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Abstract
We present an optical method to realize the analogy of gravitational collapse by using the
gradient of the refractive index system and the spacetime embedding diagram. We observe an
analogy of Hawking radiation after the horizon is formed, for which the corresponding effective
temperature is obtained via the transmission spectrum. We find that the effective temperature is
proportional to the surface gravity, which is similar to the case in real black holes.

Keywords: gravitational collapse, Hawking radiation, embedding diagram, projected refractive
index, analogue gravity

1. Introduction

Research on black holes has attracted attention for a long
time. In particular, after the successful detection of a black
hole’s gravitational wave in 2015 [1] and the first picture of
black hole taken by the horizon telescope in 2019 [2], sci-
entists now believe that black holes exist widely in our uni-
verse. We now acknowledge that a black hole is formed by
the gravitational collapse of a massive star (to form a black
hole the mass of this star should be larger than Oppenheimer’s
limit, i.e. M>3.2Msun). So research about this dynamic
process is crucial to understand the formation of black holes.
In the last century, many outstanding theoretical physicists
such as Hawking and Penrose have analyzed this dynamic
process theoretically [3–5]. In 2000, Sonego et al theoreti-
cally studied the optical geometry in the gravitational collapse
of spacetime and described this process semi-quantitatively
with a 2D surface [6]. Additionally, in 2019, Baumgarte et al
numerically investigated the threshold of black-hole forma-
tion in the axisymmetric gravitational collapse of electro-
magnetic waves and discussed implications for the critical
collapse of vacuum gravitational waves [7]. Nevertheless,

experimental simulations and astronomical observations of
gravitational collapse are still very limited.

At present, only very few of the classical properties of
black holes can be observed. Observation of the quantum
properties of black holes is quite difficult. Many quantum
properties of black holes are closely related to the event
horizon, so research into the event horizon is crucial for
making progress in the quantum properties of black holes.
The most famous research that involves the horizon is known
as Hawking radiation. Though we have not observed Hawk-
ing radiation of a black hole so far, theorists proposed that the
process of Hawking radiation can be simulated by analogy to
certain experimental systems. In 1981, Unruh presented an
analogy of Hawking radiation in an acoustic black hole sys-
tem [8]. He found that when the fluid exceeds the speed of
sound, the sound waves are trapped in a supersonic region,
and Hawking radiation of the phonon exists near the sonic
horizon. In 2009, Steinhauer and his collaborators first
obtained a stable supersonic Bose–Einstein condensate (BEC)
fluid and calculated the Hawking temperature at an order of
magnitude of 0.1 nK [9]. In their latest research, they
observed that the spectrum of Hawking radiation agrees well
with a thermal spectrum in an improved BEC system, in
analogy with a real black hole [10]. In 2008, Philbin et al
used nonlinear optical fibers to simulate the event horizon of a
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white hole and observed the blue shift of light near the hor-
izon [11]. In 2019, Drori et al observed stimulated Hawking
radiation based on the same nonlinear fiber systems [12].
Although these analogous experimental systems with some
approximations can simulate certain effects of curved space-
time, they still cannot accurately correspond to real curved
spacetime.

In the past 20 years, developments in material fabrication
and measurement techniques have encouraged us to make
numerous attempts about analogue curved spacetime such as
black holes [13–17], wormholes [18, 19], Einstein ring [20],
De-Sitter space [21], cosmological inflation, redshift [22],
cosmic string and topological defects [23]. In the most recent
decade, a curved waveguide based on the surface of the
embedding diagram of the metric has become another new
optical structure to mimic curved space and the effect of
general relativity [24–27]. At present, research on a curved
waveguide that simulates curved spacetime still remains
within the classical characteristics of the gravitational field.
So it is quite worthwhile to try to simulate the quantum
characteristics with a curved waveguide.

