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Sizable electromagnetic forces in parallel-plate metallic cavity
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Using a boundary element method to calculate electromagnetic fields and the Maxwell stress tensor method to
compute electromagnetic forces, we investigate electromagnetic wave induced forces acting on a pair of identical
metal plates that form an electromagnetic resonance cavity. Different frequency regimes are considered, from
infrared frequencies with micron-scale structures down to the microwave regime, which involves millimeter-scale
structures. We found that at both length scales, electromagnetic-wave-induced forces can be significantly stronger
than the usual photon pressure exerted by a laser beam if the cavity is excited at resonance, although the
mechanisms that underlie the strong force are different at different length scales. In the infrared frequency
regime, the strong force is induced by field penetration into the metal, whereas in the microwave regime, the
electromagnetic force is induced by the leakage of electric field at the edges. At both frequency scales, we compare
the results we obtained for Au metal plates with fictitious perfect electric conductor plates, so as to understand
the effect of field penetration. We also showed that a transmission line model can give simple expressions that can
capture the essence of the physics. The effects of surface corrugation and surface roughness are also investigated,
and we find that corrugation/roughness generally induces attraction between the plates.
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I. INTRODUCTION

The invention of the laser paved the way for particle
manipulation by light-induced forces.1–4 Nowadays, optical
force is used extensively to manipulate small particles,5–14

and it is intensively investigated in special systems such as
waveguides15–22 and nanowires.23,24 The term “optical force”
typically refers to the forces induced by visible or near infrared
(IR) radiation, which accounts for only a small part of the
electromagnetic spectrum. We know that static fields can also
manipulate particles, a good example being electrophoresis.
We note that the optical force can be enhanced by the
excitations of surface plasmons at visible or IR frequencies, but
this important phenomena is absent at microwave frequencies.
Is it possible to achieve reasonably large forces at intermediate
frequencies such as microwave frequencies? The purpose of
this paper is to show that electromagnetic forces and pressure
induced by the resonance in a metal sandwich configuration
can be sizable in both high (near IR) and low (microwave)
frequency regimes using the same geometric configuration
and the same material.

We shall explore the electromagnetic forces induced by
external illumination for a system consisting of two parallel
metallic plates separated by an air gap; the basic configuration
of our system is depicted in Fig. 1. The plates are under the
illumination of an electromagnetic plane wave, whose wave
vector is normal to the surface of the plates, and the polarization
is such that the magnetic field points in the z-direction, as
shown in Fig. 1(b). In the microwave regime, such a metal
plate sandwich configuration is similar in structure to the
“mushroom” elements of the high-impedance ground planes,25

except that our system has no metal via connecting the
metal plates. In the plasmonic regime, such metal sandwich
structure has been used to facilitate the realization of negative
effective permittivity and negative effective permeability at
high frequencies.26,27

We note under the illumination of electromagnetic wave,
such a parallel-plate system sustains two kinds of coupling
modes: the symmetric mode and the anti-symmetric mode.24

The former mode is characterized by a pair of parallel currents
induced on the two plates, whereas the latter is characterized
by a pair of anti-parallel currents. For the symmetric mode, the
fields of the two plates tend to cancel each other out, and most
of the electromagnetic energy stays outside the cavity. The
optical force corresponding to the symmetric mode is much
smaller than that of the anti-symmetric mode in our cases
(see Appendix). In the following discussion, we focus on the
anti-symmetric mode, which gives forces that are two to three
orders of magnitude stronger than that of the symmetric mode.

