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Abstract: According to modern cosmology, expansion of the universe is due to the metric
changing of spacetime itself. Here, we propose to mimic an expanding universe by utilizing
optical interference and helicoid waveguides. The evolution of interference pattern in the helicoid
waveguide is investigated theoretically and experimentally. For precise measurements, we design
an air helicoid waveguide which allows us to investigate the wave front of laser beams from
the waveguide. Redshift of a Gaussian wave packet in the expanding universe is demonstrated
with high precision, showing that the helicoid waveguide acts as a parabolic gradient index lens
exactly. The proposed waveguide structure can be used as an efficient waveguide adapter.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since 1920s, the expansion of the universe has been proposed and observed by a few pioneer
astronomers (e.g. George Lemaitre in 1927 and Edwin Hubble in 1929) by measuring the receding
velocities of nearby galaxies [1]. In the recent 20 years, astronomical surveys in multi-wavelength
regime have progressed very fast and measured the cosmic expansion rate very accurately through
the observations of cosmic microwave background radiation [2], the baryon acoustic oscillation
from galaxy spectroscopic survey [3] and the luminosity distance of Type-Ia supernovae data
[4]. These data from large-scale structure of the Universe have provided abundant information,
but also challenged our understanding about the nature of the expansion of the spacetime. So
far, theoretical models vary about the reason of expansion. More information is needed in the
development of the underlying theory. Nevertheless, in recent years, more and more [5–13]
types of general relativity analogues have been found in condensed matter and optical systems.
To demonstrate theoretical models and improve our understanding, it is very helpful to build
experimental analogue systems in the laboratory and exhibit the simulated phenomena of the
expanding spacetime.

Analogue gravity has been studied in various table experimental systems. In 1981, W.G. Unruh
theoretically proposed the hydrodynamical analog of an event horizon [14], which is based on the
mathematical similarity between the motion of sound waves in a convergent fluid flow and the
behavior of a scalar field in a classical gravitational background. Since then, various realizations
have been performed for the analog of Hawking radiation, such as surface waves on moving water
[15], Bose-Einstein condensates [5–8], Fermi-degenerate liquids [9], ion rings [10], polariton
fluids [11] and nonlinear optical fiber horizon [12,13].
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Besides, because of the equivalence between the Maxwell equations in curved space-time
and those in the corresponding complex inhomogeneous medium [16], transformation optics
[17–19] was introduced to control light artificially [20–22] and utilized to simulate the analog
effects of general relativity [23], such as black holes [24–28] and wormholes [29–31], Rindler
spacetime and cosmic strings with metasurfaces [32,33], and quantum simulation in curved
space with photonic lattices [34,35]. Recently, people have tried to mimic gravity by fabricating
curved two-dimensional (2D) waveguides [36–39]. Compared with the inhomogeneous materials,
curved waveguides are easier to be realized and manipulated. In these waveguides, the scalar
property of light is governed by the d’Alembertian equation in the corresponding 2D curved
space [40]. By making use of this fact, diffraction [36], correlation length [37], group and phase
velocities [38] of beams have been studied in various structures with positive or negative intrinsic
curvature.

Cosmic expansion is also of high interest for modeling in various systems. The feasibilities of
different modeling schemes have been discussed by early theoretical works [41–48]. In recent
years, a few experiments have been performed [49,50]. For instance, supersonically expanding
and ring-shaped atomic Bose-Einstein condensate have been used to study the dynamics of an
expanding universe [49]. In optics, plasmonic hyperbolic materials have been adopted to emulate
a big-bang-like event [50]. As we know, the expansion rate, shown by the scale factor in the
Friedmann-Robertson-Walker (FRW) metric, is a varying function with the evolution of the
universe, and is also the key term to distinguish different universe models. Therefore, precise
controlling of the expanding acceleration of the analog universe is necessary. As far as we
know, there is still no report to investigate the expansion of the universe through controlling the
expanding acceleration in an experiment.
In this work, we propose helicoid waveguides to mimic the expanding universe in optical

experiments. We devise an air helicoid waveguide which is obtained with an air layer sandwiched
by two metal helicoid surfaces, which efficiently avoids interface scattering when the laser beams
enter and leave the waveguide, allowing us to measure the output laser patterns with high accuracy.
Since the metal surfaces are controllable by 3D print technique, the expanding rate of the analog
universe can also be defined exactly. In the following, we will describe the theory framework, the
experimental platform and the experimental results.

