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Abstract Optical resonators are important devices that control
the properties of light and manipulate light–matter interaction.
Various optical resonators are designed and fabricated using
different techniques. For example, in coupled resonator optical
waveguides, light energy is transported to other resonators
through near-field coupling. In recent years, magnetic optical
resonators based on LC resonance have been realized in sev-
eral metallic microstructures. Such devices possess stronger
local resonance and lower radiation loss compared with electric
optical resonators. This study provides an overall introduction
on the latest progress in coupled magnetic resonator opti-
cal waveguide (CMROW). Various waveguides composed of
different magnetic resonators are presented and Lagrangian
formalism is used to describe the CMROW. Moreover, sev-
eral interesting properties of CMROWs, such as abnormal
dispersions and slow-light effects, are discussed and CMROW

applications in nonlinear and quantum optics are shown. Future
novel nanophotonic devices can be developed using CMROWs.

Coupled magnetic resonator optical waveguides

Hui Liu∗ and Shining Zhu

1. Introduction

A coupled resonator optical waveguide (CROW) is used
to accommodate light propagation in a preferred manner
because of the coupling between adjacent resonators [1].
Various dielectric microresonators that constitute a CROW,
such as microspheres, microdiscs [2], and photonic crystal
microcavities [3–5], have been reported. Light propagates
in a CROW through the near-field coupling between res-
onators, and the dispersion of wave vectors as well as group
velocities can be tuned by changing the coupling process.
Therefore, CROWs can be used to obtain slow-light effects
and optical buffers [3, 6, 7] and enhance light–matter in-
teraction, making them suitable for nonlinear and quantum
optical processes [8–10].

Researchers have used various techniques to shrink the
size of CROWs and produce an integrated photonic chip.
The size of a dielectric resonator cannot be smaller than half
a wavelength because of the diffraction limit. On the other
hand, the optical properties of plasmonic structures have
been widely investigated in the past two decades, concomi-
tant with the remarkable progress in various techniques
for nanomanufacturing and chemical fabrication. Plasmon
materials have the ability to manipulate photons on the
subwavelength scale, making them applicable in many im-
portant applications, such as optical information, nonlinear
optics, and biosensors, among others. In recent years, the
coupling effects among plasmonic nanostructures have
increasingly attracted the interests of researchers [11].
Various coupling processes converge into plasmon sys-
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tems, which behave like chemical molecules or condensed
matters and have various complex optical properties. A
CROW created from plasmonic resonators, such as metal-
lic nanoparticles, has been proposed to reduce the sizes of
optical devices below the diffraction limit [12–15]. An array
of closely spaced metal nanoparticles coherently guides the
electromagnetic (EM) energy via near-field coupling. Metal
particles are known to support the collective electronic exci-
tation of surface plasmons (SP) with resonance frequencies
depending on the particle size and shape. Metal nanopar-
ticles with absorption cross section far exceeding their ge-
ometrical sizes exhibit strong light absorption because of
SP resonance. Thus, metal nanostructures efficiently con-
vert EM energy into oscillatory electron motion, which is
a necessary condition for the strong coupling of light into
waveguiding structures.

The magnetic plasmon (MP) resonator is another novel
design that widely aroused research interests. In 1999,
Pendry et al. [16] reported that nonmagnetic metallic ele-
ment double split ring resonators (DSRR), with a size below
the diffraction limit, exhibit a strong magnetic response and
behave like an effective negative permeability material. Al-
though DSRR systems do not contain free magnetic poles,
the excitation of displacement currents in the DSRR re-
sults in the induction of a magnetic dipole moment that
is somehow similar to a bar magnet. Analogous to the SP
resonance in metal nanoparticles, an effective media made
of DSRRs can support resonant MP oscillations at GHz
[16–18] and THz frequencies [19–21]. Such systems can
be combined with an electric response and characterized
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Figure 1 Several kinds of coupled magnetic resonator waveguides.

by negative permittivity to develop metamaterials with neg-
ative indices of refraction [17, 18].

According to the classical electrodynamics theory [22],
the radiation loss of a magnetic dipole is substantially lower
than that of an electric dipole of a similar size. Thus, the
use of a coupling magnetic resonators optical waveguide
(CMROW) to guide EM energy over long distances
has great potential for direct applications in novel
subdiffraction-limited transmission lines without signifi-
cant radiation loss. Furthermore, near-field coupling inter-
actions between magnetic resonators, such as electric-field
coupling, magnetic-field coupling, and exchange-current
coupling, are quite complicated. Exchange-current cou-
pling, which is stronger than the other two coupling inter-
actions, can introduce a broader dispersion band and more
efficient energy transfer.

This study provides an overall introduction on the re-
cent developments in CMROW. In Fig. 1, we show differ-
ent kinds of CMROW that will be introduced in this paper.
Section 2 introduces periodic CMROW structures that are
composed of various magnetic resonators, such as split-ring
resonator (SRR) chains, slit-hole resonator (SHR) chains,
nanosphere chains on slab, and nanosandwich chains. Ape-
riodic CMROWs are then described in Section 3, followed
by a presentation of nonlinear CMROWs in Section 4. Then,
recent progresses in quantum CMROW are introduced in
Section 5. Finally, an outlook that predicts possible future
developments in CMROWs is presented in section 6.

2. Various periodic CMROW

2.1. Magnetoinductive waveguide

MP resonance is applied to a 1D subwavelength waveg-
uide in the microwave range [23–25]. Shamonina et al.
[23] proposed propagation of waves supported by capaci-
tively loaded loops by using a circuit model in which each
loop is coupled magnetically to a number of other loops.
The waves are referred to as magnetoinductive (MI) waves
because the coupling is caused by induced voltages. MI
waves that propagate on 1D lines may exhibit both for-

Figure 2 (a) Forward MI waves on an axial array of SRR chains;
(b) backward MI wave in a planar of SRR chains.

ward and backward waves depending on whether the loops
are arranged in an axial or planar configuration, which are
shown in Figs. 2a and b. Moreover, band broadening can
be obtained because of the excitation of MI waves, and
the bandwidth changes dramatically as the coupling co-
efficient between the resonators is varied [26]. A kind of
polariton mode can be formed through the interaction of
electromagnetic and MI waves, resulting in a tenability of
the range where the magnetic permeability μ becomes neg-
ative [25]. In a biperiodic chain of magnetic resonators,
the dispersion of the MI wave is split into two branches
that are analogous to acoustic waves in solids and it can
be used to obtain specified dispersion properties [27, 28].
In addition, electroinductive (EI) waves were also reported
to be in the microwave range [29]. Furthermore, the cou-
pling may either be magnetic or electric depending on the
relative orientation of the resonators, causing the coupling
constant between resonators to become complex and conse-
quently leading to even more complicated dispersion [30].
Many microwave devices based on MI waves, such as MI
waveguides [31], broadband phase shifters [32], parametric
amplifiers [33], and pixel-to-pixel subwavelength imagers
[34, 35], have been proposed.

2.2. Periodic split-ring resonator chain

The ohmic loss inside metallic structures is much higher
in the optical range than in the microwave range. The MI
coupling between the elements is insufficiently strong to
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Figure 3 (a) Single SRR; (b)
two connected SRRs; (c) anti-
symmetry mode; (d) symmetry
mode. From [36].

transfer energy efficiently. The exchange current interaction
between two connected SRRs [36], which is much stronger
than the corresponding MI coupling, has been proposed to
improve the properties of the guided MP wave.

Figure 3a shows a design of a single split-ring resonator
(SSRR) characterized by two half-space metal loops with
their tails adjacent to their ends; the gap between the tails
plays the role of a capacitor. For simplicity, the SSRR in the
analysis was viewed as an ideal LC circuit composed of a
magnetic loop (corresponding to the metal ring) with induc-
tance L and a capacitor with capacitance C (corresponding
to the gap). In general, an LC resonator is mathematically
equivalent to a classic mechanical resonator and can be
described by the Lagrangian formalism of an oscillating
resonator [37]. If the total charge Q accumulated in the
slit is defined as a generalized coordinate, the Lagrangian
formalism corresponding to a SSRR can be written as
follows:

Lag = L

2
Q̇2 − 1

C
Q2, (1)

where Q̇ is the induced current, L Q̇2/2 relates to the ki-
netic energy of the oscillations, and Q2/C is the electro-
static energy stored in the SSRR’s gaps (in Fig. 4b, the total
capacitor of two cascaded gaps is C/2). Solving the Euler–
Lagrange equation, d

dt ( ∂Lag
∂ Q̇

) − ∂Lag
∂ Q = 0, the resonance fre-

quency of the structure is known to be ω0 = √
2/

√
LC .