By Faraday’s law, the time-varying magnetic flux between
the plates generates an electromotive force that drives the
electrons to move synchronously, leading to currents depicted
pictorially by the yellow arrows in Fig. 1(b). At certain
frequencies, the periodic oscillation of the induced currents
will be at resonance with the external driving fields, and very
strong fields will be induced between the plates. At resonance,
the anti-parallel currents induced on the two plates will exert
a repulsive magnetic force on the plates. At the same time,
current oscillations lead to charge accumulation in the plates,
as illustrated schematically in Fig. 1(b), and this generates an
electric Coulomb attraction. The net or total optical force due to
resonance is the sum of the repulsive magnetic force and the
attractive electric force. In other words, the attractive/repulsive
nature of the force is determined by competition between the
electric field effect and the magnetic field effect. In a previous
paper,28 we reported that a strong attractive force between a
pair of plasmonic plates can be induced by the kinetic energy
of the electrons in the IR range. In this article, we consider
and compare the optical forces in both the high-frequency
(IR) and low-frequency (microwave) regimes, and we will
employ Au as the prototype metal. We will also give the
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FIG. 1. (Color online) A schematic of the parallel-plate system.
(a) Geometric parameters and the coordinate axis; (b) the direction
of the incident plane wave and polarizations of Ein and Hin fields
are indicated. The yellow arrows indicate pictorially the direction
of the current I flowing in the metal plates at one instant. For PEC,
the currents would be surface currents. The numerically computed
field distribution at the lowest order resonance for PEC plates (l =
0.4 μm,t = 0.05 μm, and d = 0.02 μm) is shown to illustrate the
field patterns at resonance. The magnetic field (|Hz|) (indicated by the
red-colored pattern) is localized near the center region, and the electric
field (indicated by the green arrows) is the strongest in the vicinity of
the open ends. (c) A transmission line model with per-unit-length R,
L, and C is used to model our system analytically.

corresponding results if the metal plates were replaced by
fictitious perfect electric conductors (PECs). We find that if
there is no field penetration into the metal and if we can
ignore the fringe effect, the electric-field-induced attraction
and the magnetic-field-induced repulsion essentially cancel
each other out, leaving behind a small residual force due to
light reflection on the front surface. In that ideal limit, the
strong resonant fields do not generate a strong force because
the magnetic field effect and the electric field effect oppose
each other, even though the magnitude of fields can be very
strong due to resonance. When fringe effects are taken into
account, the field leakage at the edges affects the electric field
more than the magnetic field. This is because the electric
field is stronger near the edges, whereas the magnetic field
is stronger near the center of the sandwich. Additionally, the
leakage effect leads to a smaller attractive force induced by
the electric field. But if the field penetrates the metal, a certain
portion of the magnetic energy is stored inside the metal as the
kinetic energy of the electrons, and the total Faraday magnetic
energy becomes small, so that the magnetic-field-induced
repulsion is diminished. The result is that the fringe effect
decreases attraction and field penetration suppresses repulsion.
In the microwave frequency regime, the field hardly penetrates
the metal, and we will see that the resonant electromagnetic
force is mainly dominated by the fringe effect; hence, the
force is repulsive, whereas the resonant optical force becomes

attractive at high (e.g., IR) frequencies as the field starts
penetrating the metal.

At each frequency scale, we will compare the results we
obtained for Au metal plates with those for ideal PEC plates
so as to understand the effect of field penetration. And for a
better heuristic understanding of the physics, we employed a
transmission line model which gives simple expressions that
can capture the essence of the physics.

We will see that rather strong electromagnetic forces, which
can be hundreds of times stronger than the usual photon
pressure due to reflectance on a metal surface, can be induced
by the electromagnetic resonances in both frequency regimes.
We note in particular that the microwave-induced force is
not small, so it is possible to use conventional microwave
sources to obtain measurable forces with a relatively low
output power. At high (IR or optical) frequencies, one can
achieve strong optical forces either by generating strong fields
via the excitation of some sort of resonances or by focusing
light to a small spot. Manipulating materials using strongly
focused light at optical frequencies is routinely practiced in
optical tweezers.29–31 However, it is much more difficult to
focus the microwave energy into a small volume. Even when
one focuses the microwave energy to a diffraction-limited spot,
the resulting intensity is still typically orders of magnitude
weaker than its optical analog, and it is not sufficient for
manipulation. For this reason, in addition to focusing, inducing
electromagnetic forces through resonance effects will be
necessary in the microwave regime. We do want to emphasize
again that the physics here is more subtle than mere field
enhancement. Whereas resonances generally induce strong
forces32,33 because of field enhancement, the electromagnetic
forces have opposite signs for electric and magnetic fields in
the metal sandwich configuration and the field enhancement
per se cannot account for the strong force in this system. An ad-
ditional mechanism (either field penetration or fringe effect) is
needed to suppress the effect of one of the fields (e.g., field pen-
etration selectively suppresses the magnetic field effect), leav-
ing behind the effect of the other field to realize a strong force.

