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Abstract – In this paper, the second-harmonic generation (SHG) in a one-dimensional nonlinear
crystal that is embedded in air is investigated. Previously, the identical configuration was studied
in Li Z. Y. et al., Phys. Rev. B, 60 (1999) 10644, without the use of the slowly varying amplitude
approximation (SVAA), but by adopting the infinite plane-wave approximation (PWA), despite
the fact that this approximation is not quite applicable to such a system. We calculate the
SHG conversion efficiency without a PWA, and compare the results with those from the quoted
reference. The investigation reveals that conversion efficiencies of SHG as calculated by the two
methods appear to exhibit significant differences, and that the SHG may be modulated by the
field of a fundamental wave (FW). The ratio between SHG conversion efficiencies as produced
by the two methods shows a periodic variation, and this oscillatory behavior is fully consistent
with the variation in transmittance of the FW. Quasi-phase matching (QPM) is also studied, and
we find that the location of the peak for SHG conversion efficiency deviates from ∆d= 0, which
differs from the conventional QPM results.

Copyright c© EPLA, 2012

Introduction. – Means to obtain efficient frequency
lasing is a topic of great interest in the field of nonlinear
optics [1,2]. The traditional approach involves a birefrin-
gent crystal, which can satisfy the phase matching (PM)
condition, to achieve high-efficiency second-harmonic
generation (SHG). However, there are some restrictions
in the choice of suitable materials, which arise from issues
such as the walk-off effect. A more recent approach is
based upon the quasi-phase matching (QPM) configura-
tion [3–15], which utilizes the reciprocal lattice vector to
compensate for wave vector mismatch between the funda-
mental wave (FW) and the second-harmonic wave (SHW);
with this technique efficient SHG is easily obtained. In
what follows, the periodic optical superlattice (POS),
quasi-periodic optical superlattice (QOS), and aperiodic
optical superlattice (AOS) are successively presented and
shown to satisfy the QPM. Furthermore, the QOS and
AOS can be designed to achieve multiple-wavelength SHG
in a single sample. In addition, another optimized struc-
ture, dubbed non-periodic optical superlattice (NOS) [16]

(a)E-mail: me zlm@sohu.com

is proposed, and it is found to exhibit additional flexibility
in its applications.
Optical waves propagating in nonlinear materials evolve

according to the coupled-wave equations [3]. It is difficult
to solve these equations rigorously, so that some approx-
imations are often introduced to simplify the equations.
Examples of such approximations include the slowly vary-
ing amplitude approximation (SVAA), infinite plane-wave
approximation (PWA), and the non-depleted pump wave
approximation (NPWA), among others. With the adop-
tion of such approximations, the solutions to the coupled-
wave equations are easy to obtain [3]. However, it is
worth pointing out that these approximations are not
always valid, and that they should only be adopted if
appropriate on the basis of an actual scenario. For exam-
ple, SVAA fails when the reflective SHW is not ignor-
able [17]. As regards the NPWA, the pump depletion
cannot be neglected when the SHG conversion efficiency
is relatively high [18]. Finally, the PWA neglects many
factors restricted to pump wave, such as diffraction, etc.
In ref. [19], the authors did not take into account reflec-
tions of the pump wave, and treated the pump wave simply

44004-p1



Jing Zhao and Li-Ming Zhao

as a forward-propagating wave, which the authors justi-
fied by assuming that the pump was adjusted away from
any resonances and the band edge. However, treatments
that neglect pump wave reflections will fail in systems
where the reflectance of the pump wave can be compara-
ble with transmittance. In addition, some prior works have
ventured beyond these sorts of approximations to calculate
SHG and successfully attained accurate results [20–22].
Considering the case where a nonlinear crystal is embed-
ded in air, the reflections of FW and SHW are so strong
that they cannot be neglected, so that use of the PWA and
SVAA are invalid for such a system. In ref. [17], the authors
adopted a transfer matrix approach without incorporating
the SVAA, but which instead used the PWA to study the
SHG from a one-dimensional nonlinear crystal embedded
in air. Therefore, it might be interesting to calculate the
SHG in an approach which makes use of neither of these
approximations (SVAA and PWA) for an identical config-
uration, and then compare the results obtained by the two
methods.
With this inspiration, in this paper we apply a method

to evaluate the SHG in the same structure as described
in ref. [17], but without using the SVAA or PWA, and
then compare the relevant results. We find that the SHG
as studied using our method is quite different from that
found in the previous publication: it is regulated by the
field of the FW, and the ratio between its value and the
value of the SHG as studied by the method in ref. [17],
which presents a periodic vibration. We also find that
this oscillation is fully consistent with the transmittance
variations for the FW. In addition, the QPM for this
case appears to be distinct from what is found in the
conventional QPM situation.