2. Model and theory

In standard cosmology, FRW metric describes a spatially homogeneous and isotropic universe,
which can be written as

ds2 = −dt2 + a2(t)
[

dr2

1 − Kr2
+ r2dθ2 + r2sin2θdφ2

]
, (1)

where t is the cosmic time, r, θ, ϕ are comoving coordinates, a(t) is the scale factor and K
is the spatial curvature parameter, with K = 0 for the Euclidean space, K>0 for the spherical
case and K<0 for the hyperbolic case. Here we have set the speed of light c = 1. In this 3+ 1
dimensional metric, the comoving radial distance is defined as χ = ∫ r0 dx/

√
1 − Kx2, which is

time independent. In contrast, the proper radial distance .. varies as a function of time because
of the expansion of the universe. It is clear that the comoving distance is equal to the proper
distance at the present time t0 by taking a(t0) = 1. Hubble parameter is defined as H = Ûa/a,
where the overdot denotes derivative with respect to t.

In our work, we consider the 1+ 1 dimensional FRW metric

ds2 = −dt2 + a2(t)dχ2. (2)

Experimentally, we design a helicoid waveguide to represent the space-time described by the
metric [Eq. (2)], which is shown in Fig. 1(a). In Euclidean space, this helicoid surface can be
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parameterized as X = Tcos ωχ′, Y = T sinωχ′, Z = χ′, where χ′, T are spatial coordinates,
and ω is a constant parameter. Based on the quantum-optical analogies [51], T can be used to
represent the cosmic time t, and χ′ is still a spatial coordinate. We can see that the surface is
formed by the time arrow T rotating around χ′ axis with constant angular speed ω while moving
along this axis. Corresponding to the FRW metric, we define the present time as T0, which
means a(T0) = 1, and T<T0 represents the past. The curvilinear coordinate axis χ is the blue
line shown in Fig. 1(a). In this figure, points A and A′ have the same comoving coordinate .. and
different time coordinate T, so do B and B′. Therefore, the comoving distance between A′ and B′
is the same with A and B, which is |χB − χA |, while the proper distance dp = a(T)χ between A′
and B′ is |χ′B′ − χ

′
A′ |.

Fig. 1. (a) A helicoid surface with its structure parameters. (b) An air helicoid waveguide
sandwiched by two metals. (c) Experiment setup of two-beam interference.

First, we give a brief description on the propagation of a light beam inside the helicoid
waveguide theoretically. If we consider only the scalar property of light, the light field satisfies
the Helmholtz equation [40][

k2 + ∂2T + H∂T +
1

a2(T)
∂2χ

]
E(χ,T) = 0 , (3)

where k = 2π/λ with λ the wavelength, and E(χ,T) is the electric component of the light field.
We assume the input laser beam is monochromatic and paraxial along the T direction, and
make the ansatz E(χ,T) = φ(χ,T)eikT/

√
a(T), then Eq. (3) can be approximately reduced to the

paraxial equation (
2ik∂T +

1
a2(T)

∂2χ + Veff

)
φ(χ,T) = 0 , (4)

where φ(χ,T) is the rescaled field amplitude and Veff = (Ûa2−2aÜa)/4a2. We can find this equation
is similar to a Schrödinger equation in the 1+ 1 dimensional FRW metric. By defining a new
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wavefunction u = φ exp ∫ − i
2kVeff(T ′)dT ′ and performing a coordinate transformation

T̃ = ∫T0 1/a2(x)dx, (5)

Equation (4) can be further reduced to a flat Schrödinger equation, which gives us the corre-
sponding Green’s function easily.
Considering all the manipulation above, we obtain the final Green’s function

G(χ,T; χ̄, 0) =
√

k
2πiaT̃

ei
k
2T̃ (χ−χ̄)

2
e

i
2k ∫

T
0 Veff(T′)dT′eikT . (6)

It is worth noting that the second and third exponential factor in Eq. (6) is independent of the
transverse coordinate, therefore when we calculate the transverse distribution of the light at a
certain propagation distance, they cancel out. Making use of the Green’s function, we can track
the evolution of the beam in the surface and get the amplitude at any time

E (χ,T) = ∫ dχ G (χ,T; χ̄, 0)E ( χ̄, 0) . (7)

Based on Eqs. (6) and (7), by calculating the intensity |E(χ,T)|2 of a Gaussian beam, we can
immediately find how the beam width varies in the helicoid waveguide. We assume the initial

profile of the Gaussian beam at the input is E(χ′, 0) = E0e
−
χ
′2

2w0 , where the initial width is w0 and
E0 is a constant. Substituting this initial profile into Eq. (7), and perform integration by using
the formula for the integral of Gaussian function