In what follows, we introduce in the Methodology section
our computational methods and an analytical model that
satisfactorily explains the simulation results. In the Results
and Discussion section, we will show results for the optical
force/pressure at the micron scale, comparing the results
obtained for Au with those for PEC plates. We then consider
the electromagnetic force/pressure at the millimeter scale, with
resonances in the microwave frequency regime. The effect of
surface corrugation and roughness is then considered.

II. METHODOLOGY

A. Geometry and setting

We consider a pair of identical metallic plates separated
by a distance d, each characterized by thickness t, length
l, and width w (length along the z-direction), they form a
two-dimensional system as shown in Fig. 1(a). In this paper,
the metallic plates are assumed to be made of gold, and we
will also present corresponding results for PEC plates to help
understand the physics. We will consider two length scales.
In part III A, we consider the wavelength and the size of the

075114-2



SIZABLE ELECTROMAGNETIC FORCES IN PARALLEL- . . . PHYSICAL REVIEW B 84, 075114 (2011)

plates to be on the order of microns, whereas in part III B, the
scale increases to millimeters, corresponding to resonances at
microwave frequencies. Unless otherwise noted, the incident
electromagnetic wave has the form of a plane wave

Ein = E0ŷeikx, (1)

where the k-vector of the incident wave is perpendicular to the
flat side of the plates, as shown in Fig. 1(b). The polarization
of the incident field is along the y-axis, with the coordinate
system defined in Fig. 1(a).

B. Numerical computation: boundary element method
and Maxwell stress tensor

In the following (Figures 2–7), we will show numerically
computed optical pressures acting on our system. There are
two metal plates in our system, and we will call the plate on
the left [see Fig. 1(b)] the front plate, on which the incident
light coming from the left impinges, and we call the plate on
the right the back plate. The numerically calculated optical
pressure we will show is the time averaged electromagnetic
force acting on the back plate divided by the area of the plate.
We would be primarily interested in the optical force/pressure
acting on the plates when the system is in resonance, and
in that case, the optical pressures acting on the front plate
and back plate are nearly equal, with the difference being the
photon pressure due to reflection on the front metal plate,
which is small (typically less than 1% of the total optical
pressure acting on one plate). The numerical computation
of the optical forces involves two steps. First, the boundary
element method (BEM)34–36 is applied to solve the Maxwell
equations with the standard boundary conditions, which gives
the electromagnetic fields. The detail of the BEM we employed
is described in Xiao and Chan.34 With the fields given by BEM,
the total time-averaged optical force acting on the back plate is
then calculated by using the standard Maxwell stress tensor37

approach, and the area-averaged optical pressure is obtained
by dividing the force by the specific area of the plate. We shall
refer to the area-averaged optical pressure simply as optical
pressure hereafter.

C. Analytical distributed transmission line theory

Although the numerical solution of the Maxwell equations
can give us numerical results for a specific configuration as
precise as we wish, it would be useful if we could use a simple
model to get an intuitive understanding of the underlying
physics. To that end, we employ a transmission line38,39 model
that can explain the numerical results qualitatively and give
some insight into the physics. The pair of parallel plates can
be treated as an open-end transmission line, which consists of
RLC circuit units, as shown in Fig. 1(c). In this model, the
non-uniform distribution of charges and currents on the plates
are accounted for by the distributed effect of the transmission
line. For an incident electromagnetic plane wave Eq. (1), the
position-dependent voltage V (y) and the position-dependent
current I (y) are governed by the telegraph equations40,41

dV (y)

dy
+ (R − iωL)I (y) = iωμ0

∫ x2

x1

ẑ · Hin(x) dx, (2)

dI (y)

dy
+ (G − iωC)V (y) = iω(G + C)

∫ x2

x1

x̂ · Ein(x) dx.