Theory. – We examine a one-dimensional nonlinear
crystal that is embedded in a homogeneous dielectric
media. The incident light is normally launched upon the
surface of sample from its left side. Under the non-depleted
pump wave approximation, the FW (SHW) is governed by
the following equations:
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for the FW (SHW) in the l-th layer of the material,
respectively.
The electric field of the FW in the l-th layer can be

expressed in the form
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is the transfer matrix of the l-th layer.

Assuming that the total number of layers of the configura-
tion is N , the overall transfer matrix can be obtained from
cascading result of the successive individual T̂l. Consider-

ing the boundary condition B
(1)
N = 0 and the amplitude of

pump wave A
(1)
1 , the amplitudes A

(1)
l and B

(1)
l of every

layer can be determined.
The electric field for the SHW in the l-th layer can be

described by
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where A
(2)
l and B

(2)
l represent the amplitudes for the

forward and backward SHW in the l-th layer. Upon
substitution of eqs. (3) and (4) into eq. (2), we get
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Considering the continuous condition of the electric and

magnetic fields at the interface, A
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Accounting for the initial condition A
(2)
1 = 0 and B

(2)
N = 0,

the conversion efficiencies of the forward and backward
SHG will then be given by

ηforth =
n
(2)
N
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. (8)

Analysis. – In our investigation, the sample modeled
is a homogeneous crystal made of LiNbO3, with a crys-
tal length of d= 200µm, which is embedded in air. The
wavelength of incident light is λ= 1.064µm, and its inten-
sity is set to I = 1.328× 109W/m2, which corresponds to
|E(1)1 (x1)|2 = 1.00V2/µm2. The nonlinear coefficient d33
is 47.0 pm/V, and the refractive indices for the FW and
SHW in the crystal are taken from ref. [23]. Figure 1
shows the SHG conversion efficiencies as calculated by our
method (solid line) and as calculated in ref. [17] (dashed
line) vary with phase mismatch (∆k= 2k1− k2). In the
figure, comparisons are shown for the (a) total, (b) back-
ward, and (c) for the forward SHG conversion efficiency.
It is clearly evident in fig. 1(a)–(c) that the locations for
all SHG peak values in each of the two methods devi-
ate from ∆k= 0. This is in contrast to the results from
conventional PM. In the results, there are two peaks, situ-
ated at the same locations: ∆k=−0.007 and ∆k= 0.006,
for total and forward SHG. However, the peak locations
differ for the backward SHG, as seen in fig. 1(b). For the
dashed curve, the peak values remain at ∆k=−0.007 and
∆k= 0.006, while the locations for the solid curve are
shifted to ∆k= 0.005 and ∆k=−0.005. This implies that
the difference in peak locations from the conventional PM
is mainly due to the avoidance of the SVAA, where the
reflected SHW is not considered, and that the interference

Fig. 1: Variation of the SHG conversion efficiencies with ∆k, as
calculated by our method (solid line) and in ref. [17] (dashed
line): (a) total, (b) backward and (c) forward SHG conversion
efficiency.

effect between the transmitted and reflected SHW leads to
the peak deviating from ∆k= 0. For other choices of crys-
tal length values, the peak locations for forward and total
SHG remain consistent for both approaches, but the back-
ward SHG peak location still shows a difference. Moreover,
it is worth noting that the locations for the SHG peak
values do change as a function of the crystal length.
A one-dimensional POS is studied, in which the struc-

ture is composed of repeated inverted poled layers of
LiNbO3, and the structure is embedded in air. We assume
that the number of layers is chosen as N = 52, the thick-
ness of each crystal layer is dl, and ∆d= dl− lC denotes
the deviation from the coherent length lC , while all other
necessary parameters of this system are the same as those
as used in producing fig. 1. The dependence of SHG
conversion efficiency on ∆d is shown in fig. 2(a) and (b),
respectively for the SHG conversion efficiency calculated
in the method of ref. [17] (solid curve in (a)) and ours
(solid curve in (b)), the smooth curve represents the SHG
conversion efficiency evaluated in the conventional sample
that is embedded in a nonlinear non-polarized LiNbO3
medium. In order to elaborately present the variation of
SHG conversion efficiency, two illustrations showing in
part the changes of the SHG conversion efficiency and
transmittance are introduced, the upper layers give the
dependence of the SHG conversion efficiencies on ∆d, and
the lower layers show the transmittance. It is clearly seen
that the smooth curve has only one peak situated at
∆d= 0, yet the case of QPM is quite different from that
for the solid curves. It is clearly seen from fig. 2(a) that
the solid curve oscillates periodically around the conven-
tional one, and curve-outline is the same with the smooth
one. Considering the interference of the forward and back-
ward SHW, the transmittance of SHW is presented in the
lower layer of the illustration, and obviously, the variation
behavior of SHG conversion efficiency is fully consistent
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η

∆d

η

∆d

Fig. 2: Variation of the SHG conversion efficiencies with ∆d (∆d= dl− lC), (a) for the conversion efficiency calculated in the
method of ref. [17] (solid curve), the illustration shows in part the variation of it (upper layer) and the transmittance of SHW
(lower layer) with ∆d; (b) for SHG conversion efficiency calculated in our method (solid curve), the illustration displays the
dependence of it (upper layer) and transmittance of FW (lower layer) on ∆d; the smooth curve denotes SHG conversion efficiency
for conventional sample.