In order to describe the casual structure of a black hole,
Penrose proposed a widely accepted schematic method called
Penrose diagrams [3–5]. The Penrose diagram is a good tool
to exhibit global causal structure; it is not suitable to present
the curvature of spacetime. There is also an alternative dia-
grammatic method named ‘embedding diagram’ in the study
of black holes, which is widely used to visualize the curvature
of spacetime. In this paper, we make a step in describing the
process of gravitational collapse of a star and the formation of
horizon, using a one-dimensional embedding diagram
[28–30] and the gradient of refractive index systems. We will
show numerically that our model can present an analogy of
Hawking radiation after the horizon is formed, from which the
Hawking temperature is obtained directly from the transmis-
sion rate. We found numerical results can match quite well
the theoretical predictions of Hawking radiation.

This paper is organized as follows. In section 2, we
present our optical model of gravitational collapse in one-
dimension gradient of the refractive index. In section 3, we
give an optical analogy of the Hawking radiation index sys-
tem and compare the effective temperature with the Hawking
temperature formula. Then we conclude in section 4.

2. Analogy of gravitational collapse using the
gradient of the refractive index

Let us first recall the basic description of gravitational col-
lapse. One picture of the process of gravitational collapse can
be understood as follows: a beam of light is incident on a
collapsing star, crosses the center of star, then ‘reflects’ and
propagates outwards to infinity. Specifically, if we assume
that when incident light arrives at star at time =t t ,0 the event
horizon has just formed, and the light is trapped into the
horizon. After that the star collapses rapidly to form a black
hole. All incident light beams later than the initial time
>t t0( ) will be totally absorbed into the central singularity by

the strong curvature of spacetime and cannot get outwards
anymore.

First, we assume that the exterior region is in vacuum.
Due to the spherical symmetry, the spacetime metric of the
exterior region is given by Schwarzschild solution (in this
paper, we take = = = =G c k 1B ) given by equation (1):

q q j

= - - + -

+ + < ¥

-



ds
M

r
dt

M

r
dr

r d d R t r

1
2

1
2

sin , , 1

2 2
1

2

2 2 2 2

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( )

where R(t) is the radial coordinate of the star, which evolves
with time t. M is the mass of central star. The surface gravity
k, which describes the gravitational strength measured by
observers at spatial infinity, depends on the mass with
equation (2):

k =
M

1

4
. 2( )

The interior geometry of star is much more complicated in
that it depends on the detailed structure and interaction of
matter within the star. We need to add several assumptions to
simplify this situation. First, we suppose that the spherically
symmetric star consists of a perfect fluid and ignore all
thermodynamic effects, which was discussed in detail by
Oppenheimer and Volkoff in 1938 [31, 32]. Starting with the
Tolman–Oppenheimer–Volkoff equation, we can get the
interior metric from equation (3):
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where ò pr¢ = ¢ ¢m r r dr4 ,
r

0

2( ) and ¢P r( ) and r are, respec-

tively, the pressure and density inside the star.
Second, we assume that star has uniform density and zero

pressure that is usually called a ‘ball of dust.’ In the boundary
between the interior and exterior regions, the metric should be
continuous. So we have the boundary conditions given by
equation (4):
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2
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Based on the above assumptions, we can rewrite the interior
metric as equation (5):
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It is very similar to the Friedmann–Lemaitre–Robertson–
Walker (FLRW) metric with positive space curvature as
illustrated in figure 1.
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Now let us introduce embedding diagrams. They are
useful and effective tools that present hidden spatial curvature
information of curved space [28–30]. An arbitrary static
spherically symmetric metric can be written in the form given
by equation (6):

q q j= + + +ds g dt g dr r d dsin . 6tt rr
2 2 2 2 2 2 2( ) ( )

We focus only on the spacetime at a particular moment t and
the equatorial plane, which leads to =dt 0 and q = p .

2
Then

metric of equation (6) degrades into 2D form as equation (7):

j= +ds g dr r d . 7rr
2 2 2 2 ( )

We embed the two-dimensional space of equation (7) into a
three-dimensional Euclidean space with equivalence of line
elements given by equation (8):

j j+ = + +g dr r d dZ dr r d , 8rr
2 2 2 2 2 2 2 ( )

where the right side is the line element expressed in cylind-
rical coordinates ( jr Z, , ). Then we can derive the embed-
ding diagram equation as equation (9):

= -
dZ

dr
g 1 , 9rr ( )

which reveals a fact that the function of the embedding dia-
gram is uniquely determined by the spatial components grr of
the spacetime metric.