The magnetic moment of the SSRR originates from
the oscillatory behavior of the currents induced in the res-
onator. Magnetic response excitation in a system of SSRRs
fabricated on a planar substrate results in the induction
of magnetic dipole moments that are perpendicular to the
substrate plane, as shown in Fig. 3b. Parallel dipoles are
characterized by small spatial field overlaps, and thus, the
MI interactions between them are expected to be weak.

Thus, the SSRRs were physically connected with one an-
other to substantially increase the coupling between the
dipoles, as shown in Fig. 3b. The contact between the rings
serves as the “bond” for conduction current to flow from
one SSRR to another. Thus, the proposed system interacts
directly through the exchange of conduction current in ad-
dition to MI coupling. Such coupling is somewhat similar
to the electron-exchange interaction between two magnetic
atoms in a ferromagnetic material [38]. The introduction of
a second SSRR, as shown in Fig. 3b, results in the split-
ting of the MP resonance because of the interaction. The
splitting of the MP resonance can also be described by the
Lagrangian formalism above. If Qm is the total oscillation
charge in the mth SSRR (m = 1, 2), L is the induction of
the ring, and C is the capacitance of the gap, then the La-
grangian formalism of the coupled system can be written
as follows:

Lag = 1

2
L

(
Q̇2

1 + Q̇2
2

) − 1

2C

(
Q2

1 + Q2
2

)

+ M Q̇1 Q̇2 − 1

4C
(Q1 − Q2)2,

(2)

where the first two terms correspond to the energy stored
in the inductors and the end capacitors, respectively. The
interaction term M Q̇1 Q̇2 is caused by the magnetoinduc-
tive coupling, while the interaction term 1

4C (Q1 − Q2)2

comes from the exchange current interaction through the
connected gaps between two SSRRs. In our other study
of two coupled SSRRs [39], there is no such interaction
term as the two SSRRs are separated without exchange
current between them. Introducing the ohmic dissipation,
R = 1

2γ (Q̇2
1 + Q̇2

2), and substituting Eq. (2) in the Euler–
Lagrange equations yields the following:

d

dt

(
∂Lag

∂ Q̇m

)
− ∂Lag

∂ Qm
= − ∂ R

∂ Q̇m
, m = 1, 2. (3)
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Figure 4 (a) Structure of con-
nected SRR chain; (b) equiva-
lent LC circuit of SRR chain;
(c) dispersion curve of mag-
netic plasmon. The analytical re-
sults, including conduction cur-
rent and magnetoinductive in-
teractions and the solid curve
match well with the FDTD nu-
merical data (circles). The pre-
dicted MP characteristics was
based singularly on exchange
current interactions (κ2 = 0),
and the magnetoinductive inter-
actions (κ1 = 0) are presented
with dashed and dotted curves,
respectively. (d) Magnetic-field
profile of a magnetic plasmon
mode. From [36].

Then, coupled equations for the magnetic moments
μm = AQ̇m (where A is a constant related to the area of
SSRR and its geometry) can be obtained as follows:

μ̈1 + ω2
0μ1 + �μ̇1 = 1

2
κ1ω

2
0(μ1 + μ2) − κ2μ̈2

μ̈2 + ω2
0μ2 + �μ̇2 = 1

2
κ1ω

2
0(μ1 + μ2) − κ2μ̈1

, (4)

where ω2
0 = 2/(LC) and � = γ /L are the degenerated

MP mode eigenfrequency and bandwidth, respectively. The
electromagnetic coupling between the resonators is gov-
erned by two separate mechanisms. The first term on the
right side of Eq. (4) corresponds to the interaction caused
by the exchange of conduction current, whereas the sec-
ond term represents the MI contribution. The coupling co-
efficients are related to the equivalent circuit characteris-
tics of the SSRR. For instance, κ2 = M/L depends on the
SSRR’s mutual and self-inductance and for an ideal cir-
cuit κ1 = 1/2. Equation (4) yields solutions in the form of
damped harmonic oscillation μ = μi0 exp(− 1

2�i t + iωi t),
where the index i = 1, 2 specifies the MP mode. Us-
ing �/2ω0 � 1, the system eigenfrequencies of ω1 =
ω0

√
(1 − κ1)/(1 + κ2) and ω2 = ω0/

√
1 − κ2 can be es-

timated from Eq. (4). The high-frequency (antisymmetric)
mode ω2 yields μ1 = −μ2 and makes the exchange current
interaction term in Eq. (4) negligible. Consequently, the ob-
served frequency shift �ω2 = |ω2 − ω0| is predominantly
caused by the magnetoinductive coupling between the SS-
RRs. This phenomenon is depicted in Fig. 3c, where the
local current density inside the resonators is plotted. Two
distinctive current loops that are closed through a displace-
ment current at the resonator tails are formed, and no con-
duction current is shared between the SSRRs. On the other
hand, the low-frequency (symmetric) MP mode ω1 yields
μ1 = μ2 and both exchanges of conduction current and
magnetoinductive interactions contribute to the frequency
shift �ω1 = |ω1 − ω0|. Figure 3d shows the unimpeded
flow of current between the SSRRs. Comparisons between
the frequency shifts �ω1 � �ω2, and the absolute values

of the coupling constants κ1 � κ2 show that the exchange
of conduction current is the dominant coupling mechanism
for the proposed SSRRs system.

The magnetic dipole model described above can also
be applied to investigate a finite or infinite chain of con-
nected SSRRs (see Fig. 4). Thus, if a magnetic dipole
μm is assigned to each resonator and only the nearest-
neighbor interactions are considered, then the Lagrangian
and the dissipation function of the system can be written as
follows:

Lag =
∑

m

(
1

2
L Q̇2

m − 1

4C
(Qm − Qm+1)2 + M Q̇m Q̇m+1

)

R =
∑

m

1

2
γ Q̇2

m

.

(5)
Substituting Eq. (5) into the Euler–Lagrange equations

yields the following equations of motion for the magnetic
dipoles:

μ̈m + ω2
0μm + �μ̇m = 1

2
κ1ω

2
0(μm−1 + 2μm + μm+1)

− κ2(μ̈m−1 + μ̈m+1).
(6)

The general solution of Eq. (6) corresponds to an atten-
uated MP wave μm = μ0 exp(−mαd) exp(iωt − imkd),
where ω and k are the angular frequency and wave vec-
tor, respectively, α is the attenuation per unit length, and d
is the SSRR’s size. By substituting μm(t) into Eq. (6) and
working in a small damping approximation (αd � 1), the
simplified MP relationships for dispersion can be obtained
as follows:

ω2(k) = ω2
0

1 − κ1[1 + cos(kd)]

1 + 2κ2 cos(kd)
. (7)

The range of applicability and the overall accuracy of
the predicted relationships in Fig. 4 were compared to
the finite-difference time-domain (FDTD) results for finite
chain SSRRs. In contrast with the electric plasmon (EP)
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polariton in linear chain nanosized metal particles [12–14],
where both transverse and longitudinal modes exist, the MP
is exclusively a transversal wave that is manifested by a sin-
gle dispersion curve (represented by a black solid line in
Fig. 4c), which covers a broad frequency rangeω ∈ (0, ωc)
with a cutoff frequency ωc. Here, the cutoff frequency ωc

is the maximum value of the excitation frequency for mag-
netic plasmon modes in CMROW. The precise contribution
of each coupling mechanism in the MP dispersion can be
investigated using Eq. (7). Exclusion of the magnetoinduc-
tive term results in a slight decrease in cutoff frequency
ωc → ω0 (represented by a blue dashed curve in Fig. 4c).
On the other hand, if the SSRRs interact only through the
MI force, the propagating band shrinks to a very narrow
range of frequencies �ω ∼= 2ω0κ2 centered around ω0 (red
dotted curve in Fig. 4c). Relatively short bandwidths are
characteristics of EP [14] and follow the rapid fall of the
MI force with distance. Strong wave dissipation is one of
the major obstacles for the utilization of surface plasmons
in optical devices. The subdiffraction-sized MP transmis-
sion line promises a considerable improvement in wave
transmission. The attenuation of most propagation bands
remains constant at a relatively low value. The propaga-
tion length of MP wave is about 15.4 μm at an incident
frequency �ω = 0.3 eV. Here, the loss mainly comes from
the internal ohmic loss of metal material.

