider the absorption mechanism shown in Fig. 7.10(b).
These transitions can be observed at temperatures when the donor levels
are partly unoccupied owing to the thermal excitation of the electrons
into the conduction band. Absorption processes can then occur in which
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electrons are excited from the top of the valence band to the empty
donor levels.

In many direct-gap semiconductors it is
found experimentally that the absorp-
tion decreases exponentially below the
band gap. This is called the Urbach tail
on account of Urbach’s rule, which
states that the frequency dependence of
the absorption for �ω < Eg is given by:

α(�ω) ∝ exp

�
σ(�ω − Eg)

kBT

�
,

where σ is a phenomenological fitting
parameter.

The valence band → donor level transitions occur at photon energies
just below the band gap Eg, with a threshold given by Eg−ED

1 . However,
the transitions tend to be broadened into a continuum both by thermal
effects and by the fact that transitions can take place from a whole
range of states within the valence band. Hence the impurity transitions
cause a smearing of the absorption edge compared with the abrupt edge
found at the band gap of pure semiconductors. The absorption strength
will always be weak compared to the interband and excitonic transitions
due to the relatively small number of impurity atoms compared to the
density of states within the conduction band. On the other hand, the
transitions occur in the spectral region just below the band gap where
we would normally expect no absorption at all. Hence these transitions
do have an effect on the fundamental absorption edge, and make precise
determinations of Eg from the absorption spectra at room temperature
more difficult.

We have restricted our attention here to n-type semiconductors for
the sake of simplicity. The same effects can of course occur in p-type
materials.

7.5 Plasmons

Equation 7.7 tells us that the relative permittivity of a lightly damped
gas of free electrons is expected to be zero at ωp. This suggests that
something interesting might happen at this frequency. This is indeed
the case, as we discuss here.

7.5.1 Bulk plasmons

A plasma consists of a gas of charged particles in dynamic equilibrium.
The particles are in constant motion, and this can create local charge
fluctuations. If a fluctuation were to create a small region with an excess
charge, the charges in that volume would be repelled away by the sur-
rounding charges. The velocity acquired in this process could cause the
excess charges to overshoot their original position, in which case they
would then be pushed back in the opposite direction. This process can
lead to oscillatory motion called plasma oscillations. These plasma os-
cillations are well known in gas discharge tubes, and they can also occur
in the free electron plasmas found in metals and doped semiconductors,
which is our interest here.

The frequency of the plasma oscillations can be calculated as follows.
Consider a region of a conducting medium of volume V enclosed by a
surface S. Conservation of charge requires that the net flow of current
into or out of a region must be balanced by the change of the total charge
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inside the surface. This continuity condition can be written:∮
S

j · dS = − ∂

∂t

∫
V

ρ dV , (7.31)

where j is the current density, dS is a surface element, ρ is the local
charge density, and dV is a volume element. On applying the divergence The divergence theorem of mathemat-

ics requires that:�
S
� � d� =

�
V
� � � dV ,

where the volume integral is over the
region enclosed by the surface S.

theorem, we find that:∫
V

∇ · j dV = −
∫

V

∂ρ

∂t
dV , (7.32)

and hence (since the volume integrated over is arbitrary):

∇ · j = −∂ρ

∂t
. (7.33)

Equation 7.33 is called the charge continuity equation.
We now consider the case in which we have a collective motion of

the free electrons relative to the fixed lattice of positive ions in a metal
or doped semiconductor. The overall charge density is zero, but the
movement of the electrons can create local currents. Since the positive
charges on the ions are stationary, they do not generate a current, and we
can apply the charge continuity equation to the electron current alone,
giving

∇ · j = −∂ρe

∂t
, (7.34)

where ρe is the electron charge density. Then, on substituting for ρe from
Gauss’s law (i.e. ∇ · E = ρe/ε0), we find:

∇·
(

j + ε0
∂E
∂t

)
= 0 . (7.35)

Now a vector that has zero divergence can always be written as the curl
of another vector, and from Maxwell’s fourth equation (eqn A.13), we
realize that this vector must be B/µ0, giving:

j + ε0
∂E
∂t

=
1
µ0

∇ × B . (7.36)

On taking the time derivative and substituting from Maxwell’s third
equation (eqn A.12), we find:

∂j

∂t
+ ε0

∂2E
∂t2

=
1
µ0

∇× ∂B

∂t

= − 1
µ0

∇× (∇ × E) .

(7.37)

The electrons will move in response to the local electric field according
to their equation of motion:

mv̇ = −eE . (7.38)
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Now the current density is given by j = −Nev, which implies that

∂j

∂t
=

Ne2

m
E . (7.39)

On substituting into eqn 7.37 and re-arranging, we find:

∂2E
∂t2

+ ω2
pE = −c2 ∇× (∇ × E) , (7.40)

where we have substituted for ωp from eqn 7.6 and used c2 = 1/µ0ε0 (cf.
eqn A.28).

At this stage it is helpful to split the electric field into transverse and
longitudinal components:

E = Et + E l , (7.41)

where ∇ · Et = 0 and ∇ × E l = 0. On substituting into eqn 7.40 and
using the vector identity of eqn A.24, this gives:

∂2Et

∂t2
+ ω2

pEt − c2∇2Et = −
(

∂2E l

∂t2
+ ω2

pE l

)
. (7.42)

This implies that we have two independent equations of motion for the
transverse and longitudinal components:

It becomes apparent that both sides of
eqn 7.42 must be equal to zero by tak-
ing the divergence and curl of the equa-
tion. ∂2Et

∂t2
+ ω2

pEt − c2∇2Et = 0 , (7.43)

∂2E l

∂t2
+ ω2

pE l = 0 . (7.44)

We look for wave-like solutions in which the field varies with time and
position as exp i(k · r − ωt). For the transverse solutions we find:

c2k2 = ω2 − ω2
p . (7.45)

This describes the dispersion of conventional transverse electromagnetic
waves in the plasma. The dispersion is plotted in Fig. 7.16(a) below.
There are no travelling solutions with ω < ωp because the waves are
reflected by the plasma.

In the case of the longitudinal modes, we simply have:

ω = ωp . (7.46)

This shows that the medium can support longitudinal modes at the
plasma frequency, and that the modes are dispersionless: i.e. ω is in-
dependent of k. These longitudinal modes correspond to the plasma
oscillations that we discussed qualitatively at the start of the section.
Figure 7.12(a) shows a schematic diagram of the longitudinal electron
displacements within a plasma oscillation and the fields that they gen-
erate.

In a metal, the frequency of the longi-
tudinal modes does in fact vary slightly
with k. The correction term is very
small, and arises from the breakdown
of some of the approximations used in
this derivation. See Exercise 7.18.

The existence of longitudinal solutions at the plasma frequency is a
consequence of the fact that εr = 0 at ωp. In a medium with zero average
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Fig. 7.12 (a) Charge fluctuations in
a free carrier plasma oscillation. The
lighter regions denote areas with excess
electron densities. The small arrows in-
dicate the direction of the electric fields,
which are parallel to the direction of
propagation of the wave, as indicated
by its wave vector �. (b) Excitation of
plasmons by inelastic scattering of par-
ticles. The case in which two plasmons
are excited is shown. For metals, elec-
trons with keV energies are used, but
for doped semiconductors, optical fre-
quency photons have sufficient energy.

charge density, Gauss’s law (eqn A.10) combined with eqn A.3 tells us
that

∇ · D = ∇·(εrε0E) = 0 . (7.47)

If εr �= 0, we then deduce that ∇ · E = 0. This is the normal situa-
tion for transverse electromagnetic waves in which the electric field is
perpendicular to the direction of the wave. However, if εr = 0, we can
satisfy eqn 7.47 with waves that have ∇ · E �= 0, i.e. longitudinal waves.
We thus conclude that a dielectric can support longitudinal electric field
waves at frequencies that satisfy εr(ω) = 0.

We shall come across another exam-
ple of longitudinal modes at frequencies
where εr = 0 when we consider phonons
in Chapter 10. (See Section 10.2.2.)

Equation 7.44 shows us that the longitudinal oscillations of the plasma
behave as harmonic oscillators with a natural resonant frequency at ωp.
The derivation is completely classical, and the oscillator can have any
energy. However, we know in fact that the energy of harmonic oscillators
is quantized. We therefore expect the energy of the plasma oscillations
to be quantized in units of �ωp. The quasi-particles that correspond to
these quantized plasma oscillations are called plasmons. As shown in
eqn 7.46, the frequency of the plasmons is independent of their wave
vector.

Since plasmons are associated with longitudinal plasma oscillations,
they cannot be excited directly by light, which is a transverse wave. In-
stead, they have to be observed by techniques of inelastic scattering, in
which a beam of particles excites plasmons while passing through the
medium, as illustrated in Fig. 7.12(b). The energy Ein of the incoming
particles must be significantly larger than the plasmon energy. Conser-
vation of energy requires that:

Eout = Ein − n�ωp , (7.48)

where Eout is the energy of the outgoing particle, and n is the number
of plasmons emitted. The detection of particles with energies given by
eqn 7.48 establishes that plasmons have been excited.

In the case of metals, the plasmon energies are several eV, and so
electrons with keV energies are typically used. By measuring the en-
ergy spectrum of the electrons emerging from a thin sample, the plasma
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Fig. 7.13 Raman scattering measure-
ments on n-type GaAs at 300K. The
doping density was 1.75 × 1023 m−3.
The data are displayed as a function
of the energy shift of the outgoing
photons relative to the incoming ones
in wave number units. After Moora-
dian (1972), c© Excerpta Medica Inc.,
reprinted with permission.
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frequency can be determined. This technique is called electron energy-
loss spectroscopy.

Plasmons can also be observed in doped semiconductors. Since the
plasma frequencies are much lower, it is possible to use inelastic light
scattering techniques (i.e. Raman scattering) to measure the plasmon
energies. The general principles of Raman scattering will be discussed
in Section 10.5. The basic point is that the energy �ωout of the outgoing
photon must satisfy:

�ωout = �ωin ± �ωp , (7.49)

where �ωin is the energy of the incoming photon. The + sign corresponds
to plasmon absorption and the − sign to plasmon emission. Plasmon
absorption is possible here, but not in the case of metals, because the
plasmon energies are comparable to the thermal energy kBT . This means
that there might already be plasmons excited in the sample before the
incident photon arrives, and thus there is some probability that a plas-
mon might be destroyed and its energy transferred to the photon.

Figure 7.13 shows the results of a Raman scattering experiment on
n-type GaAs at 300K. The doping density was 1.75 × 1023 m−3. The
Raman intensity is plotted as a function of the frequency shift of the
light in wave number units. The data show two clear peaks shifted by
±130 cm−1 relative to the incoming laser beam due to plasmon emission
and absorption. The electron effective mass of GaAs is 0.067m0 and εopt

is 10.6. Hence from eqn 7.24 we find ωp = 2.8 × 1013 rad/s, which is
equivalent to 150 cm−1. The experimental data are thus in reasonably
good agreement with the model.

Two weak peaks at ±272 cm−1 and

±296 cm−1 are also present in Fig. 7.13.
These are caused by optical phonons.
(See Section 10.5.2.) The phonon sig-
nals are linearly polarized, and have
been strongly suppressed in the data by
the use of orthogonal polarizers in front
of the detector. Note that it is very
common to use wave number units in
Raman spectroscopy. The wave number
ν is equal to the reciprocal of the wave-
length: ν = 1/λ. It is effectively a unit
of energy with 1 cm−1 ≡ 0.124meV.

7.5.2 Surface plasmons

Careful analysis of the electron energy-loss spectra from a metal typically
reveals that there are two different types of plasmon within the metal,
namely bulk and surface plasmons. We have considered the first type
in the previous subsection, and our task now is to explain the second.
Interest in these surface plasmons has increased dramatically in recent
years, and a new field of research has burgeoned called plasmonics.
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Surface plasmons are quantized electromagnetic surface waves that
are localized at the interface between a plasma and a dielectric material.
We are interested here in the case where the plasma is a metal. The
dielectric is usually the air, although it might also typically be glass or a
semiconductor. The waves propagate along the interface plane, and the
electron charge density fluctuations in the metal generate electric field
lines as shown in Fig. 7.14. The amplitude of the electric field decays
exponentially on either side of the interface. metal

dielectric

metal

dielectric

Fig. 7.14 Electric fields associated
with electron charge density fluctua-
tions at the surface of a metal.

It is apparent from Fig. 7.14 that the surface plasmons have both
transverse and longitudinal electric field components, which contrasts
with bulk plasmons which are purely longitudinal. The presence of the
transverse component means that surface plasmons can interact directly
with photons. This interaction is sufficiently strong that we need to con-
sider the photon and plasmon as a coupled system called a polariton. In
general, polaritons are coupled electric polarization–photon waves. Sev-
eral different types of polariton are possible, and the type of polariton
that we are considering here is called a surface plasmon polariton. Phonon polaritons are considered in

Section 10.3.The dispersion of the surface plasmon polaritons can be found by
solving Maxwell’s equations. We define axes so that the plane z = 0
corresponds to the interface, with positive and negative z corresponding
to the dielectric and metal respectively, as shown in Fig. 7.15(a). The
wave is assumed to be propagating in the x direction. The electric field
has components in both the x and z directions, and its amplitude decays
exponentially as a function of the distance from the interface, as shown
in Fig. 7.15(b). In this geometry, the electric and magnetic fields can be
written in the form:

In principle, it might also be possible to
have waves with electric and magnetic
field components along the y and x di-
rections respectively. However, it can be
shown that these solutions are not pos-
sible. See Maier (2007).

Ed(x, z, t) = [Ed
x, 0, Ed

z ] ei(kd
xx−ωt) e−kd

zz ,

Hd(x, z, t) = [0,Hd
y , 0] ei(kd

xx−ωt) e−kd
zz ,

Em(x, z, t) = [Em
x , 0, Em

z ] ei(km
x x−ωt) e+km

z z ,

Hm(x, z, t) = [0,Hm
y , 0] ei(km

x x−ωt) e+km
z z ,

(7.50)

where the labels ‘d’ and ‘m’ refer to the dielectric and metal respectively.
Note that the opposite sign of the decay term in the z direction in
the dielectric and the metal ensures that the fields are localized at the
interface.

The fields given in eqn 7.50 must satisfy Maxwell’s equations and the
boundary conditions that apply when there is no net free charge density.
Consider first the boundary conditions. The tangential components of E
and H, together with the normal component of the electric displacement
D, must be continuous at the interface. On recalling that D = εrε0E,
we then have that:

Note that the most interesting case
to consider is when ω < ωp, where
εm is negative. Ed

z and Em
z therefore

point in opposite directions, as shown
in Fig. 7.14.

Ed
x = Em

x ,

Hd
y = Hm

y ,

εdEd
z = εmEm

z ,

(7.51)

where εd and εm are the relative permittivities of the dielectric and metal
respectively. The requirement that these conditions apply along all the
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surface implies that
kd

x = km
x ≡ kx , (7.52)

where kx is the common x component of the wave vector on both sides
of the interface.
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Fig. 7.15 (a) Definition of axes for the
interface between a dielectric medium
and a metal with relative permittivi-
ties of εd and εm respectively. The plane
z = 0 defines the interface, and the po-
lariton propagates in the x direction, as
shown by the � vector. (b) Exponential
decay of the field amplitudes as a func-
tion of the distance from the interface.

Now consider Maxwell’s fourth equation (eqn A.13) with j = 0 and
D = εrε0E. The fact that Ey = 0 and Hx = 0 allows us to relate Hy to
Ex:

−∂Hy

∂z
= εrε0

∂Ex

∂t
. (7.53)

On substituting the fields from eqn 7.50, this gives:

kd
z Hd

y = −iεdε0ω Ed
x ,

−km
z Hm

y = −iεmε0ω Em
x .

(7.54)

By using Ed
x = Em

x and Hd
y = Hm

y from eqn 7.51, we can rearrange this
to find:

kd
z

εd
+

km
z

εm
= 0 . (7.55)

Note that this is consistent with both kd
z and km

z being positive when εm
is negative, i.e. when ω < ωp. Since the overall charge density is zero,
the fields must satisfy (cf. eqns A.25 and A.28 with µr = 1):

∇2E =
εr
c2

∂2E
∂t2

. (7.56)

On inserting the fields from eqn 7.50 and using eqn 7.52, this gives:

k2
x − (kd

z )2 =
εd
c2

ω2 ,

k2
x − (km

z )2 =
εm
c2

ω2 .
(7.57)

Then, on using eqn 7.55 to eliminate the kz components, we finally
obtain:

kx =
ω

c

(
εmεd

εm + εd

)1/2

=
ω
√

εd
c

(
εm

εm + εd

)1/2

. (7.58)

This equation gives the dispersion curve for the surface plasmon polari-
tons.

Figure 7.16 compares the dispersion of the surface plasmon polaritons
to the photon dispersion in the bulk of a metal with a dielectric constant
given by eqn 7.7, namely:

εm = 1 − ω2
p

ω2
. (7.59)

The relative permittivity of the dielectric is assumed to be real and
independent of frequency.

Consider first the dispersion in the bulk of the metal, which is shown in
Fig. 7.16(a). For frequencies below ωp, the light is reflected, and there are
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Fig. 7.16 (a) Photon dispersion in the
bulk of a metal with a dielectric func-
tion given by eqn 7.7. (b) Surface plas-
mon polariton dispersion for the same
metal. The curve is drawn for the case
where the dielectric is air (i.e. εd = 1).
The dashed line in (b) shows the dis-
persion for light in the dielectric.

just evanescent fields in the medium. There are therefore no propagating
modes with ω < ωp. For ω > ωp, the dispersion is given by (see eqn 7.45):

ω =
(
ω2

p + c2k2
)1/2

. (7.60)

This asymptotes to ω = ck at large wave vectors.
The situation for the surface plasmon polaritons is qualitatively differ-

ent, as shown in Fig. 7.16(b). The ‘light line’ for the dielectric defined by
ω = ckx/

√
εd is shown for comparison. Three distinct frequency regions

can be identified.

(1) 0 < ω < ωp/
√

1 + εd. In this frequency region, both εm and (εm +
εd) are negative, so that kx is real. For small ω, |εm| is large.
Therefore the plasmon dispersion curve approaches the light line
for small kx.

(2) ωp/
√

1 + εd < ω < ωp. In this region εm is negative, but (εm + εd)
is positive. kx is therefore imaginary, and there are no propagating
modes.

(3) ω > ωp. Both εm and (εm + εd) are now positive, so that real
solutions for kx are again found. At high frequencies, εm → 1, and
the dispersion approaches the limit with ω = ckx

√
1 + εd/

√
εd.

In region (1) at large kx the group velocity (i.e. dω/dk) is zero and
ω → ωsp. This asymptotic frequency limit is called the surface plasmon
frequency. Equation 7.58 shows us that kx → ∞ when (εm+εd) → 0, and
so we can find ωsp by solving εm(ω) = −εd. For an undamped plasma
with εm(ω) given by eqn 7.59, we find: In electron energy-loss experiments on

metals, it is common to observe peaks
corresponding to both bulk and sur-
face plasmons. This gives a convenient
method for measuring both ωp and ωsp.

ωsp =
ωp√

1 + εd
. (7.61)

Note that ωsp = ωp/
√

2 when the dielectric is air.
The behaviour of the surface plasmon polaritons in region (1) where

ω < ωsp is the most interesting, since this corresponds to propagating
modes for frequencies below the plasma frequency. The spatial extent of
the fields in the z direction can be found from the values of kz in the
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metal and the dielectric. This can be done by substituting eqn 7.58 back
into 7.57 to obtain:

kd
z =

ω

c

( −ε2d
εm + εd

)1/2

,

km
z =

ω

c

( −ε2m
εm + εd

)1/2

.

(7.62)

Since (εm + εd) goes to zero at ωsp, the decay constants increase with
ω and diverge on approaching ωsp. The field decay length lz is equal
to 1/|kz|, and this implies that the polaritons become more localized
as ω approaches ωsp. Note that it is usually the case that |km

z | > |kd
z |,

and hence that the plasmon extends further in the dielectric than in the
metal, as illustrated in Fig. 7.15. At optical frequencies, ldz and lmz are
typically a few hundred or few tens of nanometres, respectively. (See
Exercise 7.20.)

Two other branches of plasmonics deal
with the enhancement of radiative ef-
ficiencies and the increased transmis-
sion of light through sub-wavelength
apertures. In the first case, the radia-
tive efficiency of an atom in a dielec-
tric can be enhanced by placing it close
to a metal surface, and hence exploit-
ing the large electric field amplitude
that is present at the interface. In the
second case, it has been demonstrated
that plasmonic effects can enhance the
transmission of light through periodic
arrays of sub-wavelength-size holes in
an optically thick metallic film. Details
of these and other applications may be
found in the Further Reading.

One of the aims of the research field of plasmonics is to propagate
electromagnetic waves in a metal as surface plasmon polaritons. With
values of lmz being in the sub-100 nm range, the waves can be confined
to dimensions smaller than the wavelength of light, and we then enter
the realm of nanophotonics, which is not accessible to conventional
optics due to diffraction limits. The distance that the plasmon modes
can propagate along the surface is determined by the imaginary part of
εm. This can be several tens of micrometres (see Exercise 7.20), which
is more than adequate for the applications that are being considered.

An issue that has to be addressed in plasmonics is the way to couple
light to the polaritons. It is apparent from Fig. 7.16(b) that the polariton
modes always lie below the light line. This means that polaritons can
never transform directly into light: they are non-radiative modes. By the
same token, it is not possible to couple light directly from the dielectric
into the polariton modes, since it is never possible to match the wave
vectors. Therefore, in order to couple external light into the surface
plasmon polaritons, techniques must be used to change the wave vector
of the light. One way to do this is to use a grating. In fact, it has been
known for a long time that the reflectivity of metallic ruled gratings can
drop significantly when one of the diffracted orders propagates parallel
to the surface. This effect, which is called Wood’s anomaly, is now
known to be caused by the excitation of surface plasmon polaritons in
the metal. Details of how the coupling to polariton modes is achieved in
practice may be found in the references cited for Further Reading.

A striking example of surface plasmon effects is to be found in consid-
ering the optical properties of metal colloids. Metal colloids are made by
dispersing a large number of very small metallic particles (i.e. ‘nanopar-
ticles’) throughout a homogeneous medium such as glass or water. It

Colloids can be solids, liquids, or gases.
The particle size in a colloid should
be smaller than the wavelength of
light. An interesting application of
metal colloids is in the production of
stained glass. The colouration of me-
dieval stained glass is typically caused
by gold, silver or copper nanoparticles
incorporated into the glass during the
melt process.

has been known from antiquity that the colour of metal colloids is dif-
ferent from that of the bulk metal, and this phenomenon is now known
to be caused by the resonant excitation of surface plasmons in the metal
nanoparticles. However, in contrast to surface plasmon polaritons, the
surface fields in the metallic nanoparticles do not propagate, since they



7.6 Negative refraction 207

300 500 700 900
0.0

0.4

0.8

1.2

A
b
so

rp
ti

o
n

(a
rb

.
u
n
it

s)

Wavelength (nm)

300 500 700 900
0.0

0.4

0.8

1.2

A
b
so

rp
ti

o
n

(a
rb

.
u
n
it

s)

Wavelength (nm)

Fig. 7.17 Absorption spectrum for a
thin film of gold nanoparticles embed-
ded within an organic dielectric with
εd ≈ 2.5. The film was grown on a glass
substrate, and the spectrum was mea-
sured at room temperature. The parti-
cle size was 6–7 nm. Unpublished data
from M.R. Sugden and T.R. Richard-
son.

are confined to the nanoparticles. They are therefore known as localized
surface plasmons.

A simple explanation for the change of the optical properties of col-
loidal metals compared to the bulk can be given in terms of the polar-
izability. If the particle radius a is much smaller than the wavelength of
the light, then it can shown that the polarizability is given by: The derivation of eqn 7.63, which has a

similar form to the Clausius–Mossotti
relationship given in eqn 2.35, may be
found, for example, in Maier (2007).
The general treatment of the inter-
action of light with conducting metal
spheres is called Mie theory: see Born
and Wolf (1999).

α = 4πa3 εm − εd
εm + 2εd

, (7.63)

which has a resonance when εm = −2εd. In an undamped plasma, the
resonance occurs at ωp/

√
3 when the dielectric is air (see Exercise 7.21),

and is independent of the particle size. However, the resonance in real
metals is shifted by interband absorption, and does depend somewhat
on the size. Figure 7.17 shows the absorption spectrum of a thin film of
gold nanoparticles embedded within an organic dielectric with εd ≈ 2.5.
A strong plasmonic absorption peak centred at 580 nm (2.1 eV) is clearly
resolved in the data. When the nanoparticles are suspended in water, the
resonance occurs at higher frequencies owing to the lower permittivity
of the dielectric. (See Exercise 7.22.) The absorption resonance is in fact
in the green spectral region, and the colloid appears red, instead of the
usual golden colour of the bulk metal. Similar effects can be observed
for other metals.

7.6 Negative refraction

Throughout this chapter we have been studying the optical properties
of materials that have negative values of εr. We now wish to consider
briefly the properties of materials that also have negative values of the
relative magnetic permeability, µr. As we shall see, this possibility leads
to the striking concept of a negative refractive index, which is a subject
that has attracted much interest in recent years.

The general relationship between the refractive index of a medium
and µr follows directly from Maxwell’s equations. Equation A.29 shows
that the speed of light in a medium is equal to c/

√
εrµr, and so we can

write:
ñ =

√
εrµr . (7.64)
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In everything that we have been considering so far in this book, we have
been assuming that µr = 1, so that eqn 7.64 reduces to ñ =

√
εr. In

fact, (µr − 1) characterizes the magnetic response of the medium, and
magnetic dipoles respond to oscillating electromagnetic fields in much
the same way that electric dipoles do. However, the natural resonant
frequencies are low (∼GHz at most), and so the magnetic response is
usually negligible at optical frequencies. It is therefore important to clar-
ify at the start that there are no known natural materials that have µr

significantly different from unity at optical frequencies. The materials
that we shall be considering here are therefore purely artificial.

The four possible general combinations of values of εr and µr are
depicted schematically in Fig. 7.18. In quadrant I, both εr and µr are
positive. This is the usual situation in a transparent optical medium, and
the solutions to Maxwell’s equations are travelling waves with a phase
velocity determined by a refractive index n that is both real and positive.
In quadrant II, µr is positive, but εr is negative. This is the scenario
that we have considered at length in this chapter, since it applies to
the case of a metal below its plasma frequency. In these conditions, ñ
is purely imaginary. This means that the waves decay exponentially in
the medium: there are no propagating solutions, and incoming waves
from the air are reflected. A similar situation would occur in quadrant
IV, where εr is positive, but µr is negative. The final case to consider
is that which corresponds to quadrant III in which both εr and µr are
negative. The properties of materials that fall into quadrant III were
first considered theoretically by Veselago in 1968.

�
r

�
r

n � 0

� = 0

n � 0

� = 0

ñ = i�

� � 0

III

III IV

ñ = i�

� � 0

�
r

�
r

n � 0

� = 0

n � 0

� = 0

ñ = i�

� � 0

III

III IV

ñ = i�

� � 0

Fig. 7.18 Real and imaginary parts of
the complex refractive index for four
different combinations of values of εr
and µr. The negative refractive index
regime occurs in quadrant III, where
both εr and µr are negative.

Veselago’s main conclusion was that a medium with both εr and µr

negative would be transparent, and have a negative refractive index. Not
surprisingly, this gives rise to many unusual properties. The k vector of
the wave and the direction of energy flow are in opposite directions.
Since the energy flow is determined by the Poynting vector E × H, the
reversal of the direction of energy flow relative to k is consistent with
reversing the direction of the magnetic field. This means that E, H
and k now form a left-handed system instead of the usual right-handed
arrangement, and so materials with n < 0 are sometimes called ‘left
handed’.

Even more striking effects occur when light is refracted on entering
the negative index medium. If the incoming ray has an angle of incidence
θi, then the angle of refraction θr is given by Snell’s law:

sin θi

sin θr
= n . (7.65)

When n is negative, θi and θr have opposite signs, as shown in Fig. 7.19(a).
This leads to the possibility that the medium can behave as a lens, as
shown in Fig. 7.19(b). An object to the left of the medium is brought
to a focus to the right, after passing through an intermediate focus. The
trajectory of the rays only depends on the thickness of the medium, and
there are therefore no aberrations. Hence the medium is said to behave
as a perfect lens. Since the rays emerge exactly as they would from the
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source, the medium is invisible.
Interesting though these properties might be, there would be no point

considering them if it were not possible to obtain a medium that has
n < 0. Metals such as silver or gold have negative values of εr at most
frequencies, and so the issue becomes that of obtaining the negative
value of µr. As mentioned above, there are no known natural materi-
als that possess this property at useful frequencies. Hence the negative
refractive index must be engineered by creating an artificial structure
called a metamaterial. It was not until the mid-1990s that this subject
became of widespread interest, following work by Pendry in which the
first practical designs for metamaterials with a negative refractive index
were proposed.

The principle behind a metamaterial is to create a metallic structure
designed to behave like a magnetic dipole resonator. Figure 7.19(c) illus-
trates one of the standard designs considered in the literature, namely
an array of split rings. In this case the magnetic response is determined
by the design of the constituent units (i.e. the split rings), which must
be smaller than the wavelength of the electromagnetic waves, but are
still much larger than the underlying atoms. It is for this reason that
the medium is called a metamaterial.

� i � r

n � 0n � 1

n � �1

(a)

(b)

(c)

� i � r

n � 0n � 1

n � �1

(a)

(b)

(c)

Fig. 7.19 (a) Negative refraction in a
medium with n < 0. (b) Perfect lens-
ing for n < 0. (c) Split ring design for
producing a negative refractive index.
In (a) and (b) the arrows give the di-
rection of the Poynting vector.

We have seen in Chapter 2 that the refractive response of an electric-
dipole resonator is negative above the natural frequency ω0. (See, for
example, Fig. 2.6.) Magnetic resonators behave in a similar way, and
so we can expect to obtain µr < 0 in the frequency region above their
resonant frequency. The difficulty is that the value of ω0 depends on
the size of the structure. A split-ring array with a period of ∼ 10mm
has negative refraction at GHz frequencies, but much smaller structures
must be used for optical frequency experiments. For this reason, the
underlying principles of negative index materials are usually tested first
at microwave frequencies. Further details of the design of metamaterials
and progress in obtaining negative refraction at optical frequencies may
be found in the works cited for Further Reading.

Chapter summary

• Free electron effects are observed in metals and doped semicon-
ductors. They can be modelled by the classical dipole oscillator
model with no restoring force term. This approach is called the
Drude–Lorentz model.

• The free electron plasma reflects strongly up to the plasma fre-
quency, which depends on the electron density. The damping rate
of the oscillations is determined by the momentum scattering time
deduced from electrical conductivity measurements.
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• Metals reflect strongly due to the plasma reflectivity effect. At
frequencies above the plasma frequency, the metals become trans-
parent. This effect is called the ultraviolet transparency of metals.

• Interband transitions are possible in metals from states below the
Fermi energy to empty levels above it. The interband absorption
can reduce the reflectivity from the value predicted by the Drude–
Lorentz model, and must therefore be considered to obtain a good
fit to experimental reflectivity data.

• Doped semiconductors reflect at frequencies in the infrared due to
the free electrons and holes generated by the doping process. Free
carrier absorption can be observed at frequencies above the plasma
frequency but below the fundamental absorption edge at the band
gap.

• P-type semiconductors show an additional absorption mechanism
in the infrared due to intervalence band transitions.

• Doped semiconductors show sharp infrared absorption lines due to
impurity transitions at low temperatures. At room temperature,
the impurity states broaden the fundamental absorption edge.

• Plasma oscillations can occur at the plasma frequency. The quan-
tized oscillations are called plasmons. These can be observed by
electron energy-loss spectroscopy in metals, or by Raman scatter-
ing in doped semiconductors.

• Surface plasmons correspond to localized electromagnetic fields at
the interface between a metal and a dielectric. Propagating surface
plasmon polariton modes can be excited by coupling light to the
metal with a grating or prism.

• Materials in which both the relative permittivity and magnetic
permeability are negative are characterized by a negative refractive
index. The artificial structures that show these effects are called
metamaterials.

Further reading

The properties of electromagnetic waves in a conducting
medium are covered in many electromagnetism and op-
tics textbooks, for example Bleaney and Bleaney (1976),
Born and Wolf (1999), or Hecht (2001).

The free carrier model of metals is covered in Singleton
(2001). It is also covered in Ashcroft and Mermin (1976),
Burns (1985), or Kittel (2005).

Free carrier reflectivity and absorption in semiconduc-
tors has been reviewed by Pidgeon (1980), and is also
covered by Yu and Cardona (1996). Yu and Cardona give
further details about intervalence band and impurity ab-

sorption.
The properties of plasmons are treated in depth in

Maier (2007). Bulk plasmons are covered in Kittel (2005),
while the classic text on surface plasmons is Raether
(1988). Review articles on the research fields of plas-
monics and nanophotonics may be found in Barnes et
al. (2003), Lal et al. (2007), Maier and Atwater (2005),
Murray and Barnes (2007), or Ebbeson et al. (2008).

The concept of negative refraction was proposed in
Veselago (1968). Introductory reviews on the subject may
be found in Pendry (2004) or Pendry & Smith (2004).
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A more detailed review is given in Ramakrishna (2005).
Progress on obtaining negative refraction at optical fre-

quencies is reviewed in Shalaev (2007).

Exercises

(7.1) Derive a relationship between the Fermi energy EF

of a metal and its plasma frequency ωp.

(7.2) The ionosphere reflects radio waves with frequen-
cies up to about 3MHz, but transmits waves with
higher frequencies. Estimate the free electron den-
sity in the ionosphere.

(7.3) Estimate the skin depth of radio waves of fre-
quency 200 kHz in sea water, which has an av-
erage electrical conductivity of about 4 Ω−1m−1.
Hence discuss the difficulties you might encounter
when attempting to communicate with a sub-
merged submarine using radio waves.

(7.4) Cesium metal is found to be transparent to electro-
magnetic radiation of wavelengths below 440 nm.
Calculate a value for the electron effective mass
using the data given in Table 7.1.

(7.5) The momentum scattering time of silver is 4.0 ×
10−14 s at room temperature. Calculate the dielec-
tric constant at 500 nm, neglecting interband ab-
sorption effects. Hence estimate the reflectivity of
a silver mirror at this wavelength. See Table 7.1
for the plasma frequency of silver.
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Fig. 7.20 Reflectivity of gold in the wavelength range
100–1000 nm. Data from Lide (1996).

(7.6) Estimate the fraction of light with wavelength
1�m that is transmitted through a 20 nm thick
gold film at 77K, where the DC electrical conduc-
tivity is 2 × 108 Ω−1m−1. The plasma frequency
and electron density of gold are given in Table 7.1.

(7.7) Figure 7.20 shows the measured reflectivity of gold
in the wavelength range 100–1000 nm. Account
qualitatively for the shape of the spectrum, and
deduce the energy gap between the d bands and
the Fermi energy. Use the data to explain the char-
acteristic colour of gold.

(7.8) What is the value of the dielectric constant of a
medium that has zero reflectivity? Use eqn 7.22
to show that the reflectivity of a lightly damped
doped semiconductor is zero at the angular fre-
quency given in eqn 7.25.

(7.9) Use the data shown in Fig. 7.7 to deduce the value
of the electron effective mass of InSb at each car-
rier density. Take εopt = 15.6.

(7.10) The absorption coefficient at room temperature of
an n-type sample of InAs with a doping level of
1.4×1023 m−3 is found to be 500m−1 at 10�m. Es-
timate the momentum scattering time, given that
the electron effective mass is 0.023 m0 and the re-
fractive index is 3.5.

(7.11)∗A laser beam operating at 632.8 nm with an inten-
sity of 106 W m−2 is incident on a sample of pure
InP at room temperature. The absorption coeffi-
cient at this wavelength is 6 × 106 m−1, and the
carrier lifetime is 1 ns. Estimate the free carrier
absorption coefficient at the wavelength of a CO2

laser (10.6�m), where the refractive index is 3.1.
The effective mass and momentum scattering time
for the electrons are 0.08 m0 and 2×10−13 s, while
the equivalent values for the holes are 0.6 m0 and
5 × 10−14 s.

(7.12)∗Consider the intervalence band processes illus-
trated in Fig. 7.9 for a heavily doped p-type sam-
ple of GaAs containing 1 × 1025 m−3 acceptors.

∗Exercises marked with an asterisk are more difficult.



212 Exercises

The valence band parameters for GaAs are given
in Table D.2.
(a) Work out the Fermi energy in the valence band
on the assumption that the holes are degenerate.
What are the wave vectors of the heavy and light
holes at the Fermi energy?
(b) Calculate the upper and lower limits of the
photon energies for the three absorption processes
labelled (1), (2), and (3) in Fig. 7.9, namely the
lh → hh, the SO → lh and the SO → hh transi-
tions.

(7.13) Figure 7.11 shows the infrared absorption spec-
trum of n-type silicon, which has a dielectric con-
stant of 16. Two series of lines labelled np0 and
np± are identified in the data.
(a) Show that the np0 series is consistent with
eqn 7.30, and deduce a value for the electron ef-
fective mass for these transitions.
(b) Show that the np± series follows the following
formula:

hν =
R∗

0

12
− R∗

±
n2

,

stating the values of R∗
0 and R∗

± deduced from the
data.

(7.14) It is found that the infrared absorption spectrum
of a lightly doped n-type semiconductor with a
relative permittivity of 15.2 consists of a series of
sharp lines at low temperatures. The energies of
the lines are given by:

E(n) = R∗(1 − 1/n2)

where R∗ is 2.1meV and n is an integer greater
than 1. Explain why the energies of the absorp-
tion lines are almost independent of the type of
impurity atoms used for the doping, and deduce a
value for the electron effective mass.

(7.15) The fundamental absorption edge of a semicon-
ductor shifts from 5.26�m to 5.44�m when doped
with acceptors. Deduce a value for the ground
state acceptor level energy relative to the valence
band.

(7.16) The beam from an argon ion laser operating at
514.5 nm is incident on an n-type GaAs sample.
A peak is observed in the intensity of the scat-
tered light at 534.3 nm. Explain this observation,
and estimate the electron density, given that m∗

e =
0.067 m0 and n = 3.3.

(7.17) Calculate the doping density at which the plas-
mons in n-type GaAs have the same wave number
as the longitudinal optic phonon at 297 cm−1. Take
m∗

e = 0.067 m0 and n = 3.3.

(7.18) In a metal, the frequency at which εr = 0 varies
slightly with the wave vector k ≡ |�|, and for small
k we have:

ω(k) ≈ ωp

�
1 +

3v2
Fk2

10ω2
p

�
,

where vF is the Fermi velocity of the electrons.
Consider a metal with electron density N =
1029 m−3 and lattice constant a = 4 Å. Calculate
the relative size of the term in k2 for k = 0.1 π/a,
i.e. 10% of the size of the Brillouin zone.

(7.19) In an electron energy-loss experiment on a metal,
two series of peaks are observed that obey eqn 7.48
with �ωp = 10.3 eV and 15.3 eV. Use the data in
Table 7.1 to determine which metal is being inves-
tigated, and account for the two series of peaks.

(7.20) A surface plasmon mode with a frequency corre-
sponding to a vacuum wavelength of 600 nm is ex-
cited at the interface between silver and air. The
relative permittivity of silver at this frequency is
given approximately by εm = −18 + i.
(a) Calculate the decay constants kd

z and km
z , and

hence deduce the field decay lengths in the direc-
tion normal to the surface in both the air and in
the metal.
(b) The propagation length in the direction par-
allel to the surface is defined as the distance over
which the intensity drops by a factor of e−1. Cal-
culate the imaginary part of kx, and hence deduce
the propagation length for silver at 600 nm.

(7.21) Show that the resonance of the polarizabil-
ity of colloidal metal nanoparticles that obey
eqn 7.7 occurs at an angular frequency given by
ωp/

√
1 + 2n2 in a medium with a refractive index

of n. Evaluate this frequency for the case where
the dielectric is air.

Table 7.3 Complex relative permittivity of gold be-
tween 500 and 550 nm. Adapted from Raether (1988).

Wavelength (nm) ε1 ε2

500 –2.3 3.6
510 –3.0 3.1
520 –3.7 2.7
530 –4.4 2.4
540 –5.2 2.2
550 –6.0 2.0

(7.22) (a) The complex relative permittivity of gold in the
range 500–550 nm is given in Table 7.3. Use this
information to estimate the resonance wavelength
of colloidal gold nanoparticles in water, which has
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a refractive index of 1.33.
(b) Use the data for gold given in Table 7.1 to com-
pare the result obtained in part (a) with the pre-

diction of the previous exercise. Account for any
difference.
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In this chapter we consider the optical properties of electronic materials
based on carbon–carbon bonds. In principle, this covers a huge range
of compounds, and it is therefore necessary to restrict our attention to
those that have the most interesting optical properties.

The bulk of the chapter is concerned with organic opto-electronic ma-
terials. These have grown considerably in importance since the 1990s
following the development of organic light-emitting diodes and photo-
voltaic devices. The final part of the chapter gives a brief survey of the
optical properties of carbon nanostructures. This is another subject that
has developed rapidly in recent years, mainly as a result of the wider
availability of high-quality carbon nanotube and single layer graphene
samples.

8.1 Introduction to organic materials

The chemistry of organic molecules is based on the covalent bonds
between the carbon atoms. Carbon has an electronic configuration of
1s2 2s2 2p2, with four valence electrons in the n = 2 atomic shell. In the
diamond structure, each carbon atom forms four single covalent bonds
with its nearest neighbour. In organic compounds, by contrast, there
may be single, double, or triple bonds between adjacent carbon atoms.
In molecules with double or triple bonds, the valence electrons are di-
vided between σ and π bonds. It is easiest to see how this works by
means of specific examples.

Consider the ethylene (H2C=CH2) molecule shown in Fig. 8.1(a).
Each carbon atom is bonded to two hydrogen atoms, and has a dou-
ble bond with the other carbon atom. The two 2s electrons hybridize
with one of the 2p electrons to form three sp2 bonds. These are the σ
bonds and are arranged in a plane at an angle of about 120◦ to each
other. The other 2p electron forms a π orbital derived from the 2pz

atomic orbital, with wave function lobes above and below the plane de-
fined by the nuclei of the carbon and hydrogen atoms. The electrons in
these π orbitals are called π electrons. The overlap of the π orbitals
produces the second bond between the two carbon atoms.

Consider now the benzene molecule (C6H6) shown in Fig. 8.1(b). This
is also a planar molecule, with the six carbon atoms arranged as a
hexagon. Each carbon atom forms σ bonds with one hydrogen atom and
its two adjacent carbon atoms. The π electrons now form a ring orbital
above and below the plane of the hexagon. The chemical structure of
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Fig. 8.1 (a) The ethylene molecule
(C2H4). The carbon and hydrogen
atoms lie within a plane defined by the
σ bonds shown by the thick black lines.
The π orbitals lie above and below
this plane. (b) The benzene molecule
(C6H6). The π electrons form a delo-
calized ring orbital above and below the
plane of the hexagon defined by the six
carbon atoms.

benzene is traditionally drawn as a hexagon with alternating double and
single bonds between the carbon atoms. (See for example Fig. 8.12(a).)
In reality, however, the π electrons are shared equally between the two
bonds on either side of each carbon atom. Organic molecules like benzene
with alternating multiple and single bonds are said to be conjugated.

The π electrons in conjugated compounds are able to spread out in
large delocalized orbitals. For example, the formation of the ring orbital
in benzene allows the π electrons to spread out much more than the elec-
trons in the σ bonds. On applying the concepts of quantum confinement
developed in Section 6.1, we expect that the spreading of the π electron
wave functions will lead to a reduction in the energy. This is indeed the
case, as is demonstrated by the fact that the lowest electronic transition
of ethylene occurs at around 6.9 eV, whereas the equivalent transition
in benzene occurs at 4.6 eV. If we use larger molecules with more delo-
calized π electrons, we can reduce the confinement energy further, and
push the transition energies down into the visible spectral region. This
is why the transitions of the π electrons in conjugated molecules are the
focus of interest in this chapter.

The benzene ring is an example of a cyclic conjugated molecule. The
name follows from the fact that the electron wave functions must have
cyclic periodicity around the closed ring. There are many other cyclic
conjugated molecules that can be formed, and the optical properties of
a few of these will be considered in Section 8.3.1. It is also possible to
form linear conjugated molecules, in which the π electrons delocalize
along a chain rather than into a ring. The conjugated polymers that are
considered in Section 8.3.2 are good examples of this type of conjugation.

Solids based on conjugated molecules are formed by condensation of
neutral organic compounds, and are held together by van der Waals
interactions. These interactions are relatively weak compared to those
within the molecule itself, which originate from the strong covalent bonds
between the atoms. This is exemplified by the low melting point of or-
ganic solids and their generally soft structure. A consequence of the
relatively weak intermolecule binding is that the electronic states re-
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main tightly bound to the constituent molecules. Therefore, we shall be
dealing mainly with localized electronic states, which contrast with the
delocalized band states that we have been considering in Chapters 3–7.
A similar consideration applies to the vibrational modes. The most im-
portant phonons of molecular solids are localized modes with discrete
frequencies. These are essentially just the vibrational modes of the con-
stituent molecules, perhaps with their frequencies slightly altered in the
condensed phase.

Single crystals of some conjugated or-
ganic materials have been prepared,
but in most cases the samples are amor-
phous, having been prepared from the
solution as thin films on glass sub-
strates. It is not appropriate to apply
traditional solid-state physics based on
periodic crystalline structure to these
amorphous materials.

The fact that the electronic and vibrational states tend to be local-
ized means that the optical properties of the solids are quite similar to
those of the constituent molecules. In many cases the solid state merely
provides a convenient way to incorporate large densities of molecules
into an opto-electronic device, without necessarily introducing substan-
tially new physics. This makes it clear that we need to understand the
optical properties of isolated molecules first before we can properly un-
derstand the properties of molecular solids. The next section therefore
gives a review of the electronic states and optical transitions of simple
molecules.

An important aspect of molecular spectra is the strong coupling be-
tween the electronic and vibrational states, which means that the optical
transitions are vibronic in character. This is equally true for isolated
molecules and for the solids that we consider here. The basic princi-
ples of vibronic transitions in simple isolated molecules are discussed
in Sections 8.2.2–8.2.4 below. This will provide us with a good basis
for understanding the physics of molecular solids, and will also serve as
a useful introduction for the other types of vibronic systems that are
considered in Chapter 9.

8.2 Optical spectra of molecules

The optical properties of molecules are generally divided into three spec-
tral regions:

• The far-infrared spectra: wavelength λ > 100 µm.
• The infrared spectra: λ ∼ 1 − 100 µm.
• The visible and ultraviolet spectra: λ < 1 µm.

These three spectral regions correspond respectively to transitions be-
tween the rotational, vibrational, and electronic states of the molecule. In
this chapter we are concerned only with the visible/ultraviolet spectra,
and so we restrict our attention to electronic transitions, with emphasis
on conjugated molecules.

8.2.1 Electronic states and transitions

In order to understand the electronic spectra of molecules, we must first
learn the terminology of the electronic states and transitions. Molecular
electronic states can be arranged in order of increasing energy in much
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the same way as for atoms. Figure 8.2 gives a schematic diagram of how
this looks for a typical conjugated molecule. The electrons fill up the
molecular orbitals until they are all accounted for. The highest filled
energy level is called the HOMO level (highest occupied molecular or-
bital). In the case of a conjugated molecule, this will be a π orbital,
because the electrons in the σ bonds are very tightly bound. The first
energy level above the HOMO state is called the LUMO level (lowest
unoccupied molecular orbital). This will be an excited configuration of
the π orbitals, and is labelled a π∗ state. The lowest energy transition
therefore involves the promotion of a π electron to a π∗ state, and is thus
labelled a π → π∗ transition. Transitions involving the σ states occur
at much higher energies, because it takes a large amount of energy to
break a σ bond.

HOMO

LUMO

�

�
�

HOMO

LUMO

�

�
�

Fig. 8.2 Schematic electronic en-
ergy level diagram for a conjugated
molecule. The lowest energy transition
takes place between the HOMO (high-
est occupied molecular orbital) and the
LUMO (lowest unoccupied molecular
orbital) states. This is a π → π∗ tran-
sition.

The electrons in the ground state of a molecule are all paired off in
bonds with their spins anti-parallel. This means that the ground state
HOMO level has a spin quantum number S equal to 0. The excited
states, however, can either have S = 0 or S = 1. This is because the
excitation process puts an unpaired electron in the excited state and
leaves an unpaired electron in the HOMO state. According to the rules
of addition of angular momenta, the two spin 1/2 electrons can combine
to give a total spin of either 0 or 1. (See Appendix C.) This point is
illustrated in Fig. 8.3. The multiplicity of the spin states is equal to
(2S+1), because there are (2S+1) degenerate MS levels. Hence the S =
0 states are known as singlets, while the S = 1 states are called triplets.
Triplets tend to have lower energies than their singlet counterparts.

The separation of the electronic levels into singlet and triplet states
has very important consequences for the optical spectra. Each molecule
will have a series of singlet excited states labelled S1, S2, S3, . . . , in
addition to its singlet ground state which is labelled S0. There will be
a similar series of triplet excited states labelled T1, T2, T3, . . . Since
photons carry no spin, they can only excite transitions between electronic
states of the same spin. Therefore, transitions from the S0 ground state
to the triplet excited state are not allowed. The main optical absorption
edge therefore corresponds to the S0 → S1 singlet–singlet transition. The
emission spectrum is likewise dominated by the S1 → S0 transition.

The singlet excited states have short lifetimes of order 1–10 ns due to
the dipole-allowed transitions to the S0 ground state. The lowest triplet
state, on the other hand, has a long radiative lifetime because of the
low probability for the T1 → S0 transition. The different time scales for

We might have expected the probability
for triplet ↔ singlet transitions to be
exactly zero due to the spin selection
rule. However, spin–orbit coupling can
mix a small amount of singlet character
into the triplet states and allows some
probability for the transitions.

the singlet–singlet and triplet–singlet transitions are conveniently dis-
tinguished by describing the emission processes as fluorescence and
phosphorescence, respectively. As mentioned in Section B.3, this dis-
tinction is based on whether the emission is fast or slow, with the dividing
line drawn at around 10−7 to 10−8 s in molecules. A schematic diagram
of the two types of emission processes is given in Fig. 8.12(b).
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Fig. 8.3 The unpaired electrons of
an excited molecule can either have
their spins anti-parallel or parallel. The
states with anti-parallel spins have spin
quantum number S = 0 and are called
singlets after their multiplicity. The
states with parallel spins have S =
1 and are called triplets. The ground
state is always a singlet.
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8.2.2 Vibronic coupling

When a molecule makes an electronic transition, it is possible that it
can also change its vibrational state. This leads to the concept of vi-Isolated molecules can, of course, also

change their rotational state during an
electronic transition, but since the rota-
tional energies are so small, these con-
siderations are not important here.

bronic (i.e. vibrational–electronic) transitions. The basic physics of the
vibrational–electronic transitions can be understood with reference to
Fig. 8.4. The diagram shows absorption and emission transitions be-
tween two electronic states of a molecule with energies of E1 and E2.
For simplicity, we assume that the lower state is the S0 ground state,
and the upper state is a singlet exited state with allowed electric-dipole
transitions from S0.

The atoms in a molecule can vibrate about their bonds, which gives
the molecule vibrational energy in addition its electronic energy. Hence
we must associate a series of vibrational levels with each electronic state,
as shown in Fig. 8.4. Quantum mechanics tells us that the energy of a
vibrational oscillation of angular frequency Ω is equal to (n + 1/2)�Ω,
where n is the number of quanta excited. Thus the energy of the molecule
in the ground-state level when n1 quanta of frequency Ω1 are excited is
given by:

E = E1 + (n1 + 1/2)�Ω1. (8.1)

In the same way, the energy of the molecule in the excited electronic
state with n2 quanta of frequency Ω2 excited is given by:

E = E2 + (n2 + 1/2)�Ω2. (8.2)

The subscripts on Ω allow for the possibility that the vibrational fre-
quencies are different for the two electronic states.

It will frequently be the case that the
vibrational frequencies of the upper and
lower states are very similar, and so it
will be a reasonable assumption to set
Ω2 = Ω1. In this case, we just denote
the common vibrational frequency as
Ω.

We consider an optical transition in which an electron is promoted
from the ground state to the excited state by absorbing a photon, as
indicated by process (1) in Fig. 8.4. We assume that the molecule is
initially in the lowest vibrational level of the ground state. This is rea-
sonable because the energies of the vibrational quanta are typically of
order ∼ 0.1 eV, and so there will be very few quanta excited at room
temperature, where kBT ∼ 0.025 eV. (See, for example, Exercise 8.3.)
On applying conservation of energy to the transition with n1 = 0, we
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find that:

�ωa =
(
E2 + (n2 + 1/2)�Ω2

) − (
E1 + �Ω1/2

)
= �ω0 + n2�Ω2 ,

(8.3)

where ωa is the angular frequency of the absorbed photon and

�ω0 = E2 − E1 + 1
2
�(Ω2 − Ω1) . (8.4)

This vibrational–electronic process causes the electron to jump to the
excited electronic state, and simultaneously creates vibrational quanta.
Since n2 can only take integer values, the absorption spectrum will in
principle consist of a series of discrete lines with energies given by eqn 8.3.
In practice, these discrete lines are often broadened into a continuum.
(See the discussion of the experimental data in Section 8.2.5.)
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Fig. 8.4 Schematic diagram of the
vibrational–electronic transitions in a
molecule. The four processes indi-
cated are respectively: (1) absorption;
(2) non-radiative relaxation; (3) emis-
sion, and (4) non-radiative relaxation.

The absorption transition leaves the molecule in the excited electronic
state with a large amount of vibrational energy. This excess vibrational
energy is rapidly lost in radiationless relaxation processes, as indicated
by the wiggly arrow labelled (2) in Fig. 8.4. The relaxation process occurs
by spreading the vibrational energy of the individual excited molecule
throughout the rest of the system. (See the discussion in Section 8.2.4
below.) Ultimately, the excess vibrational energy ends up as heat.

Once the molecule has relaxed to the bottom of the excited state, it
then returns to the ground state by emitting a photon at energy �ωe, as
shown by process (3) in Fig. 8.4. This leaves the molecule in an excited
vibrational level of the ground state. The frequency of the photon is
given by:

�ωe = (E2 + �Ω2/2) − (E1 + (n1 + 1/2)�Ω1)
= �ω0 − n1�Ω1.

(8.5)

Thus the emission spectrum consists of a series of vibrational–electronic
lines with frequencies given by eqn 8.5. The molecule finally returns to
the n1 = 0 level of the ground state by losing the excess vibrational
quanta in further radiationless relaxation processes, as shown by step
(4) in Fig. 8.4.

On comparing eqns 8.3 and 8.5, we see that the absorption occurs
at a higher energy than the emission, except for the cases when no
vibrational quanta are excited during the electronic transitions. This
is a very common phenomenon, and should be contrasted with atomic
transitions, in which the absorption and emission frequencies coincide.
The difference in energy between the absorption and emission spectra is
called the Stokes shift.

8.2.3 Molecular configuration diagrams

The vibrational–electronic spectra of molecules can be understood in
more detail with the aid of configuration diagrams. These are dia-
grams that show the electronic energy of a molecule as a function of
the configuration coordinates. In order to understand how these di-
agrams work, we first consider the simplest type of molecule, namely a



220 Molecular materials

Fig. 8.5 Energy-level diagram for the
ground state and an excited state of
a simple diatomic molecule, as a func-
tion of the separation r between the
two nuclei. Vibrational–electronic ab-
sorption and emission transitions at en-
ergies of �ωa and �ωe are indicated.
The schematic ‘dumb-bell’ diagrams of
the molecule, with the radius of one
of the atoms increasing in the excited
state, illustrate the point that the equi-
librium separations of the nuclei in the
two electronic states are different.
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diatomic molecule, in which there is only one vibrational mode, namely
the stretching of the bond between the two atoms. The vibrational con-
figuration of the molecule can therefore be given a direct physical inter-
pretation as the internuclear separation.

The validity of the Born–Oppenheimer
approximation is demonstrated exper-
imentally by the fact that the vi-
brational oscillations of the molecule
(which are caused by displacements
of the nuclei from their equilibrium
positions) occur at frequencies in the
infrared spectral range (∼ 1013 Hz),
whereas the electronic transitions occur
in the visible and ultraviolet spectral
regions (1014–1015 Hz).

The electronic energy of a diatomic molecule is usually calculated by
applying the Born–Oppenheimer approximation. This says that the
electronic and nuclear motions are independent, and means that we can
draw graphs of the electronic energy as a function of the internuclear sep-
aration. The approximation is valid because the nuclei are much heavier
than the electrons, and therefore move on a far slower time scale.

Figure 8.5 shows a schematic configuration diagram of a typical di-
atomic molecule. The diagram shows the energy of the ground state and
one of the excited states as a function of the separation r between the
two nuclei. If the states are bound, there must be a minimum energy
for some value of r. The position of the minimum in the ground state is
labelled r1 and corresponds to the equilibrium separation of the nuclei
in the unexcited molecule. The minimum at r2 is the mean separation of
the nuclei when the molecule is in the excited electronic state. In general,
r1 and r2 are not the same.

We can understand why the minima occur at different positions by
discussing the behaviour of the simplest diatomic molecule, namely hy-
drogen. Consider the ground state of the H2 molecule. When r = ∞,
the atoms are independent of each other, and the ground-state energy is
that of two separate hydrogen atoms each in the 1s level. As r decreases
from ∞, the total energy of the system must decrease due to the cohe-
sive energy of the H–H covalent bond. However, if r becomes too small,
the energy will increase again due to the electron–electron and proton–
proton repulsion. Therefore, the energy of the system must go through
a minimum at some value of r, labelled r1, and then increase strongly
for smaller r. For the H2 molecule, r1 = 0.074 nm, and corresponds to
the equilibrium separation of the nuclei in the ground state.
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Now consider the energy of the first optically accessible excited state
of the H2 molecule. At r = ∞, this corresponds to one atom being in Optical transitions from the 1s2 ground

state to the 1s 2p excited state of H2 oc-
cur at 11.3 eV, which is slightly larger
than the Lyman α line in atomic hydro-
gen: see Exercise 8.4.

the 1s level and the other in the 2p level. The energy of the system will
at first decrease with r due to the attractive forces between the atoms.
We then go through another minimum labelled r2 in Fig. 8.5 as the
repulsive forces for small r become significant. In general, r2 will not be
equal to r1 because the minimum energy is obtained when we maximize
the cross-attractions between the electron of one atom and the proton of
the other, while minimizing the sum of the proton–proton and electron–
electron repulsions. This process obviously depends on the overlap of the
electronic wave functions, which will be different for the orbitals of the
1s2 ground state and those of the 1s 2p excited state. In the case of H2,
the energy minimum occurs at r2 = 0.13 nm for the 1s 2p state, which
is substantially larger than r1.

The difference between r1 and r2 can be given a very simple interpreta-
tion with the aid of the schematic ‘dumb-bell’ pictures of the molecule,
which are included in Fig. 8.5. The equilibrium separation of the nu-
clei roughly corresponds to the point where the atomic orbitals begin
to touch and bond together. In the ground state, both atoms have the
same radius, but in the excited state one of them has a larger radius. It
is thus obvious that r2 will be larger than r1.

The dependence of the electronic energy on the position coordinates
shown in Fig. 8.5 is typical of other molecules, and can be used as a
starting point for the discussion of the vibrational modes. The vibra-
tional motion of the molecule will be determined by the shape of the
E(r) curve. Although the detailed functional form of E(r) is compli-
cated, it can be shown that for small displacements from the minimum
position, the curve can always be approximated by a parabola. (See, for
example, Exercise 8.5.) Therefore, near the minimum we can write:

E(x) = Emin + 1
2
µΩ2x2 , (8.6)

where µ is the reduced mass of the molecule, and x is the displacement
from the equilibrium position. In the case of the ground state, x = r−r1,
while for the excited state, x = r − r2. Equation 8.6 describes a simple
harmonic oscillator of frequency Ω. The quantized vibrations about the
equilibrium position associate a series of uniformly spaced energy levels
with each electronic state as shown in Fig. 8.5. The separation of the
vibrational levels will be different for each electronic state because the
value of Ω depends on the curvature of the E(r) curve (see Exercise 8.5),
which will differ from state to state.