Based on this model, we can derive the one-dimensional
smooth curves of embedding of metrics of equations (1)–(5)
as given by equation (10):
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where C is the integration constant. In this paper, we set
=C 2 just for simplicity.
As depicted in figure 1, three curves with different colors

and notations describe the dynamic process of collapse, where Bn

( = =n R M1, 2, 3 correspond to 3 , M M2.1 , 2 , respectively

are the positions of the star’s edge. Curves ABn are diagrams of
the exterior part at different times, and curves B Cn n are the
interior part. It is noted that the embedding diagram Zout of
equation (10) is uniquely determined by the mass of the central
star M, and the mass is supposed to be invariable throughout the
whole process. So the shape of curves ABn does not change,
extending just to inside the star’s edge B .n While the inner curves
shrink and gradually bulge out to B C ,3 3 and eventually reaching
point B ,3 corresponding to the gravitational radius, the whole star
collapses in an inexorable and unstoppable way to form a black
hole. This means the exterior curve like the blue dashed line goes
down forever, and the inner star shrinks sharply to a point with
infinite density, called the central singularity.

What needs to be pointed out is that we cannot depict the
interior part of black hole because embedding diagram
equation (10) is not analytic in that region ( <r M2 ) in the
real number field with coordinates (Z r, ).

We can regard a one-dimensional curve with constant
refractive index as a one-dimensional gradient of the refrac-
tion index via the equivalence of the optical path. As the black
dashed lines in figure 1 demonstrate, the light ray is confined
to propagating along the blue line with constant refractive
index =n 1,0 and the corresponding optical path element is

s = = +d n ds n dr1 .dZ

dr0 0
2( ) For light rays propagating

along the r-axis with the gradient of the refractive index n r ,( )
the optical path element is s =d n r dr.( )

We get a projected refractive index from the comparison
of corresponding path elements using equation (11):

= +n r 1 . 11dZ

dr

2( )( ) ( )

This equation expresses the one-dimension refractive index
with relevant geometric curvature of curve.

Then we derive the projected index of equation (10) from
equation (12):
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Light propagates in a vacuum or a medium and can be
described by the Maxwell equations, and the material
equation e=n .r With some simple vector analysis and
transformations we can derive standard Helmholtz
equation (13):

j j + =x y z nk x y z, , , , 0. 132
0

2( ) [ ] ( ) ( )

This equation is only effective for an isotropic homogeneous
medium, n is the effective refractive index of the medium, k0

is the wave vector in a vacuum, and j is the electric or
magnetic field component. The Helmholtz equation in 1D
situation can be expressed as equation (14):

j
j+ =

d x

dx
nk x 0. 14

2

2 0
2( ) [ ] ( ) ( )

Furthermore, if the medium is inhomogeneous with a gradient
in the refractive index in the direction of propagation,

Figure 1. Embedding diagrams: embedding curves described by
equation (10) with R=3M (in orange), R=2.1M (in red) and
R=2M (in blue); the dashed line in blue represents the event
horizon, which keeps going down forever. Black dashed line is a
schematic diagram of the projected refractive index of 1D curve
mentioned later.
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equation (14) should be corrected to (details are shown in
appendix A) equation (15):

j
j+ =

d x

dx
n x k x 0. 15

2

2 0
2( ) [ ( ) ] ( ) ( )

Here n(x) is given by equation (12) by substituting x for r. It
is noted that this differential equation holds this form only in
one dimension and can be solved numerically.

The three corresponding projected refractive indexes of
curves depicted in figure 1 are shown in figure 2. It is clear that
the corresponding index of the stellar surface increases with the
decrement of radius and eventually approaches infinity. In
optical systems, the velocity of light falls to zero when it
propagates to the region with an infinite refractive index. This
feature of light with null speed is very similar to event horizon.
In this paper, we intend to use the location of infinite refractive
index to simulate the horizon of a black hole.