(3)

Here, Hin(x) is the incident magnetic field, and Ein(x) is
the incident electric field; L and C are the per-unit-length
inductance and capacitance for the parallel-plate system, R
is the resistance per unit length and G is the conductance
per unit length of the air gap between the metal plates, and
deff = x2 − x1 is the effective separation between the plates
(see Appendix). In Eq. (3), G and x̂ · Ein are zero for the
particular configuration under consideration. Differentiating
Eq. (3) with respect to y, and then substituting it into Eq. (2), we
obtain the differential equation for I (y), which can be solved
by applying the boundary condition I (0) = I (l) = 0 (i.e., the
currents at the ends of the plates are zero). The solution is
given by

I (y) = B

A2
[1 − cos(Ay) − tan(Al/2)sin(Ay)] , (4)

where A = √
ω2CL + iωRC and B = −μ0ω

2C
∫ x2

x1
ẑ·

Hin(x)dx.
When R is small, the resonance condition, characterized by

having a finite output at vanishing input, can be inferred from
Eq. (4) as

Al = (2n + 1)π, (5)

where n = 0, 1, 2, . . . , and the resonant frequency is given by

ωn = 2πc

λ
= (2n + 1)π√

LCl2
. (6)

We are only interested in the lowest order resonance,
namely n = 0 in Eq. (6). Note that higher order resonances also
exist in our system, but their corresponding electromagnetic
forces are weaker than that of the n = 0 resonance (see
Appendix). At the n = 0 resonance, the amplitude of the current
on each plate is approximately sinusoidal (see Appendix):

|I (y)| ≈
∣∣∣∣ B

A2
tan(Al/2)sin(Ay)

∣∣∣∣ . (7)

We note that Eq. (6) is exact only for the ideal transmission
line or when d/l → 0. For a real transmission line with a
non-zero d/l, the electric field will leak at the edges of the
plates, as shown in Fig. 1(b), and the field leakage will result
in an additional capacitance. To account for this additional
capacitance arising from the fringe effect, we designate an
effective length to the capacitance42 (i.e., replacing Cl with
Cleff), where leff = l(1 + αd

l
+ · · ·) contains the first-order

correction of the capacitance in d/l, and α is the coefficient
of the first-order term. With that, the resonant frequency in
Eq. (6) generalizes to, up to first order in d/l,

ωn = 2πc

λ
= (2n + 1)π

l
√

LC(1 + αd/l)
. (8)

In our analytical calculation, we are only interested in the
n = 0 mode, and the constant α will serve as a fitting parameter.
Although α does not significantly alter the resonant frequency
(because the zeroth-order term dominates), we shall see that
for PEC, the optical force is derived from the fringe effect and
thus depends on α.
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If the electromagnetic energy inside the cavity is mainly
contributed by the resonant mode, the optical force induced on
the plates by the incident electromagnetic radiation is given by
the force formula,16,33

F = −∂U

∂d
≈ − ∂U

∂ω0

∂ω0

∂d
≈ − U

ω0

∂ω0

∂d
, (9)

where ω0 is the resonant frequency corresponding to the
n = 0 mode, and U is the total energy stored in the system.
We note that Eq. (9) only accounts for the “interplate force”
between the plates derived from the resonance excitation
of the cavity. This expression does not include the photon
momentum transfer due to photons hitting the front plate.
Because the resonance force is typically hundreds of times
stronger than the simple momentum transfer, the latter can
be ignored in the discussion of the physics, although in
the numerical calculations, “everything” is included within
the Maxwell stress tensor formulation. At resonance, the
electric energy and the magnetic energy are equal, and thus
U = 2 × L

2

∫ l

0 I 2
eff(y)dy, where the time-averaged effective

current is given by

Ieff(y) = 1√
2

√
I (y) · I (y)∗, (10)

with the asterisk denoting the complex conjugate and where L
is the total inductance per unit length. We shall treat the case
of Au and ideal PEC plates separately.