Magnetic resonance coupling between connected SRRs
and MP excitations in other types of connected SRR chains
have also been investigated [40]. By changing the con-
nection configuration, the chain provides two kinds of
MP bands formed by the collective magnetic resonance in
SRRs. Two kinds of configurations of SRRs are proposed
called homoconnection (slits at same side) and heterocon-
nection (slits at opposite sides), as schematically shown
in Figs. 5a and 4b, respectively. Based on the extracted
dispersion properties of MPs, the forward and backward
characteristics of the guided waves are well exhibited and

corresponds to the homo- and heteroconnected chains, as
shown in Figs. 5c and d, respectively. The revealed MP
waves both had wide bandwidths starting from the zero fre-
quency because of conductive coupling. These results are
suggested to provide instructions for creating new kinds of
subwavelength waveguides. The reversed dispersion prop-
erties can also be explained by extending the coupled LC-
circuit theory. The reversal of the dispersion mainly comes
from the alternation of the electroinductive coupling due
the change of the slits configuration. The conductive item
contributed from the current exchanges is an important fac-
tor to build such a wide MP band, which does not exist in
the coupling between the nanoparticles, nanosandwiches,
or some other discrete resonators. The retrieved disper-
sion maps (not shown here) show they are almost the same
within the same frequency range as we concerned with
here and exhibit an SP wave characteristic that is rather
different from results of these CMROW formed by SRR
chains. At this point, our study provides another method to
construct subwavelength CMROWs with a wide band that
accommodates the MP wave propagation within preferred
characteristics.

2.3. Periodic split-hole resonator chain

In general, MP resonance frequency increases linearly with
decreasing overall SRR size. However, the saturation of the
magnetic response of SRR at high frequencies prevents it
from achieving high-frequency operations. In addition, the
complicated shape and narrow gap of SRRs make exper-
iments very challenging. The SHR [41] is considered as
a good alternative for making subwavelength waveguides
because of its simple structure and high working-frequency
regime.

Figure 6a shows the designed SHR structure based
on the design idea proposed by Beruete et al. [29]. The

Figure 5 Subwavelength wave-
guides constituted by the SRR
chains with (a) homoconnection
and (b) anticonnection. (c) and
(d) are the Fourier transforma-
tion map in the ω–k space corre-
sponding to the waveguides in
(a) and (b), respectively. From
[40].
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Figure 6 (a) Structure of a sin-
gle SHR; (b) structure of a di-
atomic chain of SHRs; (c) FIB
image of the fabricated SHR
chain. From [41].

designed SHR structure comprises two parts, namely, a
nanohole near the edge of a semi-infinite golden film and
a slit that links the hole with the edge. The geometric pa-
rameters of the designed SHR structure are also provided
in Fig. 6a. Compared with a SRR, a SHR is easier to fabri-
cate and contains a resonance frequency that can reach the
infrared range. In the simulations, a well-pronounced reso-
nance mode wherein the electric field is confined within the
slit was observed, and the magnetic field was concentrated
inside the nanohole. The SHR can be seen as an equivalent
LC circuit with the nanohole as a conductor and the slit as
a capacitor. The induced resonance current in the LC cir-
cuit was also obtained in the simulations. The current was
only observed at a thin layer (thickness of approximately
30 nm) around the nanohole because of the skin effect in
the metal material. The whole SHR structure is seen as a
magnetic dipole when the oscillation current is induced by
an external wave at the resonance frequency. A semiana-
lytic theory based on Lagrangian formalism was used to
describe the oscillation of the magnetic dipole. If Q is the
total oscillation charge in the SHR, L is the inductor of the
nanohole, and C is the capacitance of the slit, then the La-
grangian equation of the system can be written as follows:
Lag = L Q̇2

2 − Q2

2C . Based on the Euler–Lagrange equation
d
dt ( ∂Lag

∂ Q̇
) − ∂Lag

∂ Q = 0, the SHR oscillation equation can be

obtained as follows: Q̈ + 1
LC Q = 0. If the SHR is defined

as a single magnetic dipole given by μ = Q̇ · S, where S
is the circular area of the SHR, then μ̈ + ω2

0μ = 0, where
ω2

0 = 1/(LC) is the resonance frequency of the SHR.
Based on the SHR described above, a 1D chain of mag-

netic resonators can be formed by connecting such struc-

tures one by one. In our previous study, a monatomic chain
of SRRs was proposed and the MP mode was found in
such a system [36]. However, the dispersion relation curve
of the monatomic chain of SRRs lies below the light line.
Moreover, at a given photon energy, the wave vector was
not conserved when the photon was transformed into the
MP mode. The MP mode was not excited using a far-field
incident wave, and the EM energy was not radiated out from
the chain. Therefore, it can be concluded that the MP mode
in a monatomic chain cannot lead to extraordinary optical
transmission (EOT), contrary to what was expected. A di-
atomic SHR chain was designed and presented to satisfy
the wave-vector-matching conditions, as shown in Fig. 6b.
As can be seen in Fig. 6b, the unit cell of the proposed
chain was composed of two SHRs with different geomet-
ric sizes. The Lagrangian equation for the infinite diatomic
SHR chains can be expressed as follows:

Lag =
∑

m

(
L1 Q̇2

m

2
+ L2q̇2

m

2
− (Qm − qm−1)2

2C

− (Qm − qm)2

2C

)
,

(8)

where the oscillating charges in the mth unit cell are defined
as Qm for the larger SHR with an inductor L1 and as qm for
the smaller SHR with an inductor L2 (m = 0, ±1, ±2, ±3,
. . . ). The two corresponding magnetic dipoles, Um and μm ,
are defined as Um = Q̇m · S and μm = q̇m · s, where S and
s are the areas of the larger and smaller SHRs, respectively.
Based on the Euler–Lagrange equations d

dt ( ∂Lag
∂U̇m

) − ∂Lag
∂Um

=
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0 and d
dt ( ∂Lag

∂μ̇m
) − ∂Lag

∂μm
= 0 (m = 0, ±1, ±2, ±3, . . . ), the

oscillation equations of the mth larger and smaller SHRs
can be obtained as follows:

{
Üm + ω2

1 · (2Um − μm − μm−1) = 0

μ̈m + ω2
2 · (2μm − Um − Um+1) = 0

, (9)

where ω1 = 1/
√

L1C and ω2 = 1/
√

L2C . A general solu-
tion to Eq. (9) in the form of the MP wave can be obtained
as follows:

{
Um = U0 · exp(i(ωt − k · md))

μm = μ0 · exp(i(ωt − k · (md + d/2))) , (10)

where ω is the angular frequency, k is the wave vector,
U0 and μ0 are the initial values of the magnetic dipole
moment at m = 0, and d = 650 nm is the period of the
chain. By substituting Eq. (10) into Eq. (9) and then solving
the eigenequations for U0 and μ0, the MP dispersions can
be obtained as follows:

ω2
± = (

ω2
1 + ω2

2

) ±
√(

ω4
1 + ω4

2

) + 2ω2
1ω

2
2 cos(kd).