8.2.4 The Franck–Condon principle

The optical transitions between the coupled vibrational–electronic lev-
els of a molecule can be understood by invoking the Franck–Condon
principle. The Franck–Condon principle, like the Born–Oppenheimer
approximation, is a consequence of the fact that electrons are much
lighter than nuclei.
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The steps that take place when photons are absorbed and re-emitted
by a molecule according to the Franck–Condon principle are illustrated
schematically in Fig. 8.6. The molecule starts in the ground state with a
mean nuclear separation of r1. The absorption of the photon promotes
an electron to the excited state without altering r. The transition thus
leaves the molecule in the excited state with a mean nuclear separation of
r1 instead of the equilibrium separation r2. The separation of the nuclei
rapidly relaxes to r2 before re-emitting a photon. After the photon is
emitted, the molecule is left in the ground state with a mean nuclear
separation of r2. Further rapid relaxation processes occur to complete
the cycle and bring the molecule back to its equilibrium separation in the
ground state. These four steps correspond to the four processes indicated
in the simplified energy-level diagram shown in Fig. 8.4.
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Fig. 8.6 Schematic representation of
the processes that occur during the ab-
sorption and emission of photons by
vibronic transitions in a molecule. r1

and r2 are the equilibrium separations
of the nuclei in the ground and ex-
cited states respectively. One of the
atoms has a larger radius in the excited
molecule because the atom itself is in
an excited state.

The ‘rapid relaxation’ processes that accompany the optical transi-
tions need some clarification. If we think of the nuclear vibrations as
analogous to those of a spring, we can see that the transition leaves the
molecular spring in a compressed or extended state at time t = 0. We
know that in this situation the spring will immediately begin to vibrate
at its own natural frequency for t > 0. This is equivalent to instigating
the oscillations of a specific vibrational mode in one particular molecule.
However, the molecule may have other vibrational modes, and it can
also interact with the other molecules that surround it. The relaxation
of the vibrational energy created during the transition thus involves the
spreading of the localized vibrational energy of a particular molecule to
the other modes of the molecule and to the other molecules. This is a
more technical way of saying that the excess energy ends up as heat.
The vibrational relaxation typically occurs in less than 1 ps in a solid,
which is much faster than the ∼ 1 ns taken to re-emit a photon.

The Franck–Condon principle implies that we represent the optical
transitions by vertical arrows in configuration diagrams, as shown in
Fig. 8.5. The absorption of a photon puts the molecule in an excited
vibrational state as well as an excited electronic state. The excess vi-
brational energy is lost very rapidly through non-radiative relaxation
processes, as indicated by the dotted lines in Fig. 8.5. The frequencies of
the photons absorbed and emitted are given by eqns 8.3 and 8.5. These
describe a series of sharp lines with equal energy spacing.

In more complicated molecules with many degrees of freedom, the
vibrational motion is described in terms of the normal modes of the
coupled system. These vibrational modes are usually represented by
a generalized coordinate Q, which has the dimensions of length. The
Born–Oppenheimer approximation allows us to produce configuration
diagrams in which we plot the electronic energy as a function of Q. Fig-
ure 8.7 is an example of such a configuration diagram. In general, the
ground state and excited state have approximately parabolic minima at
different values of the configuration coordinate. The optical transitions
are indicated by vertical arrows, as prescribed by the Franck–Condon
principle. The absorption and emission spectra consist of a series of lines
with frequencies given by eqns 8.3 and 8.5, as shown in the right-hand
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Fig. 8.7 Configuration diagram for
two electronic states in a molecule.
Vibrational–electronic transitions are
indicated by the vertical arrows, to-
gether with a schematic representation
of the absorption and emission spectra.
The probability amplitudes for the rel-
evant vibrational levels for the absorp-
tion transition are shown in Fig. 8.8.

side of the figure.
The relative intensities of the manifold of vibronic transitions can be

calculated in the Franck–Condon approximation. The matrix element
for an electric-dipole transition from an initial state Ψ1 to a final state
Ψ2 is given by (cf. eqn B.27): In an electronic transition, the position

vector that appears in M12 is the elec-
tron coordinate, because we are specif-
ically considering the interaction with
the dipole moment of the electron. The
light will, of course, also interact with
the dipole moment of the nucleus, but
these transitions occur at much lower
frequencies, and can be ignored in the
Franck–Condon approximation.

M12 = 〈2| − er · E0|1〉 ≡ −e

∫
dξ1 · · ·

∫
dξN Ψ∗

2 r · E Ψ1 , (8.7)

where r is the position vector of the electron, E is the electric field of the
light wave, and ξ1, · · · , ξN represent the coordinates for all the relevant
internal degrees of freedom of the molecule. For the coupled vibrational–
electronic states that we are considering here, the total wave function
will be a product of an electronic wave function that depends only on
the electron coordinate r, and a vibrational wave function that depends
only on the configuration coordinate Q. We thus write the vibronic wave
function for an electronic state i and a vibrational level n as:

Ψi,n(r, Q) = ψi(r) ϕn(Q − Q0) . (8.8)

The vibrational wave function ϕn(Q−Q0) is just the wave function of a
simple harmonic oscillator centred at Q0, the equilibrium configuration
for the ith electronic state. In general, we have to assume that the equi-
librium positions for different electronic states are not the same. We thus
denote the equilibrium positions of the ground and excited states as Q0

and Q′
0 respectively, as indicated in Fig. 8.7. The difference between Q0

and Q′
0 is conveniently quantified by the dimensionless Huang–Rhys

parameter S, defined by: The Hunag–Rhys parameter for a par-
ticular transition is usually determined
by analysis of the shape of the vibronic
spectra. See, for example, Exercise 8.6.

S =
1
2
µΩ2(Q′

0 − Q0)2

�Ω
=

(Q′
0 − Q0)2

2(�/µΩ)
, (8.9)

where µ is the mass of the vibrational oscillator and Ω its angular fre-
quency. Note that �/µΩ is the mean squared amplitude for the zero-point
motion of the oscillator.
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Let us consider a vibronic transition in which the vibrational quan-
tum numbers of the initial and final states are n1 and n2 respectively.
On inserting the vibronic wave functions from eqn 8.8 into the matrix
element given in eqn 8.7, we find that:

M12 ∝
∫∫

ψ∗
2(r)ϕ∗

n2
(Q − Q′

0) xψ1(r)ϕn1(Q − Q0) d3r dQ , (8.10)

where we have arbitrarily taken the light to be polarized along the x
axis. The matrix element can be separated into two parts:

M12 ∝
∫

ψ∗
2(r)xψ1(r) d3r ×

∫
ϕ∗

n2
(Q − Q′

0)ϕn1(Q − Q0) dQ . (8.11)

The first factor is the electric-dipole moment for the electronic transition,
which we are assuming to be non-zero. The second is the overlap of the
initial and final vibrational wave functions. From Fermi’s golden rule
(eqn B.14), we know that the transition rate is proportional to the square
of the matrix element. Hence the intensity I of the vibronic transition
is given by:

I ∝ |〈n2, Q
′
0|n1, Q0〉|2 ≡

∣∣∣∣
∫ ∞

0

ϕ∗
n2

(Q − Q′
0) ϕn1(Q − Q0) dQ

∣∣∣∣
2

. (8.12)

The square of the vibrational overlap integral that appears here is called
the Franck–Condon factor.
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Fig. 8.8 Probability densities for the
vibrational levels involved in the ab-
sorption transition shown in Fig. 8.7.
The initial wave function has been
shaded. The molecule starts in the n1 =
0 level of the ground state, and finishes
in the n2th level of the excited state.
Q0 and Q′

0 are the equilibrium posi-
tions for the ground and excited states
respectively.

To see how the Franck–Condon factor works in practice, we need to
look at the probability densities (i.e. the square of the wave functions)
for the vibrational levels involved in the transition. In the absorption
transition shown in Fig. 8.7, the molecule starts in the n1 = 0 level of
the ground state, which has its equilibrium position at Q0, and finishes
in the n2th level of the excited state, which is centred at Q′

0. The relevant
wave functions are shown in Fig. 8.8. We see that we have a good overlap
for several transitions, with the largest Franck–Condon factor for n2 ∼ 2.
Hence we would expect the intensity to be largest for the n2 = 2 level,
as indicated by the schematic absorption spectrum shown in Fig. 8.7.
Since harmonic oscillator wave functions with large n peak near the
classical turning points at the edge of the potential well, we can give
an approximate rule of thumb that the Franck–Condon factor will be
largest for the levels with the edge of their classical potential well close
to Q0.

The reverse argument can be applied to the emission transitions. This
leads to the schematic emission spectrum shown on the right of Fig. 8.7.
In the simple model, we expect the emission spectrum to be the ‘mirror’
of the absorption spectrum when reflected about the centre frequency
�ω0. This is called the mirror symmetry rule.

8.2.5 Experimental spectra

The electronic transitions for very small molecules usually occur in the
ultraviolet spectral region. Figure 8.9 shows the absorption spectrum of
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Fig. 8.9 Ultraviolet absorption of
ammonia (NH3) at standard tem-
perature and pressure. After Watan-
abe (1954), c© American Institute of
Physics, reprinted with permission.
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Fig. 8.10 Absorption and emission
spectrum of pyrromethene 567 in
benzene solution. After Gorman et
al. (2000), c© Excerpta Medica Inc.,
reprinted with permission.

ammonia (NH3). Ammonia is a colourless gas at room temperature, with
an absorption edge at 5.7 eV (217 nm). For photon energies above 5.7 eV
a series of discrete lines are observed which exhibit the general behaviour
shown schematically in Fig. 8.7. The spacing of the lines corresponds
to the out-of-plane bending vibrational mode of the molecule with a
quantized energy of approximately 0.114 eV. The progression peaks at
n2 ∼ 6. Further progressions of vibrational–electronic transitions can be
discerned in the data starting at 7.3 eV and 8.6 eV. These correspond to
electronic transitions to higher singlet excited states of the molecule. It
is evident that the data agree very well with the general predictions of
the configuration diagram model, although the detailed interpretation
can be quite complicated due to the overlapping of the different vibronic
bands.

We do not show spectra for the simplest
molecules like H2 here because the first
electronic excited state is above the ion-
ization limit of the molecule, and the vi-
bronic lines are not well resolved. Am-
monia shows discrete vibronic lines be-
cause it is a small, rigid molecule with
very well-defined vibrational frequen-
cies.

Figure 8.10 shows the absorption and emission spectra of the laser
dye, pyrromethene 567, in benzene solution. Pyrromethene 567 is a large
organic molecule with strong electronic transitions in the visible spectral
region. The smaller transition energy compared to ammonia is, to a first
approximation, just a consequence of the fact that the molecule is larger,
and hence that the quantum confinement of the electrons is smaller. The
Stokes shift of the emission is apparent in the data, as is approximate
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Fig. 8.11 Absorption data for polyyne
molecules end-capped with trisopropy-
lsilyl (TIPS) in hexane solution at room
temperature. The size of the π or-
bital is determined by the number of
carbon–carbon repeat units n. (a) Ab-
sorption spectra. (b) Log–log plot of
the variation of the HOMO–LUMO en-
ergy gap E with n. After Slepkov et
al. (2004), c© American Institute of
Physics, reprinted with permission.
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mirror symmetry between the absorption and emission spectra.
No discrete vibronic lines are observed for the laser dye because the

large molecule possesses many vibrational modes of differing frequen-
cies, which generate overlapping progressions of lines that fill out into a
continuum. Furthermore, the thermal motion of the molecules and also
collisions with the benzene solvent broaden the transitions so that the
individual lines cannot be resolved. We therefore obtain continuous ab-
sorption and emission bands that follow the envelope of the vibrational–
electronic progressions.

The correlation between the size of a molecule and its optical tran-
sition energies is shown particularly clearly in Fig. 8.11. Here, absorp-
tion data is presented for a series of polyyne molecules. The polyynes
are linear conjugated molecules based on alternating singlet and triplet
carbon–carbon bonds. The simplest type of polyynes are hydrocarbons,
where the series starts with acetylene (C2H2), and proceeds through di-
acetylene (C4H2), then triacetylene (C6H2), etc. (See Table 8.1.) In the
particular case considered for Fig. 8.11, the hydrogen atoms at the end
of the carbon chains have been replaced by ‘TIPS’ molecular units, i.e.
triisopropylsilyl: [(CH3)2CH]3Si. This change is made for purely prac-
tical reasons related to the molecular stability and solubility, and does
not affect the basic argument.

Table 8.1 Hydrocarbon polyyne
molecules.

n Bonding

C2H2 1 H–C≡C–H
C4H2 2 H–C≡C–C≡C–H
C6H2 3 H–C≡C–C≡C–C≡C–H

...
...

C2nH2 n H–(C≡C–)nH

The electrons in the π-bonds of the polyyne molecules can spread out
along the carbon chain, and hence the size of the molecular orbitals
increases with the number, n, of carbon–carbon repeat units. From the
simple ideas of quantum confinement developed in Section 6.1, we expect
the electronic energies to decrease as the molecular orbitals enlarge. We
therefore expect the HOMO–LUMO transition energy to decrease with
n. This prediction is indeed borne out by the experimental data. The
absorption spectra in Fig. 8.11(a) show a clear red shift as n increases,
and the straight line fit to the log–log plot in Fig. 8.11(b) indicates that
the transition energies scale as n−0.38. Another interesting feature of the
spectra is the clarity of the vibronic progression for n ≥ 4 compared to
Fig. 8.10. This is a consequence of the rigid nature of the linear carbon
molecule, which leads to very well defined vibrational frequencies.
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8.3 Conjugated molecules

Having discussed the spectra of isolated molecules, we can now apply this
knowledge to conjugated organic solids. Organic chemistry is capable
of producing an enormous variety of conjugated molecules, and so we
focus here only on those that are interesting for opto-electronic devices.
There are two main classes of molecules that are usually employed in
these applications, namely small molecules and conjugated polymers.
The optical properties of both types are considered separately in the
following subsections, and then the opto-electronic devices that are made
from them are described in Section 8.4.

8.3.1 Small conjugated molecules

The definition of ‘small’ when applied to a conjugated molecule is some-
what imprecise. Therefore, in this text we adopt a practical working
definition that it simply means that the conjugated molecule is not a
polymer. Furthermore, we restrict our attention to the larger ‘small
molecules’ that have electronic transition energies in and around the
visible spectral region. We use anthracene as an example to illustrate
the physics, and then consider the Alq3 molecule that has considerable
technological importance.

The excitonic absorption spectrum of
another aromatic hydrocarbon, namely
pyrene (C16H10), is discussed in Sec-
tion 4.5.3. Single crystals of simple aro-
matic hydrocarbons such as anthracene
and pyrene can be produced, but this is
not generally the case for other organic
solids, which often tend to be prepared
as amorphous thin films.

Anthracene (C14H10) is an example of an aromatic hydrocarbon. Aro-
matic hydrocarbons are carbon–hydrogen compounds containing ben-
zene rings in their structure. The name derives from the strong aroma of
the liquids and gases, but here we focus on crystalline solids. Anthracene
crystals are held together by van der Waals interactions, which means
that the covalent bonding within the molecule is much stronger than the
interactions between the adjacent molecules in the crystal. We therefore
expect the electronic states to be strongly localized, and the spectra of
the crystals to be fairly similar to those of anthracene in solution.

The optical properties of molecules containing benzene rings are deter-
mined by their large delocalized π orbitals, as explained in Section 8.2.1.
The absorption edge of benzene itself occurs well into the ultraviolet
spectral region at 4.6 eV (267 nm), but larger aromatic hydrocarbons
have transitions at lower energies. (See the discussion of the polyyne
data in Section 8.2.5.) Anthracene has three benzene rings, as shown in
Fig. 8.12(a), and π → π∗ transitions in the violet spectral region are
possible from the S0 ground state to the first singlet excited state.

Figure 8.12(b) gives a simplified level diagram for the first three elec-
tronic states of the anthracene molecule and the transitions that can
occur between them. Diagrams of this type are called Jablonski dia-
grams. As explained in Section 8.2.1, the states are classified by their
spin quantum number S. The ground state is a singlet and is labelled
S0. The first singlet excited state (S1) occurs at 3.3 eV, which is 1.5 eV
above the first triplet excited state (T1) at 1.8 eV. In Section 8.2.1 we ex-
plained how singlet–triplet transitions have a very low probability due to
the spin selection rule. The absorption and emission spectra are therefore
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Fig. 8.12 (a) Chemical structure
of the anthracene molecule (C14H10).
(b) Jablonski diagram for anthracene.
Absorption and fluorescence transitions
can occur between the S0 ground state
and the S1 excited state. Phosphores-
cent transitions from the T1 state to
the ground state are spin-forbidden and
occur on a slow time scale. Electrons in
the S1 state have a small probability of
transferring non-radiatively to the T1

state by intersystem crossing.
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Fig. 8.13 Absorption spectrum of an-
thracene. The absorption spectrum of
single crystals at 90K is compared
to that of a dilute molecular solution
in ethanol. The vibronic transitions of
the solution are labelled by the vibra-
tional quantum numbers of the ground
and excited states. After Wolf (1958),
reprinted with permission.
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dominated by S0 ↔ S1 transitions. Phosphorescent T1 → S0 transitions
are only observed by using special techniques. (See below.)

Figure 8.13 compares the absorption spectrum of a dilute solution of
molecular anthracene in ethanol with that of anthracene crystals at 90 K.
At higher temperatures, the vibrational structure is less well resolved due
to the thermal broadening of the vibronic lines. The absorption edge of
the solution occurs at the energy for the S0 → S1 transition at 3.3 eV.
About six vibrational–electronic lines with approximately equal spacing
are resolved, with the largest intensity for the transition with n2 = 1.
Similar vibrational structure is observed for the crystal. Three main ab-
sorption peaks with approximately the same spacing as in the solution
are resolved. These correspond to transitions involving localized vibra-
tions of the anthracene molecules. Additional lines are also observed
due to coupling to new vibrational modes present in the crystal. Fur-
thermore, the absorption edge occurs at a slightly lower energy than in
the solution.

Note that the absorption strength in
the crystal is very high with values ap-
proaching 107 m−1. The increase in ab-
sorption above 4.2 eV is caused by the
onset of S0 → S2 transitions.

The S1 excited state has a lifetime of 27 ns due to the dipole-allowed
S1 → S0 fluorescent transition. The fluorescence spectrum of the crystal
consists of a broad vibronic band running from about 3.2 eV (390 nm)
to 2.3 eV (530 nm). Prominent vibronic peaks occur at 3.05 eV, 2.93 eV
2.76 eV and 2.61 eV. These compare very favourably with the energies
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Fig. 8.14 (a) Chemical structure of
aluminium tris-quinolate (Alq3). (b)
Absorption and emission spectra of
Alq3 at room temperature. The emis-
sion spectrum was obtained from an
Alq3 electroluminescent diode. Data
from Garbuzov et al. (1996), c© El-
sevier, and Tang & VanSlyke (1987),
c© American Institute of Physics,
reprinted with permission.

expected by applying the mirror symmetry rule to the absorption spec-
trum shown in Fig. 8.13. (See Exercise 8.12.)

Phosphorescent transitions from the T1 state at 1.8 eV can be ob-
served by techniques of delayed fluorescence. This involves exciting
the crystal with a laser pulse, and then observing the emission at long
times afterwards. Only the S1 states are populated by the laser pulse
due to the spin selection rule. Most of the molecules return directly to
the ground state by radiative transitions, thereby generating prompt
fluorescent emission within the first 27 ns after the pulse has arrived.
However, there is a small probability for non-radiative S1 → T1 inter-
system crossing. The T1 state has a long lifetime of 24ms due to the Triplet–singlet transitions can occur

by spin–orbit coupling, which causes
a mixing between singlet and triplet
states. Since spin–orbit interactions
scale roughly as Z2, where Z is
the atomic number, the triplet–singlet
transition rate is increased if heavy el-
ements are present. In fact, it has been
shown that the incorporation of heavy
metals such as iridium, palladium, or
platinum into the molecular structure
leads to a strong enhancement of the
phosphorescence.

low probability for radiative emission. The weak phosphorescent emis-
sion from the T1 states thus persists as an ‘afterglow’ for 24ms after the
pulse has excited the sample.

The effects described for anthracene are typical of many molecular
materials. The absorption and emission spectra are determined by tran-
sitions to singlet excited states. The triplet states are only observed in
emission experiments as weak phosphorescence. Each electronic transi-
tion shows a manifold of vibronic peaks with energy separation deter-
mined by the vibrational frequencies of the system.

Figure 8.14 shows the absorption and emission spectra of aluminium
tris-quinolate (or tris (8-hydroxyquinoline) aluminium), which is com-
monly known as Alq3. This is an important small molecule that is widely
used in organic light emitting diodes. (See Section 8.4.) The S0 → S1

absorption band peaks at 385 nm, and the emission is Stokes shifted into
the green spectral region, peaking around 560 nm. The molecule is not
as rigid as some others, and its vibrational lines are not resolved at room
temperature.

8.3.2 Conjugated polymers

Polymers are long-chain molecules composed of repeated sequences of
individual molecular units based on carbon–carbon bonds. The name
polymer is the logical sequence that starts with monomer (single
molecule), then progresses to dimer (double molecule), and finally ends
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Fig. 8.15 Chemical structures. (a)
Ethylene (C2H4) monomer. (b) Ethy-
lene dimer: [C2H4]2 ≡ C4H8 (cyclobu-
tane). (c) Polyethylene (polythene):
[CH2]n. (d) Polyacetylene. (e) Polydi-
acetylene (PDA).
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at polymer (many molecule). This progression is illustrated for ethylene
in Figs 8.15(a–c). The dimer is [C2H4]2, which is cyclobutane (C4H8).
The polymer is polyethylene, or polythene for short, with a formula of
[CH2]n, where n is a large number.

Polymers can be subdivided into two generic types, namely conjugated
or saturated. As explained in Section 8.2.1, this division is based on
whether there are alternating single–double bonds along the polymer
backbone or not. The polythene structure shown in Fig. 8.15(c) is an
example of a saturated polymer. In saturated polymers like polythene,
all the electrons are incorporated into σ bonds, and are therefore very
tightly bound. Their transitions are at high energies in the ultraviolet
spectral region, and are not of particular interest here. This contrasts
with many conjugated polymers, which have π → π∗ transitions in the
visible spectral region, and can therefore be described as light-emitting
polymers.

Figure 8.15 also includes the chemical structures of two conjugated
polymers. Figure 8.15(d) shows the simplest conjugated polymer, namely
polyacetylene. This polymer is formed by combining many acetylene
molecules (bonding HC ≡ CH) into a long chain with alternating single
and double bonds between the carbon atoms:

· · · = CH − CH = CH − · · · .

The description of the molecule with alternating single and double bonds
is only schematic. In reality, the spare electron of the double bond is
shared equally between both bonds in a delocalized π orbital.

Figure 8.15(e) shows the chemical structure of a slightly more com-
plicated conjugated polymer, namely polydiacetylene (PDA), which in-
corporates both double and triple bond π electrons. PDA is one of the
most widely studied conjugated polymers because it is can form high-
quality crystals at room temperature. This is not the case for most other
conjugated polymers, for which only amorphous samples formed by spin-
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Fig. 8.16 Absorption spectrum of
polydiacetylene (PDA) crystals at
room temperature. The photocurrent
spectrum of the same crystal is shown
for comparison. After Möller & Weiser
(1999), c© Excerpta Medica Inc.,
reprinted with permission.

coating from solution are available. The absorption spectrum of a PDA
single crystal is shown in Fig. 8.16. The spectrum has a broad S0 → S1

absorption band starting at 1.8 eV. The band shows clear substructure,
with two well-resolved vibronic peaks at 1.9 eV and 2.1 eV. The peaks
around 3.6 eV are caused by S0 → S2 transitions.

The optical spectra of conjugated polymers like PDA are strongly
affected by excitonic effects. In Chapter 4 we discussed how the Coulomb
interaction tends to bind electrons and holes together to form excitons,
and how this has a strong effect on the optical spectra. Excitonic effects
are present in molecular materials because the unpaired electron left in
the ground state by an optical transition can be regarded as a hole, in
the same way that unfilled states in the otherwise full valence band of
a semiconductor are considered as holes. This hole acts like a positive
charge because it represents the absence of a negative electron. Since
the electronic states of molecular materials are strongly localized, the
excitons that are formed are of the tightly-bound, or Frenkel, type. (See
Section 4.5, especially Section 4.5.3.) These Frenkel excitons are observed
as bound states below the band edge of the polymer.

This is a different situation to the pho-
tocurrent spectra of free excitons shown
in Figs 4.5 and 6.15. The weakly bound
free excitons in GaAs can easily dissoci-
ate after formation to produce free elec-
trons and holes. The Frenkel excitons in
molecular materials, by contrast, do not
easily dissociate into free electrons and
holes due to their much larger binding
energy.

The binding energy of the excitons in PDA can be determined by com-
paring the absorption and photocurrent spectra of the same crystal. The
photocurrent spectrum of PDA included in Fig. 8.16 shows a threshold
at 2.4 eV, which is about 0.5 eV above the absorption edge. This indi-
cates that the absorption line at 1.9 eV is excitonic in character, because
the neutral, tightly-bound excitons do not contribute to the conductiv-
ity, and the photon energy must exceed the HOMO–LUMO band gap
at 2.4 eV before free electrons and holes are available to produce a pho-
tocurrent. The measurements therefore indicate that the binding energy
of the exciton is 0.5 eV.

Figure 8.17 shows the absorption and emission spectrum of a thin film
sample of the conjugated polymer called ‘MeLPPP’ at room tempera-
ture. The S0 → S1 transition lies in the green-blue spectral region, and
is thus important for opto-electronic applications, as will be described
in the next section. The approximate mirror symmetry between the ab-
sorption and emission is evident in the data, with four vibrational lines
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Fig. 8.17 Absorption and emis-
sion spectra of thin films of the
ladder polymer MeLPPP at room
temperature. MeLPPP is a methyl-
substituted ladder-type polymer based
on poly(paraphenylene). After Hertel
et al. (1999), c© American Institute of
Physics, reprinted with permission.
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clearly distinguishable.
The clarity of the vibrational structure in Fig. 8.17 compared, for

example, to Fig. 8.10, is striking. This improved vibronic resolution is
caused by the rigidity of the MeLPPP molecule, and also by the re-
duction of the thermal agitation in a thin film compared to a solution.
Furthermore, it is noteworthy that the vibronic structure is more clearly
resolved in the emission spectrum than in the absorption. This is a con-
sequence of the disorder in the polymer. The vibronic lines are inho-
mogeneously broadened by random variations in the band gap energy
along the polymer back bone. The absorption spectrum averages over all
of these energy states, but the emission spectrum samples only a subset
of them, because the excitons have time to migrate to the lowest energy
states before they emit the photon.

8.4 Organic opto-electronics

It is clear from Figs 8.14 and 8.17 that the electronic transitions of
conjugated molecules such as Alq3 and MeLPPP can lie in the visible
spectral region (∼ 1.7 − 3 eV). These visible-emitting molecules can be
used in a number of important opto-electronic applications. We discuss
here briefly two of the most important of these, namely organic light-
emitting diodes (O-LEDs) and organic photovoltaic devices.

As mentioned at the start of Section 8.3, there are two general ap-
proaches to O-LED technology, one based on small molecules and the
other on light-emitting polymers. The study of electroluminescence in
small molecules like anthracene goes back many years, but the efficien-
cies were generally so low and the operating voltages so high that prac-
tical devices could not be made. The first low-voltage small molecule
O-LED was demonstrated in 1987, and the first polymer O-LED was
reported in 1990, the latter building on previous work on the devel-
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opment of conducting polymers. The small molecule O-LED used alu-
Alan Heegar, Alan MacDiarmid, and
Hideki Shirakawa were awarded the No-
bel prize for chemistry in 2000 for the
discovery and development of conduc-
tive polymers.

minium tris-quinolate (Alq3) in the active region and gave efficient green
emission for voltages below 10 V, while the polymer device used poly-
phenylenevinylene (PPV) as the active layer, and gave bright emission
in the green-yellow spectral region when a voltage of about 15 V was
applied. Since then, much research has been done to develop new small
molecules and polymers that can emit over the whole visible spectral re-
gion, and to reduce the operating voltage. At the present time, it is not
clear whether small molecules or light-emitting polymers will ultimately
give the best results.

The operating principle of an O-LED is much the same as that of its in-
organic counterpart. Electrons and holes are injected from opposite sides
of the diode, and they recombine by emitting light in the active region
at the centre of the structure. Figure 8.18 gives a schematic diagram
of the layer sequence used in an ideal organic LED (cf. Fig. 5.10(a)).
The light-emitting layer is sandwiched between electron and hole trans-
porting layers, and electrons and holes are injected from the cathode
and anode respectively. The cathode is typically made of aluminium,
magnesium, or calcium, while the anode is usually made from the alloy
indium–tin oxide (ITO), which has the advantage of being both an effi-
cient hole injector and also transparent at visible wavelengths. For this
reason, ITO effectively behaves as a type of conducting glass. The whole
structure is grown on a non-conducting glass substrate, and the light
generated in the luminescent layer is emitted through the substrate.

glass

substrate

ITO anode

metallic

cathode

HT layer

light output

ET layer

L layer

glass

substrate

ITO anode

metallic

cathode

HT layer

light output

ET layer

L layer

Fig. 8.18 Schematic layer sequence for
a double heterostructure organic LED
(O-LED). The hole-injecting anode is
usually made from indium–tin oxide
(ITO), while metals such as aluminium,
magnesium or calcium are commonly
used for the electron-injecting cath-
ode. The holes and electrons drift
through the hole-transporting (HT)
and electron-transporting (ET) layers
respectively, and recombine in the lu-
minescent (L) layer.

The O-LED shown in Fig. 8.18 contains three different organic ma-
terials separated by two heterojunctions. It is therefore an example of
a double heterostructure device. This arrangement is the optimal one
because it allows different materials to be used for each of the three
functionalities that are required, namely transport of holes from the an-
ode, emission in the active layer, and transport of electrons from the
cathode. It is important to understand that the charge transport mech-
anisms that occur in organic devices are different to those in inorganic
electronic materials. Semiconductors like silicon and GaAs have delocal-
ized band states which give rise to high electron and hole mobilities, but
this is not generally the case for organic materials. Instead, the electrons
and holes must move by hopping between localized states on particular
molecules, and this means that the mobilities are generally much smaller.
The efficient injection and transport of carriers into the active region is
therefore an important issue in organic devices, and the best perfor-
mance is usually achieved by using optimized materials for the electron
and hole transport layers—hence double heterostructure devices.

In practice, many organic opto-electronic devices use a simpler layer
sequence than the double-heterostructure one shown in Fig. 8.18. The
electroluminescence spectrum for Alq3 shown in Fig. 8.14 is an example
of the performance that can be achieved from a single heterostructure
device. In this case the device had just two organic layers, namely Alq3
and diamine, with a single heterojunction between them. The Alq3 layer
served as both the electron transporter and light emitter, while the di-
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Fig. 8.19 Emission spectra of three
polyfluorene (PFO) copolymers at
room temperature. The shift in the
emission wavelength is achieved by
incorporating different substitutional
units to the polymer backbone. Data
from D.G. Lidzey on materials provided
by Cambridge Display Technology Ltd.
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amine served as the hole transporter. The recombination occurred in
the Alq3 layer within a distance of about 30 nm from the heterojunction.
This short recombination distance is a consequence of the low diffusivity
of holes in Alq3.

An example of the results that can be obtained from polymer devices is
given in Fig. 8.19, which shows the emission spectra for three copolymers
of polyfluorene. It can be seen that the whole visible spectrum can beThe absorption spectrum of the

polyfluorene-based polymer ‘F8’,
which corresponds to the ‘blue’
polymer in Fig. 8.19, is shown in
Fig. 1.6. The absorption peaks in the
ultraviolet at 380 nm, and the emission
is Stokes-shifted into the blue spectral
region.

covered by appropriate choice of the polymer structure, which opens
the possibility for making full-colour organic displays. This technology
is under active development by several opto-electronics companies.

The somewhat inferior electrical performance of organic devices com-
pared to inorganic ones has to be offset against the low intrinsic cost of
the active materials and the ease of fabrication of the devices. In contrast
to inorganic opto-electronic devices, organic light-emitting diodes do not
need to be crystalline. Instead, it is often sufficient to spin-coat thin film
layers of amorphous materials onto the substrate. We have already noted
that the optical properties of molecular materials are not markedly dif-
ferent from those of the individual molecules. Therefore, the absence of
long range order has only a small effect on the main features of the op-
tical spectra. This means that the preparation of the materials is much
easier and cheaper, making them an attractive alternative to crystalline
inorganic semiconductor LEDs for many applications. However, despite
the rapid improvements in O-LED performance, all attempt to develop
an electrically-injected organic laser have so far failed, although much
progress has been made in optically-pumped lasers.

The other major opto-electronic application of organic materials is in
photovoltaic devices, i.e. solar cells. It is apparent from the photocurrent
spectrum of PDA shown in Fig. 8.16 that a current can be generated
when light is incident on the device, and this provides a mechanism for
converting solar light into electrical energy. The development of organic
solar cells is a very active research field at the present time. Although
the performance is still inferior to that of the best crystalline inorganic
devices, efficiencies of several percent have been achieved, which com-
pares favourably with the efficiency of typical amorphous silicon devices
(∼ 10%). Given the low cost and ease of fabrication of organic materials
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(a) (b) (c)(a) (b) (c)

Fig. 8.20 Carbon nanostructures.
(a) Graphene. (b) Carbon nanotube.
(c) Buckminsterfullerene (C60). The
images in (b) and (c) are from
http://homepage.mac.com/jhgowen/
research/nanotube page/nanotube.
html.

compared to inorganic ones, the use of organic materials in photovoltaic
applications appears to be very promising, although there are still long
term issues about the chemical stability of the molecules that have to
be resolved.

8.5 Carbon nanostructures

8.5.1 Introduction

Carbon underpins the whole of organic chemistry. It is not surprising,
then, that elemental carbon is itself highly interesting. Carbon comes
in many different forms, with two of the most widely known allotropes
being diamond and graphite. Diamond is a three-dimensional insulator The optical properties of a specific type

of defect in diamond called the NV cen-
tre have attracted much interest in re-
cent years. See Section 9.2.2.

crystal with an indirect band gap in the ultraviolet spectral region at
5.5 eV. Graphite, by contrast, is a quasi two-dimensional semimetal. Its
structure consists of atomic layers of carbon atoms held together by
π bonds. The individual layers of carbon atoms are called graphene
layers, and graphite’s electrical conductivity arises from the motion of
the electrons in the delocalized π orbitals in the direction parallel to the
layers.

The carbon atoms in a graphene layer are arranged in a hexagonal
pattern, as illustrated in Fig. 8.20(a). With a thickness of just one
atomic layer, graphene is the ultimate two-dimensional material. Indi-
vidual graphene layers were first isolated in 2004, and since then there
has been a great deal of interest in investigating their physical proper-
ties. A brief summary of the optical properties of graphene is given in
Section 8.5.2 below.

A graphene layer can be rolled up to form a nanotube, as shown
in Fig. 8.20(b). The π electrons can easily flow up and down the tube,
but their motion in the direction perpendicular to the tube axis is con-
strained by the diameter of the tube. Carbon nanotubes are therefore
one-dimensional materials. Their optical properties are considered in
Section 8.5.3 below.

The final carbon nanostructure that we consider here is the C60

molecule shown in Fig. 8.20(c). The truncated icosahedron cage is
called the buckminsterfullerene or bucky ball structure. Note that
the structure contains both hexagons and pentagons, with 20 of the
former and 12 of the latter. The optical properties of bucky balls are

http://homepage.mac.com/jhgowen/research/nanotube_page/nanotube.html
http://homepage.mac.com/jhgowen/research/nanotube_page/nanotube.html
http://homepage.mac.com/jhgowen/research/nanotube_page/nanotube.html
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Fig. 8.21 Band structure of graphene.
(a) Full band structure. (b) High sym-
metry points of the hexagonal Brillouin
zone. (The lattice structure is shown
in Fig. 8.23.) (c) An optical transition
near the K point, which corresponds to
the circled region of (a). Shading in-
dicates that the states are occupied.
The data in (a) are from Machón et al.
(2002), c© American Physical Society,
reprinted with permission.

(a) (b)

ky

E

��

M
�

K

M
�

K

(c)

	

	 �

kx

EF

	


	 �

� K M
–20

–16

–12

– 8

– 4

0

4

E
n
er

g
y

(e
V

)

�




EF

	


	 �

� K M
–20

–16

–12

– 8

– 4

0

4

E
n
er

g
y

(e
V

)

�




considered in Section 8.5.4 below.

8.5.2 Graphene

Graphene is a two-dimensional material with many interesting physical
properties. Its band structure is shown in Fig. 8.21(a), with the notation
for the high symmetry points of the Brillouin zone given in Fig. 8.21(b).
The top of the valence band occurs at the K point, where there is no
energy gap to the π∗ states in the conduction band. Figure 8.21(c) shows
an enlargement of the band structure near the K point. Note that the
bands are linear at this point.

The linear band dispersion of graphene at the K point gives rise to
many striking properties. The most obvious one is that all the conduction
electrons have the same velocity of ∼ c/300, irrespective of their energy.
(See eqn 2.25.) This contrasts with the usual behaviour in which E ∝ k2,
and the velocity increases as E increases. The exception to this is when
the particle has a negligibly small rest mass. This can be seen from the
Einstein energy:

E2 = m2c4 + c2p2 , (8.13)

where m is the rest mass and p is the linear momentum. The second term
dominates when m is negligible, and the energy is linear in p, implying
E ∝ k. The linear dispersion therefore implies that the conduction elec-
trons behave like relativistic particles with negligible mass, and must
therefore be treated by the Dirac equation of relativistic quantum me-
chanics. For this reason, the K point of the Brillouin zone of graphene
is known as the Dirac point.

The relativistic properties of the electrons in graphene have many
fascinating implications. Here, we concentrate just on the optical prop-
erties. These are governed by optical transitions between the valence
and conduction bands at the Dirac point, as shown in Fig. 8.21(c). Since
the energy gap is zero, transitions are possible for all photon frequen-
cies. In a conventional two-dimensional material, the transition rate is
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independent of frequency on account of the constant density of states.
(See Section 6.4.2.) This argument, which is based on a parabolic E–k
dispersion, clearly does not apply to graphene. Nevertheless, graphene
does show similar behaviour, with the absorption being independent of
the energy at optical frequencies. The interesting aspect is that the ab-
sorption rate is governed only by the fine structure constant α = e2/�c,
with the absorbance of a single layer being equal to πα = 2.3%. We
thus have a simple solid state material that clearly illustrates quantum
electrodynamical effects. 400 500 600 700
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Fig. 8.22 (a) Transmission of a single
layer of graphene in the visible spectral
region. The dashed line is the transmis-
sion expected for a constant absorbance
of πα. The slight drop in the trans-
mission at short wavelengths is possibly
caused by hydrocarbon contamination.
(b) Variation of the transmission with
the number of graphene layers. After
Nair et al. (2008), c© AAAS, reprinted
with permission.

These predictions for graphene have been confirmed by experiment.
Figure 8.22(a) shows the transmission spectrum of a single layer of
graphene in the visible spectral region. The data show that the ab-
sorbance is indeed independent of the frequency, and takes a constant
value of πα = 2.3% per graphene layer. This implies that the transmis-
sion of a multilayer sample will be equal to 1 − παN , where N is the
number of graphene layers, which is clearly demonstrated by the data
for multiple layers shown in Fig. 8.22(b). The absorbance of 2.3% per
layer might seem small at first thinking, but is in fact very strong, given
that the graphene layer is only one atom thick.

8.5.3 Carbon nanotubes

A carbon nanotube can be considered as a rolled-up sheet of graphene.
There are many different ways to do this, and there are therefore a great
variety of nanotube structures. Consider the graphene honeycomb lat-
tice shown in Fig. 8.23. The fundamental lattice vectors a1 and a2 of
the structure are shown. In a nanotube, the graphene sheet is rolled up
so that one of the translation vectors of the lattice becomes the circum-
ference. We can thus define the circumference vector of the nanotube
as:

c = n1a1 + n2a2 , (8.14)

where n1 and n2 are integers, and the tube axis is perpendicular to
c. This circumference vector is usually called the chiral vector and
is denoted (n1, n2). The diameter of a nanotube is given by (see Exer-
cise 8.18):

d =
|c|
π

=
a0

π

√
n2

1 + n1n2 + n2
2 , (8.15)

where a0 = |a1| = |a2| = 0.2461 nm is the length of the basis vectors.
Three different types of circumference vectors are indicated in Fig. 8.23.

Those with n2 = 0 and n2 = n1 are called ‘zigzag’ and ‘armchair’ nan-
otubes respectively, and all the remainder are simply called ‘chiral’. The
chiral angle θ is defined as the angle between the chiral vector and the
zigzag direction, and is given by (see Exercise 8.18):

θ = tan−1

( √
3n2

2n1 + n2

)
. (8.16)

Armchair nanotubes thus have chiral angles of 30◦.
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Fig. 8.23 Definition of the lattice vec-
tors �1 and �2 for the graphene lattice,
and the chiral vectors for a nanotube.
The chiral angle θ is the angle between
the chiral vector and the ‘zigzag’ direc-
tion.
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In discussing the properties of carbon nanotubes, it is important to
distinguish between single-walled nanotube (SWNT) and multi-wall
nanotube (MWNT) structures. As the names suggest, these correspond
respectively to nanotubes composed of a single cylinder with a unique
chiral vector, and those composed of several concentric cylinders with
differing chiral vectors. Much progress has been made in recent years in
techniques to isolate individual SWNTs, making the study of nanotubes
with well-defined chiral vectors possible.

The electronic properties of nanotubes follow from their chiral struc-
ture. We have seen that graphene is a semimetal on account of its zero
energy gap at the K point of the Brillouin zone. (See Fig. 8.21.) Nan-
otubes, by contrast, can be either metallic or semiconducting. The nan-
otube is metallic if (see Exercise 8.19):

n1 − n2 = 3m, (8.17)

where m is an integer (positive, negative, or zero). In all other cases
the nanotube is a semiconductor with a finite energy gap between the
conduction and valence bands. It is therefore apparent that one-third of
nanotubes are metallic, and two thirds semiconducting.Multi-wall nanotubes will typically

contain some metallic and some semi-
conducting tubes, and will therefore
usually be highly conducting.

The electrons in a nanotube are free to move along the axis (usually
defined as the z direction), but experience two-dimensional cylindrical
confinement in the perpendicular directions. We thus have an almost
ideal one-dimensional system, which can be treated as a quantum wire.
(See Section 6.1.) The wave functions of the electrons are of the form:

Ψ(x, y, z) =
1√
L

ψij(x, y) eikzz , (8.18)

where kz is the wave vector along the tube axis, L is the normalization
length, and (i, j) are indices that identify the quantum-confined circum-
ferential states of the tube. The energy of the electrons is therefore given
by:

E(kz, n) = En +
�

2k2
z

2m∗ , (8.19)
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Fig. 8.24 Energy bands and corre-
sponding density of states for (a) semi-
conducting nanotubes, and (b) metal-
lic nanotubes. The shading indicates
the states that are occupied. EF is
the Fermi energy. The first two ab-
sorption transitions at the energies of
the van Hove singularities are indicated
by the upward arrows in both cases.
The downward arrow in (a) indicates
an emission transition, with the dashed
lines representing relaxation processes.

where n is an integer that specifies the quantum-confined state. The
density of states per unit length for each band is given by (see Exer-
cise 8.20):

gn(E) =
√

2m∗

π�
(E − En)−1/2 , (8.20)

as appropriate for a 1-D material. We thus expect van Hove singular-
ities in the density of states at the energies of each quantized level. See Section 3.5 for an explanation of

van Hove singularities.Figure 8.24 illustrates the band structure for semiconducting and
metallic nanotubes together with their density of states. For each con-
fined state we have a parabolic band, with a van Hove singularity at
the energy threshold. In semiconducting nanotubes, there is an energy
gap between the highest filled state in the valence band and the lowest
empty state in the conduction band, as shown in part (a). The magni-
tude of this gap varies with the tube diameter and lies at about 0.8 eV
(1500 nm) for a tube with a diameter of 1 nm. (See Fig. 8.25.) Metallic
nanotubes have the additional linear band derived from the K point of
the Brillouin zone of graphene. (See Fig. 8.21 and its discussion.) Since
the band passes through the origin, there is no gap between the top
of the valence band and the bottom of the conduction band. There is
therefore a continuum of states between the quantum-confined levels, as
shown in part (b) of Fig. 8.24.

Optical transitions can occur between states in the valence band and
the conduction band. The selection rules dictate that the quantum num-
ber n of the electron and hole states must be identical, and conservation
of momentum requires that kz is unchanged. Owing to the van Hove sin-
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gularities at the threshold for each band, the transition rate is enhanced
at photon energies that satisfy

�ω = Ec
n − Ev

n ≡ Enn , (8.21)

where the superscripts identify the conduction and valence bands re-
spectively. The E11 and E22 transitions are illustrated for both semi-
conducting and metallic nanotubes in Figs 8.24(a) and (b) respectively.
Optical transitions are, of course, possible at other photon energies, but
the transitions at the frequencies that satisfy eqn 8.21 are expected to
stand out from the continuum on account of their higher transition rate.0 1 2 3

0

1

2

3

E
n

er
g

y
g

ap
(e

V
)

Tube diameter (nm)

E11

m

E11

s

E22

s

0 1 2 3
0

1

2

3

E
n

er
g

y
g

ap
(e

V
)

Tube diameter (nm)
0 1 2 3

0

1

2

3

E
n

er
g

y
g

ap
(e

V
)

Tube diameter (nm)

E11

m
E11

m

E11

s
E11

s

E22

s
E22

s

Fig. 8.25 Kataura plot of the calcu-
lated energies of the confined states
versus tube diameter. The solid and
open circles correspond to semicon-
ducting and metallic nanotubes respec-
tively. The first three energy states
are labelled according to the nota-
tion of eqn 8.21, with additional su-
perscripts to identify semiconducting
(s) and metallic (m) nanotubes. See
Kataura et al. (1999). Data from Dr
S. Maruyama, www.photon.t.u-tokyo.
ac.jp/∼maruyama/nanotube.html.

Fluorescence can be observed in semiconducting nanotubes when elec-
trons excited in the conduction band recombine with holes in the valence
band. This is typically done by exciting electrons and holes into a higher
band by photo-excitation. The electrons and holes then relax by phonon
emission to the lowest bands, and emit photons with energies given by
�ω = E11. This process is illustrated in Fig. 8.24(a) for the case where
the electrons and holes are initially excited in the n = 2 bands. Flu-
orescence is not observed from metallic nanotubes because the hole in
the valence band is very rapidly refilled by electrons from the occupied
states above it.

Figure 8.25 shows a plot of the energy gap defined by eqn 8.21 as a
function of the tube diameter. Such a diagram is called a ‘Kataura’ plot.
The solid and open circles correspond to semiconducting and metallic
nanotubes respectively. As we would expect for a quantum confinement
effect, the magnitude of the energy gaps decrease as the tube diameter
increases, varying roughly as 1/d. For any particular tube, there is a
series of energy gaps that correspond to increasing values of n. The
fundamental band gap (Es

11) of the semiconducting tubes moves into
the visible spectral region for tube diameters smaller than about 5 nm.
Note that the zero gap states of the metallic tubes are not shown in
Fig. 8.25.

The calculated energy gaps shown in Fig. 8.25 can be compared to
experimental data obtained by a variety of techniques, including ab-
sorption, fluorescence, and photoluminescence excitation spectroscopy,
or resonant Raman scattering. The experimental data generally agree
well with the theoretical calculations. For example, Fig. 8.26(a) shows
the emission spectra of an ensemble of semiconducting SWNTs sus-
pended in D2O. Several strong peaks corresponding to the E11 tran-
sition of nanotubes with different diameters are clearly observed. Three
specific peaks are identified, namely:

• 915 nm (1.355 eV): (n1, n2) = (9, 1), d = 0.75 nm;
• 955 nm (1.298 eV): (n1, n2) = (8, 3), d = 0.77 nm;
• 1023 nm (1.212 eV): (n1, n2) = (7, 5), d = 0.82 nm.

As expected, the emission energy decreases with increasing tube diam-
eter. Furthermore, other experiments demonstrate that the E11 absorp-
tion and emission lines occur at very similar energies, which confirms
the physical picture shown in Fig. 8.24.

www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html
www.photon.t.u-tokyo.ac.jp/~maruyama/nanotube.html
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When individual SWNTs are isolated, the spectrum consists of just
a single strong line, as shown in Fig. 8.26(b). The emission lines have
a Lorentzian shape with a width of 23meV, which is very close to kBT
at room temperature. Note that there is a slight shift of the (7,5) peak
in Fig. 8.26(b) compared to Fig. 8.26(a). This is a manifestation of the
fact that the ensemble spectrum represents the weighted average of an
inhomogeneous distribution of many different nanotubes, each of which
has a Lorentzian spectrum as in part (b), but with slightly differing
transition energies. The peak energy of a single SWNT can therefore
lie anywhere within the inhomogeneous linewidth of the ensemble. A
similar phenomenon was discussed for quantum dots in connection with
Fig. 6.22(a).
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Fig. 8.26 Emission spectra from semi-
conducting single-wall carbon nan-
otubes (SWNTs) at room tempera-
ture. (a) SWNT suspension in D2O.
(b) Individual SWNTs on a glass sub-
strate. The labels indicate the chiral
vectors (n1, n2) for the nanotubes. Af-
ter Hartschuh et al. (2003), c© AAAS,
reprinted with permission.

The discussion above makes no consideration of excitonic effects. The
exciton binding energy EX in a carbon nanotube is much larger than in a
typical bulk III–V semiconductor due to its reduced dimensionality. The
binding energy varies inversely with the diameter, and is given roughly
by EX ∼ 0.3/d when EX is measured in eV and d in nm. This implies that
EX ≈ 0.4 eV for d = 0.8 nm. As explained in Chapter 4, the dominant
excitonic transition occurs at (EG − EX), where EG is the band gap
and EX is the exciton binding energy. This implies that the actual band
gaps are somewhat larger than the energies measured in the absorption
and emission experiments, since the observed transitions are excitonic
in nature.

8.5.4 Carbon bucky balls

The discovery of the C60 molecule in 1985 by Curl, Kroto, and Smalley
was recognized by the Nobel prize for chemistry in 1996. The molecule
has the ‘bucky ball’ or ‘fullerene’ structure shown in Fig. 8.20(c). This
structure is similar to a soccer ball, and is named after the architect
R. Buckminster Fuller, who is noted for the design of geodesic domes.

The most important features of the optical spectra of C60 are sum-
marized in the Jablonski diagram shown in Figure 8.27(a). The states
are labelled by their parity, with ‘g’ (German gerade) and ‘u’ (German
ungerade) indicating ‘even’ and ‘odd’ respectively. The HOMO ground
state (S0) has even parity, as does the LUMO first singlet excited state
(S1) at 1.85 eV, making electric-dipole transitions from S0 to S1 forbid-
den by the parity selection rule. The first allowed transition is therefore
to the S2 state at 2.7 eV.

Once the molecule has been excited to a higher-lying singlet state,
it relaxes very rapidly to the S1 state by non-radiative relaxation pro-
cesses. There are then two possible decay routes back to the ground
state, namely radiative transitions or intersystem crossing to the T1

triplet level, followed by non-radiative or phosphorescent decay. Electric
dipole transitions from S1 to S0 should again be forbidden, but vibronic
coupling in the excited state and crystal disorder can create a small ad-
mixture between even and odd states, thereby partially lifting the parity
selection rule. The resulting radiative lifetime is typically around 1.8 µs.
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Fig. 8.27 (a) Jablonski diagram for C60. The labels ‘g’ and ‘u’ denote the parity of the states. The solid arrows indicate optical
transitions, while the dashed arrows indicate non-radiative relaxation processes. The time constants indicated are typical values
and can vary somewhat from sample to sample. (b) Absorption spectrum of a C60 thin film at room temperature. The inset
shows the absorption and normalized photoluminescence (PL) (dotted line) spectra for crystalline C60 at 10K. The grey and
black arrows indicate the onsets of the S0 → S1 and S0 → S2 transitions, respectively. Data taken from Ren et al. (1991), c©
American Institute of Physics, and Schlaich et al. (1995), c© Elsevier, reprinted with permission.

This long radiative lifetime has to be compared to the shorter inter-
system crossing time of 1.2 ns. The T1 → S0 transitions are stronglyNote that the time constants quoted

here are only typical values, and can
vary significantly between samples. The
intersystem crossing rate in C60 is rela-
tively fast because the S1 and T1 levels
are nearly degenerate.

forbidden and hence have a very low probability, effectively making the
decay route via T1 a non-radiative channel. It is therefore apparent from
eqn 5.5 that the radiative efficiency is very low, with typical values being
around 10−3 for crystalline C60 at low temperatures.

Figure 8.27(b) shows the absorption spectrum of a solid C60 thin film
at room temperature. The absorption at the HOMO → LUMO gap of
1.85 eV is weak, as expected for dipole-forbidden transitions, and the first
strong feature is observed at 2.7 eV, which corresponds to the S0 → S2

transition. The strong line at 3.6 eV corresponds to a transition from an
odd parity lower level in the valence band to the even parity S1 level,
while the line at 4.7 eV arises from S0 → Sn transitions, where Sn is the
next odd parity singlet excited state above S2.

The inset in Fig. 8.27 shows the photoluminescence (PL) spectrum
of crystalline C60 at 10 K and the detailed absorption spectrum at the
HOMO–LUMO band gap. As mentioned above, electric-dipole transi-
tions between the HOMO and LUMO states are forbidden by the par-
ity selection rule. This means that the transitions must occur either by
higher-order processes (e.g. electric quadrupole) or by a mechanism that
destroys the parity of the states. Examples of the second type of mecha-
nism include crystal disorder and vibronic coupling. These both lead to
distortions of the icosahedral symmetry of the C60 molecule—static in
the former case and dynamic in the latter—and hence to a loss of the
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inversion symmetry that defines the parity.
Both the absorption and PL spectra in the inset of Fig. 8.27 exhibit

strong vibronic sub-structure, together with additional peaks caused by
the fine structure of the S1 level. The relative intensity of the vibronic
peaks in the PL spectrum is found to vary significantly from sample to
sample on account of the strong sensitivity to defects and crystalline
disorder. The purely electronic 0–0 vibronic line occurs at 1.846 eV and
is identified by the grey arrow. The fact that this line is absent from the
PL spectrum clearly demonstrates that vibronic coupling (i.e. coupling
to phonons) is an important factor in allowing the radiative emission to
occur.

Carbon bucky balls have potential applications as optical limiting de-
vices in the spectral region 500–800 nm. The absorption rate is small
at low powers, since the photon energy lies below the S0 → S2 thresh-
old at 2.7 eV. As the power is increased, the photo-excited electrons
transfer rapidly to the lowest triplet state by intersystem crossing and
accumulate there on account of the long lifetime of the T1 level. These The lifetime of the T1 level is very long

(� 50ms) because the transitions to the
S0 level violate both the spin and parity
selection rules.

electrons can then absorb light in the same spectral region by making
transitions to odd parity triplet excited states. A new absorption channel
thus opens up at high intensities, which thereby limits the transmission
of high power pulses. Such an optical limiter is potentially useful for
making safety goggles to protect the eye from intense laser pulses.

Chapter summary

• The optical spectra of molecular solids are determined by localized
electronic and vibrational states that are closely related to the
states of the isolated molecules.

• Transitions between electronic states are vibronic in character. Vi-
brational quanta are simultaneously excited during the transition.

• The vibronic spectra can be understood by using configuration di-
agrams. The Franck–Condon principle says that the configuration
coordinates do not change during a vibronic transition, and so the
transitions are represented by vertical arrows on configuration di-
agrams.

• Radiationless relaxation occurs within the vibronic bands after the
transition has occurred. The emission spectra are red-shifted with
respect to the absorption spectra.

• The excited states of molecules can be divided into singlets and
triplets. The ground state is always a singlet. Transitions to singlet
excited states are spin-allowed, and dominate the absorption and
emission spectra. Singlet–triplet transitions are spin-forbidden and
have very low probabilities.
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• Emission from singlet states is called fluorescence, while triplet–
singlet emission is called phosphorescence.

• Conjugated organic molecules have delocalized π orbitals. Larger
molecules have smaller transition energies due to the reduced con-
finement of the π electrons.

• Conjugated molecules are generally categorized as being either
small molecules or polymers. Many of these have transitions in
the visible spectral region and can be used to make light-emitting
diodes. Their absorption properties can also be exploited in pho-
tovoltaic devices.

• Graphene is a two-dimensional layer of carbon atoms, and has
a frequency-independent absorption coefficient determined by the
fine structure constant.

• Carbon nanotubes can be treated as one-dimensional systems (i.e.
quantum wires) and can be either metallic or semiconducting de-
pending on their chirality. Van Hove peaks are observed in their
optical spectra at the energy thresholds for new confined states.
Only semiconducting nanotubes fluoresce.

• C60 molecules are commonly called bucky balls or fullerenes. Their
radiative efficiency is low because electric-dipole transitions are
forbidden from the lowest singlet excited state.

Further reading

The electronic states of simple molecules are discussed
in many introductory quantum mechanics texts, for ex-
ample, Gasiorowicz (1996). More detailed discussions of
molecular spectra can be found in Banwell and McCash
(1994) or Haken and Wolf (1995). Klessinger and Michl
(1995) give an advanced treatment of the photophysics of
organic molecules.

An introduction to molecular crystals may be found in
Wright (1995), while Pope and Swenberg (1999) give an
authoritative treatment of the optical properties of or-
ganic crystals, polymers, and fullerenes. An overview of
the properties of excitons in nanoscale systems may be
found in Scholes and Rumbles (2006).

A useful collection of articles on organic electronic ma-
terials may be found in Farchioni and Grosso (2001). Re-

views on organic electroluminescent devices are given in
Friend et al. (1999) and Mueller (2000). An interesting
collection of articles on organic electronic devices, includ-
ing lasers and solar cells, may be found in Forrest and
Thompson (2007). Organic photovoltaic devices are also
described in depth in Brabec et al. (2008).

Reviews of the properties of graphene are given in Geim
and Novoselov (2007), Geim and MacDonald (2007), and
Castro Neto et al. (2009). An overview of the properties
of fullerenes and nanotubes may be found in Dresselhaus
et al. (1996). More recent accounts on nanotubes and
graphene may be found in Reich et al. (2004), Dressel-
haus et al. (2007), or Saito and Zettl (2008). A discussion
of the possible applications of nanotubes in electronics
and photonics may be found in Avouris (2009).
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Exercises
(8.1) The Schrödinger equation for a one-dimensional

harmonic oscillator is given by:

− �
2

2m

d2Ψ

dx2
+ 1

2
mΩ2x2Ψ = EΨ .

Show that the following wave functions are solu-
tions, stating the value of a and the energies of the
three states.

Ψ1 = C1 e−x2/2a2
,

Ψ2 = C2 x e−x2/2a2
,

Ψ3 = C3

�
1 − 2x2

a2

�
e−x2/2a2

.

(8.2) Consider the π electrons along a conjugated poly-
mer as a one-dimensional system of length d de-
fined by the total length of the molecule. This al-
lows us to use the infinite potential well model
described in Section 6.3.2 to estimate the electron
energy. Use this approximation to find the value
of d required to give the lowest energy transition
at 500 nm. Hence estimate the number of repeat
units within a polymer that emits at this wave-
length, given that the carbon–carbon bond length
is about 0.1 nm.

(8.3) The three vibrational modes of the carbon dioxide
molecule have frequencies of 2×1013 Hz, 4×1013 Hz
and 7 × 1013 Hz. For each mode, calculate the ra-
tio of the number of molecules with one vibrational
quantum excited to those with none when the tem-
perature is 300K.

(8.4) Calculate the energy difference between two pairs
of isolated hydrogen atoms, one of which has both
atoms in the 1s state, and the other has one atom
in the 1s state and the other in the 2p state.
Account qualitatively for the difference between
this value and the measured transition energy of
11.3 eV between the ground state and the first elec-
tronic excited state of the H2 molecule.

(8.5) The potential energy U(r) of two neutral molecules
separated by a distance r is sometimes described
by the Lennard–Jones potential:

U(r) =
A

r12
− B

r6
, (8.22)

where A and B are positive fitting constants.
(a) Justify the r−6 dependence of the attractive

part of the potential.
(b) Sketch the form of U(r) and show that the en-
ergy has a minimum at r = r0 = (2A/B)1/6.
(c) Write down the Taylor expansion of U(r) for
small displacements about r0 and hence show that
the form of the potential is parabolic near the min-
imum. Calculate the angular frequency for har-
monic oscillations about this minimum in terms
of A, B and the reduced mass µ of the molecule.

(8.6) Consider a vibronic transition from the ground
state to an excited state at T = 0.
(a) Explain why the absorption spectrum would
be expected to be of the form:

I(�ω) ∝
∞�

n=0

|〈n, Q′
0|0, Q0〉|2δ(�ω − �ω0 − n�Ω) ,

where Q0 and Q′
0 are the equilibrium co-ordinates

of the ground and excited states respectively,
|〈n, Q′

0|0, Q0〉|2 is a Franck–Condon factor, �ω0 is
the energy of the zero-phonon line, Ω is the vibra-
tional frequency of the excited state, and δ(x) is
the Dirac delta function.1

(b) The overlap factor that appears in the ex-
pression for I(�ω) can be evaluated exactly and
is given by:

|〈n, Q′
0|0, Q0〉|2 =

exp(−S)Sn

n!
,

where S is the Huang–Rhys parameter for the
transition. Sketch the spectra that would be ex-
pected for the cases: (i) S = 0, (ii) S = 1, and (iii)
S = 5.