1. Au plates in the plasmonic regime (at the micron scale)

We consider the plates to be made of Au, and we consider
the plasmonic regime in which we can model Au reasonably
well in the IR regime using the Drude model,37

εr = 1 − ω2
p

ω2 + iωtω
, (11)

where43 ωp = 1.37 × 1016 rad/s and ωt = 4.084 × 1013 rad/

s. The relevant length scale would be the micron. The Maxwell
equation for the metal is

∇ × H = −iω

(
ε0 + i

σ

ω

)
E = −iωεrε0E. (12)

From Eqs. (11) and (12), we obtain the complex resistivity
as

ρ = 1

σ
= ωt − iω

ε0ω2
p

. (13)

The per-unit-length impedance of a single plate is given by

Z = ρ

2δw
= ωt

2δwε0ω2
p

− iω

2δwε0ω2
p

= R̄ − iωL̄e, (14)

where δ is the penetration depth or skin depth, R̄ is the
per-unit-length resistance for one plate, and L̄e is the per-
unit-length kinetic inductance for one plate.44–46 Under the
condition ω � ωt , the penetration depth is given by δ =
c/ωp,46 where c is the speed of light in a vacuum. Because
there are two plates in the system, the per-unit-length resistance
and kinetic inductance are given by R = 2R̄ = ωt/(δwε0ω

2
p)

and Le = 2L̄e = 1/(δwε0ω
2
p). The total per-unit-length in-

ductance (sum of Faraday and kinetic inductance) is

L = Lm + Le = μ0d/w + 1/(δwε0ω
2
p), where the first term

is the conventional parallel-plate magnetic inductance per unit
length. The per-unit-length capacitance of the parallel-plate
system is C = ε0w/d. With R, L, and C defined, we apply
Eq. (9) to obtain the electromagnetic force:

F = U

2

αμ0d
2 − Lewl

(Lew + μ0d)l2[d/l + α(d/l)2]

≈ U

2d(Le + Lm)

(
−Le + αμ0d

2

wl

)
. (15)

In deriving Eq. (15) (see Appendix), we retained only the
zeroth-order and first-order terms in d/l, consistent with our
Taylor expansion in Eq. (8). Equation (15) indicates that while
the leading zeroth-order term is attractive (negative), the first-
order term is repulsive. We note that the first-order term is
proportional to α, and it corresponds to the fringe effect. We
also note that the magnitude of the force is proportional to the
total energy stored in the system (U).

2. PEC plates

We now consider the ideal case in which the plates are made
of PECs for comparison. PECs are good approximations in
the microwave frequency regime, corresponding to the scale
length of millimeters. Considering the ideal PEC limit also
gives us deeper insight into the physics in the micron-length
scale. In the case of PEC plates, the absence of ohmic loss
implies that the only loss mechanism is radiation loss. It is
difficult to obtain an accurate value for radiation loss without
using a full wave numerical simulation tool. Here, we estimate
the radiation loss by using the approach in Ramo et al.47

We outline the approach as follows. The total radiation
resistance is defined through Rtot

r I 2
eff = W , where W is the

time-averaged radiation power, which can be calculated by

W = 1

2

∫
�

Re(E × H∗) · dS, (16)

where the integration domain is over a surface � that lies in
the radiation zone (i.e., infinity) and encloses the whole source
region. In Eq. (16), the electromagnetic fields can be computed
from the vector potential