(11)
The dispersion relations are numerically depicted as

two solid black curves in Fig. 7a. The diatomic chain con-
tains two separate dispersion branches, namely, the upper
branch ω+(k) and lower branch ω−(k), the mth unit cells
of which have different resonant manners. The simulated
results show that Um and μm oscillate in the same phase
in the lower branch ω−(k) and oscillate in the antiphase
in the upper branch ω+(k). Using the analogy of the di-
atomic model of crystal lattice wave [42], the upper curve
ω+(k) can be referred to as the optical branch and the lower
curve ω−(k) as the acoustic branch. Compared with the
monatomic chain [36], which only possesses the acoustic
dispersion branch, the diatomic chain possesses the optical
branch as well. The light line in free space is represented by
a blue dotted straight line in Fig. 7b (ω = ck0). The inter-
section of the upper optical branch with the light line was

exciting to observe, and the major part of the curve lies on
the left side of the intersection point. For an oblique inci-
dent plane wave, the resonant excitation of the MP modes
can be achieved under the wave-vector-matching condition
as follows:

k = k0 sin θ, (12)

where θ is the incident angle, as denoted in Fig. 7a. The
dependence of resonance excitation frequency on the inci-
dent angle can be solved numerically by combining Eqs.
(11) and (12), as shown by the white line in Fig. 7b. The
MP mode for a perpendicular incident wave (θ = 00) is
excited at the frequency of 1.11 eV. At the crossing point
of the optical branch curve and the blue line in Fig. 7a, the
MP mode was excited by a plane wave propagating along
the metal surface (θ = 900), with the corresponding fre-
quency of 0.924 eV. Thus, the MP mode had an excitation
frequency range of 0.924 eV to 1.11 eV, with a bandwidth
of 0.186 eV.

The transmission curves under different incident angles
were combined into a 2D contour map to obtain the com-
parison between the experimental and theoretical results,
as shown in Fig. 7b. In the 2D contour map, the bright-
ness of each point denotes the transmitted intensity. As can
be seen in Fig. 7b, the bright part of the map matches the
theoretical white line well, indicating that the measured
EOTs were obtained from the excitation of the optical MP
modes in the diatomic chain of SHRs. The bandwidth of the
optical branch can be enlarged if the coupling interaction
between elements is increased by changing the length of
the slit. In the experiments, another sample with slit length
of 50 nm (smaller than the 70-nm slit length of the old
sample) was fabricated. The obtained bandwidth was ap-
proximately 0.21 eV, which is larger than the bandwidth of
the old sample.

The experimental results show that the MP propagation
mode in the proposed system can be excited in a broad fre-
quency bandwidth. Figure 7a shows the dispersion curves.
The dependence of the resonance excitation frequency on
the incident angle can be solved numerically by combining

Figure 7 (a) Dispersion curves
for the MP modes in the diatomic
chain of SHRs; (b) measured
transmission map and the calcu-
lated angular dependence curve
of the optical MP mode. From
[41].
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Eqs. (11) and (12), and it is shown in two parts because it
was divided by the blue light line. The part above the blue
line represents the bright MP mode, which can couple to
the far-zone optical field. Aside from the EOT reported in
this study, the bright MP mode can also be used to produce
efficient nanolasers, which have recently aroused research
interests [43]. Moreover, the part below the blue line cor-
responds to the dark MP mode, which cannot be excited
by the far-field wave and whose energy does not radiate
outwards. The dark MP mode without radiation loss can
be greatly amplified using the stimulated emission from an
active medium (e.g., quantum dots and the like), similar
to how the surface plasmon amplification was achieved
using the stimulated emission of radiation (SPASER)
achieved in the dark SPP mode [44, 45]. This phenomenon
can provide a good nanoscale optical source for nu-
merous potential applications in nonlinear optical pro-
cesses, such as single-molecule detection and florescence
imaging.

In the above work, a diatomic chain of SHRs was de-
vised with a unit cell, including two SHRs with equal-length
slits and different-sized holes. The MP waves can only
be excited through magnetic resonance in the nanoholes,
whereas electric resonance does not contribute to excita-
tion. The normal incidence wave cannot be coupled onto
MP waves, and the incidence angle should be oblique.
In another study [46], a new design for SHR metachains
was proposed, where the unit cell includes two SHRs with
different-length slits and equal-sized holes that are differ-
ent from our former study [46]. The advantage of the new
design is that the coherent MP wave can be excited by
both the magnetic resonance in the holes and the electric
resonance in the slits. Moreover, the coherent MP in the
metachains can be excited much more efficiently because
of the strong electric resonance in the slits. The excitation
can also be realized under normal incidence, and the inci-
dence excitation angle can then be tuned in a wide range
from a normal incidence to 40◦. In addition, a continuous
wide excitation frequency band can be obtained by tuning
the incidence angle. The measured dispersion of the coher-
ent MP waves agrees with the calculated theoretical results
[46].

2.4. Periodic nanosphere chain on slab

MP resonance can also be established in plasmon molecules
created from several coupled nanospheres [47–49]. Such
plasmon molecules can be used to form a CMROW. In our
other recent study [50], a kind of coupled magnetic res-
onance waveguide is proposed based on a linear chain of
contacting nanospheres on a gold slab. Figure 8a shows
a single unit of the structure with two contacting gold
nanospheres placed on a gold slab. The nanosphere had
a radius of 200 nm, and the gold layer had a thickness of
50 nm. The nanosphere and the gold layer were separated
by a dielectric layer with a thickness of 30 nm. A resonance
peak, at which the two spheres were shown to exchange
current at the contact point, was detected. The excitation
also simultaneously induced current on the slab surface.
The entire structure can be considered as a closed equiva-
lent LC circuit, as shown in Fig. 8b. The two spheres and
the slab can be regarded as inductors connected in series,
whereas the middle dielectric layer works as a capacitor.
However, the resonant current around the closed circuit can
induce a strong magnetic field in the area surrounded by the
two spheres and the slab, making the structure behave like
a magnetic dipole �m. Therefore, this mode was called the
MP mode. In the simulations, the relationship between the
local magnetic field and the thickness of the dielectric layer
is investigated. Under the same incident intensity, the mag-
netic resonance field decreases with the increase in thick-
ness of the middle layer. Such a condition occurs because
the EM energy is not contained in the space between the
nanospheres and the slab when the gap is increased. Thus,
more energy leaks out and reduces the resonance strength.
Once the bottom gold slab is removed, the MP modes be-
come nonexistent because a closed LC circuit cannot be
formed without the slab. However, once the dielectric is
removed and the nanospheres come into contact with the
slab, the MP mode through the LC resonance disappears
because of the absence of a capacitor.

The resonances of three nanospheres on a slab were
also investigated, as shown in Fig. 8c. Given that the former
structure, i.e. two nanospheres on a slab, can be considered
as a single magnetic resonator, the latter structure, i.e. three

Figure 8 (a) Two contacting
gold spheres on glad slab; (b)
equivalent circuit of the structure
given in (a); (c) three contacting
spheres on the slab; (d) equiv-
alent circuit of symmetry mode;
(e) antisymmetric mode. From
[50].
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nanospheres on a slab, can be perceived as two coupled
magnetic resonators. In the simulations, the resonance and
field distribution of the latter structure were investigated.
The recorded local magnetic field exhibited two resonance
peaks. The induced currents in the two LC circuits rotate in
the same direction at lower resonance frequencies, enabling
the two magnetic dipoles to oscillate in the same phase, as
shown in Fig. 8d; this mode is called the symmetry mode. In
contrast, the induced currents in the two LC circuits rotate
in opposite directions at higher frequencies, resulting in the
antiphase oscillation of the two magnetic dipoles, as shown
in Fig. 8e; this mode is called the antisymmetry mode.