(8.7) The absorption spectrum of benzene is found
to consist of a series of lines with wavelengths
given by 267 nm, 261 nm, 254 nm, 248 nm, 243 nm,
238 nm, and 233 nm. Estimate the energy of the
S1 excited state, and the dominant vibrational fre-
quency of the molecule.

(8.8) Use the data shown in Fig. 8.9 to draw a schematic
configuration diagram for the ground state and
the first two singlet excited states of the ammo-
nia molecule.

(8.9) Explain why spin–orbit coupling can allow radia-
tive transitions between singlet and triplet states.

1The Dirac delta function is defined with δ(x) = 0 for x �= 0, and
�+∞
−∞ δ(x) dx = 1. It can be considered as the ξ → 0 limit of

a function that is zero everywhere except in the range −ξ/2 → +ξ/2, where it takes the value of 1/ξ.
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(8.10) Under certain circumstances it is possible to
observe weak emission at 760 nm from the
pyrromethene dye studied in Fig. 8.10. This emis-
sion is found to have a lifetime of 0.3ms. Suggest
a possible explanation for this result.

(8.11) Use the data shown in Fig. 8.13 to estimate the
energy of the dominant vibrational modes of an-
thracene crystals and molecules in solution.

(8.12) Apply the mirror symmetry rule to the absorption
spectrum of anthracene crystals shown in Fig. 8.13
to deduce the shape of the emission spectrum.

(8.13) Repeat Exercise 8.12 for the PDA absorption spec-
trum shown in Fig. 8.16.

(8.14) The absorption edge of crystalline anthracene
(C14H10) occurs at 400 nm, but photoconductivity
experiments show a different threshold at 295 nm.
Deduce the value of the binding energy of the
ground-state Frenkel exciton of anthracene.

(8.15) In Raman scattering, photons are shifted to lower
energy by emitting vibrational quanta as they pass
through the sample. The angular frequency of the
down-shifted photon is equal to (ω − Ω), where ω
and Ω are the frequencies of the incoming photon
and the vibrational mode. By referring to the data
given in Fig. 8.17, estimate the wavelength of the
Raman-shifted photons generated when a helium
neon laser operating at 633 nm is incident on a
sample of MeLPPP.

(8.16) Equal numbers of electrons and holes are injected
into two identical samples of a molecular material.
In one case, the electrons and holes are injected
optically; in the other, they are injected electri-
cally. Explain why the luminescence from the elec-
trically excited sample is expected to be four times
weaker than that from the optically excited one.
(Hint: this is related to the formation of triplet
excitons.)

(8.17) A polymer light-emitting diode emits at 550 nm at
an operating current of 10mA.
(a) Explain why the maximum quantum efficiency
we might expect from the device is only 25%.
(b) Calculate the total optical power emitted on
the assumption that the internal quantum effi-
ciency is 25%.
(c) If the operating voltage is 5V, what is the
power conversion efficiency? Would you expect to
obtain this efficiency in a practical device ?

(8.18) (a) Consider the lattice translation vectors of
graphene shown in Fig. 8.23. Show that a0 =

√
3a,

where a0 = |�1| = |�2|, and a is the carbon–
carbon distance (0.142 nm).
(b) Prove equation 8.15.
(c) Prove eqn 8.16.

(8.19) (a) Explain why the � states that are available to
electrons in a carbon nanotube with chiral vector
� must satisfy the condition:

� � � = 2πm ,

where m is an integer.
(b) The metallic nature of graphene arises from
the zero energy gap at � = (�1 −�2)/3, i.e. at the
K point of the Brillouin zone. (�1 and �2 are the
reciprocal lattice vector of graphene.) A nanotube
will therefore be metallic if the K point is one of its
allowed � vectors. Show that this condition is only
fulfilled when the chiral vector (n1, n2) satisfies:

n1 − n2 = 3m ,

where m is an integer.

(8.20) By considering a nanotube as a 1-D quantum wire
with electron energies given by eqn 8.19, show that
the density of states is given by eqn 8.20.

(8.21) Calculate the radiative efficiency of a C60 molecule
with the time constants given in Fig. 8.27(a).
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In this chapter we consider the physics of optically active defects and
impurities in crystalline host materials. The electronic states of the de-
fects are strongly coupled to the phonons of the crystal by the electron–
phonon interaction. We are thus dealing with a vibronic system, with
optical properties analogous to the vibrational–electronic spectra of the
molecular materials studied in Chapter 8. We therefore begin by review-
ing the physics of vibronic transitions, and then focus on two general
categories of luminescence centres, namely colour centres and paramag-
netic ion impurities. These materials are widely used in solid-state lasers
and phosphors.

9.1 Vibronic absorption and emission

The electronic states of the impurity atoms doped into a crystal cou-
ple strongly to the vibrational modes of the host material through the
electron–phonon interaction. This gives rise to continuous vibronic bands
that are conceptually different from the electronic bands studied in the
band theory of solids. The electronic states are localized near specific
lattice sites in the crystal, and the continuous spectral bands arise from
coupling the discrete electronic states to a continuous spectrum of vi-
brational (phonon) modes. This contrasts strongly with interband tran-
sitions which involve continuous bands of delocalized electronic states.

The basic processes involved in the vibrational–electronic transitions
in molecular materials were described in Sections 8.2.2–8.2.4. The prin-
ciples developed there form a good starting point for the more general
vibronic systems that we consider here. There are, however, two addi-
tional aspects of the physics that need to be discussed.

(1) We shall be dealing with the optical transitions from a low density
of luminescent dopant ions or defects within an optically inert
crystal. The interaction with the crystal host therefore has a strong
effect on the spectra.

(2) We must consider the coupling of the electronic states to a continu-
ous spectrum of vibrational modes, rather than the discrete modes
of a molecule. The density of states for the vibrational modes is
determined by the phonon dispersion curves.

In principle, molecular crystals also
have continuous phonon bands. In prac-
tice, however, the vibronic spectra are
usually dominated by the localized vi-
brational modes associated with the in-
ternal vibrations of the molecule itself
rather than delocalized phonon modes
of the whole crystal.

The formation of vibronic bands is depicted schematically in Fig. 9.1.
Figure 9.1(a) shows the optical transitions between the ground state of
an isolated atom (e.g. a dopant ion) at energy E1 and one of its electronic

liuhui
Highlight
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Fig. 9.1 (a) Optical transitions be-
tween the ground state and an excited
state of an isolated atom. (b) Absorp-
tion and emission transitions in a vi-
bronic solid, in which the electron–
phonon interaction couples each elec-
tronic state to a continuous band of
phonons. Note that energies of the elec-
tronic states might also be shifted in the
solid: see Section 9.3.1.
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excited states at energy E2. If this atom is inserted into a crystalline host
material, the electronic levels can couple to the vibrations of the lattice
through the electron–phonon interaction. At this stage, we do not wish
to enter into the microscopic details of how such an interaction might
occur, but merely consider the possibility that the coupling might be
present. The presence of the coupling associates a continuous band of
phonon modes with each electronic state, as shown in Fig. 9.1(b).

Optical transitions can occur between the vibronic bands if the se-
lection rules permit them. We first consider an absorption transition.
Before the photon is incident, the electron will be at the bottom of the
ground-state band. The absorption of a photon simultaneously puts the
electron in an excited electronic state and creates one or more phonons,
as shown in Fig. 9.1(b). Conservation of energy requires that:

�ωa = (E2 + n�Ω2) − E1 = (E2 − E1) + n�Ω2 , (9.1)

where �ωa is the energy of the photon, n is an integer, and Ω2 is the
phonon angular frequency. Equation 9.1 shows that absorption is possi-
ble for a band of energies from (E2 − E1) up to the maximum energy
allowed by the electron–phonon coupling.

After the photon has been absorbed, the electron relaxes to the bottom
of the upper band by non-radiative processes. The system then returnsIn the relaxation process, the vibra-

tional energy of the phonons excited
during the optical transition rapidly
spreads throughout the other phonon
modes in the crystal and ultimately be-
comes heat.

to the ground state band by a vibronic transition of energy:

�ωe = E2 − (E1 + n′
�Ω1) = (E2 − E1) − n′

�Ω1 , (9.2)

where Ω1 is the phonon angular frequency, and n′ is an integer. Once the
electron is in the ground-state band, it relaxes to the bottom of the band
by non-radiative transitions, dissipating the excess vibrational energy as
heat in the lattice.

On comparing eqns 9.1 and 9.2, we see that in a vibronic system the
emission generally occurs at a lower energy than the absorption. This
red shift is called the Stokes shift. It is apparent from Fig. 9.1(b) that
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Fig. 9.2 Configuration diagram for the
ground state and one of the excited
electronic states of a vibronic solid. The
optical transitions are indicated by the
vertical arrows. The right-hand side of
the figure shows the general shape of
the absorption and emission spectra
that would be expected.

the Stokes shift arises from the vibrational relaxation that takes place
within the vibronic bands. This contrasts with isolated atoms in which
the absorption and emission lines occur at the same frequency.

On first encountering configuration di-
agrams, it is quite confusing to un-
derstand exactly what the configura-
tion coordinate represents physically.
In the case of molecules discussed in
Section 8.2.3, it is easy to see that Q
corresponds to the amplitude of one
of the normal modes of the vibrat-
ing molecule. In a vibronic solid, Q
might, for example, represent the aver-
age separation of the dopant ion from
the cage of neighbouring ions in the
host lattice. In this case, the vibrations
would correspond to a breathing mode
in which the environment pulsates ra-
dially about the optically active ion.
This is equivalent to a localized phonon
mode of the whole crystal. In general
there will a large number of vibrational
modes in a solid, and the configuration
coordinate can represent the amplitude
of any one of these modes or perhaps a
linear combination of several of them.

The Stokes shift between absorption and emission can be understood
in more detail by using configuration diagrams. The concept of config-
uration diagrams was introduced in Section 8.2.3 in the context of the
vibrational–electronic spectra of molecules. This model carries over di-
rectly to the discussion of the optical transitions in a vibronic solid. The
electronic energy of the optically active species is a function of the vi-
brational configuration of the system as shown schematically in Fig. 9.2.
This diagram shows the energy of two electronic states of a vibronic sys-
tem as a function of Q, the configuration coordinate. We have assumed
that the electronic states are bound, and they therefore have a minimum
energy for some value of Q. In general, the equilibrium positions for the
two states will occur at different values of the configuration coordinate.
Therefore we label the positions of the minima for the ground state and
excited states as Q0 and Q′

0 respectively. The difference between Q0 and
Q′

0 is quantified by the Huang–Rhys parameter for the transition. (See
eqn 8.9.)

The basic physical processes involved in the optical transitions of a
vibronic solid are similar to those in a molecule, and we only give a brief
summary here. More details can be found in Section 8.2.3. The energy
of the electronic ground state can be expanded as a Taylor series about
the minimum at Q0 as follows:

E(Q) = E(Q0) +
dE

dQ
(Q − Q0) +

1
2

d2E

dQ2
(Q − Q0)2 + · · · . (9.3)

Since we are at a minimum, we know that dE/dQ must be zero. Hence
the E(Q) curve will be approximately parabolic for small displacements
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from Q0. The same analysis can be applied to the excited state. This
means that to first order we have harmonic oscillator potentials with a
series of equally spaced energy levels as sketched in Fig. 9.2.

The Franck–Condon principle discussed in Section 8.2.4 tells us that
optical transitions are represented by vertical arrows on the configura-
tion diagram. The absorption transition begins in the lowest vibrational
level of the ground state, while the emission commences at the lowest
vibrational level of the excited state following non-radiative relaxation.
This gives rise to vibronic absorption and emission bands as shown in
the right-hand side of the figure. In principle, the absorption and emis-
sion bands for a particular vibrational mode should consist of a series of
discrete lines similar to those observed in molecules, each corresponding
to the creation of a specific number of phonons. However, in practice
the electronic states can couple to many different phonon modes with a
whole range of frequencies, and thus the spectra usually fill out to form
continuous bands.

The transitions from the lowest vibrational level of the ground state to
the lowest level of the excited state are called the zero-phonon lines.
Since there are no phonons involved, we have n = n′ = 0 in eqns 9.1
and 9.2, so that the absorption and emission lines occur at the same
frequency. In the absorption spectrum there will be a band of vibronic
transitions with energies larger than that of the zero-phonon line, while
in the emission spectra there will be a corresponding band with lower
energy. The shapes of the absorption and emission bands depend on the
overlap of the vibrational wave functions as determined by the Franck–
Condon factor given in eqn 8.12. In general, the peak occurs away from
the zero-phonon line on account of the difference between Q0 and Q′

0. As
with molecules, we would expect mirror symmetry between the emission
and absorption about the zero-phonon line. In the sections that follow,
we apply these general principles to the optical spectra of colour centres
and luminescent impurities.

9.2 Colour centres

Insulator crystals like diamond have large band gaps and should there-
fore be colourless. However, it is not uncommon to come across imperfect
crystals that contain vacancies in the lattice and are coloured (e.g. pink
diamonds). The defects that cause the colouration are called colour
centres or F-centres, where the F stands for Farbe, the German word
for colour. In this section we consider two important examples of colour
centres, namely F centres in alkali halides and nitrogen vacancy defects
in diamond.

9.2.1 F-centres in alkali halides

The alkali halides are colourless insulators with band gaps in the ultra-
violet spectral region. (See Table 4.3.) Figure 9.3(a) gives a schematic
representation of an F-centre in an alkali halide crystal. The F-centre
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Fig. 9.3 (a) An F-centre in an alkali
halide crystal. The centre consists of an
electron trapped at an anion vacancy.
The shaded region represents the wave
function of the electron. (b) Configura-
tion diagram corresponding to the vi-
bronic transitions of the trapped elec-
tron in an F-centre.
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Fig. 9.4 Energy (E) of the peak ab-
sorption in the F-band for several face-
centred cubic alkali halide crystals. The
energies are plotted against the anion–
cation distance a. The solid line is a
fit with E ∝ 1/a2. After Baldacchini
(1992), reprinted with permission from
Plenum Publishers.

consists of an electron trapped at an anion (i.e. negative ion) vacancy.
The anion vacancies are typically created by introducing an excess of
the metal ion. This might be done, for example, by heating the crystal
in alkali vapour and then cooling it quickly. Alternatively, the vacancies
can be produced by irradiation with X-rays or by electrolysis. The ab-
sence of the negative ion acts like a positive hole that can attract an
electron. The trapped electron is in a bound state with characteristic
energy levels.

Optical transitions between the bound states of the trapped electron
cause the colouration of the crystals. The trapped electrons couple to the
vibrations of the host crystal and this gives rise to vibronic absorption
and emission. The processes that take place are illustrated in the generic
configuration diagram shown in Fig. 9.3(b). These transitions are known
as F-bands.

Experimental measurements on the F-centres in alkali halides indicate
that the frequency of the F-band absorption is proportional to a−2 where
a is the cation–anion distance in the host crystal. This is clearly evident

Most of the alkali halide crystals have
the face-centred cubic sodium-chloride
structure, in which the cube edge di-
mension is equal to 2a. The exceptions
are CsCl, CsBr, and CsI, which have
simple cubic structures.

in the data shown in Fig. 9.4, which plots the energy of the peak in the
F-band absorption as a function of a. The solid line is a fit to the data
with the energy proportional to 1/a2.
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Fig. 9.5 Absorption and emission

bands of the F2
+ centre in KF. After

Mollenauer (1985), c© Excerpta Medica
Inc., reprinted with permission.

1.0 1.1 1.2 1.3 1.4 1.5
0

1

2
L

u
m

in
e
sc

en
ce

in
te

n
sityO

p
ti

ca
l

d
en

si
ty

Wavelength (�m)

absorption emission

KF : F
2

+

1.0 1.1 1.2 1.3 1.4 1.5
0

1

2
L

u
m

in
e
sc

en
ce

in
te

n
sityO

p
ti

ca
l

d
en

si
ty

Wavelength (�m)

absorption emission

KF : F
2

+

This inverse-square dependence on a can be explained by a simple
model which gives an intuitive understanding of the basic physics. We
assume that the trapped electron is confined inside a rigid cubic box of
dimension 2a, as shown in Fig. 9.3(a). The energy levels of an electron
of mass m0 trapped in such a box are given by:

E =
�
2π2

2m0(2a)2
(n2

x + n2
y + n2

z) , (9.4)

where nx, ny and nz are quantum numbers that specify the bound elec-
tronic states. (See Exercise 9.1.) The ground state has nx = ny = nz = 1,
while the first excited state has one of the quantum numbers equal to 2.
The lowest energy transition thus occurs at a photon energy given by:

hν =
3h2

8m0

1
(2a)2

. (9.5)

The model therefore predicts the correct a−2 dependence of the F-band
absorption energy, but overestimates the transitions energies somewhat.
(See Exercise 9.2.) A more realistic approach would calculate how the
electron wave function tries to maximize its overlap with the positive
ions while minimizing the overlap with the negative ones.

The simple electron in a box model can also explain the microscopic
origin of the coupling between the trapped electrons and the vibrations
of the host crystal. A displacement of the neighbouring ions from their
equilibrium positions would alter the size of the box in which the elec-
tron is trapped. This in turn would alter the electronic energy through
eqn 9.4. Such a displacement of the ions could be caused by a vibration
of the crystal. Hence the vibrations are coupled to the electronic energy
levels, and we have a vibronic system.The transition energies in the F2

+ cen-
tres are lower than those of F-centres
because the electron can move over two
lattice sites, and hence the box in which
the electron is confined is larger. (See
Exercise 9.4.)

Figure 9.5 shows the absorption and emission bands of a slightly more
complicated type of colour centre, namely the F2

+ centre in KF. The
emission bands of this F-centre are in the near-infrared spectral region,
and the crystals can be used to make tunable lasers, as will be dis-
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cussed further in Section 9.4. The F2
+ centre consists of a single elec-

tron trapped at two adjacent anion vacancies. Since the centre consists
of one electron and two holes, it has a net positive charge of one unit.
The Stokes shift and the mirror symmetry between the absorption and
emission are clearly evident in the data.

9.2.2 NV centres in diamond

There are several other defect cen-
tres in diamond that are interesting
for applications in QIP. For example,
the NE8 centre, which consists of a
nickel atom surrounded by four nitro-
gen atoms within a diamond crystal,
is a very good single-photon source at
802 nm. See Gaebel et al. (2004) for fur-
ther details.

The nitrogen vacancy (NV) centre in diamond has been widely stud-
ied in recent years on account of its possible application in quantum
information processing (QIP) and magnetometry. Figure 9.6 shows a
schematic diagram of the defect. It consists of a substitutional nitrogen
atom in the diamond crystal with a vacancy at an adjacent lattice site.
These defects occur in natural diamonds, but are normally studied in a
more controlled way in synthetic crystals. The substitutional nitrogen
impurities may be naturally present in the crystal, and the vacancies are
then introduced, for example, by irradiation with electrons, protons, or
neutrons. Alternatively, both nitrogen impurities and vacancies can be
introduced in high-purity crystals by nitrogen implantation techniques.
In both cases, the NV centres are formed when the vacancies migrate to
the nitrogen sites during annealing.

NV centres are normally labelled with a superscript that identifies
their charge state. The neutral centre is labelled NV0, while NV− desig-
nates a centre that contains a single trapped electron. The NV− centre
is the most common charge state, and is our focus of attention here. The
trapped electron in an NV− centre interacts with the unpaired electron
from each of the three adjacent carbon atoms and also with the two
unpaired electrons from the nitrogen atom, forming a six-electron sys-
tem. These six electrons can be considered as two holes in a filled n = 2
atomic shell, giving rise to resultant spin states with S = 0 (singlets) or
S = 1 (triplets).

The level scheme for the NV− centre is shown in Fig. 9.7(a). The
ground state is a triplet labelled 3A. This label refers to the symmetry,
with the superscript indicating the spin multiplicity, i.e. (2S+1). Electric
dipole allowed optical transitions are possible to the first triplet excited
state labelled 3E, which lies 1.945 eV above the ground state. Dipole
allowed transitions back to the ground state are then possible, with a
lifetime of 13 ns. Both the ground and excited states are broadened by
vibronic coupling, which leads to broad absorption and emission bands.

N

V

N

V

Fig. 9.6 Schematic representation of
an NV centre in diamond, which con-
sists of a substitutional nitrogen atom
with an adjacent vacancy. Image cour-
tesy of P. Neumann and F. Reinhard.

Figure 9.7(b) shows the absorption spectrum of NV− centres at 80K,
together with the emission spectrum at 2 K. The luminescence spectrum
is measured by exciting the crystal within the vibronic absorption band,
for example with an argon ion laser operating at 514 nm (2.41 eV). The
zero-phonon line at 1.945 eV (637.2 nm) is well resolved in both spectra,
with the vibronic absorption and emission showing approximate mirror
symmetry about that line. The quantum efficiency at low temperatures
is less than 100% on account of a singlet excited state labelled 1A be-
tween the 3E and 3A levels. Electrons in the 3E band can transfer non-
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Fig. 9.7 (a) Level diagram for the NV− centre in diamond. Both the ground state and the triplet excited state are split into
a singlet and doublet by the crystal field, as indicated on the expanded scale to the left. (b) Absorption spectrum at 80K, and
emission spectrum at 2 K. The inset shows the corresponding spectra at room temperature near the zero-phonon line (ZPL)
in more detail. Data from Mita (1996), c© American Physical Society, Jelezko et al. (2002), c© American Institute of Physics,
and Acosta et al. (2009), c© American Physical Society, reprinted with permission.

radiatively to the 1A level by intersystem crossing. The time constant
for this transfer process is around 30 ns for the MS = ±1 sub-levels of
the 3E state. The 1A level is metastable on account of its long (∼ 300 ns)
lifetime, which reflects the spin-forbidden nature of the transitions back
to the ground state. Hence the intersystem decay route via the 1A level
is effectively non-radiative.

The appeal of NV− centres in QIP is based on a number of factors.

(1) The defect density can be controlled to a level where only one is
present within a focused laser spot, making it possible to study
the properties of single NV− centres.

(2) The 3A ground state is paramagnetic (i.e. S �= 0). The MS = 0
and MS ± 1 sub-levels are split by the crystal field as shown in
Fig. 9.7(a), and form a two-level quantum system that can serve
as a quantum bit (or ‘qubit’).

(3) The state of the qubit can be controlled coherently by electron
spin resonance (ESR) at the frequency which corresponds to the
energy splitting of the sub-levels, namely 2.9 GHz. The coherence
time of the spin can be extremely long (up to ∼ 2 ms at room
temperature), and this permits many operations to be performed
before dephasing occurs.

(4) The initial state of the system can be defined by optical pumping,
and the final state read-out by optical spectroscopy.

Optical pumping is a technique of
atomic physics by which a spin polar-
ization in the ground state is created.
The technique involves repeated excita-
tion to an excited state followed by re-
laxation back to the ground state, and
relies on selection rules that favour re-
laxation to some magnetic sub-levels in
preference to others.

The full details of how all of this is done may be found in the literature
cited for further reading. We restrict ourselves here to a brief discussion
of the fourth point, which concerns the optical properties of the defect.



9.3 Paramagnetic impurities in ionic crystals 255

We adopt a notation in which we use a subscript to indicate the value
of MS , so that, for example, 3A0 refers to the MS = 0 sub-level of the
3A state.

The ability to produce a well-defined initial spin state is an important
requirement for QIP with the NV− centre. This is not easily achieved on
account of the small energy splitting of the 3A0 and 3A±1 sub-levels, and
would normally require extremely low temperatures. (See Exercise 9.5.)
However, the selection rules for optical transitions make it possible to use
optical pumping methods to populate the 3A0 sub-level selectively. The
selection rules dictate that MS is conserved during an optical transition.
Thus if the system starts in the 3A0 sub-level, it will return to the same
sub-level after excitation to the 3E excited state. However, if the system
starts in the 3A±1 sub-levels and is excited to the 3E±1 states, there is
a finite probability that it can relax to the 3A0 sub-level if intersystem
crossing via the 1A0 state occurs. Hence a non-thermal population of the Intersystem crossing from the 3E0

excited state to the 1A0 intermedi-
ate state has a very low probability.
The relative probability of intersystem
crossing from 3E±1 → 1A0 compared
to radiative relaxation from 3E±1 →
3A±1 is about 40%. See Manson et al.
(2006) for a discussion of the relative
decay rates.

3 A0 sub-level can be created after a few cycles of the optical excitation–
relaxation process.

The other aspect of the optical properties of the NV− centre that
makes it useful for QIP is that it is possible to read out the MS value
of the ground state by optical spectroscopy. This method relies on the
MS-conserving nature of the optical excitation process, and the fact that
the probability for 3E → 1A intersystem crossing is much larger for the
3E±1 sub-levels than for the 3E0 sub-level. The 3E±1 sub-levels therefore
have a smaller radiative efficiency, which means that the MS value of
the ground state can be determined by exciting the system to the 3E
band with a laser and measuring the emission intensity. If the system is
initialized in the 3A0 sub-level by optical pumping, a change in the MS

value induced by ESR techniques can then be detected by measuring a
decrease in the fluorescence intensity.

9.3 Paramagnetic impurities in ionic
crystals

Table 9.1 Atomic number Z and elec-
tronic configuration of the atoms from
the transition metal and rare-earth se-
ries of the periodic table.

Series Z Configuration

Transition 21–30 [Ar] 3dn 4s2

metal
Rare earth 58–70 [Xe] 4fn 6s2

In this section we discuss the optical transitions of paramagnetic metal
ions doped into ionic crystals. We focus on ions from the transition
metal and rare earth series of the periodic table. These have optically
active unfilled 3d or 4f shells respectively, as listed in Table 9.1. They
are naturally present in certain minerals, but are deliberately doped into
synthetic crystals for technological applications. The optical transitions
of these doped crystals are the basis for many solid-state lasers, and are
also widely used in phosphors for fluorescent lighting and cathode ray
tubes.

9.3.1 The crystal-field effect and vibronic coupling

Metal ions doped as impurities in an ionic crystal substitute at the cation
(i.e. positive ion) lattice sites. For example, when Cr2O3 is doped into
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an Al2O3 crystal to form ruby, the Cr3+ ions directly substitute for the
Al3+ ions. The impurities will normally be present at a low density, so
that the interactions between neighbouring dopants are negligible due to
their large separation. Hence, the main effect that we need to consider
is the perturbation of the electronic levels of the dopant ions due to the
crystalline environment in which they are placed.

The optical properties of free ions in the gas phase are characterized
by sharp emission and absorption lines with wavelengths determined by
their energy levels. When the same ions are doped into a crystalline host,
the optical properties are modified by the interactions with the crystal. If
the interaction is weak, the emission and absorption spectra will remain
as discrete lines, but perhaps with their frequency slightly shifted and
certain degeneracies lifted. On the other hand, if the interaction is strong,
the frequencies of the transitions will be quite different from those of the
isolated ions, and the spectra may be broadened into a continuum. We
shall see below that the 4f series dopants are generally weakly coupled
to the crystal, while the 3d series tend to be strongly coupled.

A positive ion doped into a crystal finds itself surrounded by a regular
matrix of anions (i.e. negative ions). For example, the Cr3+ ions in ruby
are surrounded by six O2− ions arranged in an octahedral arrangement,
as depicted in Fig. 9.8. These negative ions produce an electric field
at the cation site, which perturbs the atomic levels of the ion. This
interaction is known as the crystal-field effect.

Fig. 9.8 The octahedral crystal en-
vironment. The cation dopant is sur-
rounded by six equidistant anions lo-
cated at the corners of an octahedron.

The shift of the energy levels of the dopant ion caused by the crystal
field can be calculated by perturbation theory. The calculation starts
with the gross structure of the free ion with the electrons arranged in the
principal atomic shells. It then proceeds by adding on perturbations in
order of diminishing size. The details of these perturbation calculations
are beyond the scope of this text, and at this level we are just able to
make four qualitative remarks.

(1) The crystal-field coupling can be considered to consist of two dif-
ferent contributions. The first arises from the static crystal field. This
is the perturbation to the energy levels caused by the electric field of the
crystal when all of the ions are at their time-averaged equilibrium po-
sitions. The second is the dynamic effect. This refers to the additional
perturbation caused by displacing the neighbouring anions from their
equilibrium positions, which alters the electric field experienced by the
dopant ion and hence alters the perturbation to its energy levels.Group theory provides an extremely

powerful tool for working out the lift-
ing of degeneracies by the static crys-
tal field. For example, it tells us that
the five-fold degenerate 3d orbitals of a
free transition metal ion are split into
a doublet and triplet by an octahedral
crystal field. However, it cannot tell us
which of the levels is at the higher en-
ergy, or the size of the splitting. This re-
quires detailed numerical modelling of
the interaction between the cation and
the electric field of the neighbouring an-
ions: see Exercise 9.9.

(2)The lifting of the degeneracies of the atomic levels of the free ion
due to the static field is determined by the symmetry of the crystalline
environment. (See, for example, Exercises 9.8 and 9.9.) A useful analogy
can be made here with the case of a free atom in a magnetic field. The free
atom is spherically symmetric, which implies that the magnetic levels are
degenerate. The application of an external field defines a preferred axis,
and the levels split by the Zeeman effect. The same is true for the ions
doped in the crystal. The magnetic levels of the free ion are degenerate,
but are split in the crystal because the crystal defines axes so that not
all directions are equivalent. This point is illustrated in Fig. 1.8.
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(3) The dynamic crystal-field effect is the origin of the vibronic cou-
pling in these systems. Vibrations of the crystal cause the ions to be dis-
placed from their equilibrium positions and therefore alter the electric
field experienced by the dopant ion. This in turn alters the perturbation
of the electronic levels, and thus couples the vibrations to the electronic
levels of the system. This is equivalent to an electron–phonon interac-
tion. One way to look at this is to consider the phonon as acting like an
amplitude modulation on the crystal field. This induces side bands at
the phonon frequency on the electronic levels through the crystal-field
effect. In some cases it is possible to resolve distinct side bands in the
optical spectra that correspond to specific phonon frequencies, but more
often than not, the side bands form a continuum due to the continuous
distribution of frequencies of the phonon modes.

(4) The magnitude of the crystal-field effects for the transition metal
and rare-earth ions are very different. This is a consequence of the elec-
tronic configurations of the optically-active electrons. (See Table 9.1.)
Transition-metal ions are formed when the outermost 4s electrons of the
neutral atoms are removed. The 3d orbitals therefore lie on the outside of
the ion and have a large radius. Rare-earth ions, by contrast, are formed
when the outermost 6s electrons are removed. They have a relatively
small radius (see Exercise 9.7), and are partly shielded from external
fields by the electrons in the filled 5s and 5p shells. This means that the
transition-metal ions are much more sensitive to the crystal field than
the rare earths.

These four points apply to a wide range of paramagnetic ions in crys-
talline hosts. In the following subsections, we discuss the properties of
the 3d and 4f series ions separately, starting with the rare earths.

9.3.2 Rare-earth ions

The rare-earth ions occur in the periodic table after lanthanum (element
57) and are therefore alternatively known as lanthanides. The ions
commonly occur in divalent or trivalent forms. For example, the neutral
europium atom has an electronic configuration of [Xe] 4f76s2, and ions
are formed by losing the 6s electrons first and then one of the 4f electrons,
giving configurations of [Xe] 4f7 (Eu2+) and [Xe] 4f6 (Eu3+). We restrict
our attention here mainly to the trivalent ions, which have the electronic
configurations listed in Table 9.2.

The magnitude of the crystal-field effect in rare-earth ions is relatively
small, due to the screening of the optically-active levels (see point 4
above). Furthermore, the spin–orbit coupling is quite large because it
roughly varies as Z2, and Z is in the range 58–70. This means that the

In one electron atoms the spin–orbit

interaction scales as Z4, but this re-
duces to an approximate Z2 depen-
dence when there is screening by other
electrons.

crystal-field effects are smaller than the spin–orbit coupling. Therefore,
in treating the crystal-field effects by perturbation theory, we must apply
the spin–orbit interaction first.

The spin–orbit interaction splits the gross structure of the free ions
into fine structure terms defined by the quantum numbers |L, S, J〉, de-
noted in spectroscopic notation as 2S+1LJ . (See Appendix C.) The crys-
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Fig. 9.9 (a) Energy-level diagram for Nd3+ ions in a YAG crystal. The energies are given in wave number units. (1 cm−1 ≡
1.240× 10−4 eV.) (b) Fine structure of the 4F3/2 → 4I11/2 transition. (c) Emission spectrum for the 4F3/2 → 4I11/2 transition
at 77K and 300K. The laser transition at 1.064�m has been highlighted by shading. After Koningstein and Geusic (1964), c©
American Physical Society, reprinted with permission.

tal field then perturbs these states, shifting their energies slightly and
causing new splittings. However, the size of these shifts is much smaller
than the spin–orbit splittings, and so the optical spectra of the dopant
ions are generally fairly similar to those of the free ions.

Table 9.2 Electronic configura-
tions of trivalent rare-earth ions.
Z is the atomic number.

Ion Z Configuration

Ce3+ 58 [Xe] 4f1

Pr3+ 59 [Xe] 4f2

Nd3+ 60 [Xe] 4f3

Pm3+ 61 [Xe] 4f4

Sm3+ 62 [Xe] 4f5

Eu3+ 63 [Xe] 4f6

Gd3+ 64 [Xe] 4f7

Tb3+ 65 [Xe] 4f8

Dy3+ 66 [Xe] 4f9

Ho3+ 67 [Xe] 4f10

Er3+ 68 [Xe] 4f11

Tm3+ 69 [Xe] 4f12

Yb3+ 70 [Xe] 4f13

As an example of these effects, we can consider the optical spectra
of Nd3+ ions doped into an yttrium aluminium garnet (Y3Al5O12 or
‘YAG’) crystal. We choose this example because Nd:YAG crystals form
the gain medium in one of the most important solid-state lasers. The
electronic configuration of Nd3+ is [Xe] 4f3. Hund’s rules tell us that
the ground state has S = 3/2, L = 6, and J = 9/2, which is a 4I9/2

level. Above this ground state there is a progression of excited states.
Figure 9.9(a) shows the first five excited states without the crystal-
field fine structure. Two important transitions are identified, namely the
4F3/2 → 4I13/2 line at 1.32 µm and the 4F3/2 → 4I11/2 line at 1.06 µm.
Lasing has been demonstrated for both transitions, although the 1.06 µm
line is the more important.

The 4F3/2 → 4I13/2 and 4F3/2 → 4I11/2 laser transitions in Nd3+ have
∆J = 5 and 4 respectively, and are therefore forbidden for the free ion. In
the crystal, the selection rules are not so strict, and this provides a small
probability for the transitions to occur. The mechanism that relaxes the
selection rules is the crystal-field interaction, which can mix states of
different J . Since the states arise from the same electronic configuration
of 4f3, they have the same parity, and the transitions must proceed
by magnetic-dipole processes. However, the absence of local inversion
symmetry at the Nd3+ sites means that the parity is no longer well-
defined in the crystal, and hence that there is also some probability for
electric-dipole processes. The upper state has a long lifetime of 230 µs
at 300K on account of the selection rules. This long lifetime is beneficial
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for energy storage, and explains why Nd3+ lasers are capable of giving
such high pulse energies.

Figure 9.9(b) shows the crystal-field fine structure for the 4F3/2 →
4I11/2 transition at 1.06 µm. The octahedral symmetry of the YAG crys-
tal field lifts the degeneracy of the MJ states of the free ion, with states
of the same |MJ | having the same energy. Thus the upper 4F3/2 level,

In atomic physics, the splitting of levels
by an electric field is called the Stark
effect. The energy shift normally de-
pends only on |MJ | rather than the ab-
solute value of MJ . Therefore, since the
crystal-field splitting is caused by elec-
tric fields, it is not surprising that the
shift is insensitive to the sign of MJ .

which has four degenerate MJ states in the free ion corresponding to
MJ = −3/2, −1/2, +1/2 and +3/2, is split by the crystal field into two
sub-levels identified by MJ = ±3/2 and MJ = ±1/2. Similarly, the lower
4I11/2 level splits into six sub-levels. The size of the crystal-field split-
tings is of order 100 cm−1, which is approximately an order of magnitude
smaller than the spin–orbit splitting.

Figure 9.9(c) shows experimental data for the emission spectrum of
the 4F3/2 → 4I11/2 transition at 77K and 300K. The spectrum consists
of sharp lines rather than a continuum, which demonstrates the weak
nature of the vibronic coupling. Transitions involving most of the sub-
levels of the upper and lower levels are clearly identifiable in the spectra.
The laser transition at 1.064 µm is identified in the 300 K spectrum, and
the states involved are indicated in Fig. 9.9(b).

The emission lines in Fig. 9.9(c) are broader at 300 K than at 77 K.
This is a consequence of the stronger electron–phonon coupling at the
higher temperature. The linewidth of the 1.064 µm emission line is 120GHz
at 300 K. As we shall see in Section 9.4, this broadening is very beneficial
for making short pulse lasers.

9.3.3 Transition-metal ions Table 9.3 Electronic configura-
tions of common transition-metal
ions.

Ion Configuration

Ti3+, V4+ [Ar] 3d1

V3+, Cr4+ [Ar] 3d2

V2+, Cr3+ [Ar] 3d3

Cr2+, Mn3+ [Ar] 3d4

Mn2+, Fe3+ [Ar] 3d5

Fe2+ [Ar] 3d6

Co2+ [Ar] 3d7

Ni2+ [Ar] 3d8

Cu2+ [Ar] 3d9

The transition metals are found in the fourth row of the periodic table
and have atomic numbers from 21–30, with electronic configurations of
[Ar] 3dn4s2. The divalent ions are formed by losing the outermost 4s
electrons, and higher valencies are possible if one or more of the 3d
electrons are also lost. Table 9.3 lists some of the more common ions
that are found in solid-state crystals.

A characteristic aspect of the physics of transition-metal ions is the
strong interaction with the crystal field, and hence the strong vibronic
coupling. As mentioned in point 4 of Section 9.3.1, this is caused by
the relatively large radius of the 3d orbitals and the fact that they are
unshielded by outer filled shells. This makes their electronic states very
sensitive to the crystalline environment. A striking example of this is
that Cr3+ ions are responsible for both the red colour of ruby and the
green colour of emerald. The change in colour arises from the shift in
the energy levels in changing the host crystal from sapphire (Al2O3) in
ruby to beryl (Be3Al2Si6O18) in emerald. This can be contrasted with The transmission spectrum of ruby is

given in Fig. 1.7. The red colour is
caused by the two strong absorption
bands in the green/yellow and blue
spectral regions.

the behaviour of rare earth dopants when the crystal host is changed.
For example, the 1.064 µm transition of Nd:YAG only shifts to 1.053 µm
when the host crystal is changed to YLF (YLiF4).

On comparing the transition metals with the rare earths, the crystal-
field effect is stronger and the spin–orbit interaction is smaller. The latter
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point is a consequence of the Z2 dependence of the spin–orbit interac-
tion. This means that in treating the crystal-field effect by perturbation
theory, we should consider the crystal-field interactions first, and then
apply the spin–orbit coupling afterwards. This means that the character
of the states is very different to those of the free ion.

As an example we can consider a transition-metal ion dopant in the
octahedral crystalline environment shown in Fig. 9.8. We take the sim-
plest case in which the metal only has a single 3d electron, as in Ti3+,
which has an electronic configuration of 3d1. The octahedral crystal field
interacts with the degenerate 3d levels of the free ion and splits them
into a doublet and a triplet, as shown in Fig. 9.10. This splitting can
be deduced by group theory, and can also be worked out explicitly by
calculating the perturbation due to the crystal field. (See Exercise 9.9.)

3d

E

T
2

3d

E

T
2

Fig. 9.10 Splitting of the degenerate
3d levels of a Ti3+ ion in an octahedral
crystal environment.

The nomenclature used for the crystal-field-split levels in Fig. 9.10
is taken from group theory, as was the case with the NV− centre. The
doublet is labelled as an E state, and the triplet as a T2 state. These
states are sometimes further specified by their spin multiplicity and their
parity. Thus the doublet is a 2Eg state, with 2T2g for the triplet. The
superscript prefix refers to the spin multiplicity (i.e. that the single elec-
tron has two spin states), while the subscript refers to the parity, with ‘g’
being short for gerade, the German word for ‘even’. (Odd parity states
are labelled ‘u’, which is short for ungerade.)

Figure 9.11 shows the absorption and emission spectra of Ti3+ ions
doped into the octahedral sapphire (Al2O3) host at 300 K. The spectra
correspond to transitions between the T2g ground-state level and the Eg

excited state. Since the upper and lower levels both have even parity,
electric-dipole transitions should be forbidden. However, the introduc-
tion of the Ti3+ impurities slightly distorts the octahedral environment
of the host, and mixes in states of odd parity, giving some transition
probability. This gives an upper state radiative lifetime of 3.9 µs, which
is shorter than the non-radiative lifetime at 300 K. The luminescent ef-
ficiency at 300 K is therefore high (see eqn 5.5 and Exercise 5.4), which
explains why Ti:sapphire crystals make good lasers.

The experimental data show clearly that the absorption and emission
spectra consist of continuous bands rather than sharp lines. This is a
consequence of the strong vibronic broadening of the ground and the
excited states. The Stokes shift of the emission is also apparent in the
data, together with the approximate mirror symmetry of the emission
and absorption about the zero phonon wavelength of ∼ 630 nm.

The details of the level schemes become
more complicated if there is more than
one 3d electron present and/or the crys-
tal environment has lower than octahe-
dral symmetry.

The general shape of the spectra shown in Fig. 9.11 is typical of many
other transition-metal-ion-doped crystals. The crystal field splits the
atomic levels derived from the 3d states, and then the strong coupling
to phonons broadens these states into continuous vibronic bands. This
gives rise to continuous vibronic absorption and emission bands, which
are particularly useful for making tunable lasers, as discussed in the next
section.
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Fig. 9.11 Absorption and emission

spectra for Ti3+ ions doped into sap-
phire (Al2O3) at 300K. After Moulton
(1986), reprinted with permission.

9.4 Solid-state lasers and optical amplifiers

Many important solid-state lasers use transition-metal ions or rare-earth
ions as the gain medium. For example, the first laser ever demonstrated

The population inversion scheme in
ruby is considered in Exercise 9.12. The
publication date of this book (2010)
coincides with the 50th anniversary of
the ruby laser. Ruby contrasts with
most other lasers in that it is a three-
level rather than a four-level system.
The difference depends on whether the
lower laser level is the ground state or
an excited state. In the former case, the
lower laser level has a high initial occu-
pancy, and more than 50% of the atoms
must be pumped to the upper level to
obtain population inversion. This is not
the case for four-level lasers.

used ruby (Cr3+ doped into Al2O3) as the active material. The lasers
can be generally classified as having either a fixed or tunable wavelength.
The emission spectra of rare-earth ions usually consist of very specific
wavelengths, and generally fall into the first category. Transition-metal
ions, on the other hand, often show broad emission bands, which give
rise to the possibility for tunable laser operation over a very wide range
of wavelengths.

A key requirement for laser operation is that there should be popula-
tion inversion between the upper and lower laser levels. (See eqn B.13
in Appendix B.) By this we mean that the population of the upper level
exceeds that of the lower level. This ensures that the rate of stimulated
emission exceeds the rate of absorption, and hence that there is optical
amplification (i.e. gain) in laser crystal.
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Fig. 9.12 Population inversion scheme
for the 1.064�m transition in a
Nd:YAG laser. The pump photons are
typically obtained from a flash lamp or
diode laser.

Population inversion is achieved by ‘pumping’ atoms into the upper
laser level by a variety of mechanisms. Figure 9.12 indicates how this is
done for the 1.064 µm line of the Nd:YAG laser. The upper laser level
is the 4F3/2 state. This level is populated by first pumping electrons
from the ground state to excited states such as the 4F5/2 level identified
in Fig. 9.9(a). Alternatively, the upper laser level can be populated by
pumping to other excited states not shown in Fig. 9.9(a). Some of these
are broadened into bands by vibronic coupling, and can thus absorb
a wide range of frequencies, which makes them easier to pump. The
electrons in the higher excited states rapidly relax to the upper laser
level by non-radiative decay. This gives rise to population inversion with
respect to the 4I11/2 state, and if a suitable cavity is provided, lasing
can occur. Rapid non-radiative decay to the 4I9/2 state ensures that
the electrons do not accumulate in the lower laser level and reduce the
population inversion.

Nd:YAG lasers have traditionally been pumped by bright flash lamps.
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Table 9.4 Common solid-state lasers based on rare-earth or transition-metal ions. The lasers operate at room temperature
unless stated otherwise.

Laser Active ion Configuration Host Wavelength (nm)

Ti:sapphire Ti3+ 3d1 sapphire (Al203) 700–1100
Ruby Cr3+ 3d3 sapphire (Al203) 694
Alexandrite Cr3+ 3d3 beryl (BeAl204) 700–820
Cr:LiSAF Cr3+ 3d3 LiSAF (LiSrAlF6) 780–1010
Cr:LiCAF Cr3+ 3d3 LiCAF (LiCaAlF6) 720–840
Cr:forsterite Cr4+ 3d2 forsterite (Mg2SiO4) 1150–1350
Co:MgF2 Co2+ 3d7 magnesium fluoride (MgF2) 1500–2500 at 77K
Nd:YAG Nd3+ 4f3 yttrium aluminium garnet (YAG: Y3Al5012) 1064
Nd:glass Nd3+ 4f3 phosphate glass 1054
Nd:YLF Nd3+ 4f3 yttrium lithium fluoride (YLF: LiYF4) 1047 and 1053
Nd:vanadate Nd3+ 4f3 yttrium vanadate (YVO4) 1064
Yb:YAG Yb3+ 4f13 yttrium aluminium garnet (YAG: Y3Al5012) 1030 at 100K
Erbium fibre Er3+ 4f11 optical fibre 1530–1560

However, the transition from the ground state to the 4F5/2 state con-
veniently matches the optimum emission wavelength of GaAs quantum
well diode lasers around 800 nm. (See Section 6.6.) This has given rise
to a new generation of Nd:YAG lasers pumped by high power semi-
conductor lasers, which are much more efficient and stable than their
counterparts that use flash lamps.

The population inversion mechanism in Ti:sapphire lasers follows the
general procedure shown in Fig. 9.13. Electrons are pumped from the
ground state of the 2T2 band to an excited level within the 2E band.
These electrons relax to the bottom of the 2E band by phonon emission,
and this creates population inversion with respect to the vibronic levels
of the 2T2 band, which are rapidly depleted by further phonon emission.
Lasing can then occur over a broad range of wavelengths within the
emission band shown in Fig. 9.11.
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Fig. 9.13 Level diagram for the tun-
able vibronic emission in a Ti:sapphire
laser.

Ti:sapphire lasers can be pumped by argon ion lasers, whose emission
lines at 488 nm and 514 nm match well to the absorption bands of the
Ti:sapphire crystal shown in Fig. 9.11. Alternatively, frequency-doubled
Nd lasers (e.g. Nd:YAG, Nd:YLF, or Nd:YVO4) operating around 532 nm
can be used. In the latter case, the 532 nm radiation is obtained by dou-
bling the frequency of the 1064 nm laser line using the techniques of
nonlinear optics discussed in Chapter 11. It might at first seem counter-
intuitive to use one laser to pump another, but it actually makes sense
because it is an efficient way to convert the discrete frequencies of a
fixed-wavelength, high-power laser to continuously tunable radiation.

Table 9.4 lists a number of important solid-state lasers based on
transition-metal or rare-earth ions. As is apparent from the table, it
is possible to cover a wide range of frequencies in the visible and near-
infrared spectral regions by using these sources. Of the lasers listed, the
Nd3+ lasers have found the most widespread applications in industrial
and medical environments, due to their high power output and rugged
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Fig. 9.14 The erbium-doped fibre am-

plifier. (a) Level scheme. The 4I11/2

band is 1.27 eV above the ground
state, and is suitable for pumping
with 980 nm diode lasers. Rapid non-
radiative relaxation occurs to the bot-
tom of the 4I13/2 band. This creates
population inversion for the 4I13/2 →
4I15/2 vibronic transition, and hence
gain between 1.53�m and 1.56�m.
(b) Schematic diagram of the fibre am-
plifier. The 980 nm pump laser is cou-
pled into the erbium-doped section by
means of a fibre coupler.

structure.
The last gain medium listed in Table 9.4, namely the erbium-doped op-

tical fibre, has become increasingly important for use in telecommunica-
tions systems. The level scheme for the Er3+ ion is shown in Fig. 9.14(a).
The 4I11/2 band of the Er3+ ions is 1.27 eV above the ground state,
which makes it suitable for pumping with 980 nm diode lasers. Rapid
non-radiative relaxation occurs to the bottom of the 4I13/2 band, where
the electrons accumulate due to the long lifetime of the state (11 ms).
This creates population inversion with respect to the ground state band,
generating optical gain for the 4I13/2 → 4I15/2 vibronic band between
1.53 µm and 1.56 µm.

The erbium ions are doped into a section of optical fibre, which is
pumped by a 980 nm semiconductor diode laser introduced by a fibre
coupler, as shown schematically in Fig. 9.14(b). Lasing can occur if mir-
rors are placed around the gain medium, but usually there is no cavity
and the gain of the erbium ions is used to amplify signals. The gain peaks
around 1.55 µm, which is one of the preferred wavelengths for silica fibre
systems. Amplification factors of about 103 can be obtained with a few
metres of erbium fibre.

The fibre losses are very small at
1.55�m. Nevertheless, in long distance
systems (e.g. transatlantic) the signals
in the fibre must still be amplified at
regular intervals to compensate for the
small (but non-zero) losses.

We mentioned in Section 9.2 that colour centres can also be used as
laser crystals. The population inversion mechanism follows the same gen-
eral scheme as for the Ti:sapphire laser shown in Fig. 9.13. The electrons
are first pumped to an intermediate state within the upper band, from
where they relax by phonon emission. They then return to the lower
band by emitting the laser photon, and finally relax to the ground state
by further phonon emission. Colour centre lasers are mainly used for
spectroscopic studies in the infrared spectral region. For example, laser
operation has been demonstrated for the F2

+ centre in KF between
1.22 µm and 1.50 µm, which covers most of the emission bands of this
crystal. (See Fig. 9.5.) The laser is conveniently pumped by the 1.064 µm
line of a Nd:YAG laser, which matches well to the absorption band be-
tween 1.0 µm and 1.2 µm. With other combinations of host crystals and
colour centres, it is possible to cover a wide range of wavelengths in the
infrared spectral region between 1 µm and 4 µm.
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In many modern laser applications it is desirable to be able to produce
very short light pulses. The duration ∆t of the shortest pulses that can
be produced by a laser is set by the spectral width ∆ν of the emission
line according to:

∆ν∆t ∼ 1 . (9.6)

This time–bandwidth product is a type of uncertainty principle. It
means that laser crystals with broad emission lines are good candidates
for producing very short pulses. The precise value of the time–bandwidth
product depends on the shape of the pulse. For example, if the pulses
are Gaussian, ∆ν∆t = 0.441. (See Exercise 9.13.)

We mentioned in connection with Fig. 9.9(c) that the linewidth of the
1064 nm line in Nd:YAG is about 120 GHz at 300 K, which leads to pulses
as short as a few picoseconds. However, the shortest pulses at present are
produced by Ti:sapphire lasers. The extremely broad spectral width of
the emission band (∆ν ∼ 1014 Hz) makes it possible to generate pulses
shorter than 10 fs, which permits many interesting studies of dynamical
effects in physics, chemistry, and biology. These ultrafast lasers are typi-
cally pumped by diode-pumped Nd:YAG lasers, and, as such, represents
a tour de force of present-day solid-state optical technology, combining
semiconductor quantum wells (Chapter 6) with nonlinear optics (Chap-
ter 11) and solid-state laser science (the present chapter).

9.5 Phosphors

Phosphors also find widespread appli-
cation in the cathode ray tubes used in
oscilloscopes and older computer moni-
tors. In these devices an electron beam
strikes a screen coated with a suitable
phosphor which then emits light by the
cathodoluminescence process. (See Sec-
tion 5.4.4.)

The term phosphor covers a wide range of solids that emit visible light
when excited either by a beam of electrons or by short wavelength pho-
tons. In this section we briefly discuss the applications of phosphors in
lighting applications.

The traditional lighting application for phosphors is in fluorescent
tubes. This technology was developed around the time of the Second
World War and quickly established itself for general lighting applica-
tions due to its greater efficiency compared to incandescent lamps. The
tubes contain mercury vapour at a low pressure, and the inside of the
glass is coated with the phosphor. An electrical discharge excites the
mercury atoms, which emit ultraviolet radiation at 254 nm and 185 nm.
This ultraviolet light is then absorbed by the phosphor, and re-emitted
in the visible spectral region.

For many years fluorescent lighting was dominated by halophosphate
phosphors incorporating Sb3+ and Mn2+ dopants. However, the advent
of rare-earth phosphors in 1975 revolutionized the technology. By using
a blend of three rare-earth dopants, one emitting in the blue, one in the
green, and one in the red, it is possible to make highly efficient tubes
with a very good white-light colour balance.

Figure 9.15 shows the emission spectrum of a tricolour lamp blended
to give a colour balance equivalent to a black-body source at 4000K. TheSimilar phosphors are used for the red,

green, and blue pixels in older colour
televisions and computer monitors.

lamp incorporates a carefully selected mixture of BaMgAl10O17:Eu2+,
CeMgAl11019:Tb3+, and Y2O3:Eu3+. The Eu2+ (4f7) ions emit in the
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Fig. 9.15 Emission spectrum of a tri-
colour fluorescent lamp with a colour
balance equivalent to a black-body
source at 4000 K. The main emission
lines from the blend of Eu2+, Eu3+ and
Tb3+ phosphors in the lamp are iden-
tified. The sharp lines at 405 nm and
436 nm originate from the mercury dis-
charge. There is also a mercury line at
545 nm which is very close to the main
Tb3+ emission line. After Smets (1992),
reprinted with permission from Plenum
Publishers.

blue at 450 nm, the Tb3+ (4f8) ions in the green at 550 nm, and the
Eu3+ (4f6) ions in the red at 610 nm. These emission lines are clearly
visible in the spectrum of the tricolour lamp, together with other weaker
emission lines from the phosphors and also the mercury lines at 405 nm,
436 nm, and 545 nm. These tricolour lamps are much more efficient than
the older halophosphates, and also offer a much better colour balance.

In recent years phosphors have found an important new application
in phosphor-converted LEDs (light-emitting diodes). In these devices a
phosphor (or blend of phosphors) is combined with a short wavelength
semiconductor LED to produce white light. These white-light LEDs lie
at the basis of the rapidly-developing solid-state lighting industry.

Figure 9.16(a) shows a schematic diagram of a white-light LED. The The purpose of the reflector cup in the
LED is to increase the output in the
forward direction by reflecting the light
that is emitted downwards.

device consists of a short wavelength semiconductor LED based on ni-
tride materials (see Section 5.4) combined with appropriate phosphors.
There are several common strategies available for making white-light
LEDs in this way:

• use a GaN device emitting in the ultraviolet (UV) to excite a blend
of three phosphors (i.e. red, green, and blue) as in a tricolour lamp;

• use a blue-emitting GaInN alloy together with a yellow phosphor
(e.g. Ce3+:YAG);

• use a blue-emitting GaInN alloy together with a blend of green
and red phosphors.

The first method offers the best colour control, but is less efficient, since
the UV LED technology is less well developed, and more energy is lost
in the colour conversion process. (See Exercise 9.18.) In the second and
third approaches, the nitride LED serves as both the blue emitter and
the excitation source for the phosphors. The devices based on just a
single phosphor are simpler to make, but offer less good colour rendition
compared to those incorporating two phosphors.

Figure 9.16(b) shows the emission spectrum of a white-light LED
based on a blue-emitting GaInN quantum well chip. The device incor-
porated a blend of two phosphors labelled I and II. Both phosphors are
based on the Eu2+ ion. The phosphors have absorption bands in the
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Fig. 9.16 (a) Schematic diagram of a phosphor-converted LED. (b) Emission spectrum of a white-light LED. The device

incorporated a blue-emitting GaInN quantum well LED together with a green phosphor (I, SrSi2O2N2:Eu2+) and red phosphor
(II, Sr2Si5N8:Eu2+). After Mueller-Mach et al. (2005), reprinted with permission.

blue spectral region that overlap the LED output, and their emission
wavelength is controlled by the choice of host material. In the case ofThe Eu2+ phosphors emit light by

dipole-allowed 5d → 4f transitions. The
excited-state 5d shells have a relatively
large radius and are therefore highly
susceptible to crystal-field effects and
vibronic coupling. They are therefore
broadened into bands, with their en-
ergy depending strongly on the prop-
erties of the host crystal.

phosphor I, the host was SrSi2O2N2, and the emission was in the green
spectral region, while for phosphor II, the host was Sr2Si5N8 and the
emission was in the red. The combined emission spectrum of the LED
shows a peak in the blue spectral region around 450 nm from the nitride
quantum well, together with a broad emission band in the green–red
spectral range from the phosphors. The equivalent colour temperature
of the device was 3200 K.

White-light LEDs offer several advantages over fluorescent tubes in
lighting applications. Firstly, they operate at low voltages, which makes
them compatible with small battery-operated devices (e.g. mobile phones,
flashlights.) Secondly, they contain no environmentally hazardous ele-
ments such as mercury. Finally, the overall energy conversion efficiency
is already comparable to that achieved in fluorescent tubes and is pre-
dicted to increase significantly in the future. As a result, these phosphor-
converted LEDs are already finding very widespread application and are
expected to form the basis for the next generation of general lighting
sources.

Chapter summary

• Luminescence centres are optically active defects and impurities
within crystalline hosts. The electronic states of the centres are
localized at the defect or impurity from which they arise.

• The electronic states couple to the lattice vibrations of the host
crystal through the electron–phonon interaction. Optical transi-
tions between the states are vibronic and involve the simultaneous
excitation of phonons.
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• The vibronic coupling leads to broad absorption and emission
bands in many materials. The emission occurs at a lower energy
than the absorption. This red-shift of the emission bands is called
the Stokes shift.

• Colour centres (F-centres) consist of an electron trapped at a va-
cancy in an insulator crystal. Vibronic transitions between the
bound states of the electron give rise to broad absorption and emis-
sion bands. Nitrogen vacancy (NV) centres offer very promising
prospects for applications in quantum information processing.

• The energy levels of paramagnetic ions doped into ionic crystals
are perturbed by the crystal field of their local environment. In
the rare-earth ions, the crystal-field effects are quite small, but in
the transition-metal ions, the crystal-field effects are very large.

• The optical spectra of rare-earth ions tend to consist of discrete
lines. The crystal-field effect causes small splittings of transitions
that are degenerate in the free ions.

• The optical spectra of transition-metal ions consist of broad vi-
bronic bands. The emission is Stokes-shifted with respect to the
absorption.

• Paramagnetic ions and colour centres can be used as the gain
medium in solid-state lasers. Rare-earth ion lasers tend to operate
on discrete wavelengths, while the transition-metal ions and colour
centres give rise to tunable laser wavelengths. Erbium ions doped
into optical fibres can be used as optical amplifiers at 1.55 µm.

• Rare-earth ion phosphors are frequently used as the light-emitting
material in fluorescent lighting and cathode ray tubes. They can
also be combined with short wavelength semiconductor LEDs to
produce white-light LEDs for applications in solid-state lighting.

Further reading

The basic physics of colour centres is covered in Ashcroft
& Mermin (1976), Burns (1985), or Kittel (2005), and the
crystal-field effect is explained in more detail in Blundell
(2001). A good introduction to luminescent impurities
is given by Elliott & Gibson (1974), while authoritative
treatments of vibronic systems may be found in Hender-
son & Imbusch (1989) or Hayes & Stoneham (1985).

Reviews on colour centres in diamond and the read-out
of spins by optical spectroscopy may be found respectively
in Jelezko & Wrachtrup (2006) and Jelezko & Wrachtrup
(2004). A detailed account of the decay dynamics of NV−

centres may be found in Manson et al. (2006). An account
of the present state of the art in coherent manipulations
of single spins in NV centres in diamond may be found in
Balasubramanian et al. (2009).

Detailed information about solid-state lasers may be
found in Henderson & Bartram (2000), Silfvast (2004), or
Svelto (1998). A collection of review papers on colour cen-
tres, transition-metal ions, and phosphors may be found
in Di Bartolo (1992). Reviews on white-light LEDs and
solid-state lighting may be found in Narukawa (2004),
Shur & Žukauskas (2005), or Schubert et al. (2006).
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Exercises
(9.1) A colour centre may be modelled as an electron

of mass m0 confined to move in a cubic box with
a cube edge length of 2a. On the assumption that
the potential barriers at the edge of the box are in-
finite, solve the Schrödinger equation for the elec-
tron and hence derive eqn 9.4.