A(r) = μ0

∫
V ′

J(r′)eikr̄

4πr̄
dV ′ ≈ μ0

eikr

4πr

∫
V ′

J(r′)e−ikr ′cosψdV ′

(17)

under the Lorentz gauge

∇ · A = −ε0μ0
∂φ

∂t
. (18)

Here J(r′) is the current density at position r′
and r̄ = |r − r′|. We made use of the fact that r̄ =√

r2 + r ′2 − 2rr ′cosψ ≈ r − r ′cosψ , where ψ is the angle
between r and r′. We assume a sinusoidal surface current
J = ŷJ0sin(πy/l) [δ(x − x1) − δ(x − x2)], as expected from
Eq. (7) when the system is at resonance. The integral in Eq. (17)
can then be evaluated numerically. Finally, we get the ef-
fective per-unit-length radiation resistance as Rr = W/(lI 2

eff
).

(Because it is difficult to determine the exact per-unit-length
radiation resistance, we take the average for simplicity.)
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Because there is no field penetration, the inductance (per
unit length) of the PEC system is the Faraday inductance L =
Lm = μ0d/w, and its capacitance (per unit length) is C =
ε0w/d. With Rr,L, and C known, we can calculate the current
distribution through Eq. (4) and the total energy U. Then, we
can obtain the expression of optical force in the PEC case with
Eqs. (8) and (9) as

F = αU

2l
, (19)

which indicates that without the fringe effect (α = 0), there
will be no optical force due to the resonance in the system if
the plate is made of PEC. We shall see later from numerical
results that F ∝ l2 for plane wave incidence, and Eq. (19)
implies that U ∝ l3.

III. RESULTS AND DISCUSSION

A. Electromagnetic forces at the micron scale: Au vs. PEC

According to Eq. (15), the first term, which is proportional
to kinetic inductance Le, contributes a negative (attractive)
force, and the second term, which comes from the fringe
effect, contributes a positive (repulsive) force. If the plates
are made of PEC where Le = 0, the first term would disappear
so that the electromagnetic force should be repulsive, and the
repulsion is derived from the fringe effect as parameterized by
the constant α. We note that α is generally positive because the
fringe effect is basically a field leakage effect. In the plasmonic
regime for the Au plate, the field can penetrate the metal,
and we must take the kinetic inductance Le into account, and
the force can become negative (attractive) if the inductance
term overwhelms the fringe effect. This is indeed the case, as
shown in Fig. 2, in which we show the optical pressures at
the micron-length scale calculated numerically with the BEM
and the Maxwell stress tensor method. The system parameters
are specified in the figure captions. In Fig. 2(a), we plot the
calculated optical pressures for the PEC case, and in Fig. 2(b),
we show the pressures for the Au case. We note here again
that the optical pressure corresponds to the optical force per
unit area acting on the back plate. At this length scale, the field
should penetrate the metal; hence, the PEC results in Fig. 2(a)
are just for comparison with those shown in Fig. 2(b) so that
we can understand the consequence of field penetration in the
Au plate. It is clear from Fig. 2(a) that, for the PEC system,
the peak value of the pressure, defined as

P = F

lw
, (20)

where F is defined in Eq. (19), increases linearly with respect
to the length of the plates (P ∝ λ ∝ l). The optical force is
positive, as predicted if kinetic inductance is zero. However,
the numerical results in Fig. 2(b) show that once we consider
real Au as parameterized by the Drude model, the field
penetrates the metal, and hence, there is a kinetic inductance,
the kinetic inductance dominates the fringe effect, and the
force changes sign to become negative (attractive). We note
that for a single electromagnetic plane wave illuminating a
single metal plate, the magnitude of electromagnetic photon
pressure is less than 6.7 Pa/(mW/μm2), whereas the optical
pressure here [Fig. 2(b)] can reach ∼103 Pa/(mW/μm2) at

(a)

(b)

(c)