In our system, the coupling processes between magnetic
units include nearest-neighbor exchange current interaction
and long-range magnetic field coupling. A semianalytic
model is developed based on the attenuated Lagrangian for-
malism to provide a good description of the two interactions
described above. If L and C are the effective inductance
and capacitance of the structure in Fig. 8b, respectively,
then the Lagrangian formalism of such LC resonator can
be expressed as follows: Lag = 1

2 Lq̇2 − 1
2C q2, where q is

the oscillating charge in the structure. The structure pre-
sented in Fig. 8c can be considered as two connected LC
circuits, whose Lagrangian formalism should be expressed
as follows:

Lag = 1

2
L
(
q̇2

1 + q̇2
2

) − 1

4C

(
q2

1 + q2
2

) + Mq̇1q̇2

− 1

4C
(q1 − q2)2,

(13)

where q1 and q2 are the oscillating charges in the two LC
resonators. The first term represents the kinetic energy in
the inductors, and the second term represents the potential
electric energy in the gaps under the first and third spheres.
The interaction term Mq̇1q̇2 is caused by the MI coupling
between the two magnetic resonators. The last term cor-
responds to the electric potential energy stored in the gap
under the second sphere, which can be seen as a shared
capacitor of two LC resonators, as shown in Figs. 8d and
e. Considering the ohmic dissipation R = 1

2γ (q̇2
1 + q̇2

2 ) and
substituting Eq. (13) in the Euler–Lagrange equation yield
the following:

d

dt

(
∂Lag

∂q̇m

)
− ∂Lag

∂qm
= − ∂ R

∂q̇m
, (m = 1, 2) (14)

A pair of coupled equations can be obtained as follows:

μ̈1 + ω2
0μ1 + �μ̇1 = 1

2
κ1ω

2
0(μ1 + μ2) − κ2μ̈2

μ̈2 + ω2
0μ2 + �μ̇2 = 1

2
κ1ω

2
0(μ1 + μ2) − κ2μ̈1,

(15)

where μm = Aq̇m (m = 1, 2) is the effective magnetic dipole
and A is the cross-sectional area surrounded by an induced
current in the LC circuit. In Eq. (15), ω2

0 = 2/(LC) is the
eigenfrequency of the single LC circuit and � = γ /L is the
damping coefficient caused by ohmic loss. Equation (15)

indicates two mechanisms, namely, the exchange of the
conduction current coupling and the MI coupling, which
are described by two coefficients κ1 and κ2, respectively.
In an ideal circuit, κ1 = 1/2 and κ2 = M/L represent the
relative strength of the mutual and self-inductance of a sin-
gle unit, respectively. Approximating �/2ω0 � 1, the two
eigenfrequencies can be obtained from Eq. (15) as follows:
ω1 = ω0

√
(1 − κ1)/(1 + κ2) and ω2 = ω0/

√
(1 − κ2). The

MP mode at ω1 is caused by the symmetric resonance of two
units with μ1 = μ2, whereas the high-frequency mode ω2
is caused by the asymmetric μ1 = −μ2. The Lagrangian
model above can also be extended to the chain structure
shown in Fig. 9a. For an infinite chain, let qm be the os-
cillation charge in the mth unit. Considering the coupling
between magnetic resonators, the Lagrangian formulism
can be expressed as follows:

Lag

=
∑

m

[
1

2
Lq̇2

m − 1

4C
(qm − qm+1)2 + M

∑

n

1

n2
q̇mq̇m+n

]

,

(m = 0,±1 ± 2, . . . ; n = 1, 2, 3 . . .)

(16)
where the third term indicates the MI coupling between
the magnetic dipoles from the nearest neighboring dipoles
to the farthest ones. The ohmic dissipation of the whole
structure can be expressed as follows:

R =
∑

m

1

2
γ q̇2

m . (17)

Substituting Eqs. (16) and (17) into the Euler–Lagrange
equation yields the following:

μ̈m + �μ̇m + ω2
0μm = 1

2
κ1ω

2
0(μm−1 + 2μm + μm+1)

− κ2

∑

n

1

n2
(μ̈m−n + μ̈m+n),

(18)
where �, ω2

0, μm , and coefficients κ1 and κ2 are as previ-
ously defined. The solutions to Eq. (18) have the following
form: μm = μ0 exp(−mαd) exp(iωt − imkd), where d is
the period of the chain and α is the attenuation per unit
length. With αd � 1 for small damping approximation,
the dispersion relationship of the MP mode can be obtained
as follows:

ω2 = ω2
0

1 − κ1[1 + cos(kd)]

1 + 2κ2
∑

n
1
n2 cos(nkd)

, (19)

where ω0 is the eigenfrequency of a single unit. Only the
first eight terms of the MI coupling are considered in the
succeeding calculations because a larger distance between
two dipoles results in a weaker interaction.

A chain of contacting nanospheres that contains 25
linearly arranged gold nanospheres is used in the simu-
lations, as shown in Fig. 9a. Excited by a dipole source at a
distance of 120 nm in front of the first sphere, the magnetic

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org



REVIEW
ARTICLE

Laser Photonics Rev. 7, No. 6 (2013) 891

Figure 9 (a) A chain of contact-
ing spheres on the slab; (b) the
frequency dependence of the lo-
cal magnetic field at the end
of the chain (recorded using a
probe at the last gold sphere);
(c) the dispersion curve of coher-
ent magnetic plasmon modes
(gray map: simulated result; red
square-dot line: calculated re-
sults based on the Lagrange
mode); (d) dispersion of group
velocity. From [50].

field at the last nanosphere is recorded, as shown in Fig. 9b.
The results show that the transmission signal was within the
frequency range of 0 THz to 150 THz. The magnetic field
along the nanosphere chain at different frequencies can be
obtained using the FDTD simulation method. To calculate
the dispersion of the MP mode, a Fourier transform is used
to transform the value of the magnetic field into the wave
vector region of the field in ω–k space [51]. The Fourier
transform can be expressed as follows:

H (ω, k) =
∫

H (ω, x)eikx dx . (20)

The Fourier transform is processed along the chain and
yields the dispersion relation. The results are shown as a
gray map in Fig. 9c. The dispersion of the MP mode is
very similar to that of a surface plasmon, in which the wave
vector k increases with ω from 0 THz to 150 THz. The theo-
retical dispersion result based on Eq. (19) is also deduced, as
represented by dots in Fig. 9c. The Lagrangian model agrees
with the simulated results quite well. The Lagrangian model
used in this study can be generalized to include other possi-
ble coupling interactions, such as plasmon–mechanical or
plasmon–acoustical effects, in future coupled systems.

Based on the dispersion relation of the MP mode in
Eq. (19), the group velocity can be calculated as follows:

Vg = ∂ω

∂k
= ω2

0d

2ω
·
κ1 sin(kd) ·

[

1 + 2κ2

∞∑

n=1

1

n2
cos(nkd)

]

+ 2κ2[1 − κ1(1 + cos(kd))] ·
∞∑

n=1

1

n
sin(nkd)

[

1 + 2κ2

∞∑

n=1

1

n2
cos(nkd)

]2 , (21)

where only the eight nearest dipole coupling interactions
are considered. Figure 9d shows the calculated disper-
sion property of group velocity. The results show that the
group velocity was very small (Vg = 0.1c) at approximately
k = π/d(ω = 140 THz). The very small group velocity of
the MP mode can be obtained from the designed struc-
tures. The slow-light effect has been reported in various
physical systems, including atomic gases, optical fibers,
photonic crystals, and plasmon systems. In the current
study, the proposed structure also demonstrates the dis-
persive slow-wave effect in the subwavelength scale via
MP excitation. Although the spin waves in magnetic ma-
terials have many interesting properties in the microwave
range, the analog of spin waves in the infrared or THz re-
gion proves to be an interesting topic and may exhibit new
properties. In this study, the slow wave is caused by the
coupling effect between magnetic resonators. This wave
mimics the slow spin waves in the infrared or THz re-
gion that do not occur naturally. Furthermore, given that
the magnetic resonator is completely designed artificially
and that the coupling interaction can be tuned at will,
the dispersion of the slow-wave effect can be controlled
completely by altering the structural parameters. Then, a
slow spin wave can be obtained in the infrared or THz
region.
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Figure 10 (a) The geometry of
a nanosandwich; (b) the spec-
trum of magnetic field in the
nanosandwich; (c) and (d) show
the magnetic-field and electric-
field distributions at the mag-
netic resonant frequency, re-
spectively; (e) and (f) repre-
sent the field distribution of a
nanosandwich chain; (g) the
energy flow cross section; (h)
the dispersion relation of the
nanosandwich chain. From [51].