(9.2) The solid line in Fig. 9.4 is a fit to the data with
E = 0.21/a2, where E is measured in eV and a in
nm. How does this fit compare to the prediction
of eqn 9.5 ?

(9.3) The anion–cation distance in KBr is 0.33 nm. Es-
timate the energy of the F-band absorption peak
in this crystal.

(9.4) An electron is trapped in a hard rectangular box
with square ends orientated along the z axis. Cal-
culate the energy of the electron if the length of the
box is 2b and its cross-sectional area is b2. Hence
explain why we might expect the transitions of an
F+

2 centre to be at about half the energy of the
equivalent F centre. Does this model fit the exper-
imental data for KF given in Figs 9.4 and 9.5?

(9.5) (a) Calculate the relative occupation of the MS =
0 and MS = ±1 sub-levels of the 3A ground state
of an NV− centre in thermal equilibrium at 2K.
(b) Calculate the temperature that would need to
be reached to initialize 80% of the electrons into
the MS = 0 level.

(9.6) Use the data in Fig. 9.7(b) to determine the en-
ergy of the dominant phonon mode that interacts
with the NV− centre.

(9.7) The expectation value of the radius of an electron
in a hydrogenic atom is given by

〈r〉 =
n2aH

Z

�
3

2
− l(l + 1)

2n2

�
,

where Z is the atomic number, aH is the Bohr ra-
dius of hydrogen, n is the principal quantum num-
ber and l is the orbital quantum number. Use this
result to argue that:
(a) The radius of the 3d orbitals in a transition-
metal ion is larger than that of the 4f orbitals in a
rare-earth ion.
(b) The 3d orbitals of a transition-metal ion are
the outermost orbitals of the atom, whereas the 4f
orbitals of a rare-earth ion are not.

(9.8)∗Consider the interaction between an electron in
an outer p orbital with the electric field of a crys-
talline host environment.
(a) Explain why the px, py, and pz orbitals are
degenerate if the ion is placed in an octahedral
crystal, as sketched in Fig. 9.8.
(b) Explain why the p states split into a singlet
and a doublet if the crystal has uniaxial symme-
try, that is, if the ions of the crystal host are closer
along the z axis than in the x and y directions.
(c) State whether the energy of the singlet is higher
or lower than that of the doublet if the nearest
neighbour ions are negative.

(9.9)∗ In this exercise we consider the splitting of the
3d levels of a transition-metal ion in an octahe-
dral crystalline environment. We assume that the
cation is located at the origin and is surrounded
by six anions of charge q located at (±a, 0, 0),
(0,±a, 0), and (0, 0,±a), as shown in Fig. 9.8. In
this case, the potential near the origin is of the
form:

V (�) =
6α

a
+

35α

4a5

�
x4 + y4 + z4 − 3

5
r4

�
,

where α = q/4πε0 and � ≡ (x, y, z) is the position
vector relative to the origin. This can be rewritten
in spherical polar co-ordinates as:

V (�) =
6α

a
+

7αr4

2a5

�
C4,0 +

�
5/14(C4,4 + C4,−4)

�
,

where Cl,m(θ, φ) is a spherical harmonic function.
(a) The five m states of the 3d orbitals can be
written as:

ψm(�) ≡ |m〉 = f(r) C2,m ,

where

C2,0 =
�
3 cos2 θ − 1

�
/2 ,

C2,±1 = ∓(3/2)1/2 cos θ sin θ e±iφ ,

C2,±2 = (3/8)1/2 sin2 θ e±i2φ .

Use the fact that |m〉 ∝ eimφ to show that the
matrix elements:

〈m|V |m′〉 ≡
���

ψ∗
m V ψm′ d3

�

are zero unless m′ = m or m′ = m ± 4.

∗Exercises marked with an asterisk are more challenging.
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(b) By writing:

〈±2|V | ± 2〉 = A

〈±1|V | ± 1〉 = B

〈0|V |0〉 = C

〈m|V |m ± 4〉 = D ,

show that the eigenstates of the system are as fol-
lows:

Energy Wave function

A + D (|2〉 + | − 2〉)/
√

2

A − D (|2〉 − | − 2〉)/
√

2

B | ± 1〉
C |0〉

(c) Symmetry (or explicit calculation) demands
that A + D = C and A − D = B. This implies
that the system splits into a doublet and triplet,
the states of which are labelled dγ and dε respec-
tively. Show that these states take the following
form in Cartesian co-ordinates:

ψdγ ∝ (2z2 − x2 − y2) and (x2 − y2) ,

ψdε ∝ xy, yz, and zx .

(d) By considering the shapes of the dγ and dε
wave functions, explain why the doublet has the
higher energy in a d1 electronic configuration, but
the lower energy in a d9 configuration. Hint : a d9

configuration can be considered as a single hole in
a filled d shell.

(9.10) Explain why the intensity of the 1.064�m line of
the Nd:YAG crystal is greater at 300K than at
77K. (See Fig. 9.9(c).)

(9.11) Explain why population inversion between two lev-
els gives rise to optical gain at the energy difference
between the two levels.

(9.12) The level scheme for the 694.3 nm line of a ruby
laser is shown in Fig. 9.17. The lower laser level
(level 0) is the ground state, and the upper level
is an excited state (level 2). Ruby has strong ab-
sorption bands in the green/blue spectral regions
(see Fig. 1.7), and these are used as intermediate
pumping bands (level 1) to produce population in-
version between levels 2 and 0.
(a) Explain why lasing is not possible unless more
than 50% of the atoms in the ground state have
been promoted to the upper laser level.
(b) In a particular laser, a flash lamp pumps 60%
of the atoms from the ground state to the upper

laser level, which then emits a short laser pulse.
Calculate the maximum energy of this pulse if
the laser rod has a volume of 10−6 m3 and the
doping density of the Cr3+ ions in the crystal is
1 × 1025 m−3.
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Fig. 9.17 Level diagram for a ruby laser. Lasing occurs
between levels 2 and 0, after atoms have been pumped
to the upper level via level 1.

(9.13) A laser emits pulses with a Gaussian time depen-
dence of the form I(t) = I0 exp(−t2/τ2). The cen-
tre frequency of the laser light is ω0.
(a) By considering the Fourier transform of the
electric field, show that the pulses have a spec-
trum of the form I(ω) = I(ω0) exp[−τ2(ω − ω0)

2].
(b) Hence show that the time–bandwidth product
of the pulses, namely ∆ν∆t, where ∆ν and ∆t are
the full width at half maximum of the pulse in the
frequency and time domains respectively, is equal
to 2 ln 2/π.

(9.14) The linewidth of the 1.054�m transition of Nd3+

in a phosphate glass host is 7.5×1012 Hz. Suggest a
possible explanation for why this is about 60 times
larger than that of the 1.064�m line in Nd:YAG
crystal. Estimate the duration of the shortest
pulses that can be obtained from a Nd:glass laser.

(9.15) Explain why the radiative lifetime for the Eg →
T2g transition in titanium-doped sapphire is in the
microsecond range. Would you classify this emis-
sion as fluorescence or phosphorescence?

(9.16) The radiative lifetime of the upper laser level of
Co:MgF2 is 1.8 ms. The measured excited state
lifetime decreases from 1.4ms at 77K to 0.06ms at
300K. Account for the temperature dependence of
the excited state lifetime, and explain why the op-
erating temperature for the Co:MgF2 laser is 77 K
and not 300K.
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(9.17) A titanium-doped sapphire laser operating at
800 nm is pumped by an argon ion laser at 514 nm.
Calculate the maximum possible power output if
the pump power is 5W, stating the assumptions
you make. What happens to the energy that is not
emitted as laser light?

(9.18) A white-light LED contains a phosphor emitting at
650 nm. Calculate the energy conversion efficiency
for the phosphor when it is excited (a) by an ul-
traviolet LED operating at 350 nm, and (b) by a
blue LED operating at 450 nm.
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In this chapter we turn our attention to the interaction between light
and the phonons in a solid. Phonons are vibrations of the atoms in a
crystal lattice, and have resonant frequencies in the infrared spectral
region. This contrasts with the optical properties of bound electrons,
which occur at visible and ultraviolet frequencies.

The main optical properties of phonons can be explained to a large
extent by classical models. We therefore make extensive use of the clas-
sical dipole oscillator model developed in Chapter 2. This will allow us
to understand why polar solids reflect and absorb light strongly within
a band of infrared frequencies. We then introduce the concepts of polari-
tons and polarons, before moving on to discuss the physics of inelastic
light scattering. We shall see how Raman and Brillouin scattering tech-
niques give us complementary information to infrared reflectivity data,
which is why they are so extensively used in phonon physics. Finally we
briefly discuss why phonons have a finite lifetime, and how this affects
the reflectivity and inelastic scattering spectra.

We assume that the reader is familiar with the basic physics of phonons,
which is covered in all introductory solid-state physics texts. A partial
list of suitable preparatory reading is given under Further Reading at
the end of the chapter.

10.1 Infrared active phonons

The atoms in a solid are bound to their equilibrium positions by the
forces that hold the crystal together. When the atoms are displaced
from their equilibrium positions, they experience restoring forces, and
vibrate at characteristic frequencies. These vibrational frequencies are
determined by the phonon modes of the crystal.

The resonant frequencies of the phonons occur in the infrared spectral
region, and the modes that interact directly with light are called in-
frared active (IR active). Detailed selection rules for deciding which The group-theory approach is beyond

the scope of this book, although we
shall give some simple arguments based
on symmetry when we consider inelas-
tic light scattering in Section 10.5.

phonon modes are IR active can be derived by using group theory. At
this level we just discuss the general rules based on the dispersion of the
modes, their polarization, and the nature of the bonding in the crystal.

The phonon modes of a crystal are sub-divided into two general cat-
egories:

• acoustic or optical;

• transverse or longitudinal.
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It will come as no surprise to realize that it is the ‘optical’ rather than
the acoustic modes that are directly IR active. These optically active
phonons are able to absorb light at their resonant frequency. The basic
process by which a photon is absorbed by the lattice and a phonon is
created is represented in Fig. 10.1. Conservation laws require that the
photon and the phonon must have the same energy and momentum. We
shall see below that this condition can only be satisfied for the optical
modes.

The phonon dispersion curves for real
crystals are more complicated than
those shown in Fig. 10.2 because the
longitudinal and transverse polariza-
tions tend to have different frequencies.

Figure 10.2 shows the generic dispersion curves for the acoustic and
optical phonons in a simple crystal. The angular frequency Ω of the
acoustic and optical phonons is plotted against the wave vector q in the
positive half of the first Brillouin zone. At small wave vectors the slope of
the acoustic branch is equal to vs, the velocity of sound in the medium,
while the optical modes are essentially dispersionless near q = 0.

The figure also shows the dispersion of the light waves in the crystal,
which have a constant slope of v = c/n, where n is the refractive index.
The refractive index has been highly exaggerated here in order to make
the dispersion of the photon noticeable on the same scale as the phonon
dispersion. The requirement that the photon and phonon should have the
same frequency and wave vector is satisfied when the dispersion curves
intersect. Since c/n � vs, the only intersection point for the acoustic
branch occurs at the origin, which corresponds to the response of the
crystal to a static electric field. The situation is different for the optical
branch: there is an intersection at finite ω, which is identified with the
circle in Fig. 10.2. Since the optical branch is essentially flat for small q,
the frequency of this resonance is equal to the frequency of the optical
mode at q = 0.

Photons couple to phonons through the driving force exerted on the
atoms by the AC electric field of the light. Since electromagnetic waves
are transverse, they only apply driving forces to the transverse vibrations
of the crystal, which means that they only couple to the transverse optic
(TO) phonon modes. Furthermore, there will only be an interaction if
the atoms are charged. This means that the crystal must have some ionic
character in order for its TO phonons to be optically active.�, k �, q�, k �, q

Fig. 10.1 Lattice absorption process
by an infrared active phonon. The
straight arrow represents the photon
that is absorbed, while the wiggly arrow
represent the phonon that is created.

The ionicity of a solid arises from the way the crystal binding occurs.
An ionic crystal consists of an alternating sequence of positive and neg-
ative ions held together by their mutual Coulomb attraction. Covalent
crystals, by contrast, consist of neutral atoms with the electrons shared
equally between the neighbouring nuclei. This means that none of the
optical phonons of purely covalent solids like silicon are IR active. Most
other materials fall somewhere between these two limits. For example,
the bond in a III–V semiconductor is only partly covalent, and the shared
electrons lie slightly closer to the group V atoms than to the group III
atoms, which gives the bond a partly ionic character. The bonds with
an ionic character are called polar bonds to stress the point that the
asymmetric electron cloud between the atoms creates a dipole that can
interact with electric fields. Provided the bond has some polar character,
its phonons can be IR active.

liuhu
高亮



10.2 Infrared reflectivity and absorption in polar solids 273

Wave vector (q)

F
re

q
u
e
n
c
y

acoustic branch

optical branch

�

a
0

p
h
o

to
n

Wave vector (q)

F
re

q
u
e
n
c
y

acoustic branch

optical branch

�

a

�

a
0

p
h
o

to
n

Fig. 10.2 Dispersion curves for the
acoustic and optical phonon branches
in a typical crystal with a lattice con-
stant of a. The dispersion of the photon
modes in the crystal is shown by the
dotted line.

The conclusions of this section are summarized in Table 10.1.

Table 10.1 Infrared activity of
the phonon modes in polar and
non-polar crystals. LA: longitu-
dinal acoustic, TA: transverse
acoustic, LO: longitudinal optic,
TO: transverse optic.

Mode Polar Non-polar
crystal crystal

LA no no
TA no no
LO no no
TO yes no

10.2 Infrared reflectivity and absorption
in polar solids

Experimental data show that polar solids absorb and reflect light very
strongly in the infrared spectral region when the frequency is close to
resonance with the TO phonon modes. We have come across several ex-
amples of this already. For example, the transmission spectra of sapphire
and CdSe given in Fig. 1.4 show that there are spectral regions in the
infrared where no light is transmitted. This is a consequence of lattice
absorption.

The aim of this section is to account for this result by modelling
the interaction of photons with TO phonons. To do this we shall make
extensive use of the classical oscillator model developed in Chapter 2,
especially Section 2.2. This will allow us to calculate the frequency de-
pendence of the complex dielectric constant ε̃r(ω), from which we shall
be able to determine the important optical properties such as the reflec-
tivity and absorption.

10.2.1 The classical oscillator model

The interaction between electromagnetic waves and a TO phonon in
an ionic crystal is most easily treated by considering a linear chain, as
illustrated in Fig. 10.3. The chain consists of a series of unit cells, each
containing a positive ion (black circle) and a negative ion (grey circle).
The waves are taken to be propagating along the chain in the z direction.
We are dealing with a transverse mode, and so the displacement of the
atoms is in the x or y directions. Furthermore, in an optic mode the
different atoms within each unit cell move in opposite directions, with
a fixed ratio between their displacements which is not necessarily equal
to unity.

We are interested in the interaction between a TO phonon mode with
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Fig. 10.3 Interaction of a TO phonon
mode propagating in the z direction
with an electromagnetic wave of the
same wave vector. The black circles rep-
resent positive ions, while the grey cir-
cles represent the negative ions. The
solid line represents the spatial depen-
dence of the electric field of the electro-
magnetic wave.
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q ≈ 0 and an infrared light wave of the same frequency and wave vector.
This means that we are considering phonons with a very long wavelength
of ∼ 10 µm matched to that of an infrared photon. This phonon wave-
length is huge compared to the size of a unit cell in a crystal, which is
usually less than 10−9 m. The size of the atoms has been highly exagger-
ated in Fig. 10.3 to make the physics of the interaction clearer. In fact,
the real size of the atoms is tiny compared to the wavelength, and there
will be thousands of unit cells within one period of the wave.

The solid line in the figure represents the spatial dependence of the
AC electric field of the infrared light wave. At resonance, the wave vec-
tor of the photon and the phonon are the same. This means that the
driving force exerted by the light on the positive and negative ions is
in phase with the lattice vibration. At the same time, the anti-parallel
displacements of the oppositely charged atoms generate an AC electric
field in phase with the external light. This implies that there is a strong
interaction between the TO phonon mode and the light wave when the
wave vectors and frequencies match.

The data for SiO2 glass shown in
Fig. 2.7 illustrates the connection be-
tween the infrared absorption in solids
and that of the constituent molecules
quite well. The glass is amorphous,
and therefore does not have long range
order with delocalized phonon modes.
The absorption in the range 1013 to
1014Hz is basically caused by the vibra-
tional absorption of the SiO2 molecules
themselves, although the frequencies
are not necessarily exactly the same in
the solid as in the free molecule.

For long wavelength TO modes with q ≈ 0, the motion of the atoms
in different unit cells is almost identical, and we therefore need to con-
centrate on what is happening within the unit cell itself. This enables
us to see that there is a close connection between the TO phonons at
q = 0 and the vibrational modes of the molecules from which the crystal
is formed. We can therefore make use of some of the principles devel-
oped in molecular physics, for example: the selection rules for deciding
whether a particular phonon mode is IR or Raman active. (See Sec-
tion 10.5.2.)

The interaction between the TO phonon and the light wave can be
modelled by writing down the equations of motion for the displaced ions.
The displacements of the positive and negative ions in a TO mode are in
opposite directions and are given the symbols x+ and x− respectively,
as indicated in Fig. 10.3. The appropriate equations of motion are:

m+
d2x+

dt2
= −K(x+ − x−) + qE(t) (10.1)

m−
d2x−
dt2

= −K(x− − x+) − qE(t) (10.2)

where m+ and m− are the masses of the two ions, K is the restoring
constant of the medium, and E(t) is the external electric field due to the
light wave. The effective charge per ion is taken to be ±q.
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By dividing eqn 10.1 by m+ and eqn 10.2 by m−, and then subtracting,
we obtain: Care should be taken here not to con-

fuse q for charge and q for phonon wave
vector. It is usually obvious from the
context which meaning is intended. For
a strongly ionic crystal such as NaCl, q
would just be equal to ±e. However, for
crystals with polar covalent bonds such
as the III–V compounds, q will repre-
sent an effective charge which is deter-
mined by the asymmetry of the electron
cloud within the bond.

d2

dt2
(x+ − x−) = −K

µ
(x+ − x−) +

q

µ
E(t) , (10.3)

where µ is the reduced mass given by:
1
µ

=
1

m+
+

1
m−

. (10.4)

By putting x = x+ − x− for the relative displacement of the positive
and negative ions within their unit cell, we can recast eqn 10.3 in the
simpler form:

d2x

dt2
+ Ω2

TOx =
q

µ
E(t) , (10.5)

where we have written Ω2
TO for K/µ. ΩTO represents the natural vibra-

tional frequency of the TO mode at q = 0 in the absence of the external
light field. Note that the displacement of the charged atoms creates an
electric dipole of magnitude qx. We thus have a vibrational dipole, as
discussed in Section 2.1.2.

Equation 10.5 represents the equation of motion for undamped oscilla-
tions of the lattice driven by the forces exerted by the AC electric field of
the light wave. In reality, we should have incorporated a damping term
to account for the finite lifetime of the phonon modes. The physical sig-
nificance of the phonon lifetime will be discussed further in Section 10.6.
At this stage, we simply introduce a phenomenological damping rate γ,
and rewrite eqn 10.5 as

d2x

dt2
+ γ

dx

dt
+ Ω2

TOx =
q

µ
E(t) . (10.6)

This now represents the response of a damped TO phonon oscillator to
a resonant light wave.

Equation 10.6 is identical in form to eqn 2.5 in Chapter 2, with m0

replaced by µ, ω0 by ΩTO and −e by q. Therefore, we can use all the
results derived in Section 2.2 to model the response of the medium to
a light field of angular frequency ω with E(t) = E0e−iωt. In particular,
we can go directly to the formula for the frequency dependence of the
dielectric constant without repeating all the steps in the derivation. By
adapting the symbols appropriately in eqn 2.14, we immediately write
down:

εr(ω) = 1 + χ +
Nq2

ε0µ

1
(Ω2

TO − ω2 − iγω)
, (10.7)

where εr(ω) is the complex dielectric constant at angular frequency ω. χ
represents the non-resonant susceptibility of the medium, and N is the
number of unit cells per unit volume.

Equation 10.7 can be tidied up by introducing the static and high-
frequency dielectric constants εst and ε∞ respectively. In the limits of
low and high frequency, we obtain from eqn 10.7:

εst ≡ εr(0) = 1 + χ +
Nq2

ε0µΩ2
TO

, (10.8)
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and
ε∞ ≡ εr(∞) = 1 + χ . (10.9)

Thus we can write:In principle, we should consider the lo-
cal field corrections discussed in Sec-
tion 2.2.4 here. This is an unnecessary
complication at this level which does
not add much to the main conclusions.
We therefore neglect local field effects,
and base our discussion on eqn 10.10.

εr(ω) = ε∞ + (εst − ε∞)
Ω2

TO

(Ω2
TO − ω2 − iγω)

. (10.10)

This is our main result, which will be used in the next subsections to
derive the infrared optical coefficients. As discussed in Section 2.2.2,
and in particular in connection with Fig. 2.6, we should understand
‘ω = ∞’ in a relative sense here. ε∞ represents the dielectric constant
at frequencies well above the phonon resonance, but below the next
natural frequency of the crystal due, for example, to the bound electronic
transitions in the visible/ultraviolet spectral region.

10.2.2 The Lyddane–Sachs–Teller relationship

Before working out the frequency dependence of the infrared reflectivity,
it is useful to investigate one rather striking implication of eqn 10.10.
Suppose we have a lightly damped system so that we can set γ = 0.
Then at a certain frequency which we label ω′, eqn 10.10 tells us that
the dielectric constant can fall to zero. The condition for this to happen
is:

εr(ω′) = 0 = ε∞ + (εst − ε∞)
Ω2

TO(
Ω2

TO − ω′2) . (10.11)

This can be solved to obtain:

ω′ =
(

εst
ε∞

)1/2

ΩTO. (10.12)

What does εr = 0 mean physically? We encountered another system
for which εr = 0 when we discussed plasma oscillations in Section 7.5.1.
We saw there that a dielectric medium can support longitudinal waves at
frequencies that satisfy εr(ω) = 0. We can understand this by considering
Gauss’s law. If the medium has no free charges, the total charge density
is zero, and we have (see eqn A.10):

∇ · D = ∇·(εrε0E) = 0 , (10.13)

where we have made use of eqn A.3 to relate the electric displacement
D to the electric field E in a dielectric medium. If εr �= 0, it follows that
∇ · E = 0, which implies that the waves are transverse. This is the usual
case that applies when considering the propagation of electromagnetic
waves in a dielectric medium. However, if εr = 0, we can satisfy eqn 10.13
with waves for which ∇ · E �= 0, i.e. longitudinal waves.

Transverse and longitudinal electro-
magnetic waves must satisfy � � � = 0
and �� � = 0 respectively. As dis-
cussed in Section 7.5.1, separate solu-
tions are possible for the two different
types of wave. The longitudinal modes
can only exist at frequencies for which
εr = 0. The longitudinal electromagnetic waves that we are considering here

are generated by longitudinal optical (LO) phonons. The LO phonon
modes generate longitudinal electromagnetic waves just as TO phonons
generate transverse electromagnetic waves. The waves at ω = ω′ there-
fore correspond to LO phonons, and we identify ω′ with the frequency of
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Fig. 10.4 Frequency dependence of the
dielectric constant and reflectivity for
a crystal with νTO = 10 THz, νLO =
11THz, εst = 12.1, and ε∞ = 10.
The curves have been calculated from
eqns 10.15 and 10.16. Phonon damping
is ignored in this calculation.

the LO mode at q = 0, namely ΩLO. This allows us to rewrite eqn 10.12
in the following form:

Ω2
LO

Ω2
TO

=
εst
ε∞

. (10.14)

This result is known as the Lyddane–Sachs–Teller (LST) relation-
ship. The validity of the relationship can be checked by comparing the
values of ΩLO/ΩTO deduced from neutron or Raman scattering experi-
ments with those calculated from eqn 10.14 using known values of the
dielectric constants. Some results are given in Table 10.2. It is apparent
that the agreement is generally very good.

Table 10.2 Comparison of the mea-
sured ratio ΩLO/ΩTO for several ma-
terials to the value predicted by
the Lyddane–Sachs–Teller relationship.
Data from Madelung (1996).

Crystal ΩLO/ΩTO (εst/ε∞)1/2

Si 1 1
GaAs 1.07 1.08
AlAs 1.12 1.11
BN 1.24 1.26
ZnSe 1.19 1.19
MgO 1.81 1.83
AgF 1.88 1.88

An interesting corollary of the LST relationship is that it implies that
the LO phonon and TO phonon modes of non-polar crystals are degen-
erate. This follows because there is no infrared resonance, and therefore
εst = ε∞. This is indeed the case for the purely covalent crystals of the
group IV elements, namely diamond (C), silicon, and germanium.

10.2.3 Reststrahlen

Having discussed the properties of the system at the special frequency of
ω = ΩLO, we can now calculate the infrared optical constants. It is easier
to understand the general behaviour if we assume that the damping term
is small. We thus set γ = 0 in eqn 10.10, and discuss the properties of
a material with a dielectric constant that has the following frequency
dependence:

εr(ν) = ε∞ + (εst − ε∞)
ν2
TO

(ν2
TO − ν2)

. (10.15)

We have divided all the angular frequencies by 2π here, so that we
can compare the predictions to experimental data, which are usually
presented against frequency (ν) rather than angular frequency (ω). We
shall discuss the effect of including the damping term when we compare
our model to the experimental data in connection with Fig. 10.5.

Figure 10.4(a) plots the frequency dependence of the dielectric con-
stant εr(ν) calculated from eqn 10.15 for a polar crystal with the follow-
ing parameters: νTO = 10 THz, νLO = 11 THz, εst = 12.1, and ε∞ = 10.
(1THz = 1012 Hz.) These figures are quite close to those that would be
found in a typical III–V semiconductor. Note that the phonon frequen-
cies have been chosen to satisfy the LST relationship given in eqn 10.14.
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At low frequencies the dielectric constant is just equal to εst. As ν
increases from 0, εr(ν) gradually increases until it diverges when the res-
onance at νTO is reached. Between νTO and νLO, εr is negative. Precisely
at ν = νLO, εr = 0. Thereafter, εr is positive, and gradually increases
asymptotically towards the value of ε∞.We can see from eqn 1.20 that

√
ε∞ cor-

responds to the refractive index of the
medium at frequencies well above the
optical phonon resonances. This will be
the refractive index measured at near-
infrared and visible frequencies below
the band gap of the material.

The most important optical property of a polar solid in the infrared
spectral region is the reflectivity. This can be calculated from the dielec-
tric constant by using eqn 1.29:

R =
∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣
2

=
∣∣∣∣
√

εr − 1√
εr + 1

∣∣∣∣
2

. (10.16)

Figure 10.4(b) plots the reflectivity calculated from eqn 10.16 for the di-
electric constant shown in Fig. 10.4(a). At low frequencies the reflectivity
is (

√
εst − 1)2/(

√
εst + 1)2. As ν approaches νTO, R increases towards

unity. In the frequency region between νTO and νLO,
√

εr is imaginary,
so that R remains equal to unity. R drops rapidly to zero as ν increases
above νLO (see Exercise 10.2), and then increases gradually towards the
high-frequency asymptote of (

√
ε∞ − 1)2/(

√
ε∞ + 1)2.

We see from this analysis that the reflectivity is equal to 100% in the
frequency region between νTO and νLO. This frequency region is called
the Reststrahl band. ‘Reststrahl’ is the German word for ‘residual
ray’, with ‘Reststrahlen’ being its plural, i.e. ‘residual rays’. Light cannot
propagate into the medium in the Reststrahl band.

Figure 10.5 shows experimental data for the reflectivity of InAs and
GaAs in the infrared spectral region. InAs has TO and LO phonon fre-Experimental infrared spectra are fre-

quently plotted against the wave num-
ber ν̄ ≡ 1/λ. The wave number is ef-
fectively a frequency unit, with 1 cm−1

equivalent to 2.998 × 1010 Hz.

quencies at 218.9 cm−1 and 243.3 cm−1 respectively, while for GaAs we
have νTO = 273.3 cm−1 and νLO = 297.3 cm−1. We see that the re-
flectivity is very high for frequencies between the TO and LO phonon
frequencies in both materials, and there is a sharp dip in the reflectivity
just above the LO phonon resonance.

On comparing these results with the prediction shown in Fig. 10.4(b),
we see that the general agreement between the model and the experi-
mental data is very good. The main difference is that in both materials
the maximum reflectivity in the Reststrahl band is less than 100%. This
reduction in the reflectivity is caused by ignoring the damping term.
(See Example 10.1 and Exercise 10.4.) The damping also broadens the
edge so that there is only a minimum in R just above νLO rather than
a zero.

The magnitude of γ can be found by fitting the experimental data
to the full dependence given in eqn 10.10. The values of γ obtained in
this way are around 1011 to 1012 s−1, which implies that the optical
phonons have a lifetime of about 1–10 ps. (1 ps = 10−12 s.) The physical
significance of this short lifetime will be discussed in Section 10.6.

10.2.4 Lattice absorption

When we introduced the classical oscillator model in Section 2.2 of Chap-
ter 2, we made the point that we expect high absorption coefficients
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Fig. 10.5 Infrared reflectivity of InAs
and GaAs at 4.2 K. A wave number of
1 cm−1 is equivalent to a frequency of
2.998 × 1010 Hz. After Hass (1967), c©
Academic Press, reprinted with permis-
sion.

whenever the frequency matches the natural resonances of the medium.
The reader might therefore be wondering why we have been concentrat-
ing on calculating the reflectivity rather than the absorption due to the
TO phonon resonances.

This question is further prompted by recalling the analogy between
the infrared absorption of polar solids and that of isolated molecules. In
both cases we are basically treating the interaction of photons with quan-
tized vibrational modes. In molecular physics we usually discuss this in
terms of the infrared absorption spectrum. The absorption spectra show
strong peaks whenever the frequency coincides with the infrared active
vibrational modes and the molecule can absorb a photon by creating
one vibrational quantum. This is directly analogous to the process for
solids shown in Fig. 10.1 in which a photon is absorbed and a phonon is
created.

The answer to these questions is that the lattice does indeed absorb
very strongly whenever the photon is close to resonance with the TO
phonon. As stressed in Chapter 2, the fundamental optical properties of
a dielectric—the absorption, refraction, and reflectivity—are all related
to each other because they are all determined by the complex dielectric
constant. The distinction between absorption and reflection is merely a
practical one. Polar solids have such high absorption coefficients in the
infrared that unless the crystal is less than ∼ 1 µm thick, no light at
all will be transmitted. This is clearly seen in the transmission spectra
of Al2O3 and CdSe shown in Fig. 1.4. For this reason, it is only sensi-
ble to consider lattice absorption in thin film samples. In thick crystals,
we must use reflectivity measurements to determine the vibrational fre-
quencies. This contrasts with molecular physics, where we are usually
dealing with low density gases, which give rise to much smaller absorp-
tion coefficients.

The absorption coefficients expected at the resonance with the TO
phonon can be calculated from the imaginary part of the dielectric con-
stant. At ω = ΩTO we have from eqn 10.10:

εr(ΩTO) = ε∞ + i(εst − ε∞)
ΩTO

γ
. (10.17)
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The extinction coefficient κ can be worked out from εr by using eqn 1.26,
and then the absorption coefficient α can be determined from κ via
eqn 1.19. Typical values for α are in the range 106–107 m−1. (See Exam-
ple 10.1 and Exercise 10.6.) This is why the sample must be thinner than
∼ 1 µm in order to perform practical absorption measurements. Infrared
absorption measurements on thin film samples do indeed confirm that
the absorption is very high at the TO phonon resonance frequency.

Example 10.1

The static and high-frequency dielectric constants of NaCl are εst = 5.9
and ε∞ = 2.25 respectively, and the TO phonon frequency νTO is
4.9THz.
(a) Calculate the upper and lower wavelengths of the Reststrahl band.
(b) Estimate the reflectivity at 50 µm, if the damping constant γ of the
phonons is 1012 s−1.
(c) Calculate the absorption coefficient at 50 µm.

Solution
(a) The Reststrahl band runs from νTO to νLO. We are given νTO,

and we can calculate νLO from the LST relationship (eqn 10.14). This
gives

νLO =
(

εst
ε∞

)1/2

× νTO =
(

5.9
2.25

)1/2

× 4.9THz = 7.9THz .

Therefore the Reststrahl band runs from 4.9 THz to 7.9 THz, or 38 µm
to 61 µm.

(b) At 50 µm we are in middle of the Reststrahl band. We therefore
expect the reflectivity to be high. We insert the values for εst, ε∞, γ and
ΩTO = 2πνTO into eqn 10.10 with ω = 2πν (ν = 6 THz) to find:

εr = 2.25 + 3.65
(4.9)2

(4.9)2 − 62 − i(1)(6)/2π
= −5.0 + 0.57i .

We then obtain the real and imaginary parts of the refractive index from
eqns 1.25 and 1.26:

n =
1√
2

( − 5.0 + [(−5.0)2 + (0.57)2]1/2
)1/2 = 0.13 ,

and
κ =

1√
2

(
+ 5.0 + [(−5.0)2 + (0.57)2]1/2

)1/2 = 2.2.

We finally substitute these values of n and κ into eqn 1.29 to find the
reflectivity:

R =
(n − 1)2 + κ2

(n + 1)2 + κ2
=

(−0.87)2 + (2.2)2

(1.13)2 + (2.2)2
= 0.91.
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Fig. 10.6 Polariton dispersion pre-
dicted from eqn 10.18 with εr given
by eqn 10.15. The curves are calcu-
lated for a crystal with νTO = 10THz,
εst = 12.1, and ε∞ = 10. The asymp-
totic velocities vst and v∞ are equal to
c/
√

εst and c/
√

ε∞ respectively.

This value is close to the measured reflectivity of NaCl in the Reststrahl
band at room temperature.

(c) We can calculate the absorption coefficient α from the extinction
coefficient by using eqn 1.19. We have already worked out that κ = 2.2
in part (b). Hence we find:

α =
4πκ

λ
=

4π × 2.2
50 × 10−6

= 5.5 × 105 m−1 .

This shows that the light would be absorbed in a thickness of about
2 µm.

10.3 Polaritons

The dispersion curves of the photons and TO phonons were discussed
in broad terms in connection with Fig. 10.2. We now wish to consider
the circled intersection point in Fig. 10.2 in more detail. As we shall
see, the two dispersion curves do not actually cross each other. This
is a consequence of the strong coupling between the TO phonons and
the photons when their frequencies and wave vectors match. This leads
to the characteristic anticrossing behaviour that is observed in many
coupled systems.

The coupled phonon–photon waves are called phonon polaritons.
As the name suggests, these classical waves are mixed modes that have A different type of polariton—namely

a surface plasmon polariton—was con-
sidered in Section 7.5.2.

characteristics of both polarization waves (the TO phonons) and the
photons. The dispersion of the polaritons can be deduced from the rela-
tionship:

ω = vq =
c√
εr

q , (10.18)

where the second part of the equation comes from eqn A.29, with µr = 1.
The resonant response of the polar solid is contained implicity in the
frequency dependence of εr.

Figure 10.6 shows the polariton dispersion calculated for a lightly
damped medium. The dielectric constant is given by eqn 10.15, and is
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Fig. 10.7 Dispersion of the TO and
LO phonons in GaP measured by Ra-
man scattering. The solid lines are the
predictions of the polariton model with
hνTO = 45.5meV, ε∞ = 9.1 and
εst = 11.0. After Henry and Hopfield
(1965), c© American Physical Society,
reprinted with permission.
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plotted for the same parameters as in Fig. 10.4(a). At low frequencies
the dielectric constant is equal to εst, and the dispersion of the modes
is given by ω = cq/

√
εst. As ω approaches ΩTO, the dielectric constant

increases, and the velocity of the waves decreases, approaching zero at
ΩTO itself. For frequencies in the Reststrahl band between ΩTO and
ΩLO, the dielectric constant is negative. No modes can propagate, and
all the photons that are incident on the medium are reflected. For fre-
quencies above ΩLO, εr is positive again and propagating modes are
possible once more. The velocity of the waves gradually increases with
increasing frequency, approaching a value of c/

√
ε∞ at high frequencies.

The dispersion of the polariton modes has been measured for a number
of materials. Figure 10.7 shows the measured dispersion of the TO and
LO phonons in GaP at small wave vectors. The results were obtained
by Raman scattering techniques. (See Section 10.5.2.) The experimental
data reproduce very well the polariton dispersion model indicated in
Fig. 10.6. The solid line is the calculated polariton dispersion, which
gives a very accurate fit to the experimental points for the transverse
modes. Note that the LO phonons do not show any dispersion here
because they do not couple to the light waves.

10.4 Polarons

So far in this chapter we have been considering the direct interaction
between a light wave and the phonons in a crystal. As we have seen,
this gives rise to strong absorption and reflection in the infrared spec-
tral region. The optical phonons can, however, contribute indirectly to
a whole host of other optical properties that depend primarily on the
electrons through the electron–phonon coupling. In this section we
will consider the polaron effect, which is one of the most important
examples of this.

Consider the motion of a free electron through a polar solid, as shown
in Fig. 10.8. The electron will attract the positive ions that are close
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e
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Fig. 10.8 Schematic representation
of a polaron. A free electron moving
through an ionic lattice attracts the
positive (black) ions, and repels the
negative (grey) ones. This produces a
local distortion of the lattice within the
polaron radius shown by the dashed cir-
cle.

to it, and repel the negative ones. This produces a local displacement
of the lattice in the immediate vicinity of the electron. The lattice dis-
tortion accompanies the electron as it moves through the crystal. The
electron with its local lattice distortion is equivalent to a new elementary
excitation of the crystal, and is called a polaron.

It can be shown that the average num-
ber of virtual LO phonons that move
with the electron is equal to αep/2,
where αep is defined in eqn 10.19. We
do not consider the longitudinal acous-
tic modes here because they do not pro-
duce a polarization in the medium: the
positive and negative ions move in the
same direction, and this produces no
electric-dipole moment.

The polaron effect can be conceived in terms of an electron surrounded
by a cloud of virtual phonons. We think of the electron absorbing and
emitting phonons as it moves through the crystal. These phonons pro-
duce the local lattice distortion. The displacement of the ions is in the
same direction as the electric field of the electron, and we are therefore
dealing with longitudinal optic phonons.

The strength of the electron–phonon interaction in a polar solid can
be quantified by the dimensionless coupling constant αep, which is given
by:

αep =
1

137

(
m∗c2

2hνLO

)1/2 [
1

ε∞
− 1

εst

]
, (10.19)

where 1/137 is the fine structure constant from atomic physics. The
mass m∗ that appears here is the usual effective mass deduced from the
curvature of the band structure (cf. eqn D.6):

m∗ = �
2

(
d2E

dk2

)−1

. (10.20)

The polaron theory can be applied equally to electrons or holes by taking
the appropriate effective masses in the formulæ.

Table 10.3 Electron–phonon coupling
constant αep calculated from eqn 10.19
for GaAs, ZnSe, and AgCl. The figures
for ZnSe are for the cubic crystal struc-
ture. Data from Madelung (1996).

GaAs ZnSe AgCl

m∗
e/m0 0.067 0.13 0.30

ε∞ 10.9 5.4 3.9
εst 12.4 7.6 11.1
νLO (THz) 8.5 7.6 5.9
αep 0.06 0.40 2.2

Values for αep for three binary compound semiconductors, namely
GaAs, ZnSe, and AgCl, are given in Table 10.3. We see that the cou-
pling constant increases from GaAs (0.06) through ZnSe (0.40) to AgCl
(2.2). This is because the ionicity increases as we go from the III–V
semiconductor, in which the bonding is partly covalent, to the I–VII
compound, which is highly ionic. In a non-polar crystal such as silicon,
ε∞ = εst, and αep = 0. There is therefore no polaron effect.

The effective mass given by eqn 10.20 is calculated by assuming that
the lattice is rigid. However, the concept of a rigid lattice is only a
theoretical one, and any experiment we perform to measure m∗ will
actually measure the polaron mass m∗∗ instead. This is because it is
not possible to hold the lattice rigid as the electron moves. The polaron
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mass is larger than the rigid lattice mass because the electron has to
drag the local lattice distortion with it as it moves.

If the electron–phonon coupling constant αep is small, we can give an
explicit relationship between the rigid lattice effective mass m∗ and the
polaron mass m∗∗:

m∗∗

m∗ =
1

1 − αep/6
≈ 1 +

1
6
αep . (10.21)

Values of m∗ are actually worked out from the measured values of m∗∗ by
applying eqn 10.21. For III–V semiconductors like GaAs with αep < 0.1,
m∗∗ only differs from m∗ by about 1%. The polaron effect is thus only
a small correction. This correction becomes more significant for II–VI
compounds (e.g. ∼ 7% for ZnSe). With highly ionic crystals like AgCl,
the small αep approximation is not valid. The actual polaron mass of
AgCl is 0.43m0, which is about 50% larger than the rigid lattice value.

An example of an experiment to measure the effective mass is cy-
clotron resonance. In this technique, we measure the infrared absorp-
tion in the presence of a magnetic field B. As discussed in Section 3.3.6,
the electron energy is quantized in terms of the cyclotron energy:A particularly clear manifestation of

the electron–phonon coupling can be
observed in cyclotron resonance exper-
iments when B = m∗ΩLO/e, so that
ωc = ΩLO. The degenerate electron
and phonon modes anticross with each
other as the field is swept through this
condition, and the cyclotron resonance
line splits into a doublet. The magni-
tude of the splitting is directly propor-
tional to the electron–phonon coupling
constant αep. This effect was first ob-
served in n-type InSb.

En = (n + 1/2)�ωc , (10.22)

where n is an integer, and

ωc =
eB

m∗ . (10.23)

Optical transitions with ∆n = ±1 can take place between the ladder
of levels defined by eqn 10.22. We therefore observe absorption at a
wavelength λ given by:

hc

λ
=

e�B

m∗ . (10.24)

This absorption usually occurs in the far-infrared spectral region, and the
effective mass can be deduced from the values of λ and B at resonance. In
a typical experiment, we use a fixed wavelength source from an infrared
laser and find the value of B which gives the maximum absorption.
For example, the cyclotron resonance occurs at about 6.1T in GaAs
(m∗ = 0.067m0) for the 118 µm line from a methanol laser. The effective
mass we find this way is the polaron mass m∗∗, not the value determined
by the curvature of the bands given by eqn 10.20.

It can be shown that, in addition to the change of the mass, the
polaron effect causes a reduction in the band gap by an amount:

∆Eg = −αep �ΩLO . (10.25)

With a III–V material like GaAs, this again produces only a relatively
small effect: ∆Eg ∼ −0.1%. In practice, when we measure Eg by optical
spectroscopy, we always measure the polaron value.

Another important parameter of the polaron is its radius, rp, which
specifies how far the lattice distortion extends. This is depicted schemat-
ically in Fig. 10.8 by the dashed circle drawn around the electron that
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causes the lattice distortion. If αep is small, we can give an explicit for-
mula for rp:

rp =
(

�

2m∗ΩLO

)1/2

. (10.26)

This gives rp = 4.0 nm for GaAs and 3.1 nm for ZnSe. Both values are
significantly larger than the unit cell size (∼ 0.5 nm), which is important
because the theory used to derive eqns 10.21–10.26 assumes that we can
treat the medium as a polarizable continuum. This approximation is only
valid if the radius of the polaron is very much greater than the unit cell
size. A polaron that satisfies this criterion is called a large polaron. In
highly ionic solids such as AgCl and the alkali halides, αep is not small
and the polaron radius is comparable to the unit cell size. In this case
we have a small polaron. The mass and radius have to be calculated
from first principles.

The small polaron effect in highly ionic crystals leads to self-trapping
of the charge carriers. The local lattice distortion is very strong, and the
charge carrier can get completely trapped in its own lattice distortion.
The carrier effectively digs itself into a pit and cannot get out of it.
This is particularly the case for the holes in alkali halide crystals. The
only way they can move is by hopping to a new site. The electrical Polaronic hopping effects are also im-

portant in the conduction processes
in organic semiconductors like polydi-
acetylene.

conductivity of most alkali halide crystals is limited by this thermally
activated hopping process at room temperature.

Self-trapping effects are also important when considering Frenkel ex-
citons. As discussed in Section 4.5, these are bound electron-hole pairs
localized at individual atom or molecule sites within the lattice. The
self-trapping of either the electron or hole can exacerbate the tendency
for the exciton to localize, thereby instigating the transition from Wan-
nier (free) to Frenkel exciton behaviour. The ground-state excitons ob-
served in many alkali halide, rare gas, and organic crystals are of the
self-trapped Frenkel type.

10.5 Inelastic light scattering

Inelastic light scattering describes the phenomenon by which a light
beam is scattered by an optical medium and changes its frequency in
the process. It contrasts with elastic light scattering, in which the fre-
quency of the light is unchanged. The interaction process is illustrated in
Fig. 10.9. Light incident with angular frequency ω1 and wave vector k1 is
scattered by an excitation of the medium of frequency Ω and wave vector
q. The scattered photon has frequency ω2 and wave vector k2. Inelastic
light scattering can be mediated by many different types of elementary
excitations in a crystal, such as phonons, magnons, or plasmons. In this We presented a Raman scattering spec-

trum from plasmons in n-type GaAs in
Fig. 7.13.

chapter we are concerned exclusively with phonon processes.
Inelastic light scattering from phonons is generally classified by the

type of phonons that are involved:

• Raman scattering. This is inelastic light scattering from optical
phonons.
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• Brillouin scattering. This is inelastic light scattering from acous-
tic phonons.

The physics of the two processes is essentially the same, but the exper-
imental techniques differ. We therefore consider the general principles
first, and then consider the details of each technique separately.

�
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Fig. 10.9 An inelastic light scatter-
ing process. The straight arrows rep-
resent photons, while the wiggly ar-
row represents the phonon. The process
shown corresponds to Stokes scattering
in which the photon is shifted to lower
frequency.

10.5.1 General principles of inelastic light
scattering

Inelastic light scattering can be subdivided into two generic types:

• Stokes scattering;
• Anti-Stokes scattering.

Stokes scattering corresponds to the emission of a phonon (or some other
type of material excitation), while anti-Stokes scattering corresponds to
phonon absorption. The interaction shown in Fig. 10.9 is thus a Stokes
process. Conservation of energy during the interaction requires that:

ω1 = ω2 ± Ω , (10.27)

while conservation of momentum gives:

k1 = k2 ± q . (10.28)

The + signs in eqns 10.27 and 10.28 correspond to phonon emission
(Stokes scattering), while the − signs correspond to phonon absorption
(anti-Stokes scattering). Thus the light is shifted down in frequency dur-
ing a Stokes process, and up in frequency in an anti-Stokes event.

Anti-Stokes scattering will only be possible if there are phonons present
in the material before the light is incident. The probability for anti-
Stokes scattering therefore decreases on lowering the temperature as the
phonon populations decrease. This means that the probability for anti-
Stokes scattering from optical phonons is very low at cryogenic temper-
atures. On the other hand, Stokes scattering does not require a phonon
to be present and can therefore occur at any temperature. The full quan-
tum mechanical treatment shows that the ratio of anti-Stokes to Stokes
scattering events is given by:

Ianti-Stokes

IStokes
= exp (−�Ω/kBT ). (10.29)

This will be the ratio of the intensities of the anti-Stokes and Stokes
lines observed in the Raman or Brillouin spectra.

The frequencies of the phonons involved can be deduced from the fre-
quency shift of the scattered light by using eqn 10.27. Thus the main
use of inelastic light scattering is to measure phonon frequencies. This
means that inelastic light scattering can give complementary informa-
tion to that obtained from the infrared spectra. For example, infrared
reflectivity measurements tell us nothing about the acoustic phonons,
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but we can measure the frequencies of some of the acoustic modes by
Brillouin scattering experiments. We shall consider this complementarity
in more detail when we discuss the selection rules for Raman scattering
in subsection 10.5.2 below.

The maximum phonon frequency in a typical crystal is about 1012 to
1013 Hz. This is almost two orders of magnitude smaller than the fre-
quency of a photon in the visible spectral region. Equation 10.27 there-
fore tells us that the maximum frequency shift for the photon will be
around 1%. The magnitude of the wave vector of the photon is directly
proportional to its frequency, and we can therefore make the approxi-
mation:

|k2| ≈ |k1| =
nω

c
, (10.30)

where n is the refractive index of the crystal and ω is the angular fre-
quency of the incoming light.

We know from eqn 10.28 that |q| = |k1 −k2|. The maximum possible
value of |q| thus occurs for the back-scattering geometry in which
the outgoing photon is emitted in the direction back towards the source.
In this case, we have:

q ≈ |k − (−k)| ≈ 2
nω

c
. (10.31)

By inserting typical values into eqn 10.31, we conclude that the max-
imum value of q that can be accessed in an inelastic light scattering
experiment is of order 107 m−1. This is very small compared to the size
of the Brillouin zone in a typical crystal (∼ 1010 m−1). Inelastic light
scattering is thus only able to probe small wave vector phonons.

The inelastic light scattering efficiency
can be enhanced by many orders of
magnitude by exploiting plasmonic ef-
fects. As discussed in Section 7.5.2,
the electric field amplitude is enhanced
substantially at the surface of metal-
lic structures by surface plasmons, and
this greatly increases the scattering
probability. This effects is known as
surface-enhanced Raman scatter-
ing. See Maier (2007) for further de-
tails.

Raman and Brillouin scattering are generally weak processes, and we
therefore expect that the scattering rate will be small. This is because we
are dealing with a higher-order interaction than for linear interactions
such as absorption. Figure 10.9 shows us that three particles are present
in the Feynman diagram for inelastic light scattering rather than the two
for absorption. (See Fig. 10.1.) Therefore, a higher-order perturbation
term must be involved. This means that we usually have to employ very
sensitive detectors to observe the signals even when using a powerful
laser beam as the excitation source.

10.5.2 Raman scattering

C.V. Raman was awarded the Nobel prize in 1930 for his discovery of
inelastic light scattering from molecules. The process which now carries
his name refers to scattering from high frequency excitations such as the
vibrational modes of molecules. In the present context of phonon physics,
it refers specifically to inelastic light scattering from optical phonons.

Optical phonons are essentially dispersionless near q = 0. We argued
above that inelastic light scattering can only probe the phonon modes
with q ≈ 0. Therefore, Raman scattering gives little information about
the dispersion of optical phonons, and its main use is to determine the
frequencies of the LO and TO modes near the Brillouin zone centre.
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Fig. 10.10 Experimental apparatus
used to record Raman spectra. The
sample is excited with a laser, and the
scattered photons are collected and fo-
cused into a spectrometer. The signals
are recorded using a sensitive photon-
counting detector such as a photomul-
tiplier tube or a charge coupled device
(CCD).
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For example, when Raman techniques are used to measure polariton
dispersion curves (see Section 10.3, and especially Fig. 10.7), we are
only probing a very small portion of the Brillouin zone near q = 0.

The complementarity of infrared reflectivity and inelastic light scatter-
ing measurements become more apparent when we consider the selection
rules for deciding whether a particular optical phonon is Raman active
or not. These rules are not the same as those for determining whether
the mode is IR active. The full treatment requires the use of group
theory. However, a simple rule can be given for crystals that possess
inversion symmetry. In these centrosymmetric crystals, the vibrational
modes must either have even or odd parity under inversion. The odd
parity modes are IR active, while the even parity modes are Raman ac-
tive. Thus the Raman active modes are not IR active, and vice versa.
This is called the rule of mutual exclusion, and is a well-known result
in molecular physics. In non-centrosymmetric crystals, some modes may
be simultaneously IR and Raman active.

As an example of these rules, we can compare silicon and GaAs. Silicon
has the diamond structure with inversion symmetry, while GaAs has the
non-centrosymmetric zinc-blende structure. The TO modes of silicon are
not IR active, but they are Raman active, while the TO modes of GaAs
are both Raman and IR active.

The observation of a Raman spectrum requires specialized appara-
tus to overcome the difficulties that are inherent to the technique. We
pointed out above that the signal is relatively weak, which means that
we have to use an intense source such as a laser to produce a sizeable
scattering rate. However, the frequency shift of the scattered photons is
quite small. We thus need to resolve a weak Raman signal which is very
close in wavelength to the elastically scattered light from the laser.

Figure 10.10 shows a basic experimental arrangement that can be used
to measure Raman spectra. The sample is excited with a suitable laser,
and the scattered light is collected and focused onto the entrance slit
of a scanning spectrometer. The number of photons emitted at a par-
ticular wavelength is registered on a photon-counting detector and then
the results are stored on a computer for analysis. Photomultiplier tubes
have traditionally been employed as the detector in this application,
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Fig. 10.11 Raman spectra for the TO
and LO phonons of GaAs, InP, AlSb,
and GaP at 300K using a Nd:YAG
laser at 1.06�m. The spectra are plot-
ted against the wave number shift:
1 cm−1 is equivalent to an energy shift
of 0.124meV. The LO mode is the
one at higher frequency. After Moora-
dian (1972), c© Excerpta Medica Inc.,
reprinted with permission.

but modern arrangements now tend to use array detectors made with
charge coupled devices (CCD arrays). By orientating the sample appro-
priately, the reflected laser light can be arranged to miss the collection
optics. However, this still does not prevent a large number of elasti-
cally scattered laser photons entering the spectrometer, and this could
potentially saturate the detector. To get around this problem, a high-
resolution spectrometer with good stray light rejection characteristics is
used.

One way to achieve good stray light re-
jection is to use a double spectrometer,
which is essentially two spectrometers
in tandem.

Figure 10.11 shows the Raman spectrum obtained from four III–V
semiconductor crystals at 300 K. The laser source was a Nd:YAG laser
operating at 1.06 µm, and a double monochromator with a photomulti-
plier tube were used to detect the signal. Two strong lines are observed
for each crystal. These correspond to the Stokes-shifted signals from the
TO and LO phonons, with the LO phonons at the higher frequency. The
values obtained from this data agree very well with those deduced from
infrared reflectivity measurements. (See Exercise 10.13.)

10.5.3 Brillouin scattering

L. Brillouin gave a theoretical discussion of the scattering of light by
acoustic waves in 1922. The technique named after him now refers to
inelastic light scattering from acoustic phonons. Its main purpose is to
determine the dispersion of these acoustic modes.

The frequency shift of the photons in a Brillouin scattering experiment
is given by (see Exercise 10.14):

δω = vs
2nω

c
sin

θ

2
, (10.32)

where ω is the angular frequency of the incident light, n is the refractive
index of the crystal, vs is the velocity of the acoustic waves, and θ is the
angle through which the light is scattered. Measurements of δω therefore
allow the velocity of the sound waves to be determined if the refractive
index is known.
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The experimental techniques used for Brillouin scattering are more
sophisticated than those for Raman scattering due to the need to be able
to detect much smaller frequency shifts. Single-mode lasers must be used
to ensure that the laser linewidth is sufficiently small, and a scanning
Fabry–Perot interferometer is used instead of a grating spectrometer to
increase the spectral resolution.

Example 10.2

When light from an argon ion laser operating at 514.5 nm is scattered by
optical phonons in a sample of AlAs, two peaks are observed at 524.2 nm
and 525.4 nm. What are the values of the TO phonon and LO phonon
energies?

Solution
We can work out the energies of the phonons by using eqn 10.27. The
photons have been red-shifted, and thus we are dealing with a Stokes
process. For the 524.2 nm line we therefore have:

Ω = ω1 − ω2 = 2πc(1/λ1 − 1/λ2) = 6.8 × 1013 rad/s .

For the 525.4 nm line we find Ω = 7.6×1013 rad/s. The higher frequency
phonon is the LO mode. Hence we find �ΩTO = 45 meV and �ΩLO =
50meV.

10.6 Phonon lifetimes(a)
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Fig. 10.12 Three-phonon interaction
processes. Each wiggly arrow represents
a phonon. These processes are caused
by anharmonicity in the crystal.

The discussion of the phonon modes as classical oscillators in Section 10.2
led us to introduce a phenomenological damping constant γ. This damp-
ing term is needed to explain why the reflectivity in the Reststrahl band
is less than unity. Analysis of the experimental data led us to conclude
that γ is typically in the range 1011 to 1012 s−1. This very rapid damping
is a consequence of the finite lifetime τ of the optical phonons. Since γ
is equal to τ−1, the data implies that τ is in the range 1–10 ps.

The very short lifetime of the optical phonons is caused by anhar-
monicity in the crystal. Phonon modes are solutions of the equations
of motion with the assumption that the vibrating atoms experience har-
monic restoring forces (i.e. forces that are linear in the displacement).
In reality, this is only an approximation that is valid for small displace-
ments. In general, the atoms sit in a potential well of the form:

U(x) = C2x
2 + C3x

3 + C4x
4 + · · · . (10.33)

An example of how interatomic interactions lead to a potential of this
form is considered in Exercise 10.16.
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Fig. 10.13 Decay of an optical phonon
into two acoustic phonons by a three-
phonon interaction of the type shown
in Fig. 10.12(a).

The term in x2 in eqn 10.33 is the harmonic term. This leads to simple
harmonic oscillator equations of motion with a restoring force −dU/dx
proportional to −x. The terms in x3 and higher are the anharmonic
terms, which are derived from restoring forces that vary non-linearly
with x (e.g. F ∝ −x2). These anharmonic terms allow phonon–phonon
scattering processes. For example, the term in x3 allows interactions
involving three phonons. Figure 10.12 illustrates two possible permuta-
tions for a three-phonon process.

Figure 10.12(a) shows a three-phonon interaction in which one phonon
is annihilated and two new phonons are created. This type of anharmonic
interaction is responsible for the fast decay of the optical phonons. We
can see why this is so by referring to the generic phonon dispersion
curve for the first Brillouin zone shown in Fig. 10.13. Lattice absorption
or Raman scattering creates optical phonons with q ≈ 0. Three-phonon
processes allow these phonons to decay into two acoustic phonons as in-
dicated in Fig. 10.13. Momentum and energy can be conserved if the two
acoustic phonons have opposite wave vectors, and their frequency is half
that of the optical phonon. With more complex dispersion relationships,
and also the possibility for higher-order processes, many other types of
decay can contribute to the short lifetime of the optical phonons.

The lifetime of the optical phonons can be deduced from Raman data
in two different ways. Firstly, the spectral width of the Raman line is af-
fected by lifetime broadening. Provided that other sources of broadening
are smaller, the linewidth in frequency units is expected to be (2πτ)−1.
Thus measurements of the linewidth give a value for τ independently
of the reflectivity data. Secondly, τ can be measured directly by time-
resolved Raman spectroscopy. The lifetime of the LO phonons in GaAs
has been determined in this way to be 7 ps at 77K. This value agrees
with the linewidth measured in the conventional Raman spectrum. It is
also similar to the lifetime of the TO phonons deduced from reflectivity
measurements.
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Chapter summary

• The TO phonon modes of polar solids couple strongly to photons
in the infrared spectral region when their frequencies and wave
vectors match. Acoustic phonons and LO phonons do not couple
directly to light waves.

• The interaction between the light and the TO phonon can be mod-
elled by using the classical oscillator model. This model explains
why the reflectivity of a polar solid is very high for frequencies in
the Reststrahl band between νTO and νLO.

• The reflectivity in the Reststrahl band is 100% for an undamped
system, but damping due to the finite phonon lifetime reduces the
reflectivity in real crystals.

• The frequencies of the TO and LO phonon modes are related
to each other by the Lyddane–Sachs–Teller relationship given in
eqn 10.14.

• The lattice absorbs strongly at the TO phonon frequency. The
absorption can be measured directly in thin film samples.

• The strongly coupled phonon–photon waves at frequencies near the
Reststrahl band are described as phonon polariton modes.

• The electron–phonon coupling in polar crystals leads to polaron
effects. Polarons are charge carriers surrounded by a local lattice
distortion. The phonon cloud around the electron or hole increases
its mass. Polaronic effects are strong in ionic crystals like the alkali
halides.

• Raman and Brillouin scattering are inelastic light scattering pro-
cesses from optical and acoustic phonons respectively. Energy and
momentum must be conserved in the scattering process.

• Stokes and anti-Stokes inelastic light scattering processes corre-
spond to phonon emission and absorption respectively. Anti-Stokes
scattering from optical phonons is very improbable at low temper-
atures.

• Optical phonons have short lifetimes due to the possibility of decay
into two acoustic phonons by anharmonic interactions.

Further reading

Introductory reading on phonons may be found in prac-
tically any solid-state physics text, for example: Ashcroft
and Mermin (1976), Burns (1985), Ibach and Luth (2003),
or Kittel (2005).

The theory of polaritons and polarons is described
in more detail in Madelung (1978). Pidgeon (1980) and

Seeger (1997) discuss cyclotron resonance experiments in
detail. The properties of self-trapped excitons are covered
by Song and Williams (1993), while Pope and Swenberg
(1999) discuss polaronic hopping transport, especially in
organic semiconductors.