Fig. 3: SHG conversion efficiencies vs. N , calculated for conventional sample (smooth line) and for a sample embedded in air
(the two oscillatory lines, our method (solid line) and method from ref. [17] (dashed line)): (a) forward, (b) backward, and (c)
total SHG. The inserted picture in (c) shows the conversion efficiency (solid curve) and energy of the FW field (the circled
curve) as found in our method.

with the transmittance, and the SHG conversion efficiency
reaches the peak value when the transmittance resonance
occurs. While for fig. 2(b), the solid curve also vibrates
periodically around the traditional scenario, but the curve-
outline is different from the conventional one, there exists
two clusters of peaks which deviate from the conventional
curve. To investigate the chief causes of the two clusters of
peaks, the transmittance of FW is presented in the lower
layer of the illustration. It is clearly seen that the curve-
outline for SHG conversion efficiency is almost consistent
with the transmittance, but there are some peaks such
as the peak named I deviating from the resonant peaks
of the FW. And we find that these peaks actually corre-
spond to the resonant peaks of SHW. At this time, the
origin of the two clusters of peaks is clear for us, in fact,
they correspond to the transmittance resonance for the
FW and SHW, this point is verified by the simulation.

Using other values of N , similar results can be obtained,
except for the specific locations for the peak of SHG.
We have calculated the SHG conversion efficiency as a

function of the number of layers N , where N is taken from
2 to 202 and dl = lC , with the results shown in fig. 3. In
that figure, the smooth curve denotes the SHG conversion
efficiency in conventional sample, and the two oscillatory
curves represent the SHG conversion efficiencies in a
sample embedded in air, as calculated by using our method
(solid curve) as well as that of ref. [17] (dashed curve).
Obvious differences are seen in the variations of the three
curves in fig. 3(a)–(c). In fig. 3(b), the backward SHG
in the conventional sample is zero, as opposed to the
result from the case where the crystal is embedded in air
(solid and dashed curves), and the value calculated by the
method in ref. [17] (dashed curve) is always higher than
the result from our method (solid curve). For the forward
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Fig. 4: (a) Ratio of SHG conversion efficiency and (b) trans-
mittance as functions of N .

and total SHG in fig. 3(a) and (c), the SHG conversion
efficiencies increase with the growth of the crystal layers
number; this indicates that the increasing SHG arises from
satisfying the QPM condition. In addition, the solid and
dashed curves oscillate around the smooth curve with
different values and periods, where the oscillatory period
for the solid line (9.000) is twice that of the dashed
line (4.500). The oscillations in the dashed curve mainly
originate from the interference of forward and backward
SHWs. While the variations in the solid curve are mainly
attributed to the modulation of the FW field, which is
verified in the inserted picture in fig. 3(c), where the
picture shows that the variation of the total conversion
efficiency (solid curve) in our method is fully consistent
with the energy of the FW field (circled curve), i.e. that
the SHG reaches its peaks and troughs when the energy of
the FW field reaches its peaks and troughs, and the SHG
reaches peak values when transmittance resonance occurs.
With increasing N , the amplitude of oscillation grows, and
the difference in conversion efficiency as calculated by the
two different methods corresponds to this growth, with
a maximum difference at N = 197 where ∆η= |ηref.[17]−
ηour way|= 2.89× 10−4.
To evaluate the effect of the modulation of the FW field

on the SHG, we can define a ratio= ηour way/ηref.[17]. In
order to compare the SHG that is calculated in the two
methods, that ratio is plotted in fig. 4(a), while fig. 4(b)
shows a plot of the transmittance of the FW as it varies
withN . Clearly evident in the figure, the SHG ratio ranges
from 0.381 to 1.143 and performs a periodic oscillation,
while the transmittance also oscillates periodically from
0.583 to 1.000, and the two oscillatory behaviors are fully
correlated. That is to say, the SHG ratio reaches a peak (or
trough) when the transmittance is at a peak (or trough),
and when transmittance resonance occurs the SHG ratio
attains its maximum value.

Summary. – In conclusion, we have investigated SHG
in a one-dimensional nonlinear crystal that is embedded

in air by adopting a method that does not make use of
the PWA or the SVAA, and have compared the results
with corresponding results that are derived from the
method proposed by ref. [17], which investigates the same
configuration without resorting to the SVAA, but which
uses the PWA that is not applicable to the system. Our
results indicate that the SHG as calculated by our method
presents significant differences: it is modulated by the field
of the FW, and the ratio between its value and the SHG
as calculated by the method in ref. [17] exhibits a periodic
oscillation, which is consistent with the oscillation of the
FW transmittance. In addition, the QPM is found to differ
from that in the conventional QPM scenario.
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