2.5. Periodic nanosandwich chain

The nanosandwich structure, as one of the basic build-
ing blocks in plasmonics, is recommended to be used in
making a subwavelength waveguide in the high-frequency
regime because of its simple structure and high working-
frequency regime. Figure 10a shows the geometry of a
single nanosandwich that is composed of two metallic nan-
odiscs and a dielectric middle layer [51]. The antiparallel
currents in the metallic slabs induce a high intensity and
confined magnetic field at a certain frequency, which can
be seen as a magnetic atom. Figures 10b–d, respectively,
show the frequency spectrum and field distribution of such
a nanosandwich. Such a magnetic atom can be used to con-
struct a linear magnetic chain. An MP propagation mode
is established in the 1D system because of the near-field
electric and magnetic coupling interactions. A strong lo-
cal magnetic field can be obtained in the middle layer at
a specific frequency when it is excited by an EM wave,
as shown in Fig. 10e. Figure 10f shows the correspond-
ing electric fields for such a magnetic plasmon resonance
mode. It should be noted that such an MP waveguide is a
subwavelength, the energy flow cross section of which is
plotted in Fig. 10g. The field is confined in an area that
is smaller than the wavelength scale. The wave vectors of
the MP waveguide at different EM wave frequencies can
be calculated using a Fourier transform method to obtain
the dispersion property of the MP wave, as shown by the
white line in Fig. 10h. The light line in free space is repre-
sented by the black dotted line in Fig. 10h. The light line
divided the MP curve into two parts. The part above the
light line corresponds to the bright MP modes whose en-
ergy radiated out from the chain, whereas the part below the
light line corresponds to the dark MP modes whose energy
can be confined within the chain. The bright MP modes
were much weaker than the dark MP modes in terms of
their leaky property. Therefore, only the EM waves in the

frequency range of the dark MP modes can be transferred
efficiently without radiation loss.

3. Aperiodic CMROWs

In graded waveguides and metamaterials, we can control
the effective index continuously. Through this method, we
can slow down the speed of light and trap the light in the
structures. The graded system can be used in photon storage
and nonlinear optical processes [52]. In [53], we designed
a graded nanosandwich waveguide. Once the results for a
monoperiodic chain of nanosandwiches have been general-
ized to graded structures, some new interesting properties,
such as slow group velocity and a new type of field distribu-
tion, can be obtained in more complex structures. Then, the
chain composed of such nanosandwiches with the spacing
between nanosandwiches being linearly increasing along
the chain, which indicates a graded changing coupling be-
tween nanosandwiches, can be investigated. The spacing
dm obeys the following rule: dm = 225 + 100 × (m–1),
where m denotes the spacing between the mth and (m+1)th
nanosandwich. Figure 11a shows the geometry of the chain
with 41 nanosandwiches, and Fig. 11b shows the disper-
sion relation of the graded chain. The MP modes can be
divided into three parts, namely, gradon (the special mode
that belongs to the graded structure), extended mode, and
evanescent mode. Figure 11b also shows the different prop-
agation distance for these three modes, in which the distance
is denoted by the number of periods along the chain. The
field distributions of the three parts of the MP modes are
quite different from one another, and the location of the
field of the gradon is strongly dependent on the frequency,
as shown in Fig. 11c. Above the light line at 248 THz, the
MP mode is an evanescent mode, with the field amplitude
decreasing exponentially. At 266 THz, the MP mode is
an extended mode; the field can propagate throughout the
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Figure 11 (a) The geometry
of a metallic trilayer structure,
the magnetic field distribution
at the magnetic resonant fre-
quency, and the model of the
graded nanosandwich chain; (b)
the dispersion relation and the
propagation length of the chain;
(c) the magnetic field localiza-
tions at three different frequen-
cies. From [53].

chain. At 280 THz, although the MP mode is below the light
line, the field in the chain cannot reach the end of the chain
but stops at the middle of the waveguide, which is a typical
field localization in the graded structure. Since this mode
is in the high-frequency region of the MP mode band, it is
called a “light gradon.” A wavelength-selective switch can
be managed by employing this property. Three- and four-
port switches can be realized in the graded nanosandwich
chain. Figure 11c shows the field distributions of the mag-
netic field corresponding to different modes of the switches.
Some new interesting properties, such as low group veloc-
ity and band folding of MP waves, can be obtained in such
complex structures.

4. Nonlinear CMROWs

The loss that includes the large scattering loss introduced
by the microfabrication and the ohmic loss of the metal

component, especially in the light frequency region, pre-
vents the subwavelength plasmonic waveguides from be-
ing realistically applied. Usually, for a plasmonic waveg-
uide, the propagation length is less than 50 micrometers.
The combination of metallic structures with gain materi-
als is a promising method for compensating the loss in
plasmonic systems [45, 54–56]. In our recent work [57], a
magnetic plasmon nanolaser is reported based on double-
resonance nanosandwich structures. In another study of
ours [58], the compensation effect in an MP waveguide
combined with the ytterbium–erbium codoped gain mate-
rial, Er:Yb:YCOB, in which the lasing case is found, is
investigated.

Figure 12a shows the geometry of the subwavelength
MP waveguide. The nanosandwich is composed of two
metallic rectangular slabs. The middle layer and the sur-
rounding environment are both chosen to comprise the
ytterbium–erbium codoped gain material, Er:Yb:YCOB,
with a refractive index of 1.3. The gain waveguide

Figure 12 (a) The geometry
of the nanosandwich waveg-
uide; (b) and (c) represent the
MP mode and the high-order
mode, respectively; (d) plot of
the sketch of the coupled waveg-
uide model. From [58].
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system is placed on the SiO2 substrate with a refrac-
tive index of 1.5. In such a nanosandwich waveguide,
the collective magnetic resonance, MP mode, can be ex-
cited using a near-field source placed at the input of the
waveguide. Figure 12b shows the energy-density distribu-
tion of such MP mode with a wavelength of 1550 nm.
The nanosandwich waveguide can also sustain high-order
modes. Figure 12c shows the energy-density distribution of
the high-order mode of the waveguide with a wavelength
of 980 nm, which is excited by a plane-wave source in-
cident on the entire waveguide plotted in Fig. 12a. Since
the nanosandwich waveguide can be considered as a chain
of coupled resonators, as shown in Fig. 12d, the energy
propagation along the waveguide can be described as
follows:

∂ N i

∂t
= N i−1

τProp
− 2

N i

τProp
+ N i+1

τProp
− N i

τLoss
= 0, (22)

where Ni denotes the number of photons of the signal in
the ith nanosandwich and τProp and τLoss correspond to the
propagating and loss processes, respectively. In the steady-
state case, Eq. (22) is zero.

Equation (22) will change and the term of the gain
effect should be added into it when the waveguide is com-
bined with the gain material. Under steady-state condi-
tions, by neglecting the populations in levels 4I11/2, 4I9/2,
and 4F9/2 and corresponding backtransfer processes be-
cause of the fast nonradiative decay in such levels, the
simplified rate equations can be expressed as follows

[59–61]:

∂ N2Y

∂t
= σY vp Fp Np f p(N1Y − N2Y ) − k1 N2Y N1E

− k2 N2Y N2E − N2Y

τ2Y
= 0

∂ N2E

∂t
= k1 N2Y N1E − σEvs Fs Ns fs(N2E − N1E )

− N2E

τ2E
− 2C N 2

2E = 0

∂ Ns

∂t
= σEvs Fs

∫
(N2E − N1E )Ns fsdV − Ns

τ
= 0.