A classic text on the infrared physics of molecules and
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solids is Houghton and Smith (1966). The techniques of
inelastic light scattering are described in detail by Moora-
dian (1972) or Yu and Cardona (1996). The study of

phonon dynamics by ultra-fast laser techniques is de-
scribed by Shah (1999).

Exercises

(10.1) State, with reasons, which of the following solids
would be expected to show strong infrared ab-
sorption: (a) ice, (b) germanium, (c) solid argon
at 4K, (d) ZnSe, (e) SiC.

(10.2) Show that the reflectivity of an undamped polar
solid falls to zero at a frequency given by

ν =

�
εst − 1

ε∞ − 1

�1/2

νTO,

where εst and ε∞ are the low- and high-frequency
dielectric constants, and νTO is the frequency of
the TO phonon mode at the Brillouin zone cen-
tre.

(10.3) The static and high-frequency dielectric con-
stants of LiF are εst = 8.9 and ε∞ = 1.9 re-
spectively, and the TO phonon frequency νTO

is 9.2THz. Calculate the upper and lower wave-
lengths of the Reststrahl band.

(10.4) Estimate the reflectivity in the middle of the
Reststrahl band for a crystal with νTO = 10 THz,
εst = 12.1, and ε∞ = 10, when the damping con-
stant γ is (a) 1011 s−1 and (b) 1012 s−1.
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Fig. 10.14 Infrared reflectivity of AlSb. After Turner
and Reese (1962), c© American Physical Society,
reprinted with permission.

(10.5) Figure 10.14 shows the measured infrared reflec-
tivity of AlSb. Use this data to estimate:

(a) the frequencies of the TO and LO phonons of
AlSb near the Brillouin zone centre;
(b) the static and high-frequency dielectric con-
stants, εst and ε∞;
(c) the lifetime of the TO phonons.
Are the experimental values found in parts (a)
and (b) consistent with the Lyddane–Sachs–
Teller relationship?

(10.6) Estimate the absorption coefficient at the TO
phonon frequency in a typical polar solid with
a damping constant γ of (a) 1011 s−1 and
(b) 1012 s−1. Take νTO = 10THz, εst = 12.1, and
ε∞ = 10.

(10.7) Explain qualitatively why the reflectivity of NaCl
in the middle of the Reststrahl band is observed
to decrease from 98% at 100 K to 90% at 300K.

(10.8) The static and high-frequency dielectric con-
stants of InP are εst = 12.5 and ε∞ = 9.6 re-
spectively, and the TO phonon frequency νTO is
9.2THz. Calculate the wave vector of a polariton
mode with a frequency of 8THz. (Ignore phonon
damping.)

(10.9) In an infrared absorption experiment on n-type
CdTe, the cyclotron resonance condition is satis-
fied at 3.4T for the 306�m line from a deuter-
ated methanol laser. Calculate (a) the polaron
mass, and (b) the rigid lattice electron effective
mass, given that ε∞ = 7.1, εst = 10.2, and
νLO = 5.1THz.

(10.10) Discuss the qualitative differences you would ex-
pect between the Raman spectrum observed from
diamond to that shown for the III–V crystals in
Fig. 10.11.

(10.11) In an inelastic light scattering experiment on sili-
con using an argon ion laser at 514.5 nm, Raman
peaks are observed at 501.2 nm and 528.6 nm. Ac-
count for the origin of the two peaks, and esti-
mate their intensity ratios if the sample temper-
ature is 300K.

(10.12) NaCl is a centrosymmetric crystal. Would you
expect the TO phonon modes to be IR active, or
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Raman active, or both?

(10.13) Use the data in Fig. 10.11 to deduce the ener-
gies in meV of the TO and LO phonons of GaAs,
InP, AlSb, and GaP at 300K. How do the values
for GaAs obtained from this data relate to the
infrared reflectivity data given in Fig. 10.5?

(10.14) A photon of angular frequency ω is scattered
inelastically through an angle θ by an acoustic
phonon of angular frequency Ω. By considering
the conservation of momentum in the process,
show that Ω is given by:

Ω = vs
2nω

c
sin

θ

2
,

where vs and n are the velocity of sound and
the refractive index in the medium respectively.
(You may assume that ω � Ω.) Hence justify
eqn 10.32.

(10.15) A Brillouin scattering experiment is carried out
on a crystal with a refractive index of 3 using light
from a laser with a wavelength of 488 nm. The
scattered photons are found to be down-shifted in
frequency by 10GHz when observed in the back-
scattering geometry with θ = 180◦. Calculate the

speed of sound in the crystal.

(10.16)∗The potential energy per molecule of an ionic
crystal with a nearest neighbour separation of r
may be approximated by the following form:

U(r) =
β

r12
− αe2

4πε0r
,

where α is the Madelung constant of the crystal,
and β is a fitting parameter.
(a) Account for the functional form of U(r).
(b) Show that U(r) has a minimum value when
r = r0, where r11

0 = 48βπε0/αe2.
(c) Expand U(r) as a Taylor series about r0, and
hence show that the potential takes the form
given by eqn 10.33 for small displacements about
r0, stating the value of the constant C3 in terms
of α and r0.

(10.17) High-resolution Raman experiments on a GaAs
crystal indicate that the LO phonon line has
a spectral width of 0.85 cm−1. Use this value
to estimate the lifetime of the LO phonons, on
the assumption that the spectrum is lifetime-
broadened.

∗Exercises marked with an asterisk are more challenging.
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Practically everything we have been describing so far in this book falls
into the realm of linear optics, where it is assumed that properties such
as the refractive index, absorption coefficient, and reflectivity are inde-
pendent of the optical power. This approximation is only valid at low
power levels. With a high-power laser, it is possible to enter a different
realm of behaviour called nonlinear optics. In this subject we consider
the consequences of allowing the electric susceptibility, and all the prop-
erties that follow from it, to vary with the strength of the electric field
of the light beam.

Nonlinear optics is a subject in its own right that has grown in impor-
tance as the applications of lasers have become more common. A text
such as this would be incomplete without some mention of the types of
phenomena that can occur in solid-state materials. The objective here
is to give a brief introduction to the subject, based predominantly on
the classical dipole oscillator model developed in Chapter 2. It is hoped
that this may form a basis for further reading in more comprehensive
treatments. A partial list of introductory nonlinear optics texts may be
found in the Bibliography.

11.1 The nonlinear susceptibility tensor

The optical properties of materials are described through the real and
imaginary parts of the dielectric constant εr. The dielectric constant is
derived from the polarization P of the medium according to:

D = ε0E + P ,

= ε0εrE .
(11.1)

In linear optics, we assume that P depends linearly on the electric field
E of the light wave, so that we can write:

P = ε0χE , (11.2)

where χ is the electric susceptibility. By combining eqns 11.1 and 11.2
we derive the usual relationship between εr and χ, namely:

εr = 1 + χ . (11.3)

In nonlinear optics we consider the possibility that the relationship
between P and E is more general than that given in eqn 11.2. We start
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by considering a nonlinear medium in which the polarization is parallel
to the electric field, so that we do not need to consider the vector nature
of P and E at this stage. We split the polarization P into the first-order
linear response P (1), plus a whole series of nonlinear terms of increasing
order according to:

P nonlinear = P (1) + P (2) + P (3) + · · · , (11.4)

where P (n) is the nth-order polarization.
In analogy with eqn 11.2, we now introduce the nonlinear suscepti-

bility χnonlinear, and the nth-order nonlinear susceptibility, χ(n). These
are defined by the following equations:

P nonlinear = ε0χ
nonlinearE

= ε0χ
(1)E + ε0χ

(2)E2 + ε0χ
(3)E3 + · · · ,

(11.5)

where E is the magnitude of the applied field.
The various terms in eqns 11.4 and 11.5 correspond directly with each

other so that

P (1) = ε0χ
(1)E , (11.6)

P (2) = ε0χ
(2)E2 , (11.7)

P (3) = ε0χ
(3)E3 . (11.8)

...

By comparing eqns 11.3 and 11.5, we see that:

εnonlinear
r = 1 + χnonlinear ,

= 1 + χ(1) + χ(2)E + χ(3)E2 + · · · ,
(11.9)

where χ(1) is just the normal linear susceptibility. Equation 11.9 implies
that the dielectric constant depends on the electric field through the non-
linear susceptibilities. Since the optical power is proportional to E2, this
means that εr also depends on the optical power. Hence properties like
the refractive index and absorption coefficient become power-dependent
in nonlinear materials.

The different-order nonlinear susceptibilities give rise to a whole host
of nonlinear effects. The majority of these phenomena can be attributed
to either the χ(2) or χ(3) terms in the polarization. These are either
called second-order or third-order nonlinear effects as appropriate.
Some of these will be discussed in Sections 11.3 and 11.4.

The well-defined axes of crystalline materials make it necessary to
consider that the nonlinear response of the medium may depend on the
directions in which the fields are applied. For example, we could apply
two optical fields in different directions and then generate a nonlinear
polarization along a third direction. This type of behaviour can be de-
scribed by generalizing eqns 11.7 and 11.8 to allow for the anisotropic
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response of the medium. For example, the components of the second-
order nonlinear polarization P (2) can be written in the following form:

P
(2)
i = ε0

∑
j,k

χ
(2)
ijkEjEk . (11.10)

The quantity χ
(2)
ijk that appears here is the second-order nonlinear

susceptibility tensor, and the subscripts i, j, and k correspond to the
Cartesian coordinate axes x, y, and z. It will usually be convenient to
define these axes so that they coincide with the principal axes of the
crystal whenever this is possible.

It is not necessary that Ek and El in
eqn 11.10 should be derived from dif-
ferent light beams. In many cases there
will only be a single beam incident on
the crystal, and Ek and El will just be
the components of the electric field re-
solved along the appropriate axes.

Equation 11.10 shows that there are nine different contributions for
each component of P (2). For example, the term with χ

(2)
xyz gives the

nonlinear polarization generated along the x axis when one optical field
is applied along the y axis and another along the z axis. We can also
generate a nonlinear polarization along the x axis by applying two fields
along x via the χ

(2)
xxx term, and so on for all nine possible permutations of

j and k. At first sight it might therefore appear that we have to measure
27 different quantities in order to quantify the second-order nonlinear
response of an anisotropic medium completely. Fortunately, this is not
usually the case, because the high degree of symmetry found in crystals
requires that many of the terms are zero, and many of the others are
the same. This point is developed further in Section 11.3.2.

The third-order nonlinear response of an anisotropic medium is also
described by a tensor relationship. We can generalize eqn 11.8 by writing
the components of the third-order nonlinear polarization as follows:

P
(3)
i = ε0

∑
j,k,l

χ
(3)
ijklEjEkE l , (11.11)

where {i, j, k, l} ∈ {x, y, z}, and χ
(3)
ijkl is the third-order nonlinear sus-

ceptibility tensor. χ
(3)
ijkl is a fourth-rank tensor with 81 components. As

with the second-order nonlinear susceptibility, symmetry may require
that many of these terms are the same or zero.

Example 11.1

Potassium dihydrogen phosphate (KDP) is a uniaxial crystal with a four-
fold axis of rotation about the z axis. The tetragonal 42m symmetry
class of the crystal demands that the only non-zero components of the
second-order nonlinear susceptibility tensor are the ones with i, j, and k
all different, namely χ

(2)
xyz, χ

(2)
yxz, χ

(2)
xzy χ

(2)
zxy, χ

(2)
yzx, and χ

(2)
zyx. Furthermore,

symmetry also requires that

χ(2)
xyz = χ(2)

yxz = χ(2)
xzy = χ(2)

yzx , (11.12)

and
χ(2)

zxy = χ(2)
zyx . (11.13)
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Determine the direction of the nonlinear polarization when a powerful
laser beam is propagating along the optic axis.

Solution
If the laser is propagating in the z direction, then the electric field of
the light will be polarized along the x or y directions. The nonlinear
polarization is therefore given by eqn 11.10 with Ez = 0. This gives:

P
(2)
i = ε0

(
χ

(2)
ixxExEx + χ

(2)
ixyExEy + χ

(2)
iyxEyEx + χ

(2)
iyyEyEy

)
.

If i = x or i = y, then all the terms on the right-hand side are zero
because χ

(2)
ijk is zero unless i, j and k are all different. This means that

the nonlinear polarization vector is given by:

P (2)
x = 0

P (2)
y = 0

P (2)
z = ε0

(
χ(2)

zxyExEy + χ(2)
zyxEyEx

)
.

We therefore conclude that the nonlinear polarization is pointing along
the optic axis, irrespective of the direction of the polarization of the
input laser beam.

11.2 The physical origin of optical
nonlinearities

The discussion in the previous section gave no indication as to why a
particular material should be nonlinear or not. The magnitude of the
electric field that binds an electron to an atom is typically around 1010–
1011 Vm−1. (See Exercise 11.1.) It might therefore be expected that
nonlinear effects would become important when the electric field of the
light is comparable to this value. From the relationship between the
intensity of a light beam and its electric field given by eqn A.44 in
Appendix A, namely:

I =
1
2
cε0nE2 , (11.14)

we see that we need optical intensities around 1019 W m−2 to produce
fields of this magnitude. Intensities as high as this can just about be
achieved with very powerful lasers, but in fact the nonlinear effects set
in at much lower intensity levels. This is because we can produce a
sizeable macroscopic result by adding together the very small nonlinear
effects in a very large number of atoms. This only works if the nonlinear
phenomena in all the individual atoms are in phase with each other.
This effect is called ‘phase matching’, and is discussed in Section 11.3.3.

The approach taken to explaining the microscopic origin of optical
nonlinearities depends on whether the frequency is close to one of the
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natural transition frequencies of the atoms or not. If it is, then we are
dealing with a resonant nonlinear effect, while if it is not, we are consid-
ering a non-resonant nonlinearity. These two situations are discussed
separately below, starting with the non-resonant nonlinearities. It turns
out that the non-resonant effects can be explained in terms of the clas-
sical oscillator model by introducing anharmonic terms. On the other
hand, we need to use a quantum model to account properly for resonant
effects.

11.2.1 Non-resonant nonlinearities

In Chapter 2 we explained how we can calculate the response of a
medium to electromagnetic waves by assuming that it consists of a se-
ries of oscillators with characteristic resonant frequencies. In the near-
infrared, visible, or ultraviolet spectral ranges we are normally consid-
ering the response due to the electrons. We have been assuming that
these are bound to the atoms by harmonic restoring forces such that the
displacement induced by the driving field of the light wave is linear. As
with most oscillatory systems, this will only be true for small displace-
ments. If the system is driven hard by the strong field of an intense laser
beam, the displacements will be large, and it may no longer be valid to
assume that the displacement varies linearly with the driving field.

We can account for the non-resonant nonlinear effects by assuming
that the electron is bound in an anharmonic potential well of the form:

U(x) =
1
2
m0ω

2
0x2 +

1
3
m0C3x

3 +
1
4
m0C4x

4 + · · · , (11.15)

where ω0 is the natural resonant frequency and x = 0 corresponds to
the equilibrium position of the electron. It is assumed that ω2

0 � C3x �
C4x

2 . . ., so that it makes sense to carry out the power series expan-
sion, and that the harmonic term dominates for small displacements.
The power series expansion is a simplification of the more complicated
functional forms that would appear in a real atom. (See Exercise 10.16
for a worked example for the vibrational potential energy.)

We concentrate here on the second-order effects, and consider only
the x3 term in eqn 11.15. The restoring force for displacements from the
equilibrium position is given by:

F (x) = −dU

dx
= − (

m0ω
2
0x + m0C3x

2
)

. (11.16)

This shows that the strength of the restoring force now depends on the
direction of the displacement: the electron experiences a stronger force
for positive displacements than for negative displacements. If we drive
the electron with the AC electric field of a light wave, the displacements
will be smaller during the positive part of the cycle than for the negative
part. Since the dipole moment per unit volume of the medium is equal to
−Nex, the polarization will likewise be asymmetric in the field direction.
Hence the relationship between P and E will not be linear and will
involve powers of E greater than one.
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Fig. 11.1 Response of an anharmonic
medium to a sinusoidal driving field.
The linear dependence between P and
E is shown by the dashed line, while
the solid line corresponds to a nonlin-
ear dependence. (a) Small electric field:
the departure from linear response is
small. (b) Large applied field: the polar-
ization is asymmetric, with larger dis-
placements for negative E.
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The nonlinear relationship between P and E is sketched in Fig. 11.1.
For small fields the departure from the linear response is negligible.
Hence the polarization closely follows the applied field, as shown in
Fig. 11.1(a). However, if the magnitude of the applied field is increased,
the response becomes asymmetric, with larger displacements for nega-
tive fields. This point is illustrated in Fig. 11.1(b), which shows how the
application of a sinusoidal electric field gives a distorted output if the
material is nonlinear. It is well known from electrical circuit theory that
the distorted output can be described by including higher harmonics. In
the case shown in Fig. 11.1(b), the output contains a second harmonic
wave with 20% of the amplitude of the fundamental.

This simple discussion shows that the inclusion of the anharmonic
term generates a signal at twice the frequency of the applied wave. We
can see from eqn 11.7 that this is equivalent to a second-order nonlin-
earity, because if E(t) = E0 sin ωt, then

P (2)(t) = ε0χ
(2)E2

0 sin2 ωt

=
1
2
ε0χ

(2)E2
0(1 − cos 2ωt) .

(11.17)

Thus if χ(2) is non-zero, the medium generates a wave at 2ω when driven
at frequency ω. This is the same conclusion as that derived from the
consideration of the anharmonic term in the potential, and shows that
the two treatments are equivalent.

The relationship between C3 and χ(2) can be made more precise by
finding an approximate solution to the equation of motion of the electron
when driven by an AC electric field at frequency ω. To do this, we
proceed as in Section 2.2, but now include the anharmonic term in the
restoring force. The equation of motion is thus:

m0
d2x

dt2
+ m0γ

dx

dt
+ m0ω

2
0x + m0C3x

2 = −eE , (11.18)

where γ accounts for damping. E is the driving field of the electromag-
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netic wave, which is assumed to have the following time dependence:

E(t) = E0 cos ωt =
1
2
E0

(
eiωt + e−iωt

)
. (11.19)

We have seen above that the inclusion of the C3 term leads to a response
at frequency 2ω in addition to the one at ω. Therefore we write the time
dependence of the electron displacement as: It is important to keep track of all the

conjugate terms in this model, for oth-
erwise we can lose some of the impor-
tant cross terms. We focus on the neg-
ative frequency terms in order to keep
consistency with Section 2.2.

x(t) =
1
2

(
X1e−iωt + X2e−2iωt + c.c.

)
, (11.20)

where ‘c.c.’ stands for complex conjugate. We assume that the nonlinear
term is small, so that X1 � X2.

On substituting eqn 11.20 into eqn 11.18, we obtain:

(−ω2 − iωγ + ω2
0)(X1e−iωt + c.c.)/2

+ (−4ω2 − 2iωγ + ω2
0)(X2e−2iωt + c.c.)/2

+ C3(X2
1e−2iωt + 2X∗

1X2e−iωt + · · · + c.c.)/4

=
−eE0

2m0
(e−iωt + c.c.) ,

(11.21)

where it is assumed that the anharmonic term is small and the ellipsis
represents the higher-order cross terms at frequencies other than ω and
2ω. For eqn 11.21 to hold at all times, the coefficients of e±iωt and
e±2iωt must be the same on both sides of the equation. We are assuming
that the nonlinear response is small, and so we can neglect the term at
frequency ω generated from the anharmonic part of the potential. Hence
we obtain:

X1 =
−eE0

m0

1
(ω2

0 − ω2) − iγω
. (11.22)

This is exactly the same result as eqn 2.9 in Section 2.2, which is hardly
surprising, since it represents the linear response of the system. The
polarization at frequency ω follows directly:

P (ω, t) = −Nex(ω, t)

= −Ne (X1e−iωt + c.c.)/2
= ε0χ(ω)E(t) ,

(11.23)

where the third line is just the standard definition of the linear suscep-
tibility as in eqn 11.2. By combining eqns 11.19, 11.22, and 11.23, we
obtain the usual result for the linear susceptibility:

χ(ω) =
Ne2

m0ε0[(ω2
0 − ω2) − iγω]

. (11.24)

We now solve for X2 to find the nonlinear response by equating the
coefficients of e−2iωt in eqn 11.21. This gives:

(−4ω2 − 2iωγ + ω2
0)

X2

2
+

C3

4
X2

1 = 0 , (11.25)
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from which we obtain, using eqns 11.22 and 11.24:

X2 = − C3X
2
1

2(ω2
0 − 4ω2 − 2iωγ)

= − C3e
2E2

0

2m2
0(ω

2
0 − ω2 − iγω)2(ω2

0 − 4ω2 − 2iωγ)

= −m0C3ε
3
0χ(ω)2χ(2ω)
2N3e4

E2
0 .

(11.26)

The polarization at frequency 2ω is given by

P (2ω, t) = −Nex(2ω, t) = −Ne(X2e−2iωt + c.c.)/2 . (11.27)

Now in the case we are considering where the polarization at frequency
2ω is generated by nonlinear conversion of the driving field at frequency
ω, P (2ω) will also be given by eqns 11.7 and 11.19 as:

P (2ω, t) = ε0χ
(2)E(t)2 = ε0χ

(2)

(E0

2

)2

(e−2iωt + c.c.) . (11.28)

Thus by combining eqns 11.26–11.28 we obtain the final result (Miller’s
rule):We have restricted our attention here to

the second-order nonlinearity, but it is
obvious that the derivation can be gen-
eralized by including higher-order an-
harmonic terms, which would then ex-
plain the origin of higher-order nonlin-
earities.

χ(2) =
m0C3χ(ω)2χ(2ω)ε20

N2e3
. (11.29)

This shows that the second-order nonlinear susceptibility is directly pro-
portional to C3, the anharmonic term in the equation of motion. Equa-
tion 11.29 is reasonably successful in predicting the dispersion of χ(2) in
a large number of crystals. This is because it is found empirically that
the anharmonic constant C3 does not vary very much from material to
material.

Equation 11.29 tells us that χ(2) increases as ω approaches ω0, through
the frequency dependence of χ(ω) given by eqn 11.24. This effect is
known as resonance enhancement. In a lightly damped system, the classi-
cal treatment breaks down as we get closer to the resonant frequency due
to the divergence in χ(ω). Hence we have to adopt a different approach
if we are close to resonance. This is discussed in the next subsection.

11.2.2 Resonant nonlinearities

The off-resonant nonlinear effects discussed in the previous section are
all ‘virtual’ processes. This means that no real transitions take place
because the photon energy does not coincide with any of the transition
frequencies of the atoms. The situation is obviously completely different
if the laser frequency is in resonance with an atomic transition. In this
case, the atoms can absorb photons and make transitions to excited
states as the beam propagates through the medium.

The absorption rate is normally determined by the matrix element for
the transition and the density of states according to Fermi’s golden rule
(eqn B.14). This allows us to determine the absorption coefficient for a
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particular material at a particular frequency. All this presupposes that
the intensity of the light beam on the sample is small. If the intensity is
high, the absorption coefficient becomes intensity dependent. Since the
absorption coefficient is related to the dielectric constant, this means
that the dielectric constant is intensity dependent. In other words, we
are dealing with an optical nonlinearity.
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Fig. 11.2 Transitions induced by a res-
onant laser beam of energy density uν .
Photons are removed from the beam by
absorption transitions from level 1 → 2
and are added by stimulated emission
transitions from level 2 → 1.

The intensity dependence of the absorption rate can be understood
through the Einstein B coefficients discussed in Section B.1 of Ap-
pendix B. Consider the propagation of an intense laser beam of frequency
ν through an absorbing medium. Figure 11.2 illustrates the simplest case
to discuss, namely a medium containing atoms with just two levels: level
1 at energy E1 and level 2 at energy E2, where E2 > E1. We assume
that there are N1 atoms per unit volume in the lower level, and N2 per
unit volume in level 2. The total number of atoms per unit volume is
N0, where N0 = N1 + N2.

We consider the case in which the laser is resonant with the atomic
transition frequency of the atoms, such that hν = E2 − E1. The laser
beam will be absorbed as it propagates through the medium by transi-
tions upwards from level 1 to level 2. At the same time, photons will be
added to the beam by stimulated emission. The stimulated emission rate
is not normally considered when discussing the propagation through an
absorbing medium because it is assumed that N2 is negligible. However,
if the laser intensity is large, we can no longer make this assumption,
because the absorption transitions will create a substantial population
in the upper level. This gives rise to a significant stimulated emission
rate, and effectively reduces the absorption coefficient.

The reduction of the absorption coefficient due to stimulated emission
can be modelled by considering an incremental beam slice of thickness
dz as illustrated in Fig. 11.3. The number of photons absorbed per unit
time in the incremental slice is given by: For a Lorentzian line, g(ν) takes the

form:

g(ν) =
∆ν/2π

(ν − ν0)2 + (∆ν/2)2
,

where ν0 is the transition frequency and
∆ν its half width. Note that this is nor-
malized such that:� ∞

0
g(ν) dν = 1 .

δNabsorbed = B12N1uνg(ν) × Adz , (11.30)

where uν is the energy density of the beam at position z, g(ν) is the
spectral lineshape function of the transition, and A is the beam area.
Adz is thus the volume of the slice. The extra factor of g(ν) in eqn 11.30
compared to eqn B.5 arises from the difference between the beam en-
ergy density uν (units: J m−3) and spectral energy density u(ν) (units:
Jm−3 Hz−1). The Einstein coefficients are traditionally defined when
considering the interaction of a broadband light source (e.g. black-body
radiation) with a narrow atomic absorption line. Here, by contrast, we
are considering a laser beam with a spectral linewidth that is smaller
than that of the transition. The inclusion of the spectral lineshape func-
tion is required for dimensional consistency and ensures that the transi-
tion rate is proportional to the shape of the absorption line.

The stimulated emission rate can be treated in the same way. We see
from eqn B.6 that the number of photons added per unit time to the
beam is given by:

δNstimulated = B21N2uνg(ν) × Adz . (11.31)
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Hence the total reduction in the photon number per unit time is given
by:

δNtotal = δNabsorbed − δNstimulated

= (B12N1 − B21N2)uνg(ν)Adz .
(11.32)

This is effectively the net absorption rate.

A

z

dz

I(z) I + dI

A

z

dz

I(z) I + dI

Fig. 11.3 Propagation of a laser
beam of area A through an absorbing
medium.

The intensity of the beam decreases as it propagates through the
medium due to absorption. If we take the intensity at position z to
be I(z), and the change in the intensity in the incremental slice to be
dI, we can write

AdI = −δNtotal × hν ,

= −(B12N1 − B21N2)uνg(ν)hνAdz .
(11.33)

The left-hand side is the beam energy change per unit time in the in-
cremental slice at z. The right-hand side is the change in the photon
number per unit time given by eqn 11.32 multiplied by the energy of
each photon. Conservation of energy requires that these two quantities
must be the same.

Equation 11.33 can be simplified by noting from eqn A.43 in Ap-
pendix A that I = cuν/n, where n is the refractive index of the medium.
Hence we obtain:

dI

dz
= −B12(N1 − N2)g(ν)hνn

c
I , (11.34)

where we have assumed that the degeneracies of the two levels are the
same so that B12 = B21 (cf. eqn B.10). Equation 11.34 can be comparedThe argument can easily be generalized

to the case where the degeneracies are
different.

to the standard definition of the absorption coefficient α given in eqn 1.4,
which implies that

dI

dz
= −αI . (11.35)

Hence by comparing eqns 11.34 and 11.35 we see that

α = B12(N1 − N2)g(ν)hνn/c . (11.36)

This shows that the absorption coefficient is proportional to the popu-
lation difference between the lower and upper levels.

At low intensities we can assume that N1 ≈ N0 and N2 ≈ 0. Equa-
tion 11.36 then just reduces to the usual result where the absorption
coefficient is proportional to the number of atoms in the system. How-
ever, at high intensities, the laser pumps a large number of atoms into
the upper level so that N2 increases and N1 decreases. Hence the absorp-
tion coefficient begins to decrease as the population difference between
the upper and lower levels decreases.

Note that eqn 11.37 only applies to ho-
mogeneously broadened systems, and
that the saturation intensity measured
for a particular absorption line will de-
pend on the detailed rate constants for
that specific transition.

The decrease of the absorption with the laser power can be character-
ized by introducing the saturation intensity Is. The absorption coef-
ficient is found experimentally to depend on the intensity I according to
the following relationship:

α(I) =
α0

1 + I/Is
, (11.37)
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where α0 is the absorption measured in the linear regime when I � Is.
A medium which shows the behaviour indicated by eqn 11.37 is called a
saturable absorber.

At low intensity levels, eqn 11.37 can be expanded to obtain:

α(I) = α0 − (α0/Is)I . (11.38)

This shows that the absorption decreases linearly with I. Now α is pro-
portional to the imaginary part of εr (cf. eqns 1.19 and 1.24), and I
is proportional to E2. Hence εr varies in proportion to E2, and from
eqn 11.9 we see that this is equivalent to a χ(3) process. In other words,
the resonant nonlinearities due to saturable absorption are third-order
nonlinear effects. (See Exercise 11.11.)

The analysis of the saturable absorber above applies primarily to the
discrete absorption lines found in atomic systems. However, in solid-state
materials we are often more interested in the saturation of an absorp-
tion band rather than a discrete line. For example, in Section 11.4.7 we
present data for the saturable absorption of interband transitions and
also of excitons.

In treating the nonlinear saturation of interband absorption, it is use-
ful to adopt a slightly different approach which is based on the Pauli
exclusion principle. The dependence of α on (N1 − N2) in eqn 11.36
can be considered as a consequence of the Fermi–Dirac statistics of the
electrons. For absorption to be possible, the lower level must contain
an electron, while the upper level must be empty. Hence the absorption
coefficient will obey

α = α0(f1 − f2) , (11.39)

where f1 and f2 are the Fermi occupancies of the lower and upper levels
respectively. α0 is the low power absorption when the lower level is full
and the upper level empty: that is, when f1 = 1 and f2 = 0. The
absorption at high powers is calculated by working out the filling of the
levels after a large number of electrons and holes have been excited by
the absorption of a laser pulse.

11.3 Second-order nonlinearities

In this section we discuss a few of the more important effects that are
associated with the second-order nonlinear susceptibility χ(2). We begin
by considering the general principles of nonlinear frequency mixing, and
the effects of the crystal symmetry on the nonlinear coefficients. We then
introduce the concept of phase matching, which is crucially important
for obtaining large nonlinear signals. Finally, we give a brief discussion
of the linear electro-optic effect.

11.3.1 Nonlinear frequency mixing

The second-order nonlinear polarization is given by eqn 11.7. If the
medium is excited by sinusoidal waves at frequencies ω1 and ω2 with
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amplitudes E1 and E2 respectively, then the nonlinear polarization will
be equal to:

P (2)(t) = ε0χ
(2) × E1 cos ω1t × E2 cos ω2t

= ε0χ
(2)E1E2 [cos (ω1 + ω2)t + cos (ω1 − ω2)t]/2 .

(11.40)

This shows that the second-order nonlinear response generates polar-
ization waves at the sum and difference frequencies of the input fields
according to:

ωsum = ω1 + ω2 , (11.41)
ωdiff = ω1 − ω2 . (11.42)

The medium then re-radiates at ωsum and ωdiff , thereby emitting light
at frequencies (ω1 + ω2) and (ω1 − ω2). This effect is called nonlinear
frequency mixing. If the frequencies are the same, the sum frequency
is twice the input frequency. This effect is called frequency doubling
or second-harmonic generation, and has already been introduced in
the discussion of eqn 11.17.
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Fig. 11.4 Feynman diagrams for
second-order nonlinear frequency mix-
ing processes.

Nonlinear frequency mixing processes can be represented by Feynman
diagrams as indicated in Fig. 11.4. Figure 11.4(a) shows the process
for sum frequency mixing, while Fig. 11.4(b) represents difference fre-
quency mixing. Conservation of energy applies at each vertex. The neg-
ative input frequency at ω2 for the difference frequency mixing process
in Fig. 11.4(b) reflects the fact that cosωt = (e+iωt + e−iωt)/2, so that
we can represent real waves either with positive or negative frequencies
on a Feynman diagram. In quantum-mechanical terms, we would say
that the sum frequency mixing process annihilates two input photons at
frequencies ω1 and ω2, with the creation of a new photon at frequency
ωsum, while difference frequency mixing annihilates one photon at fre-
quency ω1 and creates two photons, one at frequency ω2 and the other
at ωdiff . The creation of the photon at frequency ω2 in the latter case
is stimulated by the presence of a large number of existing photons at
frequency ω2 from the input field.

One of the most important uses for nonlinear optical processes is to
generate new frequencies from fixed-wavelength lasers. The most com-
mon technique is frequency doubling. In this case, we have a single input
beam, and the sum frequency mixing works by taking two photons from
the input beam and generating a new photon at the doubled frequency.

Figure 11.5 shows a schematic experimental arrangement for generat-
ing the second, third, and fourth harmonics of a Nd:YAG laser operating
at 1064 nm. The second harmonic at 1064/2 = 532 nm is generated by
frequency doubling of the fundamental. The second harmonic beam can
then be doubled again with an additional nonlinear crystal to generate
the fourth harmonic at 266 nm. The third harmonic can be generated
by carrying out sum frequency mixing of the fundamental and the sec-
ond harmonic beams in another nonlinear crystal. These techniques are
standard procedures in modern laser physics.
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Fig. 11.5 Nonlinear frequency conver-
sion of a Nd:YAG laser operating at
1064 nm. The beam is first doubled to
532 nm. This beam can then either be
used as the output, or doubled again
to 266 nm. Alternatively, the output at
532 nm can be mixed with the fun-
damental at 1064 nm to generate the
third harmonic at 355 nm. The residual
pump beams transmitted through the
nonlinear crystals are separated from
the harmonics by filters that are not
shown in the diagram.

When the two input fields are at the same frequency, we see from
eqn 11.42 that the difference frequency is zero. This effect is called op-
tical rectification, and refers to the phenomenon by which a static
electric field is produced from fields of optical frequencies. The Pockels
effect, which is also known as the linear electro-optic effect, is the
reverse of this process, and is discussed further in Section 11.3.4.

A very interesting aspect of down-
conversion processes is that the photons
are always created in pairs. This means
that the photon statistics at frequency
ω1 are directly correlated with those
at ω2. This gives rise to a whole host
of quantum optical effects. For exam-
ple, the correlated photon pair can be
used as the basis of a ‘heralded’ single-
photon source: the detection of a pho-
ton in one beam ‘heralds’ the presence
a single photon in the other.

The sum frequency mixing process shown in Fig. 11.4(a) can work the
other way round as well. In this case, we bring in a single input field
at frequency ω and create two new photons at frequencies of ω1 and
ω2, where ω1 + ω2 = ω. This process is called down conversion. It
is apparent that the output frequencies generated by down-conversion
are not uniquely defined. Any combination of frequencies that satisfies
the conservation of energy requirements can in principle be generated.
However, the number of photons emitted at any particular frequency will
only be large if the phase matching conditions discussed in Section 11.3.3
are satisfied.

Down conversion can be used to amplify a weak beam by a process
called parametric amplification. If we introduce a weak ‘signal’ field
at frequency ωs in the presence of a strong pump field at frequency ω,
it can generate an ‘idler’ field at ωi = ω − ωs by difference frequency
mixing with the pump field. These new idler photons then generate
more signal photons by further mixing with the pump field. The process
then repeats itself. If the phase matching conditions are satisfied, it is
possible to transfer power from the pump beam to the signal and idler
beams. Furthermore, if the crystal is inside an optical cavity which is
resonant with either ωs or ωi, then oscillation can occur. This process
is called parametric oscillation, and can lead to the generation of
intense beams at tunable frequencies even though we started from a
fixed-wavelength laser.
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Table 11.1 Second-order nonlinear effects. The third column lists the frequencies of the light beams incident on the nonlinear
crystal, while the fourth gives the frequency of the output beam or the nonlinear polarization. A frequency of zero indicates a
DC electric field.

Effect Alternative name Input Output
frequencies frequencies

Frequency doubling Second harmonic generation ω 2ω
Optical rectification ω 0
Down conversion ω ω1, ω2

Sum frequency mixing ω1, ω2 (ω1 + ω2)
Difference frequency mixing ω1, ω2 |ω1 − ω2|
Pockels effect Linear electro-optic effect ω, 0 ω

The different types of second-order nonlinear effects considered in this
section are summarized in Table 11.1.

11.3.2 Effect of crystal symmetry

The second-order nonlinear susceptibility introduced in eqn 11.10 is a
third rank tensor with 27 components. Fortunately, it is not necessary
to measure all of these components to determine the nonlinear response
of the medium. It is immediately obvious that some of the 27 compo-
nents are the same. For example the term χ

(2)
xyzEyEz must be the same

as χ
(2)
xzyEzEy because the response of the medium cannot depend on the

mathematical ordering of the fields. Hence there are in fact only 18 phys-
ically distinct components of the nonlinear susceptibility. This means
that we can write the nonlinear response in a simpler form in terms of a
contracted tensor called the nonlinear optical coefficient tensor dij .
Written out explicitly, the components of the nonlinear polarizations are
given by:


P

(2)
x

P
(2)
y

P
(2)
z


 =


d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36







ExEx

EyEy

EzEz

2EyEz

2EzEx

2ExEy




. (11.43)

By comparing this with eqn 11.10 we see that d11 = ε0χ
(2)
xxx, d14 =

ε0χ
(2)
xyz, etc.

In many crystals the nonlinear optical coefficient tensor can be fur-
ther simplified because the crystal symmetry requires that many of the
terms are zero, and many others are the same. This is a consequence of
Neumann’s principle which states that the macroscopic physical prop-
erties of a crystal must be invariant under the symmetry operations of
the crystal. (See Section 1.5.1.) This makes the task of characterizing
the nonlinear material much easier than it might seem at first.

The simplest case to consider is that of a centrosymmetric crystal.
This is a crystal that has inversion symmetry. Suppose we generate a
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nonlinear polarization in such a crystal by using a single applied field,
E. The components of P (2) will be given by eqn 11.10. If we now reverse
the direction of the electric field, nothing happens because:

P
(2)
i (−E) = ε0

∑
j,k

χ
(2)
ijk(−Ej)(−Ek)

= ε0
∑
j,k

χ
(2)
ijkEjEk

= P
(2)
i (+E) .

(11.44)

However, since the crystal has inversion symmetry, we know from Neu-
mann’s principle that we must get the same physical result by keeping
the field in the original direction and inverting the crystal. In terms of
the coordinate axes of the inverted crystal, all the components of E and
P (2) change sign. Therefore, for the inverted crystal we have:

−P
(2)
i = ε0

∑
j,k

χ
(2)
ijk(−Ej)(−Ek) . (11.45)

The only way that eqn 11.45 can be compatible with eqn 11.44 is if
χ

(2)
ijk = 0 for all permutations of i, j, k. Hence we conclude that the

second-order nonlinear susceptibility of centrosymmetric crystals is zero,
so that dij = 0 for all i and j.

A more obvious but less rigorous argu-

ment why χ(2) = 0 in centrosymmetric
crystals follows from eqn 11.15. A cen-
trosymmetric crystal must have U(x) =
U(−x) since the physical properties are
invariant on inverting the crystal. This
means that C3 = 0, and hence, from
eqn 11.29, that χ(2) = 0.

If the crystal does not possess inversion symmetry, then some of the
components of dij will be non-zero. In triclinic crystals with the lowest
possible symmetry, it will be necessary to specify all 18 values of dij to
describe the nonlinear response fully. At the other extreme, in materials The non-zero terms in dij for the cubic

crystal are derived from the terms of

the type χ
(2)
xyz . It is obvious that χ

(2)
xyz =

χ
(2)
yzx = χ

(2)
zxy in a cubic crystal in which

the x, y, and z axes are equivalent.

with the zinc-blende structure (class 43m), it is only necessary to specify
one value because the very high degree of crystal symmetry requires that
the only non-zero terms are d14, d25, and d36, and that these three are
all identical.

In crystals with intermediate symmetry, it will be necessary to spec-
ify a varying number of physically different terms in dij . For example,
we already considered the uniaxial nonlinear crystal KDP (potassium
dihydrogen phosphate, KH2PO4) in Example 11.1. KDP belongs to the
tetragonal crystal class 42m and has four-fold rotational symmetry about
the z axis. The non-zero components of χ

(2)
ijk specified in eqns 11.12 and

11.13 imply that the only non-zero components of dij are d14, d25, and
d36, with d14 equal to d25. Hence we can characterize the nonlinear
response completely by making just two separate measurements to de-
termine d14 and d36. In other types of crystal, there will be different
relationships between the coefficients of dij . Tables of these relation-
ships are given in books on crystallography and nonlinear optics, and
representative values of the nonlinear coefficients of several important
crystals are given in Table 11.2. Exercise 11.6 works through a specific
example for the case of an orthorhombic nonlinear crystal.
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Table 11.2 Nonlinear coefficients of a number of important nonlinear crystals. The
nonlinear coefficients are all measured at 1064 nm. Data from Tang (1995) and Klein
et al. (2003).

Crystal Symmetry Transmission Nonlinear
range coefficient
(nm) (pm/V)

KDP (KH2PO4) 42m 200–1500 d36 = 0.39
d14 = 0.4

KTP (KTiOPO4) mm2 350–4400 d31 = 6.5
d32 = 5.0
d33 = 14
d24 = 7.6
d15 = 6.1

BBO (β-BaB2O4) 3m 190–2500 d22 = 2.1
d31 = 0.26

LBO (LiB3O5) mm2 160–2600 d32 = 1.2
LiNbO3 3m 400–5000 d31 = −4.8

d33 = −30
d22 = 2.3

11.3.3 Phase matching

Nonlinear effects are generally small, and we therefore need a long length
of the nonlinear medium to obtain a useful nonlinear conversion effi-
ciency. For this to work, we need that the phases of the nonlinear waves
generated throughout the whole crystal are all the same so that the
fields add together coherently. When this is achieved, we are in a regime
called phase matching. As we shall see below, phase matching does
not normally occur, and can only be achieved if the nonlinear crystal is
orientated in a very precise direction.

We can see why phase matching is an important issue by considering
a simple example. Suppose we wish to use a nonlinear crystal to double
the frequency of a Nd:YAG laser from 1064 nm to 532 nm, as shown
schematically in Fig. 11.5. All materials are dispersive to some extent,
and this means that the refractive index at 532 nm will be different to
that at 1064 nm. Therefore, the second harmonic waves at 532 nm will
propagate with a different phase velocity to the fundamental at 1064 nm.
This means that the second harmonic waves generated at the front will
arrive at the back of the crystal at a different time to the fundamental,
and so the 532 nm waves generated at the back of the crystal will be out
of phase with those from the front.

The phase mismatch introduced by the frequency doubling process
can be calculated from the wave vectors of the two waves. If the beams
are travelling in the z direction, then the nonlinear waves will propagate
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as exp(ik(2ω)z), where k(2ω) is the wave vector at frequency 2ω. On the
other hand, the fundamental beam propagates as exp(ik(ω)z), where k(ω)

is the wave vector at frequency ω. Now since P (2) ∝ E2, the nonlinear
polarization at a given point in the medium will be created with a phase
of [exp(ik(ω)z)]2 = exp(i2k(ω)z). Hence the phase difference ∆Φ between
the nonlinear waves created at a distance z into the crystal and those
created at the front of the crystal is given by

∆Φ = (k(2ω) − 2k(ω))z . (11.46)

We introduce the coherence length lc for the nonlinear process as the
distance over which the phase mismatch becomes equal to 2π:

(k(2ω) − 2k(ω)) × lc = 2π . (11.47)

This can be rewritten in terms of the refractive indices n2ω and nω at
the two frequencies as:

2ω

c
[n2ω − nω] lc = 2π . (11.48)

Hence
lc =

πc

ω[n2ω − nω]
=

λ

2[n2ω − nω]
, (11.49)

where λ is the vacuum wavelength of the fundamental beam. Taking
a typical example with λ = 1 µm and n2ω − nω ∼ 10−2 we find that
lc ∼ 50 µm.

Equation 11.49 shows us that only the waves emitted within a very
short distance of the surface will add together coherently. This clearly
greatly restricts the efficiency of the nonlinear conversion process, be-
cause only a very short length of the nonlinear crystal is actually useful.
The situation would be completely different if we could somehow arrange
that n2ω = nω. In this case the nonlinear waves generated throughout
the whole crystal would all have the same phase and would thus add
together coherently. This is the phase-matching condition.

At first sight it might seem that there is no way to satisfy the condition
n2ω = nω in any material with normal dispersion properties. However,
this neglects the fact that the anisotropic crystals that are used for non-
linear mixing are birefringent. This opens new possibilities to balance
the dispersion against the birefringence. For example, consider a uniax-
ial crystal with normal dispersion and negative birefringence, such that
n2ω > nω and ne < no. (See Sections 2.4 and 2.5.1.) In such a crystal
it is possible to obtain phase matching by propagating the beam at fre-
quency 2ω as an extraordinary ray, and the beam at ω as an ordinary
ray. It is shown in Example 11.2 below that phase matching can then be
achieved for a very specific orientation of the crystal.

The phase-matching condition can be given an intuitive physical in-
terpretation if we notice that if n2ω = nω, then k(2ω) = 2k(ω). This
corresponds to momentum conservation in the nonlinear process. In the
more general case when a photon of wave vector k is generated by mixing
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two photons with wave vectors k1 and k2, the phase-matching condition
can be written as

k = k1 + k2 . (11.50)

In down conversion where one photon is split into two output photons,
the phase-matching condition of eqn 11.50 applies to each pair of photons
created in the process.

Example 11.2

The ordinary and extraordinary refractive indices of a uniaxial crystal
are no and ne respectively. A laser beam is propagating at an angle θ to
the optic (z) axis as shown in Fig. 2.13. The laser is linearly polarized
along the x direction.The arrangement with the pump beam

as an ordinary ray (o-ray) and the sec-
ond harmonic as an extraordinary ray
(e-ray) is called type I phase match-
ing. In type II phase matching, one
of the pump photons is an o-ray and
the other is an e-ray, while the second
harmonic is again an e-ray.

(a) Show that there is an angle θ at which the phase-matching condition
can be met for second-harmonic waves polarized as extraordinary rays.
(b) Evaluate the phase-matching angle for potassium dihydrogen phos-
phate (KDP) at the wavelength of a Nd:YAG laser (1064 nm). The rele-
vant refractive indices for KDP are: no(1064 nm) = 1.494, no(532 nm) =
1.512, and ne(532 nm) = 1.471.

Solution
(a) The general condition for phase matching is that

n2ω = nω . (11.51)

The fundamental wave is polarized along the x axis, and so its refrac-
tive index is nω

o , irrespective of θ. The refractive index for the second
harmonic waves polarized as extraordinary rays is given by the result of
Exercise 2.16, namely:

1
n(θ)2

=
sin2 θ

n2
e

+
cos2 θ

n2
o

, (11.52)

where no and ne are evaluated at 2ω. Hence the phase-matching condi-
tion given in eqn 11.51 is met when

1
(nω

o )2
=

sin2 θ

(n2ω
e )2

+
cos2 θ

(n2ω
o )2

. (11.53)

(b) On inserting the appropriate refractive indices into eqn 11.53, we
have:

1
1.4942

=
sin2 θ

1.4712
+

cos2 θ

1.5122
.

This is satisfied with θ = 41◦. To achieve phase matching we therefore
hold the crystal in a gimbal mount and carefully rotate its orientation
until the optic axis is at 41◦ to the direction of the laser beam.
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11.3.4 Electro-optics

In electro-optics, a DC electric field is used to change the refractive index
of an optical material. As we saw in Section 2.5.2, the refractive index
change can be either linear in the field (the Pockels effect) or quadratic
(the Kerr effect). In this subsection we focus on the linear electro-optic
effect, leaving relevant discussion of the quadratic effect to Section 11.4.3.

It was pointed out in Section 11.3.1 that the linear electro-optic effect
can be considered as a type of second-order nonlinearity in which the
frequency of the driving field is equal to zero. This has an immediate
consequence. Since the second-order susceptibility is zero if the crystal
has inversion symmetry, then the linear electro-optic effect can only be
observed in crystals that lack inversion symmetry. In fact, the same
materials (e.g. KDP, LiNbO3) are frequently used in both nonlinear
optics and electro-optics.

See Born & Wolf (1999), Nye (1957) or
Yariv (1997) for a discussion of the in-
dex ellipsoid (also called the ‘indicatrix’
in some older texts) and its use in linear
optics. In uniaxial crystals with their
optic axis along z, we set nx = ny = no

and nz = ne in eqn 11.54, but in biaxial
crystals, all three indices are different.

The general treatment of the linear electro-optic effect starts from the
index ellipsoid of the anisotropic medium. The index ellipsoid describes
the variation of the refractive index with the direction of the electric
field of the light, and takes the form:

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 , (11.54)

where nx, ny, and nz are the refractive indices measured for light po-
larized along the principal axes, namely x̂, ŷ, and ẑ respectively. The
refractive index measured for light polarized along the (x, y, z) direction
is then given by:

n =
√

x2 + y2 + z2 . (11.55)

As mentioned in Section 2.5.2, the basic effect of the electric field is to
change the anisotropy of the crystal. This effect can be quantified by
re-writing the index ellipsoid in the following form:(

1
n2

)
1

x2 +
(

1
n2

)
2

y2 +
(

1
n2

)
3

z2

+2
(

1
n2

)
4

yz + 2
(

1
n2

)
5

xz + 2
(

1
n2

)
6

xy = 1 . (11.56)

On comparing eqns 11.54 and 11.56, it is immediately apparent that at
zero applied field we must have that:(

1
n2

)
1

=
1
n2

x

,

(
1
n2

)
2

=
1
n2

y

,

(
1
n2

)
3

=
1
n2

z

, (11.57)

and (
1
n2

)
4

=
(

1
n2

)
5

=
(

1
n2

)
6

= 0 . (11.58)

The changes in the index ellipsoid are determined by the components of
the electro-optic coefficient tensor rij , defined by:

∆
(

1
n2

)
i

=
3∑

j=1

rijEj . (11.59)
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Written out explicitly, this becomes:


∆(1/n2)1
∆(1/n2)2
∆(1/n2)3
∆(1/n2)4
∆(1/n2)5
∆(1/n2)6




=




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63





Ex

Ey

Ez


 . (11.60)

As with the nonlinear optical coefficient tensor, symmetry requires that
many of the tensor components are zero, and that some (or all) of the
non-zero components have the same magnitude.

Let us consider the case of a KDP (KH2PO4) crystal, which has tetrag-
onal 42m symmetry. With no field applied, KDP is a uniaxial birefrin-
gent crystal, with ordinary and extraordinary refractive indices of no and
ne respectively. (See Section 2.5.1.) It is shown in Example 11.3 below
that the application of a DC field along the optic (i.e. z) axis rotates
the principal axes of the crystal by 45◦, as illustrated in Fig. 11.6(a).
The modified refractive indices with respect to the new principal axes
(x̂′, ŷ′, ẑ′) are given by:

n1(E) = no + n3
or63E/2 ,

n2(E) = no − n3
0r63E/2 ,

n3(E) = ne .

(11.61)

This shows that the field induces anisotropy in the x–y plane, where
there was none before. The effect of the field is therefore to induce bire-
fringence, as mentioned previously in Section 2.5.2.
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Fig. 11.6 (a) Rotated principal axes x′
and y′ for a crystal with tetragonal 42m
symmetry when a field is applied along
the z axis. (b) An electro-optic (E-O)
modulator based on the crystal shown
in part (a). This arrangement is often
called a Pockels cell.

Let us consider a ray propagating in the z direction incident on a KDP
crystal. With no field applied, this is an ordinary ray: it experiences no
birefringence, and emerges with its polarization unchanged. However,
when the field is applied, the ray now experiences birefringence on ac-
count of the induced anisotropy in the x–y plane. This means that the
output polarization will be different to the input polarization.

Let us assume that the input beam is linearly polarized along the
y axis. The E-vector can be resolved into equal components along the
x′ and y′ axes, which experience refractive indices of n1(E) and n2(E)
respectively. The phase difference between them is given by:

∆Φ(E) =
2π

λ
|n1 − n2|L =

2π

λ
n3

or63EL , (11.62)

where L is the length of the crystal, and λ is the vacuum wavelength.
In general, the output beam will be elliptically polarized. However, if
∆Φ = π/2, then the electro-optic crystal acts as a quarter wave plate and
turns the beam into circularly polarized light. Alternative, if ∆Φ = π,
then the electro-optic crystal acts as a half wave plate, and the beam
emerges linearly polarized with its polarization rotated by 90◦.

The modification of the polarization induced by the field can be used
to make a light amplitude modulator, as shown in Fig. 11.6(b). The
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crystal is mounted between crossed polarizers, so that there is no output
without a field applied. When a beam is incident with its polarization
parallel to the axis of the input polarizer and a voltage is applied, the
beam emerges from the electro-optic crystal with a different polariza-
tion. This means that some of the light now passes through the second
polarizer. The output of the device is thus controlled by the voltage
applied to the crystal, with the maximum output occurring when the
voltage applied induces a π phase shift.

Table 11.3 Electro-optic coefficients
rij of common electro-optic crystals at
633 nm. KDP and ADP are abbrevia-
tions for KH2PO4 and NH4H2PO4 re-
spectively. After Yariv (1997).

Crystal Symmetry rij

(pm/V)

KDP 42m r41 = 8
r63 = 11

ADP 42m r41 = 23
r63 = 7.8

LiNbO3 3m r13 = 9.6
r22 = 6.8
r33 = 31
r51 = 33

KNbO3 2mm r13 = 28
r42 = 380
r51 = 105

GaP 43m r41 = −0.97

The principles that we have illustrated for the KDP crystal with
tetragonal 42m symmetry can be applied to other crystals with different
symmetry classes. Exercise 11.8 considers the case of trigonal crystals
with 3m symmetry (e.g. LiNbO3) and explains how they can be used
as electro-optic phase modulators, while Exercise 11.9 considers crys-
tals with cubic symmetry. Table 11.3 lists the values of the electro-optic
coefficients for some of the crystals commonly used in modulators.

Example 11.3

Consider a uniaxial crystal of the tetragonal 42m class (e.g. KDP) with
ordinary and extraordinary refractive indices equal to no and ne re-
spectively. When the optic axis is defined to be along the z direction,
Neumann’s principle requires that the electro-optic coefficient tensor of
crystals with this symmetry class takes the form:

r =




0 0 0
0 0 0
0 0 0

r41 0 0
0 r41 0
0 0 r36




. (11.63)

(a) Write down the modified index ellipsoid when an electric field of
magnitude E is applied along the z axis.
(b) Show that the principal axes of the crystal with the field applied are
rotated by −45◦ about the z axis compared to the case with no field
applied.
(c) Hence find the modified refractive indices of the crystal measured
relative to the rotated principal axes.

Solution
(a) We have a uniaxial crystal with a refractive index of no for light
polarized along the x or y directions, and ne for light polarized along z.
With no field applied, the index ellipsoid is therefore of the form:

x2 + y2

n2
o

+
z2

n2
e

= 1 .
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The modified ellipsoid in the presence of the field is found by substituting
into eqn 11.60 with Ex = Ey = 0 and Ez = E . There is only one non-zero
term, namely:

∆
(

1
n2

)
6

= r63E .

The modified index ellipsoid is therefore given by eqn 11.56 as:

x2

n2
o

+
y2

n2
o

+
z2

n2
e

+ 2r63Exy = 1 .

(b) We define new axes rotated by −45◦ about the z axis such that:

x′ = (x − y)/
√

2
y′ = (x + y)/

√
2

z′ = z ,

which implies that x = (x′ + y′)/
√

2, y = (−x′ + y′)/
√

2 and z = z′. On
substituting into the modified index ellipsoid we obtain:

x′2 + y′2

n2
o

+
z′2

n2
e

+ r63E(−x′2 + y′2) = 1 .

This can be written in the form:

x′2

n2
1

+
y′2

n2
2

+
z′2

n2
3

= 1 ,

if we set:

1/n2
1 = 1/n2

o − r63E ,

1/n2
2 = 1/n2

o + r63E ,

1/n2
3 = 1/n2

e .

This shows that x′ and y′ are the modified principal axes of the crystal
with the field applied.

(c) It is immediately apparent from part (b) that n3(E) = ne. We can
find n1(E) and n1(E) by writing:

n1(E) = no(1 − n2
or63E)−1/2 ,

n2(E) = no(1 + n2
or63E)−1/2 ,

and assuming that the field-induced changes are small compared to no.
The approximation (1 + x)−1/2 = (1 − x/2) is then valid, and so we
conclude:

n1(E) = no + n3
or63E/2 ,

n2(E) = no − n3
or63E/2 ,

n2(E) = ne .
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Fig. 11.7 Feynman diagrams for third-
order nonlinear processes. (a) Four-
wave mixing. (b) Frequency tripling.
(c) The optical Kerr effect. (d) The Ra-
man effect.

11.4 Third-order nonlinear effects

Third-order nonlinear effects are particularly important in isotropic me-
dia, such as gases, liquids, and glasses. This is because an isotropic
medium possesses inversion symmetry, and all the components of χ

(2)
ijk

must therefore be zero. (See Section 11.3.2.) Hence the lowest-order non-
linear susceptibility with non-vanishing components is χ(3). In this sec-
tion we start by giving an overview of third-order nonlinear phenomena,
and then focus on isotropic media in more detail, mentioning optical
fibres as a specific example. Finally we discuss resonant third-order non-
linear effects in semiconductors.

11.4.1 Overview of third-order phenomena

A third-order nonlinear polarization is generated when three input fields
are applied to the nonlinear medium. If the input fields are at frequencies
ω1, ω2, and ω3, then the nonlinear polarization is given by eqn 11.8 or
more generally by eqn 11.11. In the simplest case without considering
the tensor aspect of the susceptibility, this gives:

P (3)(t) = ε0χ
(3) × E1 cos ω1t × E2 cos ω2t × E3 cos ω3t , (11.64)

where E1, E2, and E3 are the amplitudes of the three waves. Hence the
frequency ω4 of the nonlinear polarization must satisfy: As with the second-order processes, the

negative frequencies represent the cre-
ation of photons in the nonlinear pro-
cess. This is a legitimate outcome be-
cause photons are bosons and hence the
nonlinear interaction can stimulate the
creation of photons at the input fre-
quency as well as causing annihilation
of input photons.

ω4 = ω1 + ω2 + ω3 , (11.65)

where the frequencies on the right-hand side can be either positive or
negative. This reflects the fact that cos ωt = (e+iωt +e−iωt)/2 and there-
fore contains both positive and negative frequency terms.

Figure 11.7 shows the Feynman diagrams for several third-order non-
linear processes. Figure 11.7(a) gives the diagram for the general pro-
cess, with three input photons corresponding to the driving fields and
one output photon corresponding to the nonlinear polarization. The out-
put frequency is the sum of the input frequencies, as required by con-
servation of photon energy. Since four photons are involved, the general
phenomenon is often called four-wave mixing. In the discussion below,
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Table 11.4 Third-order nonlinear effects. The third column lists the frequencies of the light beams incident on the nonlinear
medium, while the fourth gives the frequency of the output beam or the nonlinear polarization. A frequency of zero indicates a
DC electric field. Note that there are several other third-order nonlinear effects such as two-photon absorption which have not
been included in this table.

Effect Alternative names Input Output
frequencies frequencies

Generic four-wave mixing ω1, ω2, ω3 | ± ω1 ± ω2 ± ω3|
Frequency tripling Third-harmonic generation ω 3ω
Optical Kerr effect Degenerate four-wave mixing ω ω

Nonlinear refraction
Self-phase modulation

DC Kerr effect Quadratic electro-optic effect ω, 0 ω
Stimulated four-wave mixing Stimulated Raman scattering ω, ωs ωs

Stimulated Brillouin scattering

we concentrate on the three specific examples of four-wave mixing illus-
trated in Figs 11.7(b)–(d), namely: frequency tripling, the optical Kerr
effect, and stimulated Raman scattering. There are, of course, many
other important third-order nonlinear phenomena, but we do not have
space to discuss them all here. The main effects that we consider are
summarized in Table 11.4.

11.4.2 Frequency tripling

Figure 11.7(b) shows the Feynman diagram for frequency tripling. ThisIn practice it is usually easier to gener-
ate the third harmonic of a laser beam
by two second-order processes accord-
ing to the scheme shown in Fig. 11.5,
rather than by using a single third-
order conversion using the χ(3) nonlin-
earity.

is the equivalent of frequency doubling for a χ(2) process. Three collinear
fields at the same frequency are incident on the medium from a single
input laser beam. With ω1 = ω2 = ω3 = +ω, we find from eqn 11.65
that the output frequency is equal to 3ω. In other words, the nonlinear
process directly generates the third harmonic of the fundamental. As
with frequency doubling, the conversion efficiency will only be large if
the phase-matching condition determined by momentum conservation is
satisfied. (See Section 11.3.3.) Frequency tripling experiments are useful
for the spectroscopic information they give about the magnitude of χ(3)

and its relation to the atomic transitions of the medium.