We stipulate that a plane wave propagates in a refractive
index distribution like that of equation (12) with gravitational
radius m= =r M2 2 mg and different R via the finite difference
time domain method (FDTD Solutions) and conduct simula-
tions. We establish the distribution of refractive index on a plane
waveguide with 100 μm length (the indexes at both ends can be
regarded as uniform and equal to one) and 8 μm width in the x
and y directions, respectively. A beam of a plane wave with
wavelengths ranging from 0.3 to 0.8 μm and unit amplitude is

incident from the start point m= -x 50 m .( ) The transmission
spectra are measured at the end of the waveguide m=x 50 m .( )
We physically explain the transmission spectrum in
figures 2(g)–(i) as the region between two peaks of the refractive
index, such as second line in figure 2, which is equivalent to an
optical potential barrier. As in figure 2(d), the peak of the index
is not large; the effective wavelengths of light at this point are
comparable to the scale of barrier, so all light transmits as dif-
fraction, leading to figure 2(g). With the increment of peak index
light with short effective wavelengths at that point will be
blocked by the optical barrier, while long wavelengths light can
still transmit from the barrier which leads to the transmission
spectrum in figure 2(g). Of course when the peak index is so
large that it can be treated as infinite, all effective wavelengths of
light are compressed to zero, which means no signals can
transmit as shown in figure 2(i). Meanwhile, we obtain a scatter
diagram for the transmission of monochromatic plane wave with
0.633 μm wavelength and a star of radius R in figure 3(a).
It is obvious that transmissions of the wave sharply decay to
almost zero as the radius of star approaches M2 , which is the
location of horizon.

3. Optical analogy of Hawking radiation as tunneling

In the above section, we found that the transmission rate will
decay rapidly with respect to the energy of the beam when the

Figure 2. Projected refractive indexes and measurement of transmission spectrum. (a)–(c) Embedding curves with R=3 μm, 2.1 μm and
2.000 02 μm, respectively. (d)–(f) The corresponding projected refractive index. (g)–(i) The corresponding transmission spectrum.
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event horizon is almost formed. In this section, we will show
that these phenomena are just analogous to Hawking radiation
of a black hole formed by collapsed stars.

In 1974, Hawking examined the quantum effects of a
collapsing star, which is about to form a black hole. He used a
Bogoliubov transformation and found black holes were
radiating energy as if they were a blackbody of temperature

kµT [33, 34]. From aspects of classical and quantum fields,
one explanation of Hawking radiation is explained as a pair of
particle-antiparticles is created outside the horizon, then the
anti-particle with negative energy will fall into black hole, and
the particle with positive energy will escape to infinity.

Once inside the black hole, the physical time direction is
along -r, so the antiparticle (negative energy) falls into black
hole and ‘goes forward in time.’ In the Feynman path integral
formulism, it can be treated as an anti-antiparticle, i.e. particle,
‘going backward in time,’ actually moving towards the hor-
izon. This process and the pair creation are just virtual pro-
cesses. The only materialized phenomena is that the black hole

reduces its mass, and the outside has a new particle (positive
energy). Thus, there is an equivalent picture: a positive energy
particle inside the black hole moves towards the horizon (this is
a virtual process and is not observable, and so does not valid
causality) and succeeds tunneling to the outside of horizon and
is seen as a particle. Rabin and Bibhas obtained a black body
spectrum and the corresponding Hawking temperature for a
general black hole on a basis of tunneling mechanism with the
WKB approximation [35]; Maulik and Frank presented
Hawking radiation as a direct tunneling process of particles and
derived the tunneling probability as G ~ -e ,S2Im where SIm is
the imaginary part of the action for the semi-classical tunneling
process [36]. Then they got a standard Hawking temperature
formula with a self-gravitation correction [36]. After neglecting
the self-gravitation correction, the transmission probability of
the particle with energy E satisfies equation (16) [37, 38]:

G ~ -
E

T
exp , 16

H

⎛
⎝⎜

⎞
⎠⎟ ( )

where TH is the Hawking temperature.