∞

∫
−∞

e−ax2+bx+cdx =
√
π/a e b2

4a +c, we eventually

arrive at |E(χ,T)|2 = E2
0

w0
w(T)e

−
χ2

w2(T) , where the beam width is

w(T) = w0
√
1 + ω2T2

√
1 +

arctan2ωT
ω2k2w4

0
. (8)

In the calculating process, we use T̃ = arctanωT
a2(0)ω and make the substitution χ =

√
1 + ω2T2 χ′. In

Eq. (8), the term arctan2ωT
ω2k2w4

0
depends on the geometric parameter ω and the propagation constant

k. If we let ω → 0, the width w(T) = w0

√
1 + T2/k2w4

0, which exactly gives the diffraction of
Gaussian beam in flat space. In addition, the geometric parameter ω determines the curvature
of the helicoid. Hence this term reflects the combined effect of diffraction and curvature of the
waveguide on the beam. Neglecting this term, the beam expanding as the space of the analog
universe.
Theoretically we assume the Gaussian laser beams are totally coherent, in the air waveguide,

the amplitude of two coherent beams at T = 0 can be written as

E1,2(χ
′, 0) = E0e

−
χ′2

2w20 eik1,2χ
′

, (9)

where k1, k2 � k denote tiny momentum in the χ′ direction for the two beams, respectively.
Performing the same calculation procedure for the Gaussian beam, we can obtain the evolution

of both laser beams in the waveguide. If the two beams get close enough, interference happens
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and the intensity distribution would be

I = |E1 |
2 + |E2 |

2 + E∗1E2 + E∗2E1. (10)

By neglecting a phase term which is χ independent and very closed to one, we find the intensity
could be expressed in the form

I(χ,T) = I0e
−

χ2

(1+ω2T2)
[
w2+( arctanωT

ωkw )
2
] ©­­­­«

1 − cos


(k1 − k2)χ

√
1 + ω2T2

(
1 +

(
arctanωT
ωkw2

)2)

ª®®®®¬
. (11)

Note that the coordinates have the relation χ = χ′/a(0). Again, in Eq. (11), we find the effect from
diffraction and curvature on the period of the interference fringes. In our experiment, k ∼ 104mm−1
and w = 0.45mm, which means ωkw2 � 1, implying that this effect can be neglected and the
period of the fringes of the output spot at T = T0 is ∆χ = 2π

√
1 + ω2T2

0/|k1 − k2 |. Therefore,
the laser beam spread along the camber coordinate net showed in Fig. 1(a). The interference
pattern at the output spot should be distributed along the curved χ coordinate axis direction.
However, since the output spot is small enough compared with the curvature radius of χ axis,
the wave front of the output spot is nearly a plane. Therefore, the measurement by a planar
CCD camera is accurate. It should be mentioned that if we adopt the laser beam thin enough
and the CCD camera with higher resolution, the effect from diffraction and curvature may have
measurable influence.

3. Experiment and discussion

In the following, we experimentally simulate the redshift of a Gaussian wave packet in the
expanding universe through optical interference of two laser beams in helicoid waveguide.
Cosmological redshift is a very important phenomenon in modern cosmology [52]. The
wavelengths of photons from different distances propagating through the expanding space are
stretched to different extents, which enable us to acquire the information of the universe expansion.
In this experiment, the FRW space-time is mimicked by a helicoid air waveguide sandwiched
between two metals as shown in Fig. 1(b). The advantage of the air waveguide compared with
polymer waveguide is to avoid the interface scattering, enabling the laser beam enter and leave
the air waveguides with small scattering loss and high-quality beam spot. This advantage allows
us to investigate the wave front of the propagating beam in curved space directly, which has not
been done in previously relevant works. We set the structure parameters as T0 = 20mm and
ω = π/4 rad/cm in this design. These geometric parameters are alterable by using 3D print
technique.
In the experiment, we input two laser beams into the waveguide and take image of input and

output beam spot (see Fig. 1(c)). In the experiment, the incident position is at χ′ = L/2. In fact,
the incident position does not affect the result since the analog space is homogeneous everywhere.
The laser beam should be orthogonal to the χ′ axis and parallel to the T axis at the input position.
The propagation of the coherent beams is well described by paraxial wave optics. The two beams
interfere with each other before they enter the air waveguide. Then the intensity function at T = 0
is given by I(x) = 2I0 exp(−x2/w2