11.4.3 The optical Kerr effect and the nonlinear
refractive index

Figure 11.7(c) shows the Feynman diagram for the optical Kerr effect.
In this process we have just a single beam at frequency ω incident on the
nonlinear medium, and the nonlinear interaction produces a third-order
polarization at the same frequency as the input laser beam. This works
by using ω1 = ω2 = +ω and ω3 = −ω in eqn 11.65. No phase-matching
problems occur in this case because the nonlinear polarization is at the
same frequency as the driving fields and thus the fields are in phase
throughout the whole medium. Since the frequencies of all four photons
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are the same, the optical Kerr effect is sometimes called degenerate four-
wave mixing.

One of the main consequences of the optical Kerr effect is that the
refractive index begins to depend on the intensity of the beam. This can
be seen by calculating the change of the dielectric constant produced by
the light. From eqn 11.9 we see that the dielectric constant in a nonlinear
medium with χ(2) = 0 is given by:

εnonlinear
r = 1 + χ(1) + χ(3)E2 , (11.66)

where χ(1) is the linear susceptibility and E is the optical electric field
amplitude. We split this into its linear and nonlinear parts by writing:

εnonlinear
r = εr + ∆ε , (11.67)

where
εr = 1 + χ(1) (11.68)

and
∆ε = χ(3)E2 . (11.69)

εr is the usual relative permittivity for the linear regime and ∆ε is the
change caused by the nonlinear process. In a non-absorbing medium, the
refractive index n is equal to the square root of the relative permittivity
(cf. eqn A.31). Hence we may write:

n = (εr + ∆ε)1/2 =
√

εr +
∆ε

2
√

εr
≡ n0 + ∆n , (11.70)

where we have assumed that ∆ε � εr in the second equality, and in the
third we have split the refractive index into its linear part n0 =

√
εr and

its nonlinear part ∆n. On comparing eqns 11.69 and 11.70 we find that

n = n0 +
χ(3)E2

2n0
= n0 +

χ(3)

n2
0cε0

I , (11.71)

where we have used the proportionality between I and E2 given by
eqn 11.14 in the second identity.

We now introduce the nonlinear refractive index n2 according to:

n(I) = n0 + n2I . (11.72)

By comparing eqns 11.71 and 11.72 we find that:

n2 =
1

n2
0cε0

χ(3) . (11.73)

This shows that n2 is directly proportional to χ(3), and hence that third-
order nonlinearities cause the refractive index to vary with the intensity.

Table 11.5 lists the measured values of the nonlinear refractive index
for a number of materials. It is apparent that the nonlinear refractive
index can be either positive or negative. For a given material, n2 is
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Table 11.5 Nonlinear refractive index n2 of selected materials. Eg: band gap, λ:
wavelength of measurement, �ω: photon energy, n0: linear refractive index. Data
from Sheik–Bahae et al. (1991) and DeSalvo et al. (1996).

Material Eg (eV) λ (nm) �ω/Eg n0 n2 (m2 W−1)

GaAs 1.42 1064 0.87 3.47 −3.3 × 10−17

CdTe 1.44 1064 0.81 2.84 −2.9 × 10−17

AlGaAs 1.57 850 0.93 3.30 −2.5 × 10−17

AlGaAs 1.57 830 0.95 3.30 −8.9 × 10−17

AlGaAs 1.57 810 0.98 3.30 −3.3 × 10−16

ZnTe 2.26 1064 0.52 2.79 1.3 × 10−17

CdS 2.42 1064 0.48 2.34 5.0 × 10−18

CdS 2.42 532 0.96 2.34 −6.1 × 10−17

ZnSe 2.58 1064 0.45 2.48 2.9 × 10−18

ZnSe 2.58 532 0.90 2.70 −6.2 × 10−18

Fused silica (SiO2) 7.8 1064 0.15 1.48 2.1 × 10−20

Fused silica (SiO2) 7.8 532 0.30 1.48 2.2 × 10−20

Fused silica (SiO2) 7.8 355 0.45 1.48 2.4 × 10−20

Fused silica (SiO2) 7.8 266 0.60 1.50 7.8 × 10−20

positive at low photon energies, and turns negative for �ω � 0.7Eg,
where Eg is the band gap. Note that |n2| is resonantly enhanced as the
photon energy approaches Eg, as demonstrated by the data for AlGaAs.

It is apparent from eqn 11.71 that ∆n is proportional to E2 in the
optical Kerr effect. This is reminiscent of the DC Kerr effect considered
in Section 2.5.2, and explains the name ‘optical Kerr effect’. Both types
of Kerr effect are examples of quadratic electro-optic effects. In the DC
Kerr effect, E is an applied DC field, whereas in the optical Kerr effect,
E is the electric field of the light. The DC Kerr effect can in fact be
considered as a χ(3) process in which ω1 = ω2 = 0 and ω3 = ω. This
contrasts with the linear electro-optic effect considered in Section 11.3.4,
which is a χ(2) process.
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Fig. 11.8 (a) A Kerr cell based on the
DC Kerr effect. (b) A Kerr gate based
on the optical Kerr effect.

The analogy between the DC and optical Kerr effects is illustrated in
Fig. 11.8. Fig. 11.8(a) shows a conventional Kerr cell based on the DC
Kerr effect, which operates in a similar way to the Pockels cell shown
in Fig. 11.6(b). The cell comprises a Kerr medium inserted between
crossed polarizers. With no external field applied, the Kerr medium is
isotropic, and no light is transmitted through the crossed polarizers.
When the voltage is applied, birefringence is induced in proportion to
E2 (see eqn 2.51), and the light that emerges from the Kerr medium
is no longer vertically polarized. This means that some light is now
transmitted through the second polarizer, allowing the cell to be used
as an intensity modulator.

Fig. 11.8(b) illustrates a Kerr gate based on the optical Kerr ef-
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fect. The principle of operation is the same as the Kerr cell shown in
Fig. 11.8(a), except that now there is no applied voltage, and the bire-
fringence is induced by an intense laser pulse via the optical Kerr effect.
The gate therefore only transmits light while the laser pulse is impinging
on the crystal. By using an ultrafast pulse from a mode-locked laser, it is
possible to use this arrangement to produce a very fast (e.g. 1 ps) optical
shutter.

11.4.4 Stimulated Raman scattering

Figure 11.7(d) shows the Feynman diagram for the stimulated Raman
effect. A weak beam at frequency ωs is incident on the medium together
with a powerful pump beam at frequency ω. With ω1 = +ω, ω2 =
−ω, and ω3 = ωs, we see from eqn 11.65 that the nonlinear wave is at
frequency ωs. Hence the presence of a field at ωs generates more photons
at the same frequency through nonlinear mixing with the pump field.
The beam at frequency ωs can then experience gain by the same sort
of parametric mixing that was discussed in Section 11.3.1. The process
becomes a Raman effect if we tune the frequency of ωs such that ω−ωs =
Ω, where Ω is the frequency of one of the vibrational modes of the
medium. The nonlinear susceptibility is resonantly enhanced in these
conditions because the two frequencies are strongly coupled together
through the natural vibrations of the medium.

The spontaneous Raman scattering
processes discussed in Section 10.5 can
be related to the stimulated effects we
are considering here by making an anal-
ogy with spontaneous and stimulated
radiative emission. Spontaneous radia-
tive emission can be considered to be a
stimulated process that is triggered by
a vacuum photon from the zero-point
fluctuations of the quantized electro-
magnetic field. In the same way we can
regard spontaneous Raman scattering
as a stimulated nonlinear process in-
stigated by vacuum photons. In fact,
when we generate stimulated Raman
beams by passing a laser through a suit-
able medium, there is usually no ini-
tial field at frequency ωs to start the
process. This field has to come from
spontaneous Raman scattering, which
itself is instigated by vacuum fluctua-
tions. Hence the generation of a stim-
ulated Raman beam is considered to
start from the zero-point fluctuations of
the field.

Stimulated Raman scattering was discovered very soon after the in-
vention of the laser. In 1962 E.J. Woodbury and W.K. Ng observed
that an intense beam was generated at 766 nm when passing a strong
beam from a ruby laser at 694.3 nm through a nitrobenzene cell. Anal-
ysis of these results showed that the difference in the frequency of the
two photons corresponded exactly with one of the vibrational modes of
the molecule at 4.0 × 1013 Hz. The same phenomenon has subsequently
been observed in many different liquids and gases, and also in solids.

In solids the scattering can be mediated either by the optical or the
acoustic vibrational modes. In the former case it is the Raman-active LO
and TO phonons at q = 0 that are involved, where q is the wave vector
of the phonon, as discussed in Section 10.5.2. This gives rise to discrete
frequency shifts analogous to those observed in molecules. In the latter
case, it is the acoustic phonons that are involved, and the process is
usually called stimulated Brillouin scattering. The frequency shift
caused by stimulated Brillouin scattering depends on the angle through
which the light is scattered, as determined by the energy and wave vector
conservation laws. (See eqn 10.32.)

11.4.5 Isotropic third-order nonlinear media

The third-order nonlinear response is described by the nonlinear suscep-
tibility tensor χ

(3)
ijkl defined in eqn 11.11. This has 81 elements, many of

which are the same or zero in materials with a high degree of symmetry.
In a completely isotropic medium such as a gas, there are 21 non-zero
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Table 11.6 Non-zero components of the third-order nonlinear susceptibility in an
isotropic medium.

χ
(3)
xxxx = χ

(3)
yyyy = χ

(3)
zzzz

χ
(3)
xxyy = χ

(3)
yyxx = χ

(3)
xxzz = χ

(3)
zzxx = χ

(3)
yyzz = χ

(3)
zzyy

χ
(3)
xyxy = χ

(3)
yxyx = χ

(3)
xzxz = χ

(3)
zxzx = χ

(3)
yzyz = χ

(3)
zyzy

χ
(3)
xyyx = χ

(3)
yxxy = χ

(3)
xzzx = χ

(3)
zxxz = χ

(3)
yzzy = χ

(3)
zyyz

elements that are listed in Table 11.6. The interrelationships listed in the
table suggest that there are four independent values, but this is not the
case because it can be shown that the susceptibilities must also satisfy:

χ(3)
xxxx = χ(3)

xxyy + χ(3)
xyxy + χ(3)

xyyx . (11.74)

This means that there are in fact only three independent elements. Fur-
thermore, if we are well below the natural resonance frequencies of the
atoms, it will also be true that:

χ(3)
xxyy = χ(3)

xyxy = χ(3)
xyyx =

1
3
χ(3)

xxxx . (11.75)

This result is only valid at low frequencies, and is called Kleinman
symmetry. In this limit, there are thus only two physically different
third-order nonlinear susceptibilities.

Glasses are perhaps the most important examples of isotropic optical
materials. We usually use glasses at wavelengths where they are trans-
parent. We are therefore well below the band gap in the ultraviolet spec-
tral region, and the Kleinman symmetry condition given in eqn 11.75
will normally hold.

Glasses are isotropic because they
do not possess a crystal structure
and therefore have no preferred axes.
Doped glasses have optical transitions
in the visible spectral region (see Sec-
tion 1.4.5) and the Kleinman symmetry
condition does not hold at frequencies
close to the band gap of the dopant.

When an intense laser beam propagates through a glass, it can al-
ter the refractive index by the optical Kerr effect in accordance with
eqn 11.72. This produces a nonlinear phase shift given by:

∆Φnonlinear =
2π

λ
∆nL =

2π

λ
n2I L , (11.76)

where λ is the vacuum wavelength, L is the length of the medium and I
is the intensity. The laser beam therefore alters its own phase, an effect
called self-phase modulation.

11.4.6 Nonlinear propagation in optical fibres and
solitons

Self-phase modulation effects can be observed very clearly in optical
fibres, even though the nonlinear refractive index is very small. This is
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Fig. 11.9 A group of runners on a mat-
tress is an analogy of a soliton pulse
in an optical fibre. The indentation of
the group slows the faster runners and
speeds the slower ones, thereby com-
pensating for the tendency of the group
to break up. In the same way, the non-
linear phase shift of an intense short
pulse can compensate for the pulse
broadening effect due to the dispersion
of the optical fibre. After Mollenauer
and Gordon (1994), reprinted with per-
mission from Plenum Publishers.

because the beam is focused to a very small area in the fibre, so that the
intensity is very high even at moderate power levels. Large phase shifts
can then be achieved by using long lengths of fibre.

The subject of solitons is a very interesting aspect of the propaga-
tion of light pulses down an optical fibre in the nonlinear regime. A short
laser pulse must necessarily contain a spread of frequencies in order to
satisfy the Fourier transform limit given approximately by eqn 9.6. Since
the glass that makes up the fibre is dispersive (see Fig. 2.10), the differ-
ent frequency components of the pulse will experience slightly different
refractive indices. This means that their velocities will be different, and
the pulse will gradually broaden in time as it propagates down the fibre.
(See Exercise 2.15.) This becomes a serious problem if we are trying to
transmit a sequence of closely-spaced data pulses down the fibre. The
soliton effect discovered by John Scott Russell in 1834 can eliminate this
problem. Russell noticed that the bow wave of a Scottish canal barge
did not disperse when the amplitude of the wave was large enough. He
successfully explained his observation by realizing that the dispersion of
the water wave was being balanced by the nonlinear effects due to the
large amplitude. The same phenomenon can occur in optical fibres.

Solitons can be observed in optical fibres at frequencies where the
dispersion is negative. This is because the n2 of the fibre is positive in
the near infrared spectral region, and so the dispersion must be negative
if the two effects are to cancel. Most glasses have positive dispersion at
optical frequencies due to the electronic absorption in the ultraviolet.
However, as noted in Section 2.4, the dispersion of the SiO2 used to
make optical fibres is zero at 1.3 µm and becomes negative for longer
wavelengths. This can be seen in the data shown in Fig. 2.7. This means
that we are in the right regime to observe solitons at 1.55 µm, which
is the preferred wavelength for telecommunication systems because the
losses of the fibre are smallest.

The basic physics of soliton propagation can be understood in a simple
way without recourse to heavy mathematics by reference to the cartoon
given in Fig. 11.9. This shows a group of athletes crossing a mattress,
with the faster runners at the front. The group creates a valley in the
mattress that retards the faster runners but helps the slower ones. On a
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hard surface the group would break up with the faster runners leaving
the slower ones behind, but the valley in the mattress opposes this effect
and keeps the group together. In the right conditions the nonlinear phase
shift of an intense pulse in an optical fibre can have a similar effect, cre-
ating a trapped light pulse similar to the trapped group of runners in the
cartoon. The resulting pulse can travel indefinitely long distances along
the fibre without significant broadening. This is a very useful property
for long-distance optical fibre telecommunication systems.

Example 11.4

A laser pulse at 1.55 µm of intensity 1012 W m−2 is propagating down
an optical fibre of length 100m. Calculate the nonlinear phase shift if
the nonlinear refractive index is 2 × 10−20 m2 W−1.

Solution
We calculate the nonlinear phase shift from eqn 11.76 with λ = 1.55 ×
10−6 m, n2 = 2 × 10−20 m2 W−1, and I = 1012 W m−2. This gives:

∆Φnonlinear =
2π

1.55 × 10−6
× (2 × 10−20) × 1012 × 100 = 8.1 .

The nonlinear phase shift is thus 2.6π. This example shows that the
nonlinear phase shift can be very large, even though the nonlinearity is
small. This occurs because of the very large values of L that can be used
in optical fibres.

11.4.7 Resonant nonlinearities in semiconductors

In Section 11.2.2 we explained how the absorption coefficient of an ab-
sorbing medium is expected to depend on the intensity at high power
levels. This phenomenon has been studied extensively in semiconductors,
with a particular emphasis on developing nonlinear switching devices for
applications in optical information processing.

k

E

Eg

k

E

Eg

Fig. 11.10 Band-filling nonlinearity in
an excited semiconductor. The inter-
band absorption transition shown by
the arrow in the diagram is blocked be-
cause there are no electrons in the va-
lence band to absorb, and the destina-
tion states in the conduction band are
filled.

The simplest mechanism that can cause saturable absorption in a
semiconductor is illustrated in Fig. 11.10. This shows the band diagram
of a direct gap semiconductor when a large number of electrons have
been excited from the conduction band to the valence band. The elec-
trons are excited by absorption of an intense laser pulse with photon
energy greater than the band gap. The electrons fill up the states at
the bottom of the conduction band, leaving empty states at the top of
the valence band. This blocks further interband absorption transitions
at photon energies close to the band gap such as the one shown in the
figure, because there are no electrons in the valence band to be excited,
and furthermore, the destination states in the conduction band are full.
Therefore, as we turn up the intensity of the exciting laser, we find that
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Fig. 11.11 Saturable excitonic absorption in a semiconductor multiple quantum well. The sample contained 30 Ga0.53In0.47As
quantum wells of width 15.4 nm with InP barriers. The temperature was 300K. Part (a) shows the linear absorption of the
sample, while (b) shows the intensity dependence of the absorption at 0.77 eV. This photon energy corresponds to the first
excitonic peak in the linear absorption spectrum, and is identified by the arrow in (a). The solid line in (b) is a fit to the data
using eqn 11.77. After Westland et al. (1987) and Fox et al. (1987), c© American Institute of Physics, reprinted with permission.

the absorption gradually saturates as the bands fill up. This effect is
therefore called a band-filling nonlinearity.

Another mechanism that can cause the absorption to depend on the
intensity is the saturation of excitons. This effect was described in Sec-
tion 4.4. At high carrier densities the Coulomb force holding the exci-
tons together is screened, and the electron and hole states near k = 0
required for the formation of excitons are filled. Both of these effects
cause bleaching of the exciton absorption. If the carriers are excited by
the absorption of a laser beam, the excitonic absorption will decrease
with increasing laser intensity.

Figure 11.11 shows the intensity dependence of the exciton absorption
in a GaInAs multiple quantum well sample at room temperature. The Quantum wells are good materials

to demonstrate excitonic nonlinearities
because they show strong excitonic ab-
sorption even at room temperature. See
Section 6.4.4 for further details.

linear absorption spectrum is given in Fig. 11.11(a). The step-like spec-
trum expected for the 2-D quantum wells is clearly apparent in the data,
together with the broadened peaks due to the excitons. Figure 11.11(b)
shows the saturation of the absorption coefficient α at the first exciton
peak as a function of intensity I. The intensity dependence of α is given
approximately by:

α(I) = αb +
α0

1 + I/Is
, (11.77)

with αb = 2000 cm−1, α0 = 6700 cm−1, and Is = 290 W cm−2. The
αb term in eqn 11.77 represents an unsaturable background absorption,
while the second term represents a saturable absorption of the form given
in eqn 11.37.

The intensity dependence of α shown in Fig. 11.11(b) gives rise to
a very large change in the refractive index. (See Exercise 11.15.) The
nonlinear refractive index n2 associated with the exciton saturation is
∼ 10−8 m2 W−1. This is many orders of magnitude larger than the values
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given in Table 11.5, and illustrates the point that resonant nonlinearities
are much larger than non-resonant ones. However, the price that has to
be paid for the large |n2| value is the high absorption at the operating
wavelength. This restricts the length of the devices that can be used,
and therefore puts a limit on the maximum nonlinear phase shift that
can be obtained.

The saturable absorption of quantum wells has found an important
application in ultrafast laser physics. Ultrafast lasers work by the mode
locking principle, and one of the methods used to achieve mode locking
is to incorporate a saturable absorber into the laser cavity. By using
molecular beam epitaxy, it is possible to make a semiconductor saturable
absorber mirror (SESAM), which consists of semiconductor quantum
well layers grown on top of a dielectric mirror. Such mirrors are now
routinely used as the saturable absorber in a number of commercial
mode-locked solid-state lasers.
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Fig. 11.12 (a) Excitonic absorption
line of a single self-assembled InGaAs
quantum dot at liquid helium temper-
ature. (b) Saturation of the absorption
as a function of resonant laser power.
The fit is a saturation curve of the form
given in eqn 11.78 with a saturation
power of 18 nW. After Kroner et al.
(2008), c© Elsevier, reprinted with per-
mission.

In recent years there has been a growing interest in investigating the
nonlinear properties of semiconductor quantum dots. The optical prop-
erties of quantum dots were discussed in Section 6.8, with Section 6.8.3
focusing on self-assembled III–V dots. Figure 11.12(a) shows the exci-
tonic absorption line of a single self-assembled InGaAs quantum dot at
liquid helium temperatures. A very sharp line with a linewidth of only
3.5 µeV is observed at low excitation powers. Figure 11.12(b) shows the
absorption strength (i.e. absorbance) measured when the dot is irradi-
ated with a laser tuned to resonance with the exciton. The absorbance
is observed to saturate strongly as a function of increasing laser power
P . The fit is a saturation curve of the form (cf. eqn 11.37):

α(P ) =
α0

1 + P/Ps
, (11.78)

with a saturation power Ps of 18 nW. The good fit to the data shows
that the quantum dot approximates well to a saturable two-level atom
system, which is the starting point for the analysis of nonlinear optics
in atomic physics. This is one of the reasons why quantum dots are
often described as ‘solid-state atoms’, and have interesting possibilities
for applications in quantum optics.

Chapter summary

• Nonlinear optical effects become important at the high power levels
available from lasers. Nonlinear effects cause the optical suscepti-
bility, and all the properties that follow from it, to depend on the
magnitude of the electric field of the light.
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• Nonlinear effects are characterized by the nonlinear susceptibility
tensor. All the components of the second-order nonlinear suscepti-
bility tensor are zero if the medium possesses inversion symmetry.
Some crystals lack inversion symmetry and have non-zero second-
order nonlinear susceptibilities. The form of the tensor is deter-
mined by the symmetry class of the crystal.

• Non-resonant nonlinearities are caused by the anharmonicity of the
restoring force on the bound electrons.

• Resonant nonlinearities are caused by stimulated emission from the
upper level when its population becomes significant. The saturation
of interband absorption can be understood in terms of the blocking
of the transitions due to the Pauli exclusion principle.

• The nonlinear polarization in a second-order effect is proportional
to the product of two electric fields. This gives rise to a series
of second-order effects such as frequency doubling, sum frequency
generation, and difference frequency generation.

• Strong second-order nonlinear signals are only achieved when the
phase-matching condition is satisfied.

• The anisotropy induced by a DC electric field in an electro-optic
crystal is called the Pockels effect, and can be used to make am-
plitude or phase modulators.

• The nonlinear polarization in a third-order effect is proportional to
the product of three fields. Third-order effects are generally known
as four-wave mixing.

• The third-order susceptibility is the lowest-order non-zero term in
the nonlinear response of isotropic media such as gases, liquids,
and glasses.

• Third-order effects give rise to nonlinear refraction, frequency
tripling, and stimulated Raman scattering. Self-phase modulation
describes the nonlinear phase shift induced by a beam through the
nonlinear refractive index.

• The saturation of interband transitions and excitonic absorption
in semiconductors gives rise to large third-order nonlinearities.

Further reading

More extensive introductory reading on nonlinear optics
may be found in Yariv (1997) or Tang (1995). Butcher
and Cotter (1990) give a comprehensive introduction to
the theory of nonlinear optics.

A classic discussion of the effects of the crystal sym-
metry on the physical properties of materials is given by

Nye (1957).
The optical nonlinearities due to excitons are reviewed

in Chemla (1985). A more detailed review on excitonic
nonlinearities in quantum wells is given by Schmitt-Rink
et al. (1989).
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Exercises
(11.1) Use the Bohr model of the atom to show that the

electric field experienced by an electron bound
in the nth shell of a hydrogenic atom of atomic
number Z is equal to (Z3/n4)e/4πε0a

2
H, where

aH is the Bohr radius of hydrogen. Make a rough
estimate of this value for the valence electrons of
silicon.

(11.2) Estimate the magnitude of the electric field of the
light wave for: (a) a 10 ns long pulse of energy 1 J
from a Nd:glass laser with a beam diameter 5 mm;
(b) a 1mW continuous wave semiconductor laser
focused into an optical fibre with a core area of
20�m2 and a refractive index of 1.45.

(11.3) A gas of atoms is subjected to a strong DC elec-
tric field. State with reasons whether you would
expect to be able to observe any frequency dou-
bling or not from the gas.

(11.4) Which of the following materials would you
expect to have non-zero components in the
second-order nonlinear susceptibility: (a) NaCl,
(b) GaAs, (c) water, (d) glass, (e) crystalline
quartz, (f) ZnS (wurtzite).

(11.5)∗An intense laser is propagating through an ab-
sorbing medium as described in Section 11.2.2.
The medium contains atoms with two non-
degenerate levels 1 and 2, and the separation of
the levels is resonant with the laser frequency.
The atoms are initially in a state with N1 = N0

and N2 = 0, and the laser beam is turned on at
time t = 0.
(a) Explain why it is not possible to get popula-
tion inversion between the two levels, no matter
how intense the laser is.
(b) Show that if spontaneous emission is ne-
glected, the time dependence of the population
difference ∆N = N1 −N2 between the two levels
is given by:

∆N(t) = N0 exp (−2B12uνg(ν)t) ,

where uν is the energy density of the beam, g(ν)
is the spectral lineshape function, and B12 is the
Einstein B coefficient for absorption. What does
this relationship imply about the absorption co-
efficient?

(11.6) The nonlinear optical coefficient tensor of a crys-

tal with orthorhombic symmetry is given by

� =

�
�

0 0 0 d14 0 0
0 0 0 0 d25 0
0 0 0 0 0 d36

�
� .

A laser beam is incident on the crystal. The beam
travels in the x–y plane, and is polarized with its
electric field in the x–y plane. Show that a second
harmonic beam is produced which is polarized
along the z axis. Show also that the magnitude
of the second harmonic beam is a maximum if
the incoming beam travels at 45◦ to the x axis.

(11.7) Calculate the phase-matching angle for KDP
at the wavelength of the ruby laser (694 nm).
The relevant refractive indices are: no(694 nm) =
1.506, no(347 nm) = 1.534, ne(347 nm) = 1.490.

(11.8) Trigonal crystals with 3m symmetry (e.g.
LiNbO3) are uniaxial, and have electro-optic co-
efficient tensors of the form:

� =

�
�������

0 −r22 r13

0 r22 r13

0 0 r13

0 r51 0
r51 0 0
−r22 0 0

�
�������

,

when the optic axis is defined to coincide with
the z axis.
(a) Deduce the changes in the ordinary and ex-
traordinary refractive indices (no and ne respec-
tively) when a DC electric field of magnitude E
is applied along the optic axis.
(b) Find the phase change induced by the elec-
tric field for a crystal of length L when light of
vacuum wavelength λ is propagating along the y
axis with linear polarization in the z direction.
(c) Explain how such a device can be used as a
phase modulator.

(11.9) The anisotropy induced by an electric field ap-
plied along the z axis for crystals with the cu-
bic zinc-blende structure (43m symmetry) can be
written in the following form:

nx′ = n0 + 1
2
n3

0r41Ez ,

ny′ = n0 − 1
2
n3

0r41Ez ,

nz = n0 ,

∗Exercises marked with an asterisk are more challenging.
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where, as with the case of the tetragonal crystal
considered in Fig. 11.6(a), x′ and y′ are axes at
45◦ to the crystallographic axes x and y. n0 is the
refractive index at Ez = 0, and r41 is the electro-
optic coefficient.
(a) Show that when light of vacuum wavelength
λ propagates through the crystal in the z direc-
tion, the phase difference introduced between the
x′ and y′ polarizations is equal to

∆Φ(E) =
2π

λ
r41n

3
0V ,

where V is the voltage applied across the crystal
to produce the field along the z direction.
(b) Evaluate the voltage at which the phase
change is equal to π for CdTe at 10.6�m, where
r41 = 6.8 pm/V and n0 = 2.6.

(11.10) The electro-optic coefficient r63 of KDP at
633 nm is equal to 11 pm/V, where no = 1.5074.
Calculate the voltage that must be applied to
change the transmission of the modulator shown
in Fig. 11.6(b) to 50% at this wavelength.

(11.11) Explain why the imaginary part of the third-
order nonlinear susceptibility must be non-zero
in a saturable absorber medium.

(11.12) Show that the third-order nonlinear polarization
produced by a linearly polarized laser beam in
an isotropic medium is always parallel to the �

vector of the laser.

(11.13) A laser beam of wavelength 1.55�m propagates
down an optical fibre of length 10 m with a core
diameter of 5�m. Calculate the power that must
be launched into the fibre to produce a nonlin-
ear phase shift of π, if the fibre has a nonlinear
refractive index of 2 × 10−20 m2 W−1.

(11.14)∗A short laser pulse excites 1024 m−3 electron-hole
pairs into a sample of GaAs at 4 K. Calculate the
shift in the absorption edge at the band gap due
to the presence of the photoexcited carriers. The
band parameters for GaAs are given in Table D.2.
Ignore excitonic effects.

(11.15)∗The n = 1 heavy-hole exciton of a GaAs multiple
quantum well sample has a peak absorption co-
efficient of 8 × 105 m−1 at 847 nm. By assuming
that the exciton behaves like a classical dipole
oscillator, estimate the change of the refractive
index that can be obtained from this sample by
completely saturating the absorption. The non-
resonant refractive index is 3.5.

(11.16) (a) Use eqn 4.8 to calculate the saturation density
for excitons in InP. (The relevant band structure
parameters for InP are given in Table D.2, and
the dielectric constant is 12.5.)
(b) If the carrier recombination time is 1 ns, and
the absorption coefficient is 106 m−1, estimate the
saturation intensity when a laser is tuned to the
exciton wavelength.
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This appendix summarizes the principal results of electromagnetism that
are used throughout the book. It is hoped that the reader will be famil-
iar with this material. The main purpose of the appendix is to collect
together the equations in a concise form for quick reference, and also to
define the notation. SI units are used throughout. A short bibliography
of suitable supplementary texts is given under Further Reading.

A.1 Electromagnetic fields and Maxwell’s
equations

The response of a dielectric material to an external electric field is char-
acterized by three macroscopic vectors:

• the electric field strength E;

• the polarization P ;

• the electric displacement D.

The microscopic response of the material is determined primarily by the
polarization. For this reason, the first task in all the examples treated by
electromagnetism in this book is to calculate P . The dielectric constant
εr is then determined from P , and the optical properties are deduced
from εr.

The polarization is defined as the net dipole moment per unit volume.
The application of a field produces a polarization by the forces exerted
on the positive and negative charges of the atoms that are contained
within the medium. If the molecules have permanent dipole moments,
the field will apply a torque to these randomly orientated dipoles and
tend to align them along the field direction. If there are no permanent
dipoles, the field will push the positive and negative charges in opposite
directions and induce a dipole parallel to the field. In either case, the end
result is the same: the application of the field tends to produce many
microscopic dipoles aligned parallel to the direction of the external field.
This generates a net dipole moment within the dielectric, and hence a
polarization.

The microscopic dipoles will all tend to align along the field direction,
and so the polarization vector will be parallel to E. This allows us to
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write:
P = ε0χE, (A.1)

where ε0 is the electric permittivity of free space and χ is the electric
susceptibility of the medium. The value of ε0 is 8.854×10−12 Fm−1 in
SI units.

Equation A.1 makes two assumptions that need a brief word of expla-
nation.

(1) We have assumed that the medium is isotropic, even though we
know that some materials are anisotropic. In particular, anisotropic
crystals have preferred non-equivalent axes, and P will not neces-
sarily be parallel to E. A discussion of how to treat non-

isotropic materials may be found in
Section 2.5, while nonlinear optics is
the subject of Chapter 11.

(2) We have assumed that P varies linearly with E. This will not
always be the case. In particular, if the optical intensity is very
large, we can enter the realm of nonlinear optics, in which eqn A.1
is not valid.

Both of these qualifications introduce unnecessary complications at this
stage, and are not considered further in this appendix.

The electric displacement D of the medium is related to the electric
field E and polarization P through:

D = ε0E + P . (A.2)

This may be considered to be the definition of D. By combining eqns A.1
and A.2, we can write:

D = ε0εrE, (A.3)

where
εr = 1 + χ . (A.4)

εr is the relative dielectric constant of the medium, and is an ex-
tremely important parameter in the understanding of the propagation
of light through dielectrics.

In electrostatic problems we are frequently interested in calculating
the spatial dependence of the electric field, and hence the electric poten-
tial V , from the free charge density �. This calculation can be performed
by using the Poisson equation:

∇2V = − �

εrε0
. (A.5)

Poisson’s equation is derived from Gauss’s law of electrostatics:

∇·E =
�

εrε0
. (A.6)

We recall that the electric field strength is the gradient of the potential:

E = −∇V. (A.7)

Equation A.5 follows directly by substituting for E in eqn A.6 using
eqn A.7. Once we know V , we can then calculate E from eqn A.7. This
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approach is useful for treating devices that have a fixed potential across
them determined by an external voltage source.

The response of a material to external magnetic fields is treated in
a similar way to the response of dielectrics to electric fields. The mag-
netization M of the medium is proportional to the magnetic field
strength H through the magnetic susceptibility χM:

M = χMH. (A.8)

The magnetic flux density B is related to H and M through:

B = µ0(H + M)
= µ0(1 + χM)H
= µ0µrH,

(A.9)

where µ0 is the magnetic permeability of the vacuum and µr = 1 + χM

is the relative magnetic permeability, of the medium. The value of
µ0 is 4π × 10−7 Hm−1 in SI units.

The laws that describe the combined electric and magnetic response
of a medium are summarized in Maxwell’s equations of electromag-
netism:

∇ · D = � (A.10)
∇ · B = 0 (A.11)

∇×E = −∂B

∂t
(A.12)

∇×H = j +
∂D

∂t
, (A.13)

where � is the free charge density, and j is the current density. The
first of these four equations is Gauss’s law of electrostatics (eqn A.6)
written in terms of D rather than E. The second is the equivalent of
Gauss’s law for magnetostatics with the assumption that free magnetic
monopoles do not exist. The third equation combines the Faraday and
Lenz laws of electromagnetic induction. The fourth is a statement of
Ampere’s law, with the second term on the right-hand side to account
for the displacement current.

The second Maxwell equation naturally leads to the concept of the
vector potential. This is defined through the equation

B = ∇×A . (A.14)

It is apparent that the vector potential A automatically satisfies eqn A.11,
because ∇ · (∇×A) = 0 for all A. By substituting for B in the third
Maxwell equation (eqn A.12) using eqn A.14, we see that:

∇×E = − ∂

∂t
(∇×A) = ∇×

(
−∂A

∂t

)
. (A.15)

The solution is
E = −∂A

∂t
+ constant , (A.16)



A.2 Electromagnetic waves 333

where the constant is any vector whose curl is zero. If the scalar potential
is V , then we can combine eqn A.16 with eqn A.7 by writing:

E = −∂A

∂t
− ∇V . (A.17)

This works because ∇×∇V = 0. The more general definition of E given
in eqn A.17 reduces to eqn A.7 when the magnetic field does not vary
with time, and to

E = −∂A

∂t
(A.18)

when the scalar potential is constant throughout space.
It is important to note that the definition of A in eqn A.14 does not

define the vector potential uniquely. We can add any vector of the form
∇ϕ to A without changing B because

∇×(A + ∇ϕ) = ∇×A + ∇×(∇ϕ) = ∇×A . (A.19)

ϕ(r) can be any scalar function of r. For this reason, we have to give an
additional definition, which specifies the gauge in which we are working.
The Coulomb gauge is defined by

∇ · A = 0 . (A.20)

This gauge is convenient because it allows us to recover Poisson’s equa-
tion (A.5) by taking the divergence of eqn A.17. The vector potential in
the Coulomb gauge is used in the semi-classical treatment of the inter-
action of light with atoms discussed in Section B.2 of Appendix B.

A.2 Electromagnetic waves

Maxwell was able to show that eqns A.10–A.13 were consistent with
wave-like solutions in a medium with no free charges or currents. To see
this we first simplify eqns A.12 and A.13 by setting j = 0 and eliminating
B and D using eqns A.3 and A.9. This gives:

∇×E = −µ0µr
∂H

∂t
, (A.21)

and
∇×H = ε0εr

∂E
∂t

. (A.22)

We then take the curl of eqn A.21 and eliminate ∇×H using eqn A.22.
This gives:

∇×(∇×E) = −µ0µrε0εr
∂2E
∂t2

. (A.23)

The left-hand side can be simplified by using the vector identity

∇×(∇×E) = ∇(∇ · E) −∇2E . (A.24)
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Equation A.6 with � = 0 tells us that ∇ · E = 0. Therefore we obtain
the final result:

∇2E = µ0µrε0εr
∂2E
∂t2

. (A.25)

Equation A.25 is of the same form as the wave equation:

∂2y

∂x2
=

1
v2

∂2y

∂t2
, (A.26)

where v is the velocity of the wave. We therefore identify eqn A.25 as
describing electromagnetic waves with a phase velocity v given by

1
v2

= µ0µrε0εr. (A.27)

In free space εr = µr = 1 and the velocity of the wave is c, so we have:

c =
1√
µ0ε0

= 2.998 × 108 m s−1. (A.28)

At the same time, we see from eqns A.27 and A.28 that the velocity in
a medium is given by

v =
1√
εrµr

c . (A.29)

We define the refractive index n of the medium as the ratio of the
velocity of light in free space to the velocity in the medium:

n =
c

v
. (A.30)

At optical frequencies we can set µr = 1, and thus conclude:

n =
√

εr. (A.31)

This allows us to relate the propagation constants of electromagnetic
waves in a medium to the dielectric constant.

The solutions to eqn A.25 are of the form:The use of complex solutions of the
type given in eqn A.32 simplifies the
mathematics and is used extensively
throughout this book. Physically mea-
surable quantities are obtained by tak-
ing the real part of the complex wave.
In some texts i is replaced by −j, but
this makes no physical difference.

E(z, t) = E0 ei(kz−ωt) , (A.32)

where E0 is the amplitude of the wave, z is the direction of propagation,
k is the wave vector, and ω is the angular frequency. The magnitude of
the wave vector k is given by:

k =
2π

λ
=

ω

v
=

nω

c
, (A.33)

where λ is the wavelength inside the medium. The first equality is the
definition of k, the second follows by substitution of eqn A.32 into
eqn A.25 with v given by eqn A.27, and the third follows from the
definition of n given in eqn A.30.

The direction of the electric field in an electromagnetic wave is called
the polarization. Several different types of polarization are possible.

Note that the word ‘polarization’ is
used both for the dielectric polarization
� and for the direction of the electric
field in an electromagnetic wave. It is
usually obvious from the context which
meaning is intended.
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• Linear: the electric field vector points along a constant direction.
• Circular: the electric field vector rotates as the wave propagates,

mapping out a circle for each cycle of the wave.
• Elliptical: this is similar to circular polarization, except that the

rotating electric field vector maps out an ellipse rather than a circle
as the wave propagates.

• Unpolarized: the light is randomly polarized.

In free space the polarization of a wave is constant as it propagates.
However, in anisotropic or chiral materials, the polarization can change
as the wave propagates. (See Sections 2.5 and 2.6.)

Figure A.1 depicts a linearly polarized wave propagating along the
z axis with the polarization along the x axis. If the beam is travelling
parallel to a horizontal optical bench with the x axis perpendicular to
the surface, the x-polarized wave shown in Fig. A.1(a) is said to be
vertically polarized. A y-polarized beam would similarly be called
horizontally polarized. It is apparent from eqn A.21 or A.22 that
the magnetic field must be perpendicular to the electric field. E, H,
and k therefore form a right-handed system as depicted in Fig. A.1(a).
The orthogonal electric and magnetic fields vary sinusoidally in space,
as shown in Figure A.1(b).

(a)

(b)
�x ,Hy

z

�x ,Hy

z

z

�

H

k

y

x

z

�

H

k

y

x

Fig. A.1 (a) The electric and magnetic
fields of an electromagnetic wave form a
right-handed system. The figure shows
the directions of the fields in a wave po-
larized along the x axis and propagat-
ing in the z direction. (b) Spatial varia-
tion of the electric and magnetic fields.

For the x-polarized wave propagating along the z direction shown in
Fig. A.1(a), the components of the complex fields are of the form:

Ex(z, t) = Ex0 ei(kz−ωt)

Ey(z, t) = 0
Hx(z, t) = 0

Hy(z, t) = Hy0 ei(kz−ωt) ,

(A.34)

where k is the magnitude of the wave vector defined in eqn A.33 and ω
is the angular frequency. On substituting the fields from eqn A.34 into
eqn A.21, we find that:

k Ex0 = µ0µrω Hy0 , (A.35)

and hence that:
Hy0 =

Ex0

Z
, (A.36)

where
Z =

k

µ0µrω
=

√
µ0µr

ε0εr
=

1
cε0n

. (A.37)

The second equality in eqn A.37 follows from eqns A.33 and A.27, while
the third follows from eqns A.28 and A.31 with µr = 1. The quantity
Z is called the wave impedance, and takes the value of 377Ω in free
space.

In general, an electromagnetic wave propagating in the z direction will
have electric field components along both the x and y axes, with:

Ex(z, t) = Ex0 ei(kz−ωt) ,

Ey(z, t) = Ey0 ei(kz−ωt+∆φ) .
(A.38)
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Table A.1 Relative amplitudes and phases for the orthogonal compo-
nents of the electric field for various types of polarization. Ex0, Ey0, and
∆φ are defined in eqn A.38.

Polarization Relative amplitude Relative phase ∆φ

Linear any 0, π
Positive circular �

+ Ex0 = Ey0 +π/2
Negative circular �

� Ex0 = Ey0 −π/2
Elliptical Ex0 �= Ey0 ±π/2

Ex0 = Ey0 �= 0, ±π/2, or π
Unpolarized random random

This can be represented in short-hand form as:

E0 = Ex0 x̂ + Ey0 ei∆φ ŷ . (A.39)

Table A.1 summarizes the effect of varying the relative amplitudes and
phases of the two orthogonal components.

For the case of linearly polarized light, the direction of the polarization
is given by the resultant of (Ex0 x̂±Ey0 ŷ), where the + sign is used when
∆φ = 0 and the − sign when ∆φ = π.

For circularly polarized light, we can either have right circular po-
larization or left circular polarization depending on whether the
electric field vector rotates to the right (clockwise) or left (anti-clockwise)
in a fixed plane as the observer looks towards the light source. In σ+

circular polarization, the electric field rotates clockwise as seen from
the source, making it equivalent to left circular light, and vice versa for
σ− polarization. Since the phase difference between the two orthogonal
linear components is ±π/2, we can represent σ+ and σ− light in the
following form:

σ+ = E0(x̂ + iŷ)/
√

2 ,

σ− = E0(x̂ − iŷ)/
√

2 .
(A.40)

These can easily be inverted to demonstrate that linearly polarized light
can be considered to consist of two opposite circular polarizations. For
example, for x-polarized light we have:

Ex ≡ E0x̂ = (σ+ + σ−)/
√

2 . (A.41)

The energy flow in an electromagnetic wave can be calculated from
the Poynting vector:In evaluating the Poynting vector for

complex fields of the form given in
eqn A.32, the real parts must be taken
before the multiplication is performed.

I = E×H . (A.42)

This gives the power flow per unit area in W m−2, which is equal to
the intensity of the light wave. The intensity is defined as the energy
crossing a unit area in unit time, and is therefore given by:

I = vuν , (A.43)
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where v is the velocity of the wave and uν is the energy density per unit
volume of the beam. For a linearly polarized wave, the Poynting vector
can easily be evaluated by substituting eqns A.34–A.37 into eqn A.42 to
obtain:

I =
〈E(t)2〉rms

Z
=

1
2
cε0nE2

0 , (A.44)

where 〈E(t)2〉rms represents the root-mean-square time average. This
shows that the intensity of a light wave is proportional to the square
of the amplitude of the electric field. The relationship can be general-
ized for all light waves irrespective of the particular polarization of the
beam.

In many topics covered in this book, it will be necessary to treat
the refractive index as a complex number. A well-known example of
how such a situation arises occurs when treating the propagation of
electromagnetic waves through a conducting medium such as a metal.
In a conductor, the current density is related to the electric field through
the electrical conductivity σ according to:

j = σE. (A.45)

By using this relationship to substitute for j in eqn A.13, and eliminating
D, B, and H in the same way that led to eqn A.25, we obtain:

∇2E = σµ0µr
∂E
∂t

+ µ0µrε0εr
∂2E
∂t2

. (A.46)

We now look for plane wave solutions of the type given by eqn A.32.
Substitution of eqn A.32 into eqn A.46 gives:

k2 = σµ0µrω i + µ0µrε0εrω
2. (A.47)

This can be made compatible with the usual relationship between ω and
k given in eqn A.33 by allowing n to be a complex number. The complex
refractive index is usually written ñ, and is defined by

k = ñ
ω

c
. (A.48)

By combining eqns A.47 and A.48 we obtain: It is shown in Chapter 7 that eqn A.49
is only valid at low frequencies. This
is because the AC conductivity at high
frequencies is not the same as the DC
conductivity that enters eqn A.45.

ñ2 =
µrσ

ε0ω
i + µrεr, (A.49)

where we have made use of eqn A.28. This of course reduces to eqn A.31
if we set σ = 0 and µr = 1. The physical significance of the complex
refractive index implied by eqn A.49 is developed in more detail in Sec-
tion 1.3.

The Maxwell equations also allow us to treat the transmission and
reflection of light at an interface between two materials. This situation
is depicted in Fig. A.2. Part of the beam is transmitted into the medium
and the rest is reflected. The solution for an arbitrary angle of incidence
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Fig. A.2 Transmission and reflection
of light at an interface between air and
a medium of refractive index ñ. The in-
cident, transmitted and reflected rays
are shown displaced from each other for
clarity. All rays are normal to the in-
terface. The symbol � for the magnetic
fields of the incident and transmitted
rays indicates that the field direction
is out of the page, while the symbol ⊗
for the reflected wave indicates that the
field is pointing in to the page.
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was treated by Fresnel, and the resulting formulæ are known as Fres-
nel’s equations. We restrict ourselves here to the simpler case when
the angle of incidence is zero: that is, normal incidence.

We consider again an x-polarized light beam propagating in the z
direction, with the field directions as shown in Fig. A.1(a). The electric
and magnetic fields are given by eqn A.34. The beam is incident on a
medium with complex refractive index ñ. The fields are related to each
other through eqn A.36, with Z given by eqn A.37, although we now
have to allow for the possibility that n may be complex.

The boundary conditions at the interface between two dielectrics tell
us that the tangential components of the electric and magnetic fields are
continuous. On applying this to the situation shown in Fig. A.2, we must
have that both Ex and Hy are conserved across the boundary. Hence we
can write:

E i
x + Er

x = E t
x, (A.50)

and
H i

y − Hr
y = Ht

y, (A.51)

where the superscript labels i, r, and t refer to the incident, reflected,
and transmitted beams respectively. By making use of the relationship
between the magnetic and electric fields given in eqns A.36–A.37, we
can rewrite eqn A.51 as:

E i
x − Er

x = ñEt
x, (A.52)

where we have assumed that the light is incident from air with ñ = 1 and
that µr = 1 at the optical frequencies of interest here. Equations A.50
and A.52 can be solved together to obtain

Er
x

E i
x

=
ñ − 1
ñ + 1

. (A.53)

This can be re-arranged to obtain the required result for the reflectivity
R:

R =
∣∣∣∣Er

x

E i
x

∣∣∣∣
2

=
∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣
2

. (A.54)
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For the more general case where the light is reflected at the interface
between two materials with complex refractive indices of ñ1 and ñ2 re-
spectively, this becomes:

R =
∣∣∣∣ ñ2 − ñ1

ñ2 + ñ1

∣∣∣∣
2

. (A.55)

These formulæ are used in many examples throughout the book.

Further reading

The subject matter of this appendix is standard electro-
magnetism, and there are numerous books on the market
that cover the material, for example: Bleaney & Bleaney
(1976), Duffin (1990), Good (1999), Grant & Phillips

(1990), or Lorrain, Corson, & Lorrain (2000). The sub-
ject is also covered in many optics texts such as Born
& Wolf (1999), Hecht (2001), or Smith, King, & Wilkins
(2007).
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The discussion of the absorption and emission of light by atoms through-
out this book presupposes that the reader is familiar with the basic
treatment of these processes found in all introductory quantum physics
texts. The purpose of this appendix is to give a brief summary of the
main results. We begin by discussing the Einstein coefficients in order
to introduce the concepts of absorption and emission, and the connec-
tion between them. We then move on to discuss how the absorption and
emission rates can be calculated by using quantum mechanics. Finally,
we briefly discuss the selection rules that apply to radiative transitions.
The reader is encouraged to refer to a quantum physics textbook if any
of these concepts are unfamiliar.

B.1 Einstein coefficients
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Fig. B.1 Optical transitions in an
atom: (a) emission, (b) absorption.

The quantum theory of radiation assumes that light is emitted or ab-
sorbed whenever an atom makes a jump between two quantum states.
These two processes are illustrated in Fig. B.1. Absorption occurs when
the atom jumps to a higher level, while emission corresponds to the pro-
cess in which a photon is emitted as the atom drops down to a lower
level. It is customary to label the upper state as level ‘2’ and the lower
one as level ‘1’. Conservation of energy requires that the frequency ν of
the photon satisfies:

hν = E2 − E1 , (B.1)

where E2 is the energy of level 2 and E1 is the energy of level 1.
Statistical physics tells us that atoms in excited states have a natural

tendency to de-excite and lose their excess energy. Thus the emission of
a photon by an atom in an excited state is a spontaneous process. The
radiation of light by atoms in excited states is therefore called sponta-
neous emission. This process is illustrated in Fig. B.1(a). One of the
electrons in the atom is in level 2 at the start of the process and drops to
level 1 by emitting a photon. The frequency of the photon corresponds
to the energy difference of the two levels according to eqn B.1. Hence
each type of atom has a characteristic emission spectrum determined by
its energy levels.
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The process of absorption is illustrated in Fig. B.1(b). The atom is
promoted to an excited state by absorbing the required energy from a
photon. This promotes an electron from level 1 to level 2. Unlike emis-
sion, it is not a spontaneous process. The electron cannot jump to the
excited state unless it is stimulated by an incoming photon.

In Section B.2 below we explain how quantum mechanics enables us to
calculate the spontaneous emission and absorption rates. At this stage
we restrict ourselves to a simpler analysis based on the Einstein coef-
ficients for the transition.

Spontaneous emission is governed by the Einstein A coefficient. This
gives the probability per unit time that the electron in level 2 will drop
to level 1 by emitting a photon. The photon emission rate is therefore
proportional to the number of atoms in the excited state and to the
A coefficient for the transition. We thus write down the following rate
equation for N2(t), the number of atoms in the excited state:

dN2

dt
= −A21N2 . (B.2)

The subscript ‘21’ on the A coefficient in eqn B.2 makes it plain that
the transition starts at level 2 and ends at level 1.

Equation B.2 can be solved for N2(t) to give:

N2(t) = N2(0) exp(−A21t)
= N2(0) exp(−t/τ) ,

(B.3)

where
τ =

1
A21

. (B.4)

τ is the natural radiative lifetime of the excited state. Equation B.4
shows that the number of the atoms in the excited state decays expo-
nentially with a time constant τ due to spontaneous emission. The value
of τ for a transition can range from about 1 ns to several milliseconds.
The selection rules that govern whether a particular transition is fast or
slow are discussed in Section B.3.

In the full quantum optical treatment
of radiative emission, the photon field
is quantized, with a harmonic oscillator
energy spectrum given by

En = (n + 1
2
)hν ,

n being the number of photons. The
factor of 1/2 corresponds to the zero-
point fluctuations of the electromag-
netic field. Spontaneous emission is
then considered to be a stimulated
emission process instigated by the ever-
present zero-point fluctuations of the
electromagnetic field.

The absorption rate between levels 1 and 2 is governed by the Einstein
B coefficient. As mentioned above, this process must be stimulated by
the incoming photon field. Following Einstein’s treatment, we write the
rate of absorption transitions per unit time as:

dN1

dt
= −B12N1u(ν) , (B.5)

where N1(t) is the number of atoms in level 1 at time t, B12 is the Ein-
stein B coefficient for the transition, and u(ν) is the spectral energy den-
sity of the electromagnetic wave at frequency ν in units of J m−3 Hz−1.
By writing u(ν) we are explicitly stating that only the part of the spec-
trum of the incoming radiation at frequency ν, where hν = E2 − E1,
can induce the absorption transitions. Equation B.5 may be considered
to be the definition of the Einstein B coefficient.
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Fig. B.2 Absorption, spontaneous
emission, and stimulated emission tran-
sitions between two levels of an atom in
the presence of electromagnetic radia-
tion with spectral energy density u(ν).

absorption
spontaneous

emission

stimulated

emission
u (� )

Level 2: population N2

Level 1: population N1

absorption
spontaneous

emission

stimulated

emission
u (� )

Level 2: population N2

Level 1: population N1

The processes of absorption and spontaneous emission that we have
described above are fairly intuitive. Einstein realized that the analy-
sis was not complete, and introduced a third type of transition called
stimulated emission. In this process, the incoming photon field canStimulated emission is the basis of laser

operation. The acronym ‘laser’ stands
for ‘light amplification by stimulated
emission of radiation’.

stimulate downward emission transitions as well as upward absorption
transitions. The stimulated emission rate is governed by a second Ein-
stein B coefficient, namely B21. The subscript is now essential to distin-
guish the B coefficients for the two distinct processes of absorption and
stimulated emission.

In analogy with eqn B.5, we write the rate of stimulated emission
transitions by the following rate equation:

dN2

dt
= −B21N2u(ν) . (B.6)

Stimulated emission is a coherent quantum mechanical effect, in which
the photons emitted are in phase with the photons that induce the tran-
sition.

The three Einstein coefficients introduced above are not independent
parameters: they are all related to each other. If we know one of them, we
can work out the other two. To see how this works, we follow Einstein’s
analysis.

We imagine that the atom is inside a box at temperature T with
black walls. The atom will then be bathed in black-body radiation. The
black-body radiation will induce both absorption and stimulated emis-
sion transitions, while spontaneous emission transitions will also be oc-
curring at a rate determined by the Einstein A coefficient. The three
types of transition are indicated in Fig. B.2. If we leave the atom for
long enough, it will come to thermal equilibrium with the black-body
radiation. In these steady state conditions, the rate of upward transitions
due to absorption must exactly balance the rate of downward transitions
due to spontaneous and stimulated emission. From eqns B.2, B.5, and
B.6, we must therefore have:

The state of equilibrium between the
atoms and the radiation occurs whether
or not level 1 is the ground state and
whether or not transitions take place
to and from other levels. The principle
of detailed balance guarantees that
eqn B.7 must hold regardless.

B12N1u(ν) = A21N2 + B21N2u(ν) . (B.7)

Since the atoms are in thermal equilibrium with the radiation field at
temperature T , the distribution of the atoms among the various energy
levels will be governed by the laws of thermal physics. The ratio of N2
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to N1 will therefore be given by Boltzmann’s law:

N2

N1
=

g2

g1
exp

(
− hν

kBT

)
, (B.8)

where g1 and g2 are the degeneracies of levels 1 and 2 respectively.
Now the energy spectrum of a black-body source is given by the Planck
formula:

u(ν) =
8πhν3

c3

1
exp (hν/kBT ) − 1

. (B.9)

The only way that eqns B.7–B.9 can be consistent with each other at all
temperatures is if:

g1B12 = g2B21 , (B.10)

and If the atom is embedded within an op-
tical medium with a refractive index
n, we replace c by c/n in eqn B.11 to
account for the reduced speed of light
within the medium.

A21 =
8πhν3

c3
B21 . (B.11)

A moment’s thought will convince us that it is not possible to get con-
sistency between the equations without the stimulated emission term.
This is what led Einstein to introduce the concept. Equation B.10 tells
us that the probabilities for stimulated absorption and emission are the
same apart from the degeneracy factors. Furthermore, the interrelation-
ship of the Einstein coefficients tells us that transitions that have a high
absorption probability will also have a high emission probability, both
for spontaneous processes and stimulated ones.

The relationships between the Einstein coefficients given in eqns B.10
and B.11 have been derived for the case of an atom in equilibrium with
black-body radiation. However, once we have derived the interrelation-
ships, they will apply in all other cases as well. This is very useful,
because we then only need to know one of the coefficients to work out
the other two. For example, we can measure the radiative lifetime to
determine A21 from eqn B.4, and then work out the B coefficients by
using eqns B.11 and B.10.

An important application of the Einstein coefficients is in the analysis
of optical amplification in a laser medium. This is achieved when the
rate of stimulated emission exceeds the rate of absorption, so that the
light intensity increases rather than decreases as it propagates through
the medium. We see from eqns B.5 and B.6 that this condition can be
written:

B21N2u(ν) > B12N1u(ν) , (B.12)

which, on substituting from eqn B.10, becomes:

N2 >
g2

g1
N1 . (B.13)

Equation B.13 describes a non-thermal distribution in which the weighted
population of the upper level exceeds that of the lower level. This con-
dition is called population inversion, and is a necessary requirement
for laser operation.



344 Quantum theory of radiative absorption and emission

B.2 Quantum transition rates

The calculation of radiative transition rates by quantum mechanics is
based on time-dependent perturbation theory. The light–matter inter-
action is described by transition probabilities, which can be calculated
by using Fermi’s golden rule. Referring to the radiative processes
illustrated in Fig. B.1, we write the rate of transitions as

W1→2 =
2π

�
|M12|2g(hν) , (B.14)

where M12 is the matrix element, and g(hν) is the density of states.
The density of states is defined so that g(hν)dE is the number of final

states per unit volume that fall within the energy range E to E + dE,
where E = hν. In the case of radiative transitions between quantized
levels in an atom, the initial and final electron states are discrete, and
the photons are emitted into free space, as illustrated schematically in
Fig. B.3. The density of states factor that enters eqn B.14 in this case
is therefore the density of photon states. The photon density of states in
free space is normally written in terms of the frequency rather than the
energy, and is given by:The photon density of states in terms

of energy is given by:

g(hν) = gν(ν)/h3 .

Note that the photon density of states,
and hence the radiative emission rate,
can be modified by making the atom
emit into an optical cavity rather than
into free space. (See Fox (2006), chapter
10.)

gν(ν) =
8πν2

c3
. (B.15)

In a medium of refractive index n, c is replaced by c/n. The density of
states is thus proportional to the square of the frequency, and therefore
the transition rate generally increases with increasing photon frequency.

In solid-state physics, it will frequently be the case that the electron
states are no longer discrete, but are broadened into bands. It is then
necessary to consider the density of electron states as well as the density
of photon states. This electron density of states factor is discussed in
detail wherever it occurs in the main text. If both the initial and final
levels are in continuous bands, then a suitably weighted joint density of
states for both the initial and final bands must be used.

h�

1

2

dE

h�

1

2

dE

Fig. B.3 Optical transitions between
discrete atomic states with photon
emission into the continuum of states
of free space.

The matrix element that appears in Fermi’s golden rule can be writ-
ten in the compact Dirac notation or explicitly in terms of the overlap
integral as:

M12 = 〈2|H ′|1〉 =
∫

ψ∗
2(r)H ′(r)ψ1(r) d3r , (B.16)

where H ′ is the perturbation caused by the light wave, r is the position
vector of the electron, and ψ1(r) and ψ2(r) are the wave functions of
the initial and final states. To evaluate M12, we need to know the wave
functions of the states, and also the form of the perturbation due to the
light wave.

The perturbation due to the light can be evaluated by calculating the
effect of the electromagnetic field on the electron in the atom. From clas-
sical electromagnetism we know that the field changes the momentum of
a charged particle from p to (p−qA), where q is the charge and A is the
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vector potential defined in eqn A.14 of Appendix A. The Hamiltonian
for an electron with q = −e in an electromagnetic field is therefore:

H =
1

2m0
(p + eA)2 + V (r)

= H0 +
e

2m0
(p · A + A · p) +

e2A2

2m0
.

(B.17)

Here, H0 represents the Hamiltonian of the electron before the field was
applied, namely:

H0 =
p2

2m0
+ V (r) , (B.18)

where V (r) is the potential energy of the electron in the atom. The
perturbation H ′ due to the electromagnetic field is thus:

H ′ =
e

2m0
(p · A + A · p) +

e2A2

2m0
. (B.19)

For the case of static fields, the first two terms gives rise to the Zeeman
effect, while the third causes diamagnetism. We do not consider these
effects further here because we are interested in the response of the
system to the oscillating fields of a light wave.

The interaction Hamiltonian given by eqn B.19 can be simplified in
two ways. Firstly, we can neglect the term in A2 compared to the other The term in �2 corresponds to two-

photon rather than one-photon inter-
actions between the atom and the light
field. These two-photon interactions are
usually very weak, although they may
become important with intense laser
light fields. The �2 term also causes
Rayleigh scattering.

two terms on the right-hand side because it is much smaller. Secondly, we
can group together the first two terms of H ′ because the two operators
commute. This occurs because ∇ · A = 0 in the Coulomb gauge (cf.
eqn A.20), and therefore if p = −i�∇, it follows that p · A = A · p.