Figure 3. (a) Transmission of plane wave with 633 nm wavelength travels in gradient index like equation (12) with different R and
m=M 1 m. (b) Schematic diagram of plane waveguide and inner index distribution. (c) Numerical simulation of transmission spectrum of

gradient index in equation (12) with m=R 2.1 m, m=M 1 m and linear fitting of E and Gln . (d) Corresponding Hawking temperature of
different black holes with different M and linear fitting with surface gravity k.
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In this paper, we use embedding formulas and a projected
refractive index to make an optical analogy to Hawking
radiation based on the equivalent tunneling picture. We can
directly derive the Hawking temperature formula with the
particle tunneling probability: G ~ -e S2Im [36] in our system
(detailed derivations are shown in appendix B).

To check if our optical analogy can exhibit a phenom-
enon similar to Hawking radiation, we set the parameters as
follows: we select equation (12) with m=M 1 m and

m=R 2.1 m, which is close enough to the gravitational radius
m=r 2 m,g which means the star is about to collapse to a

black hole, and the refractive index of the location of R is
4.58, which is large enough so that the materials can mimic a
horizon. As depicted in schematic diagram figure 3(b), we set
the gradient of the refractive index on a plane waveguide with
50 μm length and 8 μm width in the x- and y-directions.
Region m r0 2.1 m, corresponds to the inner part of the
quasi black hole; region m m r2.1 m 50 m corresponds to
the outside. A beam of plane waves with wavelengths ranging
from 0.3 to 0.8 μm and unit amplitude is incident from =x 0,
propagates along the r-axis, tunnels, and we measure the
transmission spectrum at m=x 50 m where the index is
approximately uniform and equal to one, corresponding to the
flat region of Schwarzschild spacetime. In this optical system,
the horizon with an infinite refractive index is essentially an
infinitely deep barrier, which is the classical problem in
quantum mechanics.

We calculate differential equation equation (15)
numerically to get the transmission spectrum. The energy E
can be expressed as w= = p

l
E .2 As shown in figure 3(c), we

depict the scatter diagram of energy E of particle and natural
logarithm of transmission Gln , which shows a linear rela-
tionship and the linear coefficient have the same dimension as
Schwarzschild radius (where we take c= kB= 1), we express
this slope as 2.37 r ,g then we imply that

G µ -
E

T
exp ,

eff

⎛
⎝⎜

⎞
⎠⎟

with an effective temperature = -T r0.422 .eff g
1

We emphasize that in our analogous system, the surface
gravity k = =

M r

1

4
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2 g
is associated with the gravitational

radius of the black hole, which is determined by the refractive
index distribution along the x-axis. According to
equation (12), we can obtain the equation (17):
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So next we conduct several simulations with a different M in
each system. After that we analyze and calculate the
corresponding Hawking temperature. We depict data of
effective temperatures Teff and surface gravitations κ in
figure 3(d), and we find a good linear relationship with a

negligible intercept kµT ,eff which is similar to the case in
black holes.

4. Conclusion

In conclusion, we have proposed a new method analogous to
gravity. It employs an embedding diagram with a projected
refractive index for an analogy of cosmological phenomenon
such as gravitational collapse and Hawking radiation. We
use the variation of the refractive index to simulate the
continuous change of the gravitational field of a collapsing
star based on a spacetime metric, and we construct an event
horizon where the index goes to infinity. Then we observe
an analogy to Hawking radiation for the first time. Our
method can easily be extended into three-dimensional opti-
cal systems to simulate two-dimensional horizons, and in the
future we may design and fabricate curved waveguide
samples via 3D printing technology, which offers a new
experimental approach to simulate Hawking radiation in
analogous systems.
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Appendix A

In regions of space that contain no free charges and no free
currents, we take the curl of the - Ecual Maxwell equation,
interchange the order of space and time derivatives on the
right-hand side of the resulting equation, and replace  ´ B
by m ¶

¶
,D

t0( ) to obtain the equation

m ´  ´ +
¶
¶

=E D
t

0. A.10

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

The first term can be rewritten by vector calcu-
lus:  ´  ´ =   - E E E2( · )

Then we get the expression:
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The third term in equation above has the form:
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where we use  =D 0· in last step.
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Formula (A.2) can be written as:

e
e

 -
¶
¶

+


=E E E
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r

r
0, A.42
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which is general wave equation in inhomogeneous medium.
Then we express E r t,( ) as = w-E Er t r e, .i t( ) ( )
The wave equation (A.4) becomes a general Helmholtz

equation as:

e
e

 +
¶
¶

+


=

E E

E

r n r k
t

r

r

r
r 0. A.5

2
0

2
2

2
( ) [ ( ) ] ( )