(23)
where Nix and τ ix represent the population density and life-
time of the corresponding levels of Er and Yb (given in
Fig. 13d). τ is the decay time of the MP waveguide mode in
the chain. k1 = k2 = 5.0 × 10−21 m3/s are the coefficients of
the two energy transfer processes. C is the upconversion rate
and is equal to 1.3 × 10−23 m3/s. vp, Np, and fp represent the
group velocity, total photon number, and normalized spatial
intensity distributions of the pump light (980 nm). vs, Ns,
and fs represent the corresponding parameters of the signal
light (1550 nm). fp and fs are normalized as

∫
fpdV = 1

and
∫

fsdV = 1, respectively, where V is the volume. In
addition, under steady-state conditions, the approximate
expressions N1E + N2E ≈ NE and N1Y ≈ NY can be pro-
vided. In the calculations, the values of σ E, σ Y, τ 2E, and τ 2Y

were fixed at 5.0 × 10−25m2, 8.0 × 10−25m2, 5.0 × 10−3s,
and 2.6 × 10−3s, respectively [57,59–62]. Here, Fp and Fs
are the Purcell factors for the pump and signal, respectively,
which can be calculated as Fp = 3Qpλ

3
p/(4π2Vpmn3) and

Fs = 3Qsλ
3
s/(4π2Vsmn3) [63,64], where n is the refractive

Figure 13 The normalized
numbers of photons in the
nanosandwiches along the
waveguide with different doping
concentration NE and different
decay time of signal τ are
presented in (a) and (b), re-
spectively. (c) The gain ability
of a single nanosandwich in
the waveguide as the function
of Er3+ concentration NE and
decay time τ . The thresholds
of amplification radiation are
denoted by the black dot-line
curve. From [58].
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index of the gain material and λ is the wavelength. The
quality factor Qp(Qs) and the effective mode volume of
laser mode Vpm (Vsm) are determined by the decay time
of the mode and the field confinement, respectively. Both
Qp(Qs) and Vpm (Vsm) can be calculated in the simula-
tions. In the simulations, the coefficient 3λ3/(4π2Vpmn3)
and 3λ3/(4π2Vsmn3)for signal and pump light were 1/40
and 1/20, respectively. The group velocities of pump light
and signal light were also calculated to be 1.0 × 108 m/s
and 0.5 × 108 m/s, respectively.

Considering the gain effect, the propagation equation
can be modified as follows:

∂ N i
s

∂t
= N i−1

s

τProp
− 2

N i
s

τProp
+ N i+1

s

τProp
− N i

s

τLoss

+ σEvs Fs

∫
(N2E − N1E )N i

s fsdV = 0.

(24)

Equation (24) is zero in the steady-state case. In this
study, the MP mode was chosen as the signal light and the
high-order mode as the pump light, leading to the larger
efficiencies of pumping and radiation [57]. In general, the
Yb3+ concentration is an order of magnitude higher than the
Er3+ concentration. In the calculations, the Yb3+ concentra-
tion was fixed at 5.0 × 1027 ions/m3 [57], and the pumping
power on a single nanosandwich was fixed at 0.05 mW.
Different Er3+ concentrations impose different compensa-
tion effects against the loss in waveguide. Figure 13a shows
the normalized number of photons in nanosandwiches along
the waveguide with different Er3+ concentrations. A larger
Er3+ concentration leads to higher compensation. The prop-
agation length doubled when NE was increased to 3.0 × 1026

ions/m3 with respect to the case of NE = 0, as shown in
Fig. 13a. Moreover, we can see from the same figure that
increasing the doping concentration above NE = 3.0 × 1026

ions/m3, we can seriously increase the propagation length,
such as in the case of NE = 3.5 × 1026 ions/m3. Although
the energy of signal decreases along the waveguide, it does
not become zero but rather stops at a certain value. This
phenomenon is attributed to the saturation of stimulated
emission radiation under certain concentration of gain ions
and pumping power that can only afford a low signal. On the
other hand, the fabrication scattering and nanosized metal-
lic structure loss were considered by reducing the decay
time of the MP mode. The energy that transports along the
waveguide with different decay times of MP mode from
100 fs to 40 fs, which is the typical range in metamaterial
and plasmonic structures, was also considered. A longer
propagation length can be obtained with a longer decay
time of the MP mode, as shown in Fig. 13b. Lower loss
clearly leads to a more evident compensation effect. More-
over, the saturation phenomenon was obtained with a longer
decay time of τ = 100 fs, as shown in Fig. 13b.

The loss is largely compensated by the gain effect, es-
pecially in the case of high Er3+ concentration of NE and
long decay time of τ . In fact, the Er3+ concentration can be
further increased to approximately 1027 ion/m3 [65], and
the decay time of the MP mode (signal) calculated directly

from the simulations was larger than what was chosen in
Fig. 13 (approximately 110 fs). Therefore, the gain effect
defeats the loss effect and leads to the stimulated emis-
sion. In other words, the signal is enhanced as it propagates
along the waveguide, similar to that of a fiber amplifier.
The loss in the waveguide can be largely compensated by
tuning the doping concentration of Er3+ and decay time of
the signal. The compensation cases can be divided into two
types because of the saturation effect. Moreover, the gain
effect can overcome the loss in the waveguide when the
parameters exceed a certain threshold, leading to the am-
plification of signals along the waveguide similar to that of
the fiber amplifier. This property has potential application
in plasmonics integrated optical circuits and metamaterials.

5. Quantum CMROWs

Since the first demonstration of the plasmon-assisted
entanglement of photons in perforated metal film, the quan-
tum characteristics of plasmonic system and metamaterials
have been continuously reported and investigated for their
potential applications in quantum information techniques
[45, 66–74]. The quantum generator made from the sur-
face plasmon amplification by stimulated emission of ra-
diation (SPASER) system has recently been introduced, in
which a generalized quantum treatment of surface plasmons
was introduced using the spectral representation method
[66, 67]. All the improvements above require a profound
understanding of the fundamental quantum properties of
coupled metamaterials. Therefore, the interaction between
coupled metamaterials and other materials should also be
investigated further.

In our recent paper [75], the interaction between
quantum dots and a 1D coupled metamaterial composed
of a chain of nanosandwiches was investigated. Fig-
ure 10a shows the geometry of a single nanosandwich. The
nanosandwiches are closely placed in a line to form a 1D
CMROW, and the nanosandwich is placed on a silica sub-
strate. When the middle layer of the nanosandwich is filled
with a nonmetallic material, the magnetic resonance can be
formed by the excited magnetic loop composed of currents
in two separate metal layers and the displacement currents
in the outside surrounding [51]. The electromagnetic field is
highly confined in the middle layer, which is filled with the
active material, a semiconductor PbS quantum dot material,
with an emission wavelength of approximately 1550 nm,
i.e. the telecoms wavelength, and electric permittivity of
εPbS = 23. The quantum dots are densely packed in vacuum
in the middle layer [66, 67]. In the coupled metamaterial,
the magnetic resonances in nanosandwiches couple with
each other and form a coupled magnetic plasmons (CMP),
which is a collective magnetic resonance throughout the
chain [51]. This study investigates two cases of the cou-
pled metamaterials, namely, the 1D coupled metamaterial
embedded in vacuum (Case I) and the one embedded in
quantum dot material (Case II).

A full quantum treatment based on the quantization on
the Hamiltonian of the CMP, which can be considered as
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a kind of excitation in the artificial material [73, 74, 76],
is used to investigate the interaction between the CMROW
and the quantum dots. The Lagrangian formalism of the
nanosandwich chain can be expressed as follows:

Lag =
∑

m

[
L

2
Q̇2

m − 1

2C
Q2

m + Mh

2
(Q̇m Q̇m+1 + Q̇m Q̇m−1)

− Me

2
(Qm Qm+1 + Qm Qm−1)

]
.

(25)
Here, Mh and Me describe the magnetic and elec-

tric coupling between the unit cells, respectively. Using
a Legendre transformation, Ham = ∑

m Pm Q̇m − Lag, the
Hamiltonian of the coupled metamaterial that plays a much
more important role than the Lagrangian formulism in
solid-state physics can be obtained. Using the general-
ized momentum Pm = ∂Lag/∂ Q̇m correlated with Qm, the
Hamiltonian can be expressed as follows:

Ham(Qm, Q̇m) =
∑

m

[
L

2
Q̇2

m + 1

2C
Q2

m + Mh

2

× (Q̇m Q̇m+1 + Q̇m Q̇m−1)

+ Me

2
(Qm Qm+1 + Qm Qm−1)

]
.