With these two simplifications, we can write the perturbation due to
the light field as:

H′ =
e

m0
p · A . (B.20)

This is now in a form that can be evaluated for the vector potential of
an electromagnetic wave.

If the electric and magnetic fields E and B of the light wave both vary
in time and space as the real part of exp i(k · r − ωt) with ω = ck, it
follows from eqns A.14 and A.18 that A must also do so. Hence we may
write:

A(r, t) = A0 (exp i(k · r − ωt) + c.c.) , (B.21)

where from eqn A.18 we see that A0 must be pointing in the same
direction as E, namely along the polarization direction.

The exponential in k · r that appears in eqn B.21 should be under-
stood in terms of its Taylor expansion:

eik · r = 1 + ik · r + 1
2
(ik · r)2 + · · · . (B.22)

At optical frequencies the wavelength is around 1 µm, and the dimension
of a typical atom is ∼ 10−10 m. Thus |k · r| ≈ 2π|r|/λ ∼ 10−3. This
means that we need only consider the first term in eqn B.22 and can take
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exp ik · r ∼ 1 to a very good approximation. This is called the electric-
dipole approximation for reasons that will become clear below. In this
approximation we need to evaluate matrix elements of the type:

M12 =
e

m0
〈2|p · A0|1〉 . (B.23)

In the interaction picture we can write the equation of motion of a time-
dependent operator Ô as:

The time dependence of � does not ap-
pear here because it has already been
assumed that the perturbation has a
time dependence of the form e±iωt in
the derivation of Fermi’s golden rule.

d
dt

Ô(t) =
i
�
[H0, Ô] =

i
�
(H0Ô − ÔH0) . (B.24)

Therefore, with p = m0dr/dt, we have:

〈2|p|1〉 = m0 〈2 |dr/dt| 1〉
=

im0

�
〈2|[H0, r]|1〉

=
im0

�
(E2 − E1)〈2|r|1〉

= im0ω21〈2|r|1〉 ,

(B.25)

where �ω21 is the transition energy. The intermediate step in the third
line of eqn B.25 follows because we know from the Schrödinger equation
that H0Ψi = EiΨi. Since the A0 that appears in eqn B.23 is just a simple
vector and not an operator, we can use eqn B.25 to rewrite eqn B.23 as
follows:

M12 = ieω21〈2|r · A0|1〉 . (B.26)

Finally, we note from eqns B.21 and A.18 that E0 = iωA0. Therefore, if
ω = ω21 as we have been presuming all along, the electric-dipole matrix
element is given by:

M12 = 〈2|er·E0|1〉 . (B.27)

On comparing eqns B.16 and B.27 we see that in the electric-dipole
approximation, the interaction Hamiltonian is just

H ′ = −pe·E0 , (B.28)

where pe = −er is the electric dipole moment of the electron. This is
in fact exactly equal to the interaction energy we would expect for a
dipole in an electric field, and explains why the transitions are called
‘electric-dipole’ transitions.

The result given in eqn B.27 enables us to evaluate the matrix elements
for particular transitions if the wave functions of the initial and final
states are known. We can then use Fermi’s golden rule to work out
W1→2 from eqn B.14 in order to obtain the absorption rate, which must
be the same as B12u(ν) in eqn B.5. The spectral energy density u(ν) of
an electromagnetic wave is proportional to E2

0 (cf. eqns A.43 and A.44),
so that we can work out B12 from W1→2 and A21 from eqn B.11.

The final result for transitions between non-degenerate discrete atomic
levels by absorption or emission of unpolarized light is:

B12 =
πe2

3ε0�2
|〈2|r|1〉|2 , (B.29)
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and

A21 =
e2ω3

21

3πε0�c3
|〈2|r|1〉|2 . (B.30)

When the levels are degenerate, we must modify eqns B.29 and B.30 to
allow for the different transition pathways. For example, if we consider
the transitions between atomic levels with quantum numbers j and i,
each of which consists of a manifold of degenerate levels labelled by
additional quantum numbers mj and mi, then eqn B.30 is modified to:

Two of the powers of ω in eqns B.30 and
B.31 come from the photon density of
states. (See eqn B.15.) The third comes
from the photon energy.

Aji =
e2ω3

ji

3πε0�c3

1
gj

∑
mj ,mi

|〈j,mj |r|i,mi〉|2 , (B.31)

where gj is the degeneracy of the upper state. In solid-state systems with
continuous bands, the summation over discrete levels is replaced by the
joint density of states for the initial and final bands.

The matrix element for a transition is directly proportional to the
oscillator strength fij introduced in the classical treatment of ab-
sorption of light by atoms in Section 2.2.2. For transitions between non-
degenerate levels, the relationship between them is given by:

fij =
2mωji

3�
|〈j|r|i〉|2 . (B.32)

The oscillator strength was introduced before quantum theory was de-
veloped to explain how some atomic absorption and emission lines are
stronger than others. With the hindsight of quantum mechanics, it is
easy to understand that this is simply caused by the different matrix
elements for the transitions.

To conclude this section we note that the quantum optical treatment
of the light–matter interaction tells us that the atoms oscillate between
the initial and final states while the light field is present. This effect is A discussion of optical Rabi oscillations

and their connection with the Einstein
coefficients may be found in Fox (2006),
chapter 9.

called Rabi oscillations. We can reconcile this picture with the notion of
discrete transitions by realizing that the oscillations can only be observed
if the atoms do not scatter in any way. If scattering does occur, the
coherence of the oscillations will be broken, and the atom will end up
either in the initial or final state, depending on where it is when the
scattering event occurs. This then gives the probability that the atom
makes a transition to the final state due to the interaction with the light.
In the systems we are studying in this book, it will always be the case
that the Rabi oscillations are heavily damped, and therefore do not need
to be considered.

B.3 Selection rules

The electric-dipole matrix element given in eqn B.27 can be easily eval-
uated for simple atoms with known wave functions. This leads to the
notion of electric-dipole selection rules. These are rules about the
quantum numbers of the initial and final states. If the states do not
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Table B.1 Electric–dipole selection rules for single elec-
trons. The z axis is usually defined by the direction of an
applied static magnetic or electric field. The rule on ∆m
for circular polarization applies to absorption. The sign is
reversed for emission.

Quantum number Selection rule Polarization

Parity changes
l ∆l = ±1
m ∆m = +1 circular: σ+

∆m = −1 circular: σ−
∆m = 0 linear: ‖ z
∆m = ±1 linear: ‖ (x, y)

s ∆s = 0
ms ∆ms = 0

satisfy the selection rules, then the electric-dipole transition rate will be
zero.

Transitions that obey the electric-dipole selection rules are called al-
lowed transitions, while those which do not are called forbidden tran-
sitions. Electric-dipole-allowed transitions have high transition proba-
bilities, and therefore short radiative lifetimes, typically in the range 1–
100 ns. Forbidden transitions, by contrast, are much slower. The different
timescales for allowed and forbidden transitions lead to another general
classification of spontaneous emission as fluorescence and phospho-
rescence respectively. Fluorescence is a ‘prompt’ process in which the
photon is emitted within a few nanoseconds after the atom has been
excited, while phosphorescence gives rise to ‘delayed’ emission which
persists for a substantial time.

The electric-dipole selection rules for a single electron in a hydrogenic
system with quantum numbers l, m, s, and ms are summarized in Ta-
ble B.1. The origin of these rules is as follows:

• The parity change rule follows from the fact that the electric-dipole
operator is proportional to r, which is an odd function.

• The rule for ∆l derives from the properties of the spherical har-
monic functions and is consistent with the parity rule because the
wave functions have parity (−1)l.

• The rules on ∆m can be understood by realizing that σ+ and σ−

circularly polarized photons carry angular momenta of +� and −�See Section A.2 in Appendix A for defi-

nitions of σ+ and σ− circular polariza-
tion.

respectively along the z axis, and hence m must change by one
unit to conserve angular momentum. For linearly polarized light
along the z axis, the photons carry no z component of momentum,
implying ∆m = 0, while x or y polarized light can be considered
as an equal combination of σ+ and σ− photons, giving ∆m = ±1.

• The spin selection rules follow from the fact that the photon does
not interact with the electron spin, and so the spin quantum num-
bers never change in the transition.
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These selection rules can be generalized to many-electron atoms with
quantum numbers (L, S, J) as follows:

(1) The parity of the wave function must change.
(2) ∆l = ±1 for the changing electron.
(3) ∆L = 0,±1, but L = 0 → 0 is forbidden.
(4) ∆J = 0,±1, but J = 0 → 0 is forbidden.
(5) ∆S = 0.

The parity rule follows from the odd parity of the dipole operator. The
rule on l applies the single electron rule to the individual electron that
makes the jump in the transition. The rules on L and J follow from the
fact that the photon carries one unit of angular momentum. The final
rule is a consequence of the fact that the photon does not interact with
the spin.

When electric-dipole transitions are forbidden, other types of pro-
cesses may be possible. For example, magnetic-dipole and electric-
quadrupole transitions are possible between states of the same parity.
These processes arise from the higher order terms that we neglected in
eqn B.22, and have smaller transition probabilities, leading to longer ra-
diative lifetimes ranging from about 10−6 s upwards. In extreme cases it
may happen that all standard types of single-photon radiative transitions
are forbidden. In this case, the excited state is said to be metastable, J = 0 → 0 transitions are strictly for-

bidden for single-photon transitionsand the atom must de-excite by transferring its energy to other atoms
in collisions, or by some other low probability mechanism that we have
not considered here, such as multi-photon emission.

Further reading

This material is covered in most quantum mechanics text-
books. See, for example: Gasiorowicz (1996) or Schiff
(1969). More detailed information on atomic selection

rules and transition rates may be found in atomic physics
texts such as Corney (1977) or Woodgate (1980).
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The treatment of angular momentum in atomic physics is rather com-
plicated, and often leads to confusion, especially as regards the notation
that is used. Since an understanding of atomic angular momentum states
is required in several places in this book, a brief summary of the main
points is included here.

C.1 Angular momentum in quantum
mechanics

In classical physics, it is possible to know the length of an angular mo-
mentum vector J and its three components along the Cartesian axes,
namely Jx, Jy, and Jz. This is not possible in quantum mechanics, where
we can only know |J |2 and one of the components, usually taken to be
Jz. For the eigenstates of the angular momentum operators we have:

〈Ĵ2〉 = J(J + 1) �
2 , (C.1)

〈Ĵz〉 = MJ � , (C.2)

where J and MJ are the appropriate quantum numbers. J can take
positive integer or half-integer values, and MJ can take values from
−J to +J in integer steps. In Dirac notation, the states with quantum
numbers J and MJ are written |J,MJ〉.

When two quantized angular momenta are added, we cannot apply the
simple vector addition rules of classical mechanics, because the length
of the resultant vector has to satisfy eqn C.1. Let J be the resultant of
two angular momenta J1 and J2 according to:

J = J1 + J2 . (C.3)

The quantum number J corresponding to J can only take the values of:

(J1 + J2), (J1 + J2 − 1), · · · |J1 − J2| ,

where J1 and J2 are the quantum numbers corresponding to J1 and J2

respectively. This rule is completely general and can be applied to the
addition of different types of angular momenta. Several examples are
considered in the next subsection.
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C.2 Notation for atomic angular
momentum states

Quantum mechanics admits of two different types of angular momentum.
The first is called orbital and is the quantum mechanical counterpart
of classical angular momentum. The second is called spin and has no In this text we restrict our attention ex-

clusively to electron spin, and so we do
not consider here the nuclear spin and
its effects, for example, hyperfine struc-
ture.

classical counterpart.
We start by considering a single electron. There is a general conven-

tion in atomic physics that lower case letters refer to single electrons,
while upper case letters refer to the equivalent resultant quantities for
the whole atom. The orbital angular momentum l is designated by the
quantum number l, which can take positive integer values, according to
notation given in Table C.1. The z component of l is specified by the
quantum number ml (sometimes just m), which can take integer values
from −l to +l.

The two quantum numbers that quantify the magnitude and z compo-
nent of the spin angular momentum s are labelled s and ms respectively.
Experiments on electrons, protons, and neutrons indicate that they each
have s = 1/2, and therefore ms = ±1/2. The ms states of ±1/2 are usu-
ally called ‘spin-up’ and ‘spin-down’ respectively.

Table C.1 Spectroscopic notation used
to designate orbital states.

l 0 1 2 3 4 · · ·
Notation s p d f g · · ·

When a single particle (e.g. the electron in a hydrogen atom) possesses
both orbital and spin angular momentum, we calculate the total angular
momentum j according to:

j = l + s . (C.4)

On applying the rule for addition of angular momenta given after eqn C.3,
we find that the quantum number j corresponding to j can take values
in integer steps from |l−s| to (l+s). For each value of j, the z-component
is specified by mj , which can take values in integer steps from −j to +j.

In a many-electron atom, we have to consider how to combine the
various types of angular momenta of the individual electrons to find
the resultant angular momentum states of the whole atom. The task of
doing this is greatly simplified by the fact that the electrons are arranged
in shells around the nucleus, and that the total angular momentum of
a filled shell is zero. We therefore only have to consider the valence
electrons in unfilled shells.

There are a number of different ways to combine the spin and orbital
angular momenta in a many-electron atom. The spin and orbital angu-
lar momenta interact through the spin–orbit interaction, and the type For a single electron, the spin–orbit

interaction is of the form ξ� � �. In
a many-electron atom with Russell–
Saunders coupling, this generalizes to
an interaction of the form ξ′� � �.

of coupling that occurs depends on the relative strength of this interac-
tion compared to the others that the electrons experience. These other
interactions may be classified into two general categories.

• Internal effects within the atom. The most important of these is
the residual electrostatic interaction, which arises from the non–
central part of the Coulomb force between the electrons.

• External perturbations from magnetic or electric fields. In ionic
crystals, a particularly important source of such perturbations is
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the electric fields generated by the other charged atoms within the
crystal. (See Section 9.3.1.)

The magnitude of the spin–orbit interaction generally increases in ap-
proximate proportion to Z2, where Z is the atomic number, and so the
relative sizes of the different types of interaction can change as Z in-
creases. In all isolated atoms with no external perturbations, the spheri-
cal symmetry leads to states with well-defined values of the total angular
momentum, and hence the quantum number J .

In many isolated atoms, the residual electrostatic interaction is the
dominant perturbation, and this leads to a specific type of coupling
called LS coupling (also called Russell–Saunders coupling.) Here, the
total spin and orbital momenta of the atom are determined from:

L =
∑

i

li , (C.5)

S =
∑

i

si , (C.6)

where the sum is over the valence electrons, and the vector additions
are performed according to the rule given after eqn C.3. Once the values
of L and S have been determined, the total angular momentum is then
worked out from:The upper-case lettering used here con-

trasts with the lower-case notation used
in eqn C.4, which applies to an individ-
ual electron. The group of J states with
the same LS values are called atomic
terms, while the individual J states are
called levels.

J = L + S . (C.7)

The end result is that for each electronic configuration of the valence
electrons, we obtain a set of states labelled by the quantum numbers L,
S and J , with J taking values in integer steps from |L − S| to L + S.
The LS states are split from each other by the residual electrostatic
interaction, and the J states corresponding to each LS term are split
by the smaller spin–orbit interaction. The |L, S, J〉 states are written in
spectroscopic notation as:

|L, S, J〉 ≡ (2S+1)LJ , (C.8)

where the capital roman letter L indicates the value of L according to
the convention given in Table C.1. The factor (2S +1) indicates the spin
multiplicity: there are (2S + 1) MS states available for each value of S.

In atoms with two valence electrons, there are two possible values of
S, namely 0 and 1. Terms with S = 0 and S = 1 are called singlets and
triplets respectively. Singlet and triplet terms are split by the exchange
energy, which originates from the residual electrostatic interaction. The
difference between singlet and triplet states is very important when con-
sidering the two electrons that form molecular bonds. (See Section 8.2.1.)

C.3 Sub-level splitting

In spherical symmetry, the sub-levels of a particular angular momentum
state are degenerate. These sub-levels can be split when external per-
turbations (eg magnetic fields) break the symmetry, and it is for this
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reason that the quantum numbers that designate the z-component of
the angular momentum (i.e. ml, ms, MJ , etc.) are often called magnetic
quantum numbers.

The splitting of the J states of an atom into sub-levels by a magnetic
field is called the Zeeman effect. The field direction defines the z axis,
and the energy shift is given by:

∆E = gJµBBzMJ , (C.9)

where gJ is the g-factor of the level, and Bz is the magnitude of the
field. This splits the otherwise degenerate MJ states into (2J + 1) sub-
levels with equal separations between them, as shown, for example, in
Fig. C.1. If LS coupling applies, gJ is given by the Landé g factor:

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (C.10)

Note that gJ = 1 when S = 0 (pure orbital angular momentum: J = L),
while gJ = 2 when L = 0 (pure spin angular momentum: J = S).
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Fig. C.1 Zeeman splitting of the 2P3/2

and 2P1/2 terms of an alkali atom.
These two terms have Landé g factors
of 4/3 and 2/3 respectively.

The shift of the atomic levels in an electric field is called the Stark
effect. The way in which the levels shift depends on the relative strength
of the perturbation. At small fields, the energy shift normally varies
quadratically with the field strength Ez, with:

|∆E| ∝ E2
zM

2
J . (C.11)

The energy shift can be either positive or negative, and the degeneracy
of the sub-levels is only partially lifted, since states with equal |MJ |
experience the same shift. The behaviour changes if the field strength
is increased to the point that the interaction energy is larger than the
unperturbed energy difference between the particular state and another
one with the opposite parity. In this limit, the energy shift varies linearly
with Ez. This change from the quadratic to the linear Stark effect can
readily be observed in semiconductor quantum wells. (See Section 6.5.)

The angular momentum coupling scheme in a crystal can differ from
that of the free atom if the electric fields generated by the other atoms
in the crystal cause a strong perturbation. This point is particularly
important when considering the optical properties of paramagnetic ions
embedded within a host crystal. (See Section 9.3.) The shifting and
splitting of the levels caused by the crystal-field interaction is called the
crystal-field effect.

Further reading

The quantum theory of angular momentum is covered
in most quantum mechanics textbooks, for example:
Gasiorowicz (1996), Miller (2008), or Schiff (1969). More

detailed information on angular momentum states in
atoms may be found in atomic physics texts such as
Corney (1977) or Woodgate (1980).
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The electronic states of crystals are described by the band theory of
solids. This subject is covered extensively in all solid-state physics texts,
and this book presupposes a working knowledge of the main concepts.
The purpose of this appendix is to give a brief review of the key points,
and to give an overview of the band structure of a few representative ma-
terials. The reader is referred to the texts listed under Further Reading
for a more extensive treatment.

D.1 Metals, semiconductors, and
insulators

The general concept of band formation is described in Section 1.5.2. The
outer orbitals of the atoms in a densely packed solid overlap with each
other as the chemical bonds that hold the crystal together are formed.
This causes the discrete energy levels of the free atoms to be broadened
into bands, as shown schematically in Fig. 1.9. Each band can contain
2N electrons, where N is the number of primitive unit cells in the crystal,
and the factor of two accounts for the electron spin degeneracy. Electrons
fill up the bands to the Fermi energy EF, which is determined by the
total electron density.

The situation in divalent metals such
as magnesium is slightly more compli-
cated. These have an even number of
electrons per atom, and so it might
be expected that they would behave as
semiconductors or insulators. This does
not happen because the valence and
conduction bands overlap with each
other. Electrons below the Fermi level
can therefore be excited to empty levels
without having to cross an energy gap.
This makes them good conductors like
the monovalent or trivalent metals.

Figure D.1(a) shows a schematic energy diagram for a monovalent
metal such as sodium, or a trivalent metal such as aluminium. These
have an odd number of electrons per atom, which means that the highest
occupied band will only be half full. The Fermi energy will therefore lie
in the middle of the highest occupied band. Electrons with energy just
below EF can easily be excited to empty states just above EF. This makes
it easy to accelerate the electrons with an electric field, and explains why
metals are good conductors of electricity.

Figure D.1(b) shows the equivalent energy-level diagram for a semi-
conductor such as silicon or an insulator such as diamond. These have
an even number of electrons per atom, and the highest occupied band
is therefore full of electrons. This highest occupied band is called the
valence band, while the lowest unoccupied band is called the con-
duction band. The Fermi level lies somewhere within the energy gap
between the valence and conduction bands. The first empty states for
the electrons are in the conduction band, and it requires a minimum
amount of energy equal to the band gap Eg to excite the electrons to
available states. This makes it difficult to accelerate the electrons when
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Fig. D.1 Energy level diagrams for
(a) a monovalent or trivalent metal, and
(b) a semiconductor or insulator. The
bands are filled with electrons up to the
Fermi level EF. This is indicated by the
shading.

an external electric field is applied, and inhibits the flow of electrical cur-
rent through the sample. Semiconductors and insulators therefore have
much lower electrical conductivities than metals.

The distinction between an insulator and a semiconductor is related
to the size of the band gap. Semiconductors have smaller band gaps
than insulators. This makes it possible that a significant number of elec-
trons are excited thermally from the valence band to the conduction
band at room temperature. The free electrons in the conduction band
can conduct electricity easily in the same manner as the free electrons
in metals. Semiconductors therefore have a higher conductivity than in-
sulators, but a smaller conductivity than metals because of the smaller
number of free electrons.

Figure D.2 shows the conduction and valence bands of a semiconductor
in more detail. Figure D.2(a) applies to a pure crystal. This is the same
as the case considered in Fig. D.1(b), and the Fermi level lies about half
way between the two bands. The thermal excitation of an electron to
the conduction band leaves an empty state called a hole in the valence
band. The hole is equivalent to the absence of an electron, and behaves
like a free positive charge. Electrical current can be carried both by the
electrons in the conduction band and by the holes in the valence band.
The conduction by the thermally excited electrons and holes in a pure
crystal is called intrinsic.

Figure D.2(b) applies to a crystal with n-type doping. In this case,
impurities with extra electrons are deliberately introduced into the crys-
tal while it is being grown. For semiconductor crystals such as silicon
and germanium that come from group IV in the periodic table, and thus
have four valence electrons per atom, this is typically done by adding
atoms from group V. The impurities donate one extra electron for each
dopant atom. These extra electrons lie in donor levels just below the
conduction band. The electron states are filled up to the donor levels,
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Fig. D.2 Valence and conduction
bands for: (a) a pure (intrinsic) semi-
conductor; (b) a semiconductor with n-
type doping; and (c) a semiconductor
with p-type doping. The • and ◦ sym-
bols represent free electrons and holes
respectively. The Fermi energies of the
n- and p-type samples lie very close
in energy to the impurity levels aris-
ing from the donor or acceptor atoms
respectively.
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and so the Fermi energy must lie very close to the donor level energies, as
indicated in Fig. D.2(b). The electrons in the donor levels can be easily
excited into the conduction band at room temperature, and the electri-
cal properties of the n-type material are determined by these extrinsic
electrons arising from the impurity atoms.

Figure D.2(c) applies to a crystal with p-type doping. In this case,
atoms which have a deficit of one electron per atom are doped into
the crystal during its growth. In the case of the group IV elemental
semiconductors such as silicon, this is done by doping with atoms from
group III. Each of the impurity atoms can accept one electron from the
valence band. The acceptor levels are just above the top of the valence
band, and electrons can easily be excited to these empty states at room
temperature. This creates a population of free holes in the valence band
that determines the extrinsic electrical conductivity of the sample.

D.2 The nearly free electron model

The motion of free electrons and holes is determined by the E–k dis-
persion of the solid. If the electrons are completely free, they will only
possess kinetic energy. In this case the E–k dispersion is given by:

E =
p2

2m0
=

�
2k2

2m0
, (D.1)

where p = h/λe = �k is the momentum of the electron, λe being its de
Broglie wavelength.

In a crystal this E–k dispersion relationship is modified because the
electrons are not really free. Each atom possesses a certain number
of valence electrons. These are the electrons in the outermost atomic
shells that determine the chemical properties. The nearly free elec-
tron model starts by assuming that the valence electrons are released
from their atoms and move through the crystal. This leaves behind a
regular lattice of positively charged ions. The potential of the ion cores
perturbs the motion of the electrons and alters the E–k relationship.

Figure D.3 shows the typical band structure of a simple crystal. The
E–k diagram is divided into different Brillouin zones, each of which
spans a reciprocal lattice vector G. This division of k-space into Brillouin
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BZ Fig. D.3 Band structure of a simple
cubic solid with a lattice constant of a.
The left-hand side of the figure shows
the E–k relationship across several
Brillouin zones, while the right-hand
side replots the same band structure in
the reduced zone scheme. The dotted
line indicates the parabolic dispersion
of free electrons given by eqn D.1. Each
band within a Brillouin zone can hold
2N electrons, where N is the number
of unit cells in the crystal. The shading
signifies that the band states are filled
with electrons. The case shown applies
to an atom such as silicon with four va-
lence electrons.

zones reflects the underlying periodicity of the crystal. The reciprocal
lattice vectors are defined by

eiG·(r+T ) = eiG·r , (D.2)

where T is one of the primitive lattice translation vectors of the crystal.
The E–k relationship shown in Fig. D.3 applies to a simple cubic

crystal with a lattice constant of a. In this case eqn D.2 is satisfied with

G =
2π

a
(nx, ny, nz) , (D.3)

where nx, ny, and nz are integers. The band dispersion is drawn for
the (100) direction in k-space. The central Brillouin zone enclosing the
origin runs from −G/2 to +G/2, namely from −π/a to +π/a. The
next zone encloses the section of k-space between π/a → 2π/a and
−π/a → −2π/a, and so on.

The dotted line in the left-hand side of Fig. D.3 indicates the band
dispersion for free electrons that obey eqn D.1. The solid lines indicate
the band dispersion for the nearly free electrons. The periodic potential
causes a splitting at the zone boundaries, but has a relatively small effect
at other points in the Brillouin zone. The band dispersion therefore only
departs significantly from that of free electrons near a zone boundary.

The group velocity of the electron wave is given by

vg =
dω

dk
=

1
�

dE

dk
. (D.4)

The bands bend over as they approach zone boundaries, as shown in
Fig. D.3, so that dE/dk = 0 precisely at a zone boundary. This means
that the group velocity is zero, which corresponds to a standing wave.
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Band structure diagrams are usually plotted in the reduced zone
scheme, as indicated by the right-hand side of Fig. D.3. In this scheme
we translate the electron wave vector by an integer number of reciprocal
lattice vectors until it lies within the first Brillouin zone. We can do this
because it follows from eqn D.2 that there is no physical difference be-
tween the wave vectors k and k+G in a periodic crystal. This conclusion
also follows from Bloch’s theorem, which is discussed below.

Each Brillouin zone contains N k-vector states, and can therefore hold
2N electrons due to the up–down spin degeneracy of each k-state. If each
atom has four valence electrons, the first two bands will be full, as shown
by the shading in Fig. D.3. This is the situation that applies to four-
valent semiconductors such as silicon or germanium. The first available
empty electron states are in the next band. This therefore corresponds
to the case of the semiconductor or insulator shown in Fig. D.1(b), with
an energy gap of Eg between the occupied electron states in the valence
band and the first empty states in the conduction band.

k

E

Eg

0

conduction band

valence band

k

E

Eg

0

conduction band

valence band

Fig. D.4 Band dispersion of a semi-
conductor or insulator near the top of
the valence band and the bottom of the
conduction band. The energy axis is de-
fined so that E = 0 corresponds to the
top of the valence band.

The band dispersion near k = 0 for a semiconductor or insulator is
shown in more detail in Fig. D.4. The top valence band and the lowest
conduction band states are shown. The bands are parabolic for small k,
and have dispersions given by:

Ec(k) = Eg +
�

2k2

2m∗
e

Ev(k) = −�
2k2

2m∗
h

,

(D.5)

where E = 0 corresponds to the top of the valence band. The subscripts
on the energy identify the conduction and valence bands respectively.
Equation D.5 shows that the band dispersion is determined by the ef-
fective mass m∗

e and m∗
h of the appropriate band.

In general, the effective mass is defined by the curvature of the E–k
diagram according to:

m∗ = �
2

(
d2E

dk2

)−1

. (D.6)

The effective mass is therefore a band structure parameter that quanti-
fies the departure of the E–k relationship from the free electron disper-
sion. It will generally be the case that neither m∗

e nor m∗
h are equal to

the free electron mass m0, and that each material will be different. The
negative curvature of the valence band indicates that it is a hole state:
hence the ‘h’ subscript for the effective mass in the valence band. Elec-
trons in the conduction band behave like negatively charged particles
of mass m∗

e , while the holes in the valence band behave like positively
charged particles of mass m∗

h. Tables D.1 and D.2 give the values of the
effective masses for a few important semiconductors.

The nearly free electron approach can be connected to the atomic
states of the atoms from which the valence electrons are derived through
Bloch’s theorem (cf. Section 1.5.2):
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The eigenfunctions of the wave equation for a periodic poten-
tial are the product of a plane wave and an envelope function
that has the periodicity of the crystal lattice.

This implies that the wave function of an electron in a periodic lattice
takes the form:

ψ(r) = u(r) eik·r . (D.7)

where u(r) must satisfy u(r) = u(r+T ). The Bloch functions are there-
fore modulated plane waves. The envelope function u(r) is a wavelike
periodic function that relates to the atomic character of the valence
electrons. This link is formalized in the tight-binding approach to band
structure calculations.

D.3 Example band structures

The band structure of aluminium is shown in Fig. 7.3. Aluminium is a
trivalent metal with three valence electrons in a configuration of 3s23p1.
The band structure looks much more complicated than Fig. D.3, but
this is mainly a consequence of the way band diagrams are drawn. To
understand how the diagram works, we first need to consider the shape
of the Brillouin zone in three dimensions.
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Fig. D.5 Brillouin zone of a face-
centred cubic lattice. a is the size of the
cubic unit cell in the crystal. High sym-
metry points within the Brillouin zone
are given symbolic names derived from
group theory. The origin at � = (0, 0, 0)
is called the Γ point. The X point at
(2π/a)(1, 0, 0) identifies the zone edge
along the six equivalent (100) direc-
tions. The L point at (π/a)(1, 1, 1) is at
the zone edge along the eight equivalent
(111) directions. An arbitrary point
along the Γ → X direction is labelled
∆, while an arbitrary point along the
Γ → L direction is given the symbol Λ.
The K point corresponds to the zone
edge along the (110) direction, while
the W point is at the intersection of
the square and hexagonal faces of the
polygon. The X point corresponds to a
wave vector of 2π/a rather than π/a
as Fig. D.3 would suggest because the
cubic unit cell of the fcc lattice is not
primitive.

Aluminium has a face-centred cubic (fcc) lattice. The cubic unit
cell of an fcc lattice is not the primitive unit cell as it contains four
lattice points: one at the origin and three others at the centre of the
cube faces with coordinates (1/2, 1/2, 0), (1/2, 0, 1/2), and (0, 1/2, 1/2).
The Brillouin zone of the fcc lattice is therefore not a cube, but rather
has the shape shown in Fig. D.5. The dispersion of the bands shown in
Fig. 7.3 begins by plotting the energy for increasing k outwards from
the origin to the X point. We then move across to the L point via the
W point, and back to the origin. Finally we go out again from the origin
to the X point via the K point.

The departure from the free electron dispersion is actually very small
in aluminium. Most of the band diagram can be explained by taking the
parabolic dispersion of free electrons shown by the dotted line in Fig. D.3
and folding it back into the complicated shape of the fcc Brillouin zone.
The changes in the curvature of the bands at the zone boundaries are
then merely caused by the change of direction in which we are moving
around the Brillouin zone. Note however that there are small gaps be-
tween most bands at the zone edges. These are the band gaps introduced
by the lattice potential.

The band structure of copper is shown in Fig. 7.5. Copper has the fcc
crystal structure and is a transition metal with an electronic configura-
tion of 3d104s1. The band structure is more complicated than that of
aluminium because of the need to include the dispersion of both the 3d
and 4s bands, which overlap in energy. The 4s bands are approximately
parabolic, but the 3d bands are fairly flat. This is a consequence of the
strong localization of the d electrons, which means that their orbitals
do not overlap much in the crystal. The low dispersion d bands have a
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Table D.1 Band structure parameters for the group IV elements diamond, silicon, and germanium. All three materials crys-

tallize with the diamond structure and have indirect gaps. Eind
g : indirect band gap; kmin: position of the conduction band

minimum within the Brillouin zone; valley degeneracy: number of equivalent conduction band minima within the Brillouin
zone; m∗

e (‖): longitudinal electron effective mass; m∗
e (⊥): transverse electron effective mass; Edir

g : direct band gap at the Γ
point; ∆: spin–orbit splitting at the Γ point; m∗

hh: heavy-hole effective mass; m∗
lh: light-hole effective mass; m∗

so: split-off hole
effective mass. The effective masses are expressed in units of the free electron mass m0. The valence band parameters refer to
the four-band model shown in Fig. 3.5. After Madelung (1996).

Property Diamond Silicon Germanium

Eind
g (eV) (300K) 5.47 1.12 0.66

Eind
g (eV) (0K) 5.5 1.17 0.74

kmin 0.76 X 0.85 X L
Valley degeneracy 6 6 4
m∗

e (‖) 1.4 0.92 1.58
m∗

e (⊥) 0.36 0.19 0.08
Edir

g (eV) (300K) 6.5 4.1 0.805
∆ (eV) 0.006 0.044 0.29
m∗

hh 1.08 0.54 0.3
m∗

lh 0.36 0.15 0.04
m∗

so 0.15 0.23 0.095

high density of states within a relatively narrow range of energies. These
states are very important for both the optical and magnetic properties.

The band structure of the semiconductor silicon is shown in Fig. 3.13.
Silicon has four valence electrons and crystallizes with the diamond
structure. The diamond structure consists of two identical interlocking
fcc lattices displaced from each other by (a/4, a/4, a/4). The structure
is fcc with a basis of two atoms attached to each lattice point: one at
the lattice point itself, and the other displaced by (a/4, a/4, a/4) with
respect to it. Silicon therefore has an fcc Brillouin zone, as shown in
Fig. D.5.

The real band structure of silicon can be compared to the schematic
band dispersions shown in Figs D.3 and D.4. We see that the real ma-
terial does show the general behaviour indicated by the schematic di-
agrams, although the actual band diagram is more complicated. One
significant difference is the ‘camel-back’ shape of the conduction band,
which means that the minimum of the conduction band occurs near the
X point rather than at the Γ point. The band gap of silicon is therefore
indirect. This has very important consequences for the optical proper-
ties, as discussed in Chapters 3 and 5. Another important difference is
the degeneracy of the valence band states at the Γ point. This is usu-
ally described in terms of the four-band model shown in Fig. 3.5. The
parameters needed to describe the valence band of silicon in this way
are listed in Table D.1. The spin–orbit splitting of silicon is too small to
be apparent in the low scale band diagram given in Fig. 3.13. Table D.1
also lists the effective masses that describe the conduction band minima
near the X point. Note that we must use two separate effective masses
to parameterize the anisotropy of the conduction band minimum.

The band structure of germanium is given in Fig. 3.10. Germanium
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Table D.2 Band structure parameters for selected direct gap III–V semiconductors with the zinc-blende structure. The pa-
rameters listed refer to the four-band model shown in Fig. 3.5. Eg: band gap; ∆: spin–orbit splitting; m∗

e : electron effective
mass; m∗

hh: heavy-hole effective mass; m∗
lh: light-hole effective mass; m∗

so: split-off hole effective mass. The effective masses are
expressed in units of the free electron mass m0. After Madelung (1996) and Madelung (1982).

Crystal Eg (eV) Eg (eV) ∆ (eV) m∗
e m∗

hh m∗
lh m∗

so

(0K) (300K)

GaAs 1.519 1.424 0.34 0.067 0.5 0.08 0.15
GaSb 0.81 0.75 0.76 0.041 0.28 0.05 0.14
InP 1.42 1.34 0.11 0.077 0.6 0.12 0.12
InAs 0.42 0.35 0.38 0.022 0.4 0.026 0.14
InSb 0.24 0.18 0.85 0.014 0.4 0.016 0.47

Table D.3 Structure and band gap data for a number of common semiconductors. Eg is the band gap at 300K, and the i/d
label indicates whether the gap is indirect or direct. SiC crystallizes in more than 200 different modifications, and the data
listed here is for the 6H polytype, which has a hexagonal unit cell. ZnS, ZnSe, CdS and CdSe can form stable crystals with
either hexagonal or cubic unit cells, and the band gap may be slightly different for the two structural variations. The negative
band gap of HgTe signifies that it is a semimetal: the top of the valence band is at higher energy than the bottom of the
conduction band. Note that the band gap of InN was originally thought to be around 2 eV. Recent work has now confirmed
the value given in this table. After Madelung (1996).

Compound Crystal structure Eg (eV) Type

SiC 6H polytype 2.9 i
AlN wurtzite 6.2 d
AlP zinc blende 2.41 i
AlAs zinc blende 2.15 i
AlSb zinc blende 1.62 i
GaN wurtzite 3.44 d
GaP zinc blende 2.27 i
InN wurtzite 0.7 d
ZnO wurtzite 3.4 d
ZnS wurtzite or zinc blende 3.8 or 3.7 d
ZnSe wurtzite or zinc blende 2.8 or 2.7 d
ZnTe zinc blende 2.3 d
CdS wurtzite or zinc blende 2.5 d
CdSe wurtzite or zinc blende 1.8 d
CdTe zinc blende 1.5 d
HgTe zinc blende −0.14 semimetal
CuCl zinc blende 3.17 d
Cu20 cuprite 2.2 d

lies one line below silicon in the periodic table, and, like silicon, has the
diamond crystal structure. It is not surprising, therefore, that the band
structures are fairly similar. There are, however, a number of important
differences. Most prominent among these is the fact that the conduction
band minimum is at the L point, rather than near the X point. Moreover,
the minimum at the Γ point is only just above the one at the L point.
The band gap is therefore still indirect, but the optical transitions soon
become direct as the photon energy is increased above Eg. The principal
band structure parameters of germanium are listed in Table D.1.

The band structure of the III–V compound semiconductor gallium ar-
senide, which has the zinc-blende structure, is given in Fig. 3.4. The
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zinc-blende structure is similar to the diamond structure, except that
the atom at (a/4, a/4/a/4) is different to the one at (0, 0, 0). The band
structure is quite similar to that of germanium, except that the conduc-
tion band minimum now lies at the Γ point. GaAs therefore has a direct
band gap. This means that GaAs crystals can emit light efficiently when
excited, as discussed in Chapter 5. Table D.2 lists the most significant
band parameters for GaAs, together with those of a few other direct gap
III–V materials.

Less detailed band structure data on other important compound semi-
conductors are given in Table D.3. Some of these crystals have the zinc-
blende structure, while a number of others have the wurtzite struc-
ture, which has hexagonal symmetry. Several of the II–VI compounds
can form stable crystals with either structure, and the band gap may be
slightly different between the cubic and hexagonal forms. Cu20 has its
own particular structure, not surprisingly named the cuprite structure.
The cuprite structure has cubic symmetry.

Further reading

An introductory treatment of band theory is given in
Rosenberg (1988). More detailed accounts are given in
Ashcroft and Mermin (1976), Burns (1985), Ibach and

Luth (2003), Kittel (2005), or Singleton (2001), and many
other texts on solid-state physics.



Appendix

E
Semiconductor p–i–n
diodes

The p–i–n structure is used extensively in semiconductor opto-electronic
devices such as photodiodes, solar cells, light-emitting diodes and optical
modulators. The structure is shown schematically in Fig. E.1. It consists
of a standard semiconductor p–n diode with a thin undoped i-region of
thickness li inserted at the junction. This i-region is the optically active
part of the diode. The purpose of the p–n junction is to control the
number of electrons and holes injected into the active region, and to
permit the application of strong electric fields.

In this appendix we discuss the band alignment and electrostatics
of the p–i–n structure when an external bias voltage V0 is applied to
the device. The formation of the depletion region at the junction
is an essential feature of the physics of the p–n diode. The external
bias is dropped across the depletion region because it has a very high
resistance compared to the heavily doped p- and n-regions. The width
of the depletion region at a given voltage is determined by the doping
levels in the p- and n-regions, with higher doping giving thinner depletion
widths. In a p–i–n structure the residual doping level in the i-region is
very small, and so the depletion region can extend across the whole i-
region. The extension of the depletion region into the p- and n-regions is
very small in comparison to li because of the heavy doping level in the
contacts. This means that any external voltages that are applied will be
dropped almost entirely across the i-region.
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Fig. E.1 Schematic diagram of a p–i–n
diode. The bias voltage V0 is applied to
the p-region, so that positive and neg-
ative V0 correspond to forward and re-
verse bias respectively. The dimensions
are not drawn to scale. The i-region is
typically only a few microns thick.

Figure E.2 shows a band diagram of a p–i–n structure. Figure E.2(a)
shows the band alignments at zero bias, while Fig. E.2(b) applies to the
situation with an external voltage applied. At zero bias the Fermi levels
of the p- and n- regions align with each other. The energy difference
between the Fermi energies and the conduction or valence band edges is
small compared to the band gap, and so it is apparent from Fig. E.2(a)
that there is a voltage drop of magnitude Eg/e across the i-region. This is
equivalent to the built-in voltage Vbi that is important for the functioning
of solar cells as discussed in Section 3.7. When the bias is applied, the
energy difference between the Fermi levels of the p- and n-regions will
be equal to |eV0|. This is illustrated in Fig. E.2(b) for the case of reverse
bias, that is, when a negative voltage is applied to the p-region with
respect to the n-region. Reverse bias tends to increase the voltage drop
across the i-region, while forward bias tends to reduce it.

In order to calculate the electric field across the i-region, we need to
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Fig. E.2 Band alignments in a p–i–n
diode structure with an i-region thick-
ness of li. (a) Bias = 0. (b) Reverse bias
voltage V0 applied. The thick dashed
lines indicate the Fermi levels of the
doped layers, which lie just above the
valence band or just below the conduc-
tion band in the p- and n-regions re-
spectively. Eg is the band gap of the
semiconductor used for the p- and n-
regions.
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solve Poisson’s equation (Appendix A, eqn A.5):

∇2V = − �

εrε0
, (E.1)

where V is the voltage and � is the electric charge density. We set up
axes so that z is the direction normal to the plane of the diode. We know
from the symmetry that the derivatives in the x and y planes must be
zero. Poisson’s equation therefore reduces to:

∂2

∂z2
V (z) = −�(z)

εrε0
. (E.2)

We assume that � = 0 in the i-region because it is undoped and is fully
depleted of all free carriers. The solution to eqn E.2 in the i-region is
therefore V (z) = C1z +C2, where C1 and C2 are constants. The electric
field strength can be calculated from eqn A.7 in Appendix A. This gives
E = −dV/dz = −C1, which implies that the electric field is constant in
the i-region.

We can see from Fig. E.2(b) that the magnitude of the voltage drop
across the i-region is approximately equal to (Vbi−V0). The value of the
constant electric field in the i-region is therefore given by:

E =
Vbi − V0

li
. (E.3)

This shows that negative bias increases the field across the i-region, while
a small forward bias reduces E . The field is zero for a forward bias of Vbi.
At zero bias the field across the i-region is equal to Vbi/li. This can be a
large value. For example, with a GaAs diode we might have Vbi = 1.5 V
and li = 1 µm. The field at zero bias is therefore 1.5 × 106 V m−1.

In this book we frequently come across reverse-biased p–i–n struc-
tures in the context of studying the effects of electric fields on the op-
tical properties of semiconductors. Section 3.3.5 discusses the effect of

Reverse-biased p–i–n structures are
also used in semiconductor photodiodes
and solar cells, as discussed in Sec-
tion 3.7. Forward-biased p–i–n struc-
tures are used in electroluminescent de-
vices: see Section 5.4.

an electric field on the band edge absorption of a bulk semiconductor,
while Sections 4.3.1 and 6.5 discuss the effects on the excitons in bulk
semiconductors and quantum wells, respectively. In all of these exam-
ples, the calibration of the electric field strength from the applied bias
is carried out by using eqn E.3.
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Further reading

The physics of the p–n junction is discussed in most solid-
state physics texts. See, for example: Bleaney and Bleaney

(1976), Rosenberg (1988), or Sze (1985). The p–i–n struc-
ture is described in detail in Sze (1981).



Solutions to exercises

Chapter 1

(1.1) R = 0.041 and T = 0.92, assuming that α = 0
because the glass is transparent.

(1.2) 2.1.

(1.3) v = 9.97 × 107 ms−1, α = 9.6 × 106 m−1, and
R = 25.6%.

(1.4) 18�m.

(1.5) T = 0.034, optical density = 1.1.

(1.6) ε̃r = 1.77 + i 9.2 × 10−8.

(1.7) Absorbing for blue light, but not for red and
green light.

(1.8) (a) T = (1−R1)(1−R2)e
−αl�∞

k=0(R1R2e
−2αl)k .

(b)(i) −10%, (ii) −1%, (iii) −0.6%.
(c) It is valid to neglect multiple reflections when
αl � 1, and for transparent materials with low
refractive indices.

(1.9) (a) The transmitted field amplitude is given by:

Et = tt′xE0

∞�
k=0

(x2r′2)k ,

where r (r′) and t (t′) are amplitude reflec-
tion and transmission coefficients for air to the
medium (medium to air) respectively, and x =
e−αl/2 eiΦ/2. The transmission is given by T =
|Et|2/|E0|2, and the result is obtained by using
r = −r′ , r2 = r′2 = R, and tt′ = 1− r2 = 1−R.
(b) With the same definitions as in part (a), the
reflected field amplitude is given by:

Er = E0

�
r +

r′tt′x2

1 − x2r′2

�
.

On inserting r′ = −r and tt′ = 1 − r2 = 1 − R,
we find:

Er = E0 r

�
1 − x2

1 − x2R

�
.

The reflectivity is then found from the ratio
|Er|2/|E0|2.

(c) Put α = 0 into the transmissivity and reflec-
tivity and add them together.
(d) (1 − R)2 e−αl.
(e) Thin-film interference fringes with transmis-
sion peaks when 2nl = mλ, m being an integer.

(1.10) Fabry–Perot fringes above band edge with trans-
mission peaks at 875, 933, and 1000 nm. Ex-
ponentially decreasing transmission below band
edge, with reflectivity roughly constant at 31%.

(1.11) Substitute eqn 1.29 with κ = 0 into eqn 1.9.

(1.12) 18%, 6%, and 4%.

(1.13) From eqn 1.8 we see that:

− log10(T ) = −2 log10(1 − R) + αl/ ln(10) .

The optical density is found by comparing this
to eqn 1.11. If the medium is transparent at λ′,
and the incoherent limit applies, the transmission
will be given by eqn 1.9, which enables R to be
determined from a measurement of the transmis-
sion. The optical density at λ can then be de-
duced from a measurement of the transmission
at that wavelength. This result will only hold if
λ′ is close to λ because we are assuming that R
does not vary significantly with the wavelength.

(1.14) 99.6%.

(1.15) 14 nm.

(1.16) ε̃r ≈ 1.

(1.17) (a) 0.294 eV; (b) 8 W and 2W; (c) 4 W and 6W.

(1.18) 521 nm.

(1.19) 81%. The scattering cross-section is 11 times
larger at 850 nm than at 1550 nm.

(1.20) 3.5m, 0.22m.

(1.21) Ice is a uniaxial crystal, but water is a liquid with
no preferential axes.
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Chapter 2

(2.1) m1ẍ1 = −Ks(x1 − x2)

m2ẍ2 = −Ks(x2 − x1) .

Divide these equations by m1 and m2 respectively
and subtract them to obtain the equation of mo-
tion for an oscillator of frequency (Ks/µ)1/2:

d2

dt2
(x1 − x2) = −Ks

�
1

m1
+

1

m2

�
(x1 − x2) .

(2.2) − tan−1[ωγ/(ω2
0 − ω2)].

(2.3) 6.3 × 10−4.

(2.4) 270m−1.

(2.5) α(ω0) = Ne2/nε0m0γc.

(2.6) (a) 5.9; (b) 5.0 × 1012 Hz; (c) 23 N; (d) 3.0 ×
1028 m−3; (e) about 6 × 1012 s−1; (f) about 1 ×
106 m−1. In part (c), work out the spring con-
stant Ks using eqn 2.2, remembering to use the
correct reduced mass (2.3 × 10−26 kg). The an-
swers to parts (e) and (f) are only approximate
because the data does not exactly follow a simple
Lorentzian line shape. The damping rate depends
strongly on the frequency, which is why the res-
onance line is highly asymmetric.

(2.7) The relationship in terms of ω is derived by tak-
ing the reciprocal of eqn 2.25 and using k = nω/c
to obtain:

1

vg
=

1

c

�
n + ω

dn

dω

�
.

Equation 2.26 follows after substituting v =
c/n. The relationship in terms of λ is derived
by substituting λ = 2πc/ω so that dn/dω =
−(λ2/2πc)dn/dλ.

(2.8) The dispersion in this undamped system is al-
ways normal, so that from eqn 2.26 we see that
vg < v. If ω < ω0, εr > 1 and therefore v = c/n =
c/
√

εr < c. Hence vg < c if ω < ω0. For ω > ω0

we must work out vg explicitly:

vg = nc

�
1 +

Ne2

ε0m0

ω2
0

(ω2
0 − ω2)2

�−1

.

The denominator is greater than unity, and n <
1, so vg < c.

(2.9) This derivation is given in many solid-state or
electromagnetism textbooks. See, for example,
Kittel, C. (2005), Introduction to solid state
physics (8th edn), Wiley, New York.

(2.10) Either when the density of absorbing atoms is
small or when the frequency is far away from any
resonance.

(2.11) χa = 2.2 × 10−29 m3. The two field strengths are
0.8×1011 Vm−1 and 1.4×1011 Vm−1 respectively.
It is not surprising that these values are of sim-
ilar magnitude because the external field must
work against the Coulomb forces in the molecule
to induce a dipole.

(2.12) Find κ(E) from α(E) by using eqn 1.19, and then
use eqn 2.36 to obtain n(E) from:

n(E) = 1 +
2

π

� E2

E1

E′κ(E′)
E′2 − E2

dE′ .

(2.13) (a) λj = 2πc/ω0j , Aj = Ne2fjλ
2
j/4π2ε0m0c

2.
(b) C1 = (1 + A1)

1/2; C2 = A1λ
2
1/2(1 + A1)

1/2;
C3 = A1(4 + 3A1)λ

4
1/8(1 + A1)

3/2.

(2.14) (a) C1 = 1.5255, C2 = 4824.7 nm2. (b) 1.5493
and 1.5369. (c) 1.26◦.

(2.15) 14 ps if we assume a time–bandwidth product
∆ν∆t = 1.

(2.16) Use ε11/ε0 = ε22/ε0 = no, ε33/ε0 = ne, x = 0,
z/n(θ) = sin θ, and y/n(θ) = cos θ to derive the
result.

(2.17) 37.1◦ − 42.3◦.

(2.18) Define axes with z along the optic axis, and x
along the direction of propagation, so that the
input polarization is cos θẑ + sin θŷ. (a) Output
polarization = cos θẑ − sin θŷ, i.e. rotated by 2θ.
(b) Output polarization = 1/

√
2(ẑ + iŷ), i.e. cir-

cular polarization. (c) Elliptically polarized light.

(2.19) 14�m.

(2.20) (a) No (face-centred cubic); (b) no (cubic); (c) yes
(hexagonal); (d) yes (hexagonal); (e) no (cubic);
(f) no (face-centred cubic); (g) yes (orthorhom-
bic). Sulphur is biaxial.

(2.21) (a) Set ∆n d = λ/2, with ∆n given by eqn 2.51,
and solve for E . (b) 85 kV.

(2.22) (a) Split the linear input polarization into two in-
phase left- and right-circular beams and recom-
bine them at the output with a relative phase dif-
ference φ equal to 2π(nR−nL) d/λ. The polariza-
tion rotation angle is equal to φ/2. (b) 21.7◦/mm.
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(2.23) (a) The Faraday rotation is negative above and
below ω0, and positive near ω0. The rotation de-
cays as the frequency is tuned away from reso-
nance.
(b) The magnetic circular dichroism follows a dis-

persive lineshape, with a negative signal below ω0

that peaks at ω0 − µBB/�, and a positive signal
above ω0 that peaks at ω0 + µBB/�. The signal
precisely at ω0 is zero.

(2.24) 17 cm.

Chapter 3

(3.1) � = (2π/L)(nx, ny, nz), where nx, ny, and nz are
integers. Each allowed � state occupies a volume
of � space equal to (2π/L)3, which implies that
the number of states in a unit volume of � space
is L3/(2π)3. Hence a unit volume of the material
would have 1/(2π)3 states per unit volume of �
space.

(3.2) dE/dk = �
2k/m∗. Use this in eqn 3.14, and then

substitute for k.

(3.3) (a) The parity of a wave function is equal to ±1
depending on whether ψ(−�) = ±ψ(�). Atomic
wave functions have well defined parities because
atoms have inversion symmetry about � = 0, and
hence we must have that |ψ(−�)|2 = |ψ(�)|2.
(b) � is an odd function, and so the integral will
be zero unless the two wave functions have dif-
ferent parities.
(c) For z polarized light we have:

M ∝
� 2π

φ=0

eim′φ (r cos θ) eimφ dφ ,

which is zero unless m′ = m. For x or y polarized
light we have:

M ∝
� 2π

φ=0

eim′φ
�
r sin θ(eiφ ± e−iφ)

�
eimφ dφ ,

which is zero unless m′ = m ± 1.
(d) E± ∝ e±iφ, so

M± ∝
� 2π

φ=0

eim′φ e±iφ eimφ dφ ,

which gives m′ = m + 1 for E+ and m′ = m − 1
for E−.

(3.4) Same as Fig. 3.15, but with a scanning monochro-
mator and an InSb detector.

(3.5) Plot α2 and α1/2 against �ω. Also investigate the
temperature dependence of α.

(3.6) Indirect band gap at 2.2 eV. Direct band gap at
∼ 2.75 eV.

(3.7) α ≈ 1.2 × 106 m−1.

(3.8) (a) 5.3 × 108 m−1 and 4.1 × 108 m−1. (b) 3.0 ×
107 m−1. This is more than an order of magnitude
smaller than the electron wave vector. (c) 2.1.
(d) 704 nm.

(3.9) |M |2 = 3C and C respectively for heavy- and
light-hole transitions.

(3.10) This follows from eqn A.41.

(3.11) Decreases above Eg + ∆.

(3.12) (a) 4.1 eV. This corresponds to transitions from
the p-like valence band to the s-like conduction
band. (b) The discussion of the atomic charac-
ter of bands given in Section 3.3.1 only applies
at the Γ point. This means that electric-dipole
transitions can be allowed at the zone edges, even
though they are forbidden at k = 0.

(3.13) 0.75 eV.

(3.14) E ≈ 1.8 × 106 Vm−1. This value is obtained by
working out the field at which α drops by a factor
e−1 between Eg and (Eg − 0.01) eV.

(3.15) The first part is easily derived by equating the
central force for circular motion with the Lorentz
force: mω2r = eωrB. The ∆n = 0 selection
rule follows from the orthogonality of harmonic
oscillator wave functions ϕn, after using Lan-
dau level wave functions of the form ψn(�) ∝
u(�) ϕn(x, y) eikzz.

(3.16) (a) g1D(E) = (2m/Eh2)−1/2, where m is the par-
ticle mass. (b) α ∝ (�ω − Eg)

−1/2. (c) The mag-
netic field quantizes the motion in two dimen-
sions. The absorption coefficient for transitions
between Landau levels varies as (�ω − En)−1/2,
where En = Eg +(n+1/2)(e�B/µ). This follows
from the 1-D density of states and the ∆n = 0
selection rule. α(�ω) diverges each time the fre-
quency crosses the threshold for a new value
of n. These divergences are broadened by scat-
tering. We therefore see dips in the transmis-
sion at each value of �ω that satisfies eqn 3.32.
(d) m∗

e ≈ 0.035m0 and Eg = 0.80 eV. These val-
ues refer to the Γ point of the Brillouin zone.

(3.17) 0.46A W−1 at 1.55�m and 1.05 AW−1 at
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1.30�m.

(3.18) (a) The p- and n-regions are good conductors,
whereas the i-region is depleted of free carriers

and therefore acts like an insulator. (b) 10 pF.
(c) 60 ps for the electrons and 200 ps for the holes.
(d) 0.2V.

Chapter 4

(4.1) This is a standard result for any two-particle sys-
tem.

(4.2) (a) Kinetic energy + Coulomb energy.
(b) E = −µe4/8ε2r ε

2
0h

2 = −(µ/m0ε
2
r )RH, a0 =

ε0εrh
2/πµe2 = (εrm0/µ)aH, C = π−1/2a

−3/2
0 .

(4.3) a0. 〈r〉 = (3/2)a0.

(4.4) (a) This is a spherically symmetric function,
with a maximum value at r = 0. (b) 〈E〉 =
�

2/2µξ2 − e2/4πεrε0ξ. (c) ξmin = 4πε0εr�
2/µe2,

〈E〉min = −µe4/8h2ε20ε
2
r . (d) ξmin and 〈E〉min are

the same as a0 and E from Exercise 4.2. The vari-
ational method gives the energy and wave func-
tion exactly here because our ‘guess’ wave func-
tion had the correct functional form.

(4.5) (b) E(n) and rn are equal to −µe4/8h2ε20ε
2
rn

2 and
4πε0εr�

2n2/µe2 respectively. (c) E(n) is identical
to the solution of the hydrogen Schrödinger equa-
tion. (d) r1 corresponds to the peak in the radial
probability density for the ground state 1s wave
function.

(4.6) E(1) = −39.1meV, r1 = 2.3 nm, stable. E(2) =
−9.8meV, r2 = 9.3 nm, unstable.

(4.7) 2.2 nm.

(4.8) The refractive index has a maximum value of 3.60
at 1.5146 eV.

(4.9) 394�m.

(4.10) Substitute |E(n)| = µe4/8(ε0εrhn)2 and rn =
4πε0εr�

2n2/µe2 into E = e/4πε0εrr
2 to obtain

the result, using |E(1)| = RX and r1 = aX.

(4.11) 1.5meV and 31 nm. V0 = +0.55V.

(4.12) 1.8T.

(4.13) � = ��� = (0, 0, B). Ĥ ′ = e2
�

2/2m0 =
e2B2(x2+y2)/8m0. 〈E〉 = 〈ψ|Ĥ|ψ〉. Equation 4.7
follows by adding the contributions of the elec-
tron and hole, and remembering that spherical
symmetry implies that 〈x2〉 = 〈y2〉 = 〈z2〉 =
1
3
〈r2〉.

(4.14) δE = +4.9 × 10−5 eV, δλ = −0.026 nm.

(4.15) 8.1 × 1024 m−3 and 1.3 × 1023 m−3.

(4.16) 0.50.

(4.17) 17.2K.

(4.18) r1 = 0.85 nm: invalid. r2 = 3.4 nm: valid.

Chapter 5

(5.1) See Section 5.2.2.

(5.2) The relaxation within the bands is faster than the
radiative recombination.

(5.3) A2p→1s = 6.27 × 108 s−1. τR = 1.6 ns.

(5.4) Faster non-radiative recombination at higher
temperatures due to phonon emission.
ηR (300K) = 79%, ηR (350K) = 56%.

(5.5) ZnTe.

(5.6) (a) This follows directly from the definition of α
given in eqn 1.3. (b) Set Ṅ = Iα/hv−N/τ equal
to zero. (c) 6.6 × 1020 m−3.

(5.7) (a) 1.9×1024 m−3. (b) 0.62 ns. (c) 3.5×1010 pho-
tons.

(5.8) The emission rate is proportional to the proba-
bility that the upper level is occupied and that
the lower level is empty, that is, fe × fh. In the

classical limit, fe,h ∝ exp(−Ee,h/kBT ), so

fefh = exp(−(Ee + Eh)/kBT )

= exp(−(hν − Eg)/kBT ) .

(5.9) (a) EF = −0.216 eV = −8.4kBT , valid.
(b) EF = +0.021 eV = +0.83kBT , invalid.

(5.10) Use f(E) = 1 for E < EF and f(E) = 0 for
E > EF to derive the result.

(5.11) Electrons: (a) 0.36meV, degenerate for T �
4.2K; (b) 36meV, degenerate for T � 420K.
Holes: (a) 0.073 meV, degenerate for T � 0.9K;
(b) 7.3meV, degenerate for T � 85K.

(5.12) kF = (3π2N)1/3.

(5.13) (a) Solid angle Ω = 0.049. (b) 4.2 × 10−4.
(c) 0.53ηR mW. (d) 0.22ηR �W.

(5.14) (a) 0.14 eV. (b) 0.012 eV. (c) Electrons degener-
ate, but not holes. (d) Eg +Ec

F may be read from
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the spectrum at about 0.94 eV as the point where
the luminescence falls to 50% of its peak value.
This agrees well with the estimate of Ec

F from the
carrier density. (e) Read Ec

F from the data to find
Ne ≈ 3 × 1023 m−3. τ ≈ 0.13 ns.