0)cos2(∆kx/2) = |ψ(x)|2, where x is the transverse coordinate,
∆k = |k1 − k2 | and I0 is a constant parameter. Here, we find this intensity function allows us to
define a wave packet ψ and its wave number ν = ∆k/2, then the fringe period ∆x is taken as the
wavelength Λ. From the cosmological standpoint, redshift caused by the universe expansion
leads to the relation Λ(t1) = Λ(t2)a(t1)/a(t2), which indicates ∆x(T1) = ∆x(T2)a(T1)/a(T2) in the
experiment. Hence by measuring the time dependence of the intervals ∆x(T), we can emulate the
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redshift of the wave packet during the expansion of the universe. The input and output beam
spots are given in Figs. 2(d) and 2(e). We numerically calculate the evolution of the interference
pattern inside the waveguide shown in Fig. 2(c). Figures 2(a) and 2(b) show the numerical
results of the input and output beam spots, which are in good agreement with the corresponding
experimental images in Figs. 2(d) and 2(e). It is evident that the interval ∆x becomes larger from
the input spot to the output spot, which gives a good simulation of the redshift of a Gaussian
wave packet in the expanding universe.

Fig. 2. (a) The calculated output (a) and input laser spot (b). (c) Numerical calculation
results of the interference pattern of two coherent beams during propagation. The measured
output (d) and input (e) laser spot.

In Fig. 3(a), we present the interference fringes of the input (blue dashed line) and output
spots (red solid line) simultaneously. The periods of two spot patterns, ∆x(0) and ∆x(T0), can be
determined through measuring the distance between two neighbor ditches in the periodic fringes.
Theoretically, from the geometric parameters of the helicoid waveguide, the scale factor at T = 0
is ath(0) = 1/

√
1 + ω2T2

0 = 1/1.8621. In Fig. 3(b), the positions of the ditches for the input and
output spot show a good linear function dependence, indicating the expanding of the pattern in
the experiment is spatially homogeneous. From the linear function in the figure, we can obtain
the experimental value of the scale factor at the input location (the past) as aexp(0) = 1/1.8663, in
accordance with the theoretical value ath(0). Then the redshift parameter [52] can be obtained as
z(0) = 1/a(0) − 1 = 0.8663. Figure 3(c) provides the redshift z(T) obtained from the numerical
calculation (red circle) and experimental data (purple cross), respectively. Here, the numerical
results of z(T) are obtained from the results in Fig. 2(c). The experimental value is in good
agreement with the theory and numerical value at the output spot, demonstrating the cosmic
redshift quite well.
The experimental results above show that the interference pattern of the laser beams can be

used like a ruler to measure the expanding of the analog universe. In fact, the homogeneous
expansion of the beam in our helicoid waveguide is an experimental realization of a parabolic
gradient-index lens [48]. If we replace the interference pattern by the source of digital coding
information at the input, the waveguide exactly plays a role of a lossless adapter or a signal
spreading device, connecting waveguides with different sizes efficiently, as ideally this structure
maintains the shape of the original wave packet no matter what shape it is.



Research Article Vol. 28, No. 8 / 13 April 2020 / Optics Express 11412

Fig. 3. (a) The measured intensity profile of input (blue line) and output (red line) laser beam
spots; The pixel size of the CCD camera lp = 3.75µm. (b) The linear dependence between
period of input spot and out spot based on the measurement in (a). (c) The dependence of
redshift parameter depending on T: Circles and crosses are data from numerical simulation
and measurement.

4. Conclusion

In conclusion, we have designed an air helicoid waveguide and utilized the interference of two
coherent beams to simulate the redshift of a Gaussian wave packet in the expanding universe.
The theoretical investigation of optical interference in the helicoid waveguide shows a combined
effect of diffraction and curvature on the pattern, which is neglectable in our experiment.
Experimental results show that the air waveguide we designed expand the interference pattern
homogeneously and the measurement is in accordance with the redshift law with high precision.
It also demonstrates that the helicoid waveguide serves as an experimental realization of the
parabolic gradient-index lens. Furthermore, our experimental methodology enables us to measure
the wave front, providing new information for the investigation of optics in curved space. The
combination of this system with other optical processes, such as nonlinear optics and quantum
optics, may offer more interesting approaches to mimic phenomena in classical general relativity
and quantum gravity. On the application side, our helicoid waveguide may work as a new way to
control optical signals in integrated photonic devices.
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