(26)
A Fourier transformation was applied to Eq. (26) to

obtain the following expression:

Ham(Qk, Q̇−k) =
∑

k

[
L

2
Q̇k Q̇−k + Mh cos(kd)Q̇k Q̇−k

+ 1

2C
Qk Q−k + Me cos(kd)Qk Q−k

]
,

(27)
where d refers to the period of the metamaterial and the
Fourier expansion Qm = 1√

M

∑
k QkeikRm is used (M is the

number of the resonators). Charge Qk has a canonically con-
jugate variable Pk = ∂Lag/∂ Q̇k = ( L

2 + Mh cos(kd))Q̇−k.
Considering the quantum condition, Q̂m and P̂m possess the
commutation relation [Q̂m, P̂m] = i� [77,78]. The commu-
tator between Q̂k and P̂k was derived to be [Q̂k, P̂k] = i�.
In the derivation, the unitary condition 1

M

∑
m ei(k+k′)md =

δk,−k was used. A Bogoliubov transformation was per-
formed to the Hamiltonian in Eq. (27) by introduc-
ing a set of creation and annihilation operators, namely,
âk = Uk Q̂k + iVk P̂−k and â+

k = Uk Q̂−k − iVk P̂k, with
parameters Uk = (�)−1/2√ξ , Vk = (�)−1/2/

√
ξ , and ξ =√

[ 1
2C + Me cos(kd)][ L

2 + Mh cos(kd)]. Finally, the Hamil-
tonian of a coupled metamaterial in number representation
can be obtained as follows:

Ham =
∑

k

(
â+

k âk + 1

2

)
�ωk. (28)

Figure 14 shows the derivation process from the La-
grangian model to the Hamiltonian model, which was used

to make the mathematical formalism above more under-
standable. The quantum description of the excitation in a
coupled metamaterial can be obtained using Eq. (28). For
convenience, the concept of a “quasiparticle” can be used
to provide an institutive picture of the quantum property
of the excitation, CMROW, in such a “metasolid.” â+

k and
âk are the creating and annihilating operators that indicate
the creation and destruction of a “quasiparticle,” respec-
tively, with momentum �k in the coupled metamaterial and
number operator of â+

k âk. The “quasiparticle” describes
the collective resonance behavior of the CMROW through-
out the entire solid-state-like metamaterial when the cou-
pling between unit cells exists. Once the coupling shrinks
to zero, the metamaterial returns to the free-gas case, in
which the model will simply correspond to the excitation
of the unit cell itself. Such quantum treatment can also be
used in plasmonic structures created from metallic nanos-
tructures. A possible experimental proof of the quantum
characteristic of metamaterials can be obtained by measur-
ing the second-order quantum coherence function g(2)(0)
in an attenuated–reflection setup. For a quantum state, |n〉,
g(2)(0)=1 − 1/n < 1 indicates a quantum property that can
be measured directly in a practical experiment [73, 74].

The interaction Hamiltonian of the active system can
be obtained after introducing the Hamiltonian and the full-
quantum treatment of the coupled metamaterial. The inter-
action Hamiltonian of the system is expressed as follows:
Hamint = ∑

r E · d, where E denotes the electric field in
metamaterial, d refers to the dipole moment of excita-
tion in the quantum dot, and the summation corresponds
to all quantum dots in the system [70–72]. After some
derivations, the quantized interaction Hamiltonian can be
obtained as follows:

Hamint = �

∑

k

[Gk(â+
k σ̂−

k + âkσ̂
+
k )], (29)

where the coupling constant Gk is equal to√∫
(ρ2(α) − ρ1(α))(ϕk(α) · d1,2)2dα3/�, which is of

crucial importance in describing the strength of the
interaction between the metamaterial and the quantum
dots. ϕk(α) is the eigenstate of the excitation corresponding
to the electric field distribution with the energy normalized
to �ωk/2, with α being the position of the quantum dot in
the unit cell. ρ2 and ρ1 represent the population densities of
the two levels. The transition operators σ̂+

k and σ̂−
k indicate

the creating and annihilating operators of the quantum
dots that belongs to the whole system with momentum �k,
respectively. The rotating-wave approximation was used
to eliminate the nonconserving energy terms. Considering
the maximum population inversion yields ρ2 − ρ1 ≈ ρ,
where ρ = ρ2 + ρ1 is proportional to r−3 and a moderate
choice on the radius of the quantum dot was taken
as r ≈ 2.5 nm. The dipole moment was chosen to be
|d| = 1.9 × 10−17 esu and the coupling constant was
calculated.

The coupled kinetic equation for the emission processes
of quasiparticles of the CMROW can be obtained from the
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Figure 14 From LC circuit and
Lagrangian model to the Hamil-
tonian model of CMROW.

Figure 15 (a) and (b) The stim-
ulated emission coefficient and
lifetime of the quasiparticle of
CMROW in case I and case
II with different spacings. From
[84].

interaction of the Hamiltonian and the coupling constant
Gk. Under strong optically pumped or electrically pumped
conditions, the energy absorbed by the quantum dots is
very large and saturated and the level of excitation is quite
large. The number of excitations can be assumed to remain
constant at ˙̂σ

z
k ≈ 0 and only consider the change in the

quasiparticles of the coupled metamaterial. In addition, the
homogeneous broadening of the quantum dot spectrum is
much narrower than the excitation in the coupled metama-
terial, and thus, it is considered as a continuous radiation
field and a narrow quantum-dot spectral case. Therefore,
the stimulated emission rate must be integrated in a narrow
frequency range, and the density of the state must be consid-
ered. Finally, a stimulated emission rate B was obtained as
2|Gk|2 Md/vg , where M is the total number of unit cells and
vg is the group velocity derived from the dispersion relation

obtained above. This result is consistent with the results of
Fermi’s golden rule. Moreover, the damping term κ can be
considered as κ = γmeta, where γmeta = 1/τmeta represents
the decay rate. Figures 15a and 14b show the stimulated
emission coefficient and lifetime of quasiparticles of cou-
pled metamaterial in both systems with different spacings.
The coupling between the unit cells as well as the lifetime
of the cells decreased with increasing spacing. As can be
seen in Fig. 15, the stimulated emission coefficients in both
cases decreased with increasing spacing. The interaction in
Case II became stronger than that in Case I with increas-
ing number of available quantum dots, leading to a larger
B. The gain of the system is defined as � = B/κ − 1, and
thus, the cases with � > 0 correspond to the amplification
condition. Furthermore, the stimulated emission coefficient
B is dependent on the number of unit cells according to its
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expression. Thus, the stimulated emission can be increased
further by increasing M. When M is large, � > 0 can easily
be obtained and the amplification by stimulated emission
radiation occurs.

6. Outlook

Some important progress on CMROWs has recently been
reported. The Halas group reported a metallic disc array
to transport magnetic plasmon mode [79], and they were
able to obtain Y-splitter and MZ interference devices by
using such system. CMROWs can be applied to many other
nanocircuits [80]. In the current study, only the CMROW
in planar substrate was considered, although coupling can
also happen between magnetic resonators in a 3D config-
uration [39, 81, 82]. CMROW can be fabricated in a 3D
configuration using these techniques in the future. Almost
all 3D plasmonic structures can be seen as stereometama-
terials that possess many similar optical properties such
as stereochemistry with properties that are mainly deter-
mined by the 3D configuration instead of their elements.
CMROWs can be fabricated to mimic double-helix DNA
structures or other complex polymer structures. Another
important progress on quantum CMROWs is a reported ex-
periment study about quantum interference in a CMROW,
which shows the possibility of application of CMROWs in
quantum optics [83].

CMROWs will continue to face many challenges in
the future. The most important challenge is the ohmic
loss caused by metallic materials during light propagation.
Ohmic loss is always serious in the visible and infrared
ranges. The ohmic loss will be much smaller in the mi-
crowave and THz ranges. Moreover, the geometry size of
magnetic resonator can be quite large. CMROW structures
can easily be obtained using some simple and commer-
cial fabrication techniques. Most applications of CMROWs
should be performed in the THz and microwave ranges.
In contrast to traditional transmission lines, a CMROW is
a kind of periodic system. The dispersion of the waveg-
uide mode and the light velocity can be tuned by chang-
ing the coupling between magnetic resonators, providing
CMROWs a sufficient space to obtain various controllable
devices.
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