(5.15) The result follows by working out the relative σ+

and σ− transition intensities for an initial popu-
lation with three times as many electrons in one
of spin sub-level as the other, and with the holes

equally distributed between their sub-levels.

(5.16) τ = (�/geµBB1/2) [P0/P (0)],
τS = (�/geµBB1/2)[1 − P (0)/P0]

−1.

(5.17) (a) 610 nm. (b) x = 0.316.

(5.18) (a) 31%. (b) 4.3 × 1010 Hz. (c) 610m−1.

(5.19) (a) 150mW. (b) 26%. (c) 0.77 WA−1, 51%.

(5.20) Set the generation rate equal to the decay rate to
derive the result.

Chapter 6

(6.1) About 0.01K.

(6.2) 9.3 nm and 30 nm.

(6.3) The k vector must satisfy k = integer×2π/L, and
the areal density of states in k space is therefore
(1/2π)2. The result for g2D(E) is derived by writ-
ing g2D(k)dk = 2πkdk × (1/2π)2, and then using
g2D(E) = 2g2D(k)dk/dE, with dk/dE = m/�2k.

(6.4) Use Born–von Karman boundary conditions to
deduce that g1D(k)dk = 1/2πdk. Then apply
eqn 3.14 with E = �

2k2/2m to derive the result.

(6.5) The function on the right-hand side of eqn 6.26
decreases to zero at x =

√
ξ. It will therefore

always cross the x tan x function between 0 and
π/2, no matter how small ξ is.

(6.6) 7.5meV for the finite well, 11meV for the infinite
one.

(6.7) (a) This result follow from the orthonormality of
the wave functions. (b) The initial and final states
must have opposite parities.

(6.8) First step at 1.679 eV due to the n = 1 heavy-
hole transition. Second step at 1.837 eV due to
the light-hole transition. The height of the two
steps is in proportion to the reduced masses, that
is 0.059:0.036.

(6.9) (a) The transition energies would be lower. Tran-
sitions such as hh3 → e1 would be weakly al-
lowed. (b) Peaks would appear below the steps
due to excitonic absorption.

(6.10) (a) Direct substitution gives:

� ∞

r=0

� 2π

φ=0

Ψ∗Ψ rdrdφ = 1 .

(b) The result is obtained by working out that

ĤΨ =

�
− �

2

2µξ2
+

�
2

2µξ2r
− e2

4πε0εrr

�
Ψ ,

and then evaluating the integral.
(c) Emin = −µe4/8(πε0εr�)

2. This is four times
larger than the bulk exciton binding energy found
in Exercise 4.4.
(d) ξmin = 2π�2ε0εr/µe2 = aX/2, where aX is
defined in eqn 4.2.

(6.11) At d = ∞ we have bulk GaAs, while at d = 0
we have bulk AlGaAs. As d is reduced from ∞,
the binding energy increases from 4meV, going
through a peak, and then dropping to 6 meV. The
height of the peak would be about 17 meV, that
is, four times larger than the binding energy of
bulk GaAs.

(6.12) (a) See Section 5.3.5. (b) Heavy-hole exciton and
continuum absorption, followed by light-hole ex-
citon and continuum absorption. (c) The heavy-
hole continuum starts at 1.592 eV. This implies
d = 9.3 nm in the infinite well model. The
true width would be smaller, because the infinite
well model overestimates the confinement energy.
(d) 11meV and 12meV respectively. A perfect 2-
D GaAs quantum well would have Eb = 4RX =
16.8meV. The experimental binding energies are
lower because a real quantum well is not a perfect
2-D system.

(6.13) Π = −100% for the photons in the range given by
eqn 6.43. Π decreases for �ω > Eg + Ee1 + Elh1,
and drops to zero for �ω > Eg + ∆ + Ee1 + Eso1.

(6.14) (a) z is an odd function, while ϕ∗ϕ is even.
(b) The result follows by taking just the first term
in the perturbation, namely |〈1|H ′|2〉|2/(E1 −
E2), and substituting the wave functions and en-
ergies from eqns 6.11 and 6.13.

(6.15) (a) The experimental shift is smaller, mainly due
to the smaller value of d. (b) 3.4 nm, assuming a
quadratic Stark shift. (c) 〈δz〉 ≈ 1.6 nm.

(6.16) The model works quite well for sample A, but
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not for sample B. The model breaks down when
the size of the Stark shift becomes comparable to
the energy splitting of the unperturbed hh1 and
hh2 levels. This is essentially the same criterion
as for the transition from the quadratic to the
linear Stark effect in atomic physics. In sample
B, we are in this regime at all the fields quoted.

(6.17) At finite Ez the inversion symmetry of the quan-
tum well is broken. The states no longer have def-
inite parities, and selection rules based on parity
no longer hold.

(6.18) The shift is about 0.02 eV, which is comparable to
the linewidth observed in the data. A ±5% varia-
tion in d corresponds more or less to a fluctuation
of one atomic layer.

(6.19) 14 nm, assuming infinite barriers.

(6.20) (a) z is an odd function, and so the integral will
be zero unless ϕ∗

nϕn′ is also an odd function,
which requires that the wave functions must have
different parities.
(b) The matrix elements are given by:

〈1|z|2〉 =
2

d

� d

0

sin(πz/d) z sin(2πz/d) dz

= −(16/9π2)d

〈1|z|4〉 =
2

d

� d

0

sin(πz/d) z sin(4πz/d) dz

= −(4/45π2)d .

The transition strength is proportional to |M2|,
and so the 1 → 4 transition is weaker than the

1 → 2 transition by a factor (1/20)2 = 2.5×10−3.
λ1→2 = 29�m.

(6.21) The electric field of the light wave in the medium
is maximum for grazing incidence with θ = 90◦,
when the fractional power of the z component is
1/n2. The maximum possible fractional absorp-
tion is therefore equal to 9% if n = 3.3.

(6.22) The quantized levels occur at energies of 3, 6, 9,
11, 12, 14, 17, in units of h2/8m∗d2. The degen-
eracies are, respectively: 1, 3, 3, 3, 1, 6, 3.

(6.23) Substitute R(r) into eqn 6.57 with l = 0 and
V (r) = −V0 to show that E = −V0 + �

2k2/2m∗

within the dot. Then set sin (kR0/R0) = 0 to find
that k = nπ/R0, where n is an integer, and hence
that the energy relative to the bottom of the well
is �2n2π2/2m∗R2

0.

(6.24) Larger for cubic dots by a factor 3(3/4π)2/3 =
1.15.

(6.25) (a) E = (nx + 1/2)�ω0 + (ny + 1/2)�ω0;
degeneracy = n.
(b) Separate the variables to show that the an-
gular part of the wave function Φ(φ) must satisfy
d2Φ/dφ2 = −m2Φ, where m2 is the separation
constant. The solutions are of the form exp imφ,
and must be single valued. Hence m must be an
integer.
(c)ψ0,0(r, φ) = ψ0(x)ψ0(y),
ψ1,±1(r, φ) ∝ ψ1(x)ψ0(y) ± iψ0(x)ψ1(y),
ψ2,0(r, φ) ∝ ψ2(x)ψ0(y) + ψ0(x)ψ2(y),
ψ2,±2(r, φ) ∝ −ψ2(x)ψ0(y) ± √

2iψ1(x)ψ1(y) +
ψ0(x)ψ2(y).

Chapter 7

(7.1) E3
F = (9ε20�

2/8m0)(π�ωp/e)4.

(7.2) N ∼ 1011 m−3.

(7.3) δ ∼ 0.5m. To obtain a strong signal in a sub-
merged submarine it is necessary to use much
lower frequencies. The data rate would then be
very low due to the small carrier frequency.

(7.4) m∗
e = 1.6 m0.

(7.5) R = 99.6%.

(7.6) T = 0.16.

(7.7) The drop in the reflectivity for λ < 600 nm is
caused by interband transitions. The energy gap
between the d bands and the Fermi energy can
be read from the data as ∼ 2.4 eV. The low re-
flectivity for green and blue light causes the char-

acteristic yellowish colour.

(7.8) εr = 1.

(7.9) m∗
e increases from 0.020 m0 at 3.5 × 1023 m−3 to

0.048 m0 at 4×1024 m−3. The increase in m∗
e with

Ne is caused by the non-parabolicity in the con-
duction band of InSb.

(7.10) τ ∼ 1 ps.

(7.11) Calculate the carrier density as in Exercise 5.6,
and the free carrier absorption using eqn 7.28.
Then add the separate contributions of the elec-
trons and holes together. The final answer is
about 200m−1.

(7.12) (a) EF = 0.032 eV. kF is 6.5 × 108 m−1 and
2.6×108 m−1 for the heavy and light holes respec-
tively. (b) (1): 0.03–0.17 eV, (2): 0.32–0.34 eV,
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(3): 0.34–0.42 eV.

(7.13) (a) m∗
e = 0.85 m0. (b) R∗

0 ≈ 45meV, R∗
± ≈

25meV.

(7.14) R∗ = (m∗
e/m0ε

2
r ) × RH. m∗

e = 0.036 m0.

(7.15) Acceptor energy EA ∼ 8meV.

(7.16) Raman scattering from plasmon modes: N =
4.2 × 1024 m−3.

(7.17) 7.2 × 1023 m−3.

(7.18) 0.2%.

(7.19) Aluminium: surface and bulk plasmons.

(7.20) (a) ldz = 390 nm and lmz = 22 nm. (b) 28�m.

(7.21) Resonance at ωp/
√

3 for air.

(7.22) (a) 517 nm. (b) 294 nm. The difference is mainly
caused by the effect of interband transitions.

Chapter 8

(8.1) E1 = (1/2)�Ω, E2 = (3/2)�Ω, E3 = (5/2)�Ω,
a = (�/mΩ)1/2.

(8.2) d ≈ 6.7 × 10−10 m, which corresponds to about
six carbon–carbon bonds.

(8.3) 4 × 10−2, 1.6 × 10−3, 1.4 × 10−5.

(8.4) 10.2 eV. The ground state of the molecule is more
strongly bound than the excited state, and hence
the transition energy is larger.

(8.5) (a) The van der Waals interaction energy varies
as r−6. (b) Find the point where dU/dr = 0.
(c) U(r) = U(r0) + d2U/dr2(r − r0)

2/2 + · · · ,
where the derivative is evaluated at r = r0.
Ω2 = (18B2/Aµ)(B/2A)1/3.

(8.6) (a) This follows directly from the Franck–Condon
principle: sum over eqn 8.12 for each vibronic sub-
level. (b) (i) Zero-phonon line only. (ii) and (iii):
Poisson distributions with means of 1 and 5 re-
spectively.

(8.7) S1 at 4.64 eV, Ω/2π = 3 × 1013 Hz.

(8.8) The configuration diagram is similar to Fig. 8.7,
but with two excited states. S1 state: energy =
5.7 eV, vibrational splitting = 0.11 eV, turning
point of n = 6 level aligned with Q0. S2 state:
energy 7.3 eV, vibrational splitting 0.13 eV, turn-
ing point of n = 5 level aligned with Q0.

(8.9) Spin–orbit coupling mixes S and L, so that the
triplet states contain a small admixture of singlet
character through mixing with common L states.

(8.10) Phosphorescence from a triplet state at 1.6 eV.

(8.11) Both give �Ω ≈ 0.17 eV.

(8.12) There will be a vibronic band of width ∼ 1 eV
extending from 3.1 eV downwards, with three or

four peaks at energies (3.1 − n�Ω), where �Ω ≈
0.17 eV.

(8.13) Broad vibronic band from 1.9 eV down to about
1.0 eV. Peaks at 1.9 eV and 1.7 eV.

(8.14) 1.1 eV.

(8.15) 693 nm. (There will be other Raman lines in ad-
dition to this one.)

(8.16) Optical excitation creates only singlets, whereas
electrical injection creates both singlets and
triplets with a probability determined by their
statistical weights, namely 1:3. Only singlets emit
efficiently, and the population of these is lower by
a factor of four in the case of electrical injection.

(8.17) (a) See Exercise 8.16. (b) 5.6mW. (c) 11%. The
efficiency of a real device would be much lower,
mainly due to the difficulty of collecting the pho-
tons, which are emitted in all directions.

(8.18) (a) |�1| = |�2| = 2 × a cos 30◦.
(b) Find |�| by evaluating � � �.
(c) tan θ = (n2a0 sin 60◦)/(n1a0 + n2a0 cos 60◦).

(8.19) (a) Symmetry requires that the electron wave
function should be single valued on rotating the
tube by 2π. The result follows by considering
the phase change on going round the circumfer-
ence of the tube. (b) Insert � = (�1 − �2)/3
into the result of part (a), and use the definition
�� � �� = 2πδij .

(8.20) Apply periodic boundary condition to obtain
g(k) = 1/2π, and then use eqn 3.14 with an extra
factor of two to account for the fact that the +k
and −k velocity states are degenerate.

(8.21) 6.7 × 10−4.
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Chapter 9

(9.1) The solution for a 1-D infinite potential well is
given in Section 6.3.2. In a cube the motion is
quantized in three dimensions, and the energies
for the x, y, and z directions just add together.

(9.2) Equation 9.4 predicts E = 0.28/a2. The experi-
mental energies are lower because a real F-centre
is not a rigid cubic box.

(9.3) Either calculate hν = 2.6 eV from eqn 9.5, or just
read hν ≈ 2 eV from Fig. 9.4.

(9.4) E = (�2π2/2m0b
2)(n2

x + n2
y + n2

z/4) and hν =
3h2/32m0b

2. The frequency is half the value given
in eqn 9.5 when b =

√
2a, which is appropriate

for an F+
2 centre. The experimental ratio is about

0.4, which is good agreement considering the sim-
plicity of the model.

(9.5) (a) N0 : N±1 = 1 : 1.87; (b) 0.07 K.

(9.6) 0.064 eV.

(9.7) (a) 〈r〉3d/〈r〉4f = (7/12) (Z4f/Z3d) ∼ 1.5 for
Z4f ∼ 64 and Z3d ∼ 25.
(b) Transition-metal ions have lost the outermost
4s electrons, whereas the 4f orbitals of the rare
earths are inside the filled 5s and 5p orbitals.

(9.8) (a) The x, y, and z directions are all equivalent,
and so the px, py, and pz orbitals must all experi-
ence the same interaction energy with the crystal.
(b) The z direction is now different, and so the
pz orbits will have a different energy to the px

and py states.
(c) The singlet is at higher energy because of
the greater repulsion from the closer negative
charges.

(9.9) (a) The result follows from:� 2π

0

e−imφeim′′φeim′φ dφ = 2πδm,(m′+m′′) .

(b) This follows from diagonalizing the crystal-
field Hamiltonian, which is given by:

Hcf =

�
�����

A 0 0 0 D
0 B 0 0 0
0 0 C 0 0
0 0 0 B 0
D 0 0 0 A

�
����� .

(c) 2z2 − x2 − y2 ∝ |0〉 ,

x2 − y2 ∝ (|2〉 + | − 2〉)/
√

2 ,

xy ∝ (|2〉 − | − 2〉)/
√

2 ,

yz ∝ (|1〉 − | − 1〉)/
√

2 ,

zx ∝ (|1〉 + | − 1〉)/
√

2 .

(d) The dγ states have high probability density
along the crystal axes and so the electron of a d1

configuration experiences strong repulsion, while
the hole in a d9 configuration experiences strong
attraction.

(9.10) The relative populations of the 11502 cm−1 and
11414 cm−1 levels of the 4F3/2 term are propor-
tional to exp(−∆E/kBT ). The relative popula-
tion of the 11502 cm−1 level therefore increases
from 0.19 at 77K to 0.66 at 300K, and the emis-
sion intensity increases in proportion to these fac-
tors.

(9.11) The stimulated emission rate exceeds the absorp-
tion rate if population inversion is present: see
Section B.1.

(9.12) (a) Population inversion must occur, which im-
plies that the population of level 2 must exceed
that of level 0. (b) 0.3 J. The laser stops working
when 10% of the atoms in the upper level have
transferred to the lower level.

(9.13) (a) The spectrum is proportional to |E(ω)|2,
where

E(ω) =
1√
2π

� +∞

−∞
E(t) eiωt dt ,

and E(t) = exp(−t2/2τ2) e−iω0t.
(b) ∆t = 2

√
ln 2 τ . ∆ν =

√
ln 2/πτ .

(9.14) Inhomogeneities in the glass cause local varia-
tions in the environment leading to line broad-
ening through the coupling of the laser levels to
the local crystal field. ∆t = 60 fs for Gaussian
pulses.

(9.15) The transition is parity forbidden. Phosphores-
cence.

(9.16) The probability for phonon-assisted non-
radiative decay increases with T . Equation 5.5
gives ηR(77) = 0.78 and ηR(300) = 0.03. The
radiative efficiency is too low at 300K to allow
lasing.

(9.17) P = 3.2W, assuming that all the pump power is
absorbed, and the radiative quantum efficiency
is unity. The remaining 1.8W goes as heat in the
crystal.

(9.18) (a) 54%, (b) 69%.
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Chapter 10

(10.1) (a) Yes, (b) No, (c) No, (d) Yes, (e) Yes. Germa-
nium and argon are non-polar materials.

(10.2) Solve eqn 10.15 with εr = 1.

(10.3) 15–33�m.

(10.4) (a) 98%; (b) 84%.

(10.5) (a) νTO = 9.5THz, νLO = 10THz. (b) ε∞ = 9.5,
εst = 11.8. (c) About 15 ps. Lyddane–Sachs–
Teller predicts νLO/νTO = 1.11, but the exper-
imental ratio is slightly smaller. This is not sig-
nificant, given that the broadening causes some
uncertainty in the experimental values.

(10.6) (a) 3.3 × 106 m−1; (b) 1.1 × 107 m−1.

(10.7) The phonon lifetime decreases with T as the
probability for anharmonic decay increases.

(10.8) 7.8 × 105 m−1.

(10.9) (a) m∗∗ = 0.097 m0. (b) m∗ = 0.092 m0.

(10.10) The diamond crystal would have only one peak
in the Stokes or anti-Stokes spectrum.

(10.11) Stokes and anti-Stokes peaks from the optical
phonon at 15.5THz. I(501.2 nm)/I(528.6 nm) =
0.08.

(10.12) IR active, but not Raman active.

(10.13) GaAs: hνTO = 32.5meV, hνLO = 35.5meV;
InP: hνTO = 37.1meV, hνLO = 42.3meV; AlSb:

hνTO = 38.7meV, hνLO = 41.1meV; GaP:
hνTO = 45.1meV, hνLO = 50.0meV. The small
shift of a few wave numbers compared to the in-
frared data for GaAs in Fig. 10.5 is caused by the
slight decrease of the optical phonon frequencies
between 4K and 300K.

(10.14) Apply conservation of momentum, with k1 =
k2 = nω/c.

(10.15) vs = 810 m s−1.

(10.16) (a) The negative term is the total Coulomb at-
traction, with the Madelung constant accounting
for the contributions of the positive and negative
ions from the whole crystal. The positive term
represents the short range repulsive force due to
the Pauli exclusion principle when the electron
wave functions overlap.
(b) r0 is the value for which dU/dr = 0.
(c) The Taylor series about r0 is:

U(r) = U(r0) + (1/2)(d2U/dr2)r=r0(r − r0)
2

+(1/6)(d3U/dr3)r=r0(r − r0)
3 + · · · .

Take x = r − r0 to put this in the form of
eqn 10.33, with U(x) defined relative to the min-
imum at r0. C3 = −22αe2/3πε0r

4
0.

(10.17) 6 ps, assuming a Lorentzian line shape.

Chapter 11

(11.1) E = Ze/4πε0r
2
n. For the outer 3s and 3p electrons

in silicon use Z = 4 and n = 3 to obtain a value
of ∼ 5 × 1011 V/m.

(11.2) (a) 6.2 × 107 V/m, (b) 1.6 × 105 V/m.

(11.3) Only with the field applied.

(11.4) (a) No, (b) yes, (c) no, (d) no, (e) yes, (f) yes.
The second-order nonlinear susceptibility is zero
if the material has an inversion centre.

(11.5) (a) N2 cannot increase beyond N0/2 because
there is no net absorption when the popula-
tions are equal. (b) The rate equations are Ṅ1 =
−B12uνg(ν)(N1−N2) and Ṅ2 = B12uνg(ν)(N1−
N2). Subtract these to obtain d∆N/dt =
−2B12uνg(ν)∆N where ∆N = N1 − N2. Then
integrate with ∆N(0) = N0 to obtain the re-
quired result, which implies that the populations
will eventually equalize no matter how weak the

laser beam is. This misleading conclusion arises
from neglecting spontaneous emission and tran-
sitions to other levels.

(11.6) P
(2)
x = d142EyEz = 0, and P

(2)
y = d252EzEx = 0.

Assume that the beam makes an angle θ with the
x axis and then maximize P

(2)
z = d362ExEy.

(11.7) 52◦.

(11.8) (a) no(E) = no − n3
or13E/2, ne(E) = ne −

n3
er33E/2. (b) ∆Φ(E) = −πn3

er33EL/λ. (c) The
phase change is proportional to the electric field,
and hence to the applied voltage.

(11.9) (a) ∆Φx′ = −∆Φy′ = (2πL/λ)(n3
0r41Ez/2),

where L is the length of the crystal. ∆Φ =
∆Φx′ − ∆Φy′ gives the result with EzL = V .
(b) 44 kV.

(11.10) 4.2 kV.
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(11.11) ∆α = (α0/Is)I ∝ ∆ε2, and ∆ε2 ∝ Im(χ(3))I.
Hence (α0/Is) ∝ Im(χ(3)).

(11.12) Choose z as the direction of propagation and x as
the polarization vector so that Ey = Ez = 0. The

only non-zero term is P
(3)
x = ε0χxxxxE3

x, which
implies that � is parallel to �.

(11.13) 76W.

(11.14) 0.06 eV.

(11.15) Follow Example 2.1 to work out the magnitude
of the local maximum in n below the absorption
line. We then find |∆n| = 0.027 if we assume that
this local maximum is completely saturated.

(11.16) (a) 1.8 × 1023 m−3. (b) Is is the intensity re-
quired to produce this carrier density, namely
4 × 107 W m−2.
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List of Symbols

A area
� magnetic vector potential
Aij Einstein A coefficient
a unit cell dimension
aX exciton Bohr radius
b barrier thickness
� magnetic flux density
Bij Einstein B coefficient
C capacitance
d thickness, quantum-well thickness
dij nonlinear optical coefficient tensor
� electric displacement
D material dispersion parameter
E energy
Eb binding energy
EF Fermi energy
Eg band gap energy
Ei ionization energy
Ep primary electron energy
� electric field
fe,h electron or hole Fermi–Dirac distribution

function
fBE Bose–Einstein occupancy factor
fj oscillator strength
F force
gi degeneracy of atomic level i
g(E) density of states in energy space
gc(E) conduction band density of states
gv(E) valence band density of states
g(k) density of states in wave vector space
g(ν) spectral lineshape function
ge electron g-factor
gh hole g-factor
� reciprocal lattice vector
H Hamiltonian
H0 unperturbed Hamiltonian
H ′ perturbing Hamiltonian
� magnetic field
I intensity
Is saturation intensity
Ipc photocurrent
Iin injection current

Ith threshold current
� current density, angular momentum
� angular momentum
� wave vector
kF Fermi wave vector
K Kerr constant
Ks spring constant
l length, orbital quantum number
lc coherence length
li intrinsic region thickness
� orbital angular momentum
L length, orbital quantum number
	 orbital angular momentum
m mass, magnetic quantum number
m∗ effective mass
m∗∗ polaron mass
m∗

e electron effective mass
m∗

h hole effective mass
m∗

hh heavy-hole effective mass
m∗

lh light-hole effective mass
m∗

so split-off hole effective mass
M matrix element

 magnetization
n refractive index, quantum number
ñ complex refractive index
no ordinary refractive index
ne extraordinary refractive index
n0 linear refractive index
n2 nonlinear refractive index
N number of atoms/particles/photons per

unit volume
Ne electron density
Nh hole density
NMott Mott density
Ô quantum mechanical operator
� dipole moment
p momentum
� polarization
P optical power, luminescence polarization
q electric charge

 phonon or plasmon wave vector
Q generalized position coordinate



388 Symbols

� position vector
rij electro-optic coefficient
rp polaron radius
R reflectivity, electrical resistance
RX exciton Rydberg constant
S Huang–Rhys parameter
� spin angular momentum
t time
T transmissivity, temperature
Tc critical temperature
TL lattice temperature
Tm melting temperature
� lattice translation vector
u envelope function within a Bloch function
u(ν) energy density of an electromagnetic wave

at frequency ν
U potential energy
v velocity of light in a medium
vg group velocity
vs velocity of sound
� electron velocity
V volume, voltage, Verdet coefficient
Vbi built-in voltage
W transition rate
x position coordinate
y position coordinate
z position coordinate
Z impedance, atomic number
α absorption coefficient, polarizability
αep electron–phonon coupling constant
γ damping rate, fractional loss
γν gain coefficient
γth threshold gain coefficient for laser

oscillation
δ skin depth
∆ split-off hole band energy
εr relative dielectric constant
ε̃r complex relative dielectric constant
ε1 real part of the complex relative dielectric

constant
ε2 imaginary part of the complex relative

dielectric constant

εst static relative dielectric constant
ε∞ high-frequency relative dielectric constant
η quantum efficiency
ηR radiative quantum efficiency
θ angle
κ imaginary part of the complex refractive

index
λ wavelength
λdeB de Broglie wavelength
µ reduced mass, chemical potential
µr relative magnetic permeability
ν frequency
ν wave number
νLO LO phonon frequency at q = 0
νTO TO phonon frequency at q = 0
Π spin polarization
ρ density of states
� electrical charge density
σ electrical conductivity
σs scattering cross-section
τ lifetime
τNR non-radiative lifetime
τR radiative lifetime
τS spin relaxation time
φ azimuthal angle in spherical polar

coordinates
Φ optical phase
ϕ wave function
χ electric susceptibility
χa electric susceptibility per atom
χM magnetic susceptibility
ψ wave function
Ψ wave function
ω angular frequency
ωc cyclotron frequency
ωp plasma frequency
ωsp surface plasmon frequency
Ω phonon angular frequency, Larmor

precession angular frequency
ΩLO LO phonon angular frequency at q = 0
ΩTO TO phonon angular frequency at q = 0

List of quantum numbers

In atomic physics, lower- and upper-case letters usually refer to individual electrons or whole atoms respectively.

j, J total angular momentum
l, L orbital angular momentum
mj , MJ magnetic (total angular momentum)
ml, ML magnetic (orbital angular momentum)

ms, MS magnetic (spin angular momentum)
n principal
s, S spin



Index

absorbance, 4
absorption

coefficient, 3
definition, 1, 341
direct, 64–79
edge, fundamental, 10, 68–82, 154
excitonic, 73, 98–101, 157–158
free carrier, 12, 191–196
impurity, 73, 196–198
in circularly polarized light, 77, 158
in electric field, 74–75, 102, 160–164
in magnetic field, 75
indirect, 64, 79–82
infrared, 10, 39, 191–198, 278–280
interband, 62–91, 152, 188
intersubband, 166
intervalence band, 195
lattice, see phonon absorption
measurement, 84
molecular, 32
nonlinear, 105, 304, 305, 324–326
quantum dot, 170, 326
quantum well, 152–160
saturable, 305, 324–326
transition metal, 190
ultraviolet, 10, 39, 42, 46
vibrational, see phonon absorption
vibronic, see vibronic absorption

absorption data
alkali halide F-centre, 251
Alq3, 229
ammonia, 225
C60, 242
CdSe quantum dot, 171
CdTe quantum dot, 171
F+

2 band in KF, 252
GaAs, 80, 100–102, 105, 158
GaAs quantum well, 157, 158, 164, 177
GaInAs quantum well, 325
GaN, 117
GaP, 93
germanium, 81
InAs, 73
InGaAs quantum dot, 326
LiF, 108
MeLPPP polymer, 232
NaCl, 108
nonlinear, 325, 326
polydiacetylene, 231
polyfluorene, 16

polyyne, 226
pyrene, 109
pyrromethene dye, 225
silica glass, 41
silicon, 80, 83
silicon, phosphorus impurity, 197
Ti:sapphire, 261

AC conductivity, 183
acceptor, 191, 356
acetylene (C2H2), 226, 230
activity, optical, 55
AgCl, electron–phonon coupling, 283
Al2O3, see sapphire
AlGaAs light-emitting diode, 118, 127
AlGaInP quaternary alloy, 128
alkali halide, 32, 285

F centres, 250
Frenkel excitons, 108

alkali metal, ultraviolet transparency, 186
Alq3, optical spectra, 229
AlSb

infrared reflectivity, 293
Raman scattering, 289

aluminium
band structure, 189
interband absorption, 188
reflectivity, 186

ammonia absorption, 225
amorphous material, 20, 216
Ampere’s law, 332
amplifier, optical, 261
angular momentum, 350–353

coupling schemes, 351
orbital, 351
photon, 348
spin, 351
total, 351

anharmonicity, 290, 299
anion vacancy, 251
anisotropy

induced, 53–54
nonlinear, 297
optical, 11, 19, 48–54

anthracene (C14H10)
absorption spectrum, 228
exciton, 109
structure, 228

anti-Stokes scattering, 286
aromatic hydrocarbon, 109, 227
artificial atom, 144, 167, 326

atomic notation, 351–352
axis, optic, 49

back-scattering geometry, 287
band

conduction, 354
electron, 20, 70
heavy hole, 70
light hole, 70
split-off hole, 71
theory, 354–362
valence, 354
vibronic, 21, 228, 247

band edge absorption, 68–82
band filling nonlinearity, 325
band gap, 10, 354

data, 361
direct, 63, 116
indirect, 63, 117

band structure, 356–362
Γ point, 70, 359
aluminium, 189
camel back, 71, 83
copper, 191
critical point, 84
direct gap, 63
four band model, 70, 77
GaAs, 69
germanium, 68, 81
III–V semiconductor, 69–71
indirect gap, 63
L point, 70, 359
parabolic, 71
silicon, 84
X point, 70, 359

BAP mechanism, 124
Beer’s law, 3
benzene (C6H6) molecule, 15, 214
beryl crystal, 259
biaxial crystal, 49
biexciton, 105
Bir–Aronov–Pikus mechanism, 124
birefringence, 11, 48–53

circular, 55
induced, 53–54, 313–316

Bloch’s theorem, 20, 358
Boltzmann statistics, 120, 343
Born–Oppenheimer approximation, 220
Bose–Einstein condensation, 105
Bose–Einstein distribution, 81
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boundary conditions at an interface, 338
bra-ket notation, 65
Brillouin scattering, 286, 289–290

stimulated, 321
Brillouin zone, 356

face-centred cubic, 359
broadening

by damping, 36
inhomogeneous, 165, 232
temporal, 47, 323

buckminsterfullerene, 235, 241–243
built-in voltage, 90, 363

C2H2, see acetylene
C2H4, see ethylene
C6H6, see benzene
C14H10, see anthracene
C16H10, see pyrene
C60, see carbon nanostructure
calcite crystal, 48, 50, 56
camel back band structure, 71, 83
carbon nanostructure, 235–243

C60 bucky ball, 241–243
graphene, 236–237
nanotube, 237–241

carrier, free, see free electron
cathodoluminescence, 135–136, 264
Cauchy’s dispersion formula, 59
CdSe

quantum dot, 170
transmission spectrum, 10

centrosymmetric crystal, 308
charge continuity equation, 199
chirality, 55–56
chromium ion, 17, 259
circular dichroism, 55
circular polarization, 335
classical statistics, 120
classical theories, 23
Clausius–Mossotti relationship, 44
coefficient

absorption, 3
electro-optic, 315
extinction, 6
nonlinear, 308
reflection, 3
transmission, 3

collective excitations, 22–23
colloid, metallic, 206
colloidal quantum dot, 170–172
colour centre, 250–255

laser, 263
complex dielectric constant, 6–9
complex refractive index, 6–9, 337
conduction band, 354
conductivity

AC, 183
DC, 183
extrinsic, 356
intrinsic, 355

configuration diagram, 219–221, 249
colour centre, 251
molecular, 219

confinement
electrical, 133
optical, 133
quantum, 141–174

conjugated molecule, 15, 109, 227–232
cyclic, 215
linear, 215

conjugated polymer, 15, 229–232
copper

band structure, 191
density of states, 191
interband absorption, 190
reflectivity, 192

Coulomb gauge, 333
covalent bond, polar, 32, 272
Cr3+, see chromium ion
Cr3+:Al2O3, see ruby
critical point, 84, 189
cross-section, scattering, 5
crystal

biaxial, 49
birefringent, 53
centrosymmetric, 308
class, 18
ionic, 272
molecular, 227
nonlinear, 308
symmetry, 18–20, 49, 52, 256, 308
uniaxial, 49, 311

crystal-field effect, 20, 255–257
dynamic, 256
static, 256

CuCl biexciton, 105
current density, 183, 337
cut glass, 13
cyclotron

energy, 284
frequency, 75
resonance, 284

cyclotron energy, 103

damping
coefficient, 33
free carrier, 183
phonon, 275, 278, 290

de Broglie wavelength, 142, 356
defect, optically-active, 250–255
degeneracy, 122, 130
degenerate four-wave mixing, 319
delayed fluorescence, 229
delocalized state, 22–23
density of states, 21–22

1-D, 143
2-D, 155
electron, 67
joint, 66, 71–72
momentum, 67

photon, 344
quantum dot, 144
quantum well, 143, 155
quantum wire, 143

density, optical, 4
depletion region, 363
detailed balance, 342
detector

infrared, 89, 166
intersubband, 166
photconductive, 89
quantum well, 163
responsivity, 87
semiconductor, 86–91

dextro-rotatory material, 55
diamagnetic shift, excitonic, 103
diamond

band parameters, 360
infrared transparency, 11
NV centre, 253–255
structure, 360

diatomic molecule, 220
dichroism

circular, 55
magnetic circular, 56

dielectric constant, 330
complex, 6–9
relative, 7, 331
static, 35, 275
tensor, 52

dielectric medium, 330
difference frequency mixing, 306
dimer, 229
diode

laser, 130–135
light-emitting, 129–130, 165, 232, 265
p–i–n, 363–364
p–n, 126, 130
photo-, 87–89

dipole
atomic, 29, 330
electric, see electric dipole
Hertzian, 30
molecular, 31
vibrational, 31, 275

dipole oscillator model, 28–44
free electron, 180–185
nonlinear, 299–302
phonon, 273–276

Dirac delta function, 245
Dirac notation, 65, 344
Dirac point, 236
direct band gap, 63, 116
dispersion, 46–48

anomalous, 47
electronic, 356
glass, 13, 42, 47
group velocity, 47
normal, 47
parameter, 47
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phonon, 272
plasmon, 204
polariton, 281

displacement, electric, 330
divergence theorem, 199
donor, 191, 355

levels, 196
doped glass, 16–17
doped semiconductor, 191–198, 355
double refraction, 49
down conversion, 307
Drude–Lorentz model, 33, 180–188
Dyakonov–Perel (DP) mechanism, 124
dye, organic, 225

effective mass, 358
electron, 71
heavy hole, 71
light hole, 71
polaron, 284
reduced, 72
split-off hole, 71

Einstein coefficients, 114, 340–343
electric

displacement, 330
field, 330
permittivity, 331
potential, 331
quadrupole transition, 349
susceptibility, 331

electric dipole
approximation, 346
matrix element, 346
moment, 30, 65, 66, 346
selection rules, 347
transition, 65, 346

electrical confinement, 133
electro-absorption, see absorption, in

electric field
electro-optic effect, 75, 160

coefficient, 313
linear, 54, 307, 313–316
modulator, 163, 314, 320
quadratic, 54, 320

electro-reflectance, 75
electroluminescence, 113, 126–135, 232
electromagnetic fields, 330–333
electromagnetic wave, 333–339
electron

bound, 29
free, see free electron
inner, 39
nearly free, 356
π, 15, 214
valence, 185, 351

electron–phonon coupling, 119, 247, 257,
282

electron-hole
droplet, 105
overlap, 153, 168

pair, 63, 95
recombination, 115, 126, 164

Elliott–Yafet mechanism, 124
ellipsometry, 86
elliptical polarization, 335
emerald, 259
emission

of light, see luminescence
spontaneous, 2, 113, 340
stimulated, 131, 342

energy-loss spectroscopy, 202
epitaxial growth, 127, 144, 172
equilibrium

quasi, 119, 131
thermal, 119, 131, 342

equipartition of energy, 142
erbium optical amplifier, 263
etalon, Fabry–Perot, 4
ethylene (C2H4) molecule, 214, 230
evanescent waves, 184
exchange interaction, 352
exciton, 95–109

absorption, 73, 98–101, 157–158
alkali halide, 108
binding energy, 96
Bohr radius, 97
Bose–Einstein condensation, 106
broadening, 100, 104
carbon nanotube, 241
charged, 173
free, 95–106
Frenkel, see Frenkel exciton
GaAs, 98, 100–102, 105, 158
in electric field, 102, 160
in magnetic field, 103
indirect semiconductor, 99
interactions, 104
molecular, 108, 231
Mott density, 104
nonlinear absorption, 105, 325
polydiacetylene, 231
quantum dot, 171, 173, 326
quantum well, 157–158, 325
radius, 96
rare gas crystal, 107
Rydberg energy, 97
screening, 99
self-trapped, 285
tightly bound, 95
Wannier, 95

experimental techniques
photoluminescence, 125
Raman scattering, 288
reflectivity, 84
transmission, 84

extinction coefficient, 6
extraordinary ray, 49, 50
EY mechanism, 124

F+
2 centre, 252

F-centres, 250–253
F8, see polyfluorene
Fabry–Perot etalon, 4
face-centred cubic lattice, 359
Faraday effect, 56
Faraday’s law, 332
Fermi energy, 122, 354
Fermi’s golden rule, 64, 344
Fermi–Dirac statistics, 120
fibre optics, 13, 48, 128, 166, 263,

322–324
field

electric, 330
magnetic, 332

field ionization, 102
filter, coloured glass, 171
fluorescence, 217, 348

delayed, 229
prompt, 229

fluorescent lighting, 264
four-wave mixing, 317

degenerate, 319
Fourier transform spectroscopy, 85
Franck–Condon principle, 221–224, 250
Franz–Keldysh effect, 74–75, 103

oscillations, 74
free electron

absorption, 12, 191–196
conductivity, 183
optical properties, 180–209
oscillator, 32
reflectivity, 14, 180–182, 191–196

free exciton, 95–106
Frenkel exciton, 95, 107–109

alkali halides, 108
molecular crystals, 108, 231
rare gas crystals, 107
self-trapped, 285

frequency
doubling, 300, 306
mixing, 305–308, 317
quadrupling, 306
tripling, 306, 318

Fresnel’s equations, 86, 338
fullerene, 241–243
fundamental absorption edge, 10, 68–82,

154

g factor, 353
GaAs

absorption data, 80, 100–102, 105, 158
band parameters, 361
band structure, 69
biexciton, 105
electroluminescence, 130
electron–phonon coupling, 283
exciton, 98, 100–103, 105
infrared reflectivity, 279
laser, 134
light-emitting diode, 127
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LO phonon lifetime, 291
p–i–n diode, 102, 130
photoluminescence, 121
plasmon, 202
quantum well, 106, 144, 151, 156, 177
Raman scattering, 202, 289
spin injection, 79

gain coefficient, 132
GaInAs, see InGaAs
GaInAsP emitter, 128
GaN

absorption, 117
light-emitting diode, 128, 165, 265
luminescence, 117
spin injection, 79

GaP
absorption, 93
light-emitting diode, 127
phonon polariton, 282
Raman scattering, 282, 289

GaSb band parameters, 361
Gauss’s law, 331
gemstones, 9
generalized coordinate, 222
germanium

absorption, 81
band parameters, 360
band structure, 68, 81
detector, 88
direct band gap, 82
exciton, 105
in magnetic field, 76
indirect band gap, 79, 80
phonon energy, 82

Glan–Foucault polarizing prism, 50
Glan–Thompson polarizing prism, 51
glass

coloured, 16, 171, 206
dispersion, 41
infrared absorption, 274
nonlinear refractive index, 322
optical properties, 12–13
refractive index, 12
semiconductor-doped, 16–17, 171
silica, 12, 42
stained, 206
types, 13

gold
interband absorption, 190
nanoparticles, 207
reflectivity, 211

golden rule, see Fermi’s golden rule
graphene, 235–237
group velocity, 42, 357

dispersion, 47

Hanle effect, 124
harmonic oscillator, see oscillator,

harmonic
heavy hole

band, 70
transition, 71

Heisenberg uncertainty principle, 141
Hertzian dipole, 29
heterojunction, 134, 233
heterostructure, 144, 233
HgCdTe detector, 89
hole, 355
HOMO level, 217
hopping transport, 107, 285
horizontal polarization, 335
hot carrier effect, 122
Huang–Rhys parameter, 223, 249
hydrocarbon, aromatic, 227
hydrogen molecule, 220

Iceland Spar, 50
II–VI semiconductor, see semiconductor,

II–VI
III–V semiconductor, see semiconductor,

III–V
impurity

absorption, 73, 196–198
level, 196, 355
paramagnetic, 255–260

InAs
absorption, 72
band parameters, 361
detector, 89
quantum dot, 172, 326

index ellipsoid, 60, 313
index of refraction, see refractive index
indicatrix, 313
indirect band gap, 63, 79–82, 117
indirect transition, 79–82
indium tin oxide (ITO), 233
inelastic light scattering, 285–290
infrared

absorption, see absorption, infrared
detector, 89, 166
reflectivity, 193, 273–281

InGaAs
detector, 88
photoluminescence, 122
quantum dot, 326

injection of carriers, 118, 127
InP

band parameters, 361
Raman scattering, 289

InSb
band parameters, 361
detector, 89
reflectivity, 193
spin injection, 79

insulator, 354
doped, 16–17, 255
optical properties, summary of, 9–12
refractive index, 11
transparency range, 11

intensity, optical, 336

interaction picture, 346
interband absorption, see absorption,

interband
interband luminescence, see

luminescence, interband
intersubband transition, 166
intersystem crossing, 229, 254
intervalence band absorption, 195
ionicity, 272
ionosphere, 182
isotropic medium, 35, 48, 317

nonlinear, 321
ITO, 233

Jablonski diagram, 227, 242
joint density of states, 66, 71–72

Kane model, 71
Kataura plot, 240
KDP crystal, 297, 309, 312
Kerr effect, 54, 320

cell, 320
constant, 54
gate, 320
magneto-optical, 56
optical, 318–321

ket notation, 65
Kleinman symmetry, 322
Kramers–Kronig relationships, 44–46, 86

laevo-rotatory material, 55
Landau levels, 75, 104
Landé g factor, 353
lanthanides, 257
Larmor precession frequency, 124
laser

cavity, 131
colour centre, 263
definition, 342
diode, 130–135
efficiency, 133
four level, 261
heterojunction, 134
modes, 132
Nd:YAG, 261
oscillation condition, 132
quantum cascade, 167
quantum well, 166
ruby, 269
solid-state, 261–264
terahertz, 167
three level, 261
Ti:sapphire, 262
ultrafast, 264

lattice absorption, see phonon absorption
lattice matching, 127, 146, 165
lattice vibrations, see phonon
LED, see light-emitting diode
left-handed material, 208
lens, perfect, 208
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Lenz’s law, 332
LiF excitonic absorption, 108
lifetime

non-radiative, 115
radiative, see radiative lifetime

lifting of degeneracies, 19
light-emitting diode, 129–130, 165

organic, 232–235
phosphor-converted, 265
quantum well, 165
white, 265

light hole
band, 70
transition, 71

light polarization, 334
lighting

fluorescent, 264
solid-state, 129, 265

linear electro-optic effect, 54, 313–316
linear polarization, 335
local field, 43
localized state, 96, 107, 216, 247
longitudinal cavity mode, 132
longitudinal waves, 200, 276
Lorentz correction, 43
Lorentz model, 29–44, 181
Lorentzian line shape, 36, 303
low-dimensional structures, 141–174
LS coupling, 352
luminescence, 4, 113–136

cathodo-, 135–136
centres, 247–266
efficiency, 115
electro-, 126–135
interband, 115–118
photo-, 118–126
polarization, 123
quantum well, 164

luminescence spectra
Alq3, 229
C60, 242
carbon nanotube, 241
F+

2 band in KF, 252
Ga0.47In0.53As, 123
GaAs, 121
GaAs LED, 130
GaN, 117
MeLPPP polymer, 232
Nd:YAG, 258
phosphor, 266
polyfluorene, 234
pyrromethene dye, 225
Ti:sapphire, 261
tricolour fluorescent lamp, 265
white-light LED, 266
ZnCdSe quantum well, 165

LUMO level, 217
Lyddane–Sachs–Teller relationship, 276

magnetic

circular dichroism, 56
dipole transition, 349
quantum number, 353

magnetization, 332
magneto-absorption, 75
magneto-optics, 56
material dispersion parameter, 47
matrix element, 344

electric-dipole, 346
interband, 65, 68
quantum well, 152

Maxwell’s equations, 330–333
MBE, see molecular beam epitaxy
medium

anisotropic, 48–54
dielectric, 330
isotropic, 35, 48, 49
left-handed, 208

MeLPPP polymer, 231
metal–organic chemical vapour

deposition, see MOCVD
metals, 354

interband absorption, 188
nanoparticle, 206
optical properties, 13–14, 180–191
reflectivity, 14, 185–191
ultraviolet transparency, 14, 186

metamaterial, 209
metastable state, 349
Mie theory, 207
Miller’s rule, 302
mirror symmetry rule, 224, 250, 253, 260
MOCVD, 127, 144
mode, longitudinal cavity, 132
modulator, electro-optic, 163, 314, 320
molecular beam epitaxy, 127, 144
molecular material, 214–243

aromatic hydrocarbon, 227
conjugated, 15, 109, 215, 227–232
crystals, 108, 227, 231
electronic states, 216–217
Frenkel excitons, 108
infrared absorption, 32
optical properties, 14–16, 216–226
opto-electronic devices, 232–235
vibronic coupling, 218–219

molecule
covalent, 32
diatomic, 220
polar, 31

momentum scattering time, 183
momentum, electromagnetic, 344
monomer, 229
Mott density, 104
MOVPE, 127, 144
multiple quantum well, 145
multiple resonances, 38–41
multiplicity, spin, 217, 352

n-type semiconductor, see
semiconductor, n-type

NaCl
absorption spectrum, 108
infrared refractive index, 58
ionicity, 32
Reststrahl band, 280

nanoparticles, 206
nanostructures, 141–174, 235–243
nanotube, 235, 237–241
natural lifetime, see radiative lifetime
Nd:YAG, 258

laser, 261
nearly free electron model, 356–359
negative refraction, 207–209
Neumann’s principle, 18, 308
NH3, see ammonia
nitride compounds, 128, 165, 265
non-radiative lifetime, 115
non-resonant nonlinearity, 299–302
nonlinear

absorption, 105, 304, 324–326
coefficient, 308
coherence length, 311
crystal, 308
frequency mixing, 305–308, 317
optics, 295–326
phase shift, 322, 324
polarization, 296, 306
refractive index, 319, 325
susceptibility, 295–298, 302, 321

notation for angular momenta, 351–352
NV centres in diamond, 253–255

O-LED, 232
occupancy factors, 114, 119, 122
octahedral environment, 256, 260
one-dimensional material, 143, 238
open-circuit voltage, 91
optic axis, 49
optical

activity, 55
amplification, 131, 261, 343
anisotropy, 19, 48–54
chirality, 55–56
coefficients, 2–5
confinement, 133
density, 4
fibre, 13, 48, 322–324
intensity, 336
Kerr effect, 318–321
limiter, 243
materials, summary of, 9–17
modulator, 163, 314, 320
nonlinearity, 295–326
orientation, 77, 123–125
phenomena, definitions, 1–2
polarization, see polarization, optical
pumping, 254
rectification, 307
retarder, 51
spin injection, 77, 123, 158
waveguide, 134



394 Index

opto-electronics
detectors, 86–91
light-emitting devices, 126–135, 164,

232, 265
modulators, 163, 314, 320
organic, 232–235

ordinary ray, 49, 50
organic materials, see molecular material
orientation, optical, 77, 123–125
oscillator

anharmonic, 290, 299
atomic, 29–31
bound electron, 28
damped, 31, 33
dipole, 29–38
forced, 33
free electron, 32, 180
harmonic, 33, 341
harmonic (2-D), 170, 178
Lorentz, 33–38
nonlinear, 299–302
strength, 40, 347
vibrational, 31–32, 273
vibronic, 221

output coupler, 132
oxide–confined laser, 134

p–i–n diode, 363–364
p–n diode, 126, 130
P-567 dye, 225
p-type semiconductor, see

semiconductor, p-type
parabolic band approximation, 71
parallel band effect, 189
paramagnetic impurity, 255–260
parametric amplification, 307
parity

notation, 241, 260
selection rule, 348
wave function, 148

Pauli exclusion principle, 63, 114
PDA, see polydiacetylene
permeability, magnetic, 332
permittivity, relative, 7, 331
perspex, 15
PFO, see polyfluorene
phase lag due to scattering, 31
phase matching, 298, 310–312, 318
phonon, 271–291

absorption, 10, 32, 272, 278–280
acoustic, 271, 286, 289
Brillouin scattering, 289–290
dispersion, 272
infrared active, 271–273
lifetime, 275, 278, 290–291
longitudinal optical, 276
optical, 271–273
polariton, 281
Raman scattering, 287–289
scattering, 291

transverse optical, 272
virtual, 283

phonon-assisted transition, 79
phosphor, 136, 264–266
phosphorescence, 217, 229, 348
photoconductivity, 89
photocurrent, 87

spectrum, 103, 163, 231
photodetector, 86–91, 163
photo-elastic effect, 53
photoluminescence, 113, 118–126

excitation spectroscopy (PLE), 125
spectroscopy, 125
time-resolved, 125

photon angular momentum, 348
photovoltaic device, 90–91, 234
π electron, 15, 214
Planck formula, 343
plasma, 180

electron-hole, 104
frequency, 14, 181, 185, 193, 200
oscillations, 198
reflectivity, 180–182, 193

plasmon, 198–207
bulk, 198–202
dispersion, 200
doped semiconductor, 202
metal, 201
Raman scattering, 202
surface, see surface plasmon

plasmonics, 202, 206, 287
PLE, 125
plexiglass, 15
Pockels effect, 54, 307, 313–316
point group symmetry, 18
Poisson’s equation, 331
polar bond, 32, 272
polariton

exciton, 106
phonon, 281
surface plasmon, 203

polarization, dielectric, 34, 43, 330
nonlinear, 296

polarization, optical, 334
σ±, 77, 336
circular, 335
elliptical, 335
horizontal, 335
linear, 335
p-plane, 86
random, 335
s-plane, 86
vertical, 335

polarization, spin, 78, 158
polarizer, 50
polaron, 282–285

large, 285
mass, 284
radius, 284
small, 285

poly-phenylenevinylene (PPV) LED, 233
polyacetylene molecule, 230
polydiacetylene (PDA)

absorption spectrum, 231
exciton, 109
photocurrent spectrum, 231
structure, 230

polyfluorene
absorption spectrum, 16
luminescence, 234

polymer
conjugated, 15, 109, 229–232
saturated, 230

polythene molecule, 15, 230
polyyne absorption, 226
population inversion, 131, 261, 343
potential

electric, 331
scalar, 333
vector, 332, 345

Poynting vector, 336
PPV, see poly-phenylenevinylene
prism, 47

polarizing, 50
propagation of light, 1–2, 28–56
pulse broadening, 47, 323
pyrene (C16H10) absorption, 109
pyrromethene 567 dye, 225

quadratic electro-optic effect, 54, 320
quantum

box, see quantum dot
cascade laser, 167
confined Stark effect, 160–164, 174
confinement, 141–174
harmonic oscillator, 341
optics, 23, 307, 341, 347
size effect, 16, 141, 226
statistics, 122
transition rate, 344

quantum dot, 142, 167–174, 326
CdSe, 170
colloidal, 170–172
InAs, 172
InGaAs, 326
self-assembled, 172–174, 326

quantum efficiency
detector, 87
laser, 133
radiative, 115

quantum well, 142, 144–167
absorption, 152
exciton, 157–158, 325
finite, 149
GaAs, 144, 151, 156, 158, 163
GaInAs, 165, 325
infinite, 147
laser, 166
luminescence, 164
multiple, 145
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quantized levels, 146
selection rules, 152
ZnCdSe, 165

quantum wire, 142, 238
quarter-wave plate, 51
quartz, 55
quasi-equilibrium, 120, 131
quaternary alloy, 128
qubit, 254

Rabi oscillations, 347
radiative

efficiency, 115, 165, 168
lifetime, 114, 116, 126, 341
transition, see transition, radiative

Raman scattering, 202, 285–289
experimental arrangement, 288
GaAs, n-type, 202
GaP polariton, 282
III–V semiconductors, 289
linewidth, 291
stimulated, 321
surface-enhanced, 287
time-resolved, 291

rare-earth ion, 255, 257–259
rare gas crystals, excitons, 107
Rayleigh scattering, 5
reciprocal lattice, 356
rectification, optical, 307
reduced mass, 29, 97, 275
reduced zone scheme, 358
reflection

coefficient, 3, 7, 278, 339
measurement, 84

reflectivity
free carrier, 193
free electron, 180–182
infrared, 193, 273–281
plasma, 180–182

reflectivity spectra
AlSb, 293
aluminium, 187
copper, 192
GaAs, 279
gold, 211
InAs, 279
n-type InSb, 193
silver, 14

refractive index
complex, 6–9, 337
definition of, 3, 334
dispersion, 13, 40, 46–48
ellipsoid, 60, 313
extraordinary, 50
imaginary part, 6
negative, 207–209
nonlinear, 319, 325
ordinary, 50
physical origin, 31
real part, 6

relationship to dielectric constant, 7
refractive index data

fused silica, 12
glasses, 13
insulators, 11
NaCl, 58
semiconductors, 12
silica glass, 41, 46
uniaxial crystals, 51

relative dielectric constant, complex, 7
relative permittivity, 7
relaxation process, 118, 219, 222, 248
resonant nonlinearity, 302–305, 324–326
responsivity, 87
Reststrahl band, 277–278
retarder plate, 51
rotatory power, 60
ruby, 256, 259

laser, 261, 269
transmission spectrum, 17

rule of mutual exclusion, 288
Russell–Saunders coupling, 352

sapphire (Al2O3), 9, 17, 259
tranmission, 10

saturable absorber, 305, 324–326
saturated molecule, 15, 230
saturation intensity, 304
scalar potential, 333
scattering

Brillouin, 286, 289–290
cross-section, 5
elastic, 2
electron–phonon, 119, 194
inelastic, 2, 201, 285–290
phonon–phonon, 291
Raman, 285–289
Rayleigh, 5

second-harmonic generation, 306
second-order nonlinear optics, 296, 300,

305–316
selection rules, 347–349

J , 349
L, 349
MJ , 77
S, 349
σ±, 348
l, 348
m, 348
electric dipole, 348
intersubband, 166
IR active phonon, 271
Landau level, 76
parity, 154, 348
quantum well, 152
Raman, 288
spin, 227, 348
wave vector, 66

self-assembled quantum dot, 172–174,
326

self-phase modulation, 322
self-trapping, 107, 285
Sellmeier equation, 59
semi-classical interaction, 23, 65
semiconductor, 354

absorption, 68–79
diode, 363–364
direct gap, 68, 116, 118
doped, 191–198, 355
free carrier effects, 191–196
II–VI, 68, 97, 129, 171, 361
III–V, 68–71, 97, 128, 289, 361
indirect gap, 79, 117
laser, 130–135
light-emitting diode, 129–130
luminescence, 115–118
n-type, 191, 194, 196, 355
optical properties, summary of, 9–12
p-type, 129, 191, 195, 356
photodetector, 86–91
quantum dot, 167–174, 326
quantum well, 144–167, 325
refractive index, 12
transparency range, 12

semiconductor-doped glass, 16–17, 171
SESAM, 326
short-circuit current, 91
SiC light-emitting diode, 127
σ± polarization, 77, 336
signal velocity, 42
silica, see SiO2, glass
silicon

absorption spectrum, 80, 83
band parameters, 360
band structure, 84
effective mass anisotropy, 197
electron-hole droplet, 105
exciton, 105
impurity absorption, 197
indirect band gap, 79
photodetector, 88
solar cell, 91

silver
interband absorption, 190
reflectivity, 14

single-photon source, 173, 253
singlet state, 217, 352
SiO2

crystalline, 55
glass, 12, 41, 56, 274

skin depth, 184
slope efficiency, laser, 133
Snell’s law, 1, 50, 208
sodium chloride, see NaCl
solar cell, 90–91, 234
solid-state laser, 261–264
solid-state lighting, 129, 265
soliton, 322–324
spectral lineshape function, 303
spectroscopic notation, 351–352
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spectroscopy
absorption, 84
photoluminescence, 125
reflectivity, 84
transmissivity, 84

spin
angular momentum, 351
injection, 77–79, 123, 158
multiplicity, 217, 352
polarization, 78, 123, 158
pumping, 255
relaxation, 124
selection rule, 227, 349
singlet, 217, 352
triplet, 217, 352

spin–orbit coupling, 71, 78, 229, 257, 351
spintronics, 77, 158
split-off hole transition, 71
spontaneous emission, 2, 113, 340
stained glass, 206
Stark effect, 259, 353

linear, 163, 353
quadratic, 162, 353
quantum-confined, 160–164

stimulated Brillouin scattering, 321
stimulated emission, 131, 342
stimulated Raman scattering, 321
Stokes scattering, 286
Stokes shift, 4, 219, 248, 253, 260
Stranski–Krastanow crystal growth, 172
substrate material, 126
sum frequency mixing, 306
superlattice, 145
surface plasmon, 202–207

localized, 207
polariton, 203

surface wave, 203
surface-enhanced Raman scattering, 287
susceptibility

electric, 34, 43, 295, 331
magnetic, 332
nonlinear, 295–298
tensor, 49

symmetry
class, 18
effects of, 18–20, 308
Kleinman, 322
lowering, 19, 53, 148, 153, 163, 256
translational, 19, 22

terahertz laser, 167
term, atomic, 352
ternary alloy, 128
thermal equilibrium, 119, 131, 342
third-order nonlinear optics, 296, 305,

317–326

threshold current, 132
Ti3+ ion, 260
Ti:sapphire

absorption and emission, 260
laser, 262

tightly bound exciton, 95
time–bandwidth product, 47, 264
time-resolved luminescence, 122, 125
transition

allowed, 69, 348
direct, 64–79
electric dipole, 65, 346
electric quadrupole, 349
forbidden, 348
free carrier, 195
indirect, 79
interband, 62–69, 152
intersubband, 166
magnetic dipole, 349
non-radiative, 115
phonon-assisted, 79
probability, 40
radiative, 114, 340–349
rate, 64, 344
selection rules, 347
singlet–singlet, 217, 228
singlet–triplet, 217, 229
two-photon, 345
vibronic, 216–226, 247–250
virtual, 302

transition metal, 190
transition-metal ion, 255, 259–260
translational order, 18
transmission

coefficient, 3
measurement, 84

transmission spectra
CdSe, 10
germanium, in magnetic field, 76
ruby, 17
sapphire, 10, 17

transmissivity, 3
transparency range, 9, 11, 12
transverse waves, 200, 276
traps, 115
tricolour lamp, 264
triplet state, 217, 352
tunnelling device, 150
two-dimensional harmonic oscillator, 170,

178
two-dimensional material, 143, 236
two-photon transition, 345
type I and II phase matching, 312

ultraviolet transmission
glass, 13

metals, 186
uniaxial crystal, 49, 311
unpolarized light, 335
Urbach’s rule, 198

vacancy, anion, 251
valence band, 354
valence electron, 185, 351
valency, 185
van Hove singularities, 84, 239
vector potential, 332, 345
velocity

group, 42, 357
phase, 42, 334
signal, 42

Verdet coefficient, 56
vertical-cavity surface-emitting laser, 133
vertical polarization, 335
vibrational

absorption, see phonon absorption
oscillator, 31–32
relaxation, 219

vibronic
absorption, 15, 219, 247
band, 21, 225, 226, 228, 231, 247, 260
coupling, 218–219, 247–250, 255–257
emission, 219, 247
wave function, 223

virtual transition, 302

Wannier–Mott exciton, 95
wave

electromagnetic, 333–339
evanescent, 184
impedance, 335
surface, 203
vector, 6, 23, 334

wave function, Bloch, 20, 359
wave number units, 202, 278
wave plate

half, 51
quarter, 51

waveguide, 134
Wood’s anomaly, 206
wurtzite structure, 79, 362

YAG, see Nd:YAG

Zeeman effect, 20, 353
zero-dimensional material, 143, 167
zero-phonon line, 250
zero-point fluctuations, 341
zinc-blende structure, 70, 361
ZnCdTe/ZnSe quantum well, 165
ZnSe, electron–phonon coupling, 283
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