( )
( )
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Especially in our 1D model, the above formula can be sim-
plified as follows:

We assume that electromagnetic wave propagates in the
x direction, and relative permittivity er of medium just
changes in the x direction, namely e e= =x n xr r

2( ) ( ) the last
term vanishes because electric field just have transverse
components and gradient term just has longitudinal comp-
onent:

e
e e

e


=

´
¶
¶

=

E
x

x
y z

x

x

x
E E

,
1

, 0, 0 0, , 0.y z⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

· ( )
( )

( ) · ( )

Finally, Helmholtz equation (A.5) is represented as:

 +
¶
¶

=E Ex n x k
t

x 0. A.62
0

2
2

2
( ) [ ( ) ] ( ) ( )

Appendix B

The general Schwarzschild black hole metric is expressed as:

q q j

= - +

+ +

ds f r dt
f r

dr

r d d

1

sin . B.1

2 2 2

2 2 2 2

( )
( )

( ) ( )

There is only one zero point of f x( ) at =r rh where it is the
horizon, and we assume that >f r 0( ) for >r r ,h corresp-
onding to the exterior of black hole and <f r 0( ) for <r r ,h

corresponding to the interior of black hole. We define surface
gravity gh as:

= ¢ >g f r
1

2
0. B.2h h( ) ( )

We consider this spacetime in our embedding diagram and
projected refractive index system, according to equation (11),
we obtain index distribution as:

= =n r g
f r

1
. B.3rr( )

( )
( )

Then we can define the group velocity vg of light (in a natural

units system with = = = =c G k 1B ) as:

= =v
n r

f r
1

. B.4g ( )
( ) ( )

In [36], Parikh et al proposed that the imaginary part of action
that describes positive energy particle crosses the horizon
outwards from the interior of black hole r ,in to exterior rout can
be expressed as:

ò=S p drIm Im , B.5
r

r

r
in

out

( )

where = - r r ,in h = + r r ,out h  is infinitesimal.

We consider Hamilton’s equation =r ,dH

dpr
 where w=H

and r is the equivalent group velocity of light, equal to v .g We
change the variable from momentum to energy and switch the
order of integration to obtain:

ò ò ò w= = ¢
w

S p dr
dr

v
dIm Im Im . B.6

r

r

r
r

r

g0in

out

in

out

( )

We consider equation (B.6) near the event horizon =r r .h

Firstly, it is noted that w¢ is the frequency of light observed in
the infinite, and there is correction factor near the horizon as:

w w¢  ¢
f r

1
. B.7

( )
( )

So equation (B.6) is amended as:

ò ò ò òw w= ¢ = ¢
w w

S
dr

v
d

dr

f r
dIm Im Im . B.8

r

r

g r

r

0 0in

out

in

out

( )
( )

Secondly, we can expand f r( ) to second order as:

= + ¢ -
= -

= =f r f r f r r r

g r r2 . B.9
r r r r h

h h

h h( ) ( )∣ ( )∣ ( )
( ) ( )

Substitute equation (B.9) into (B.8), we obtain:

ò ò w=
-

¢
w

S
dr

g r r
dIm Im

2
. B.10

r

r

h h0 in

out

( )
( )

The inner integral is not continuous at the horizon and the two
pieces should be connected continuously under the bottom
half of complex plane, according to the residue theorem:

ò
p

-
=

g r r
dr

i

g

1

2 2
. B.11

r

r

h h hin

out

( )
( )

So we can obtain equation (B.8) as:

ò ò òw
p

w
pw

= ¢ = ¢ =
w w

S
dr

f r
d

i

g
d

g
Im Im Im

2 2
.

B.12

r

r

h h0 0in

out

( )
( )

As expressed in [36], the semiclassical tunneling rate has the
exponential form:

G ~ = =
pw

- - -e e e , B.13S g
E

T2Im
2
2 h H ( )

where energy w=E and temperature =
p

T 2 ,H
g

2
h· which is

similar to Hawking temperature formula.
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