FIG. 2. (Color online) Optical pressure in parallel-plate system
at the micron scale as a function of wavelength for (a) PEC plates
and (b) Au plates, calculated using the BEM and Maxwell stress
tensor method. In both (a) and (b), we have t = 0.05 μm and d =
0.01 μm. (c) Optical pressure vs. distance d between the plates with
t = 0.05 μm,l = 0.4 μm.

resonance. Consequently, the resonance created by a pair of
plasmonic plates enhanced the optical pressure by two to
three orders of magnitude, as shown in Fig. 2(b). Instead of
a monotonic increase of optical pressure, as in the case of
PEC, there is an optimal l for “plasmonic” Au plates, in which
the optical pressure is the largest. This optimal l appears to
be around 0.4 μm and with a magnitude of approximately
−2.3 × 103 Pa/(mW/μm2). The existence of an optimal value
of l, as told by Eq. (15), is due to the competition of the kinetic
inductance and the fringe effect and is also affected by the
total energy stored in the system. For small l, the fringe effect
becomes more serious as l decreases, while the per-unit-length
kinetic inductance remains more or less the same in that
frequency regime, so the attractive pressure decreases. For
large l, the fringe effect is negligible, but the currents will
decrease with an increase of l as the ohmic loss becomes more
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(a)

(b)

FIG. 3. (Color online) Comparison of resonant wavelengths
(panel [a]) and optical pressures (panel [b]) as a function of l between
the numerical results and the analytical theory. The squares (for Au)
and triangles (for PEC) are calculated with BEM, and the analytical
results (solid lines for Au and dashed lines for PEC) are calculated
with the transmission line theory. We note that in panel (b), we plot the
absolute value of the negative pressure in the Au case for convenience.
For the Au cases, (a) and (b), we have α = 38, and deff = 40 nm,
whereas for the PEC cases, α = 5.5,deff = d = 10 nm.

serious, so the pressure will also decrease. In either the PEC or
Au case, the resonant frequency red shifts with increasing l, as
expected from Eq. (8). Figure 2(c) shows the d-dependence of
the optical pressure. As d increases, the optical pressure drops
quickly.

We present in Fig. 3 a comparison between the numerical
results and the analytical theory described in section II.
In the PEC case, we use α in the analytical model as a
fitting parameter to fit both the optical pressure and resonant
wavelength at the same time, and we find α = 5.5. Here
deff is just the gap distance between the plates (deff = d =
10 nm). In the plasmonic Au case, in addition to the fringe
effect parameter α, we introduce another fitting parameter deff

because the incident electromagnetic fields can penetrate the
plates, generating an magnetic flux within the plates that should
be included in the electromotive force calculation. The fitting
shows they take the values α = 38 and deff = 40 nm. From the
values of α, it can be inferred that the fringe effect in plasmonic

systems is much stronger than that of the PEC system. This
is also seen by examining our numerically computed field
pattern.

We may conclude here that the electromagnetic forces are
attractive at the micron scale in the metal sandwich system,
and the main contribution to the attractive force is kinetic
inductance, which is a consequence of field penetration into
the Au metal plates.

B. Electromagnetic forces at the millimeter scale corresponding
to microwave frequencies

We now scale up the structure from the micron scale
to the millimeter scale. The values of d and t are set to
0.1 mm and 0.5 mm, respectively. For the system at the
millimeter length scale, the corresponding resonant frequency
is in the microwave regime. In this frequency range, we
model Au with εr = 1 + iσAu/(ε0ω), where the conductivity48

σAu = 4.098 × 107 S/m.
Figure 4 shows the numerically calculated electromagnetic

pressures for both PEC plates and Au plates as a function
of wavelength for various values of length l. As expected,
the property of the PEC system is the same as that at the
micron scale, except for a simple scaling of wavelength and l.
This is because, under the assumption of PEC, the materials
are nondispersive; therefore, the solutions to the Maxwell
equations are scalable. Although the Au system experiences
an attractive electromagnetic force in the plasmonic regime
(micron scale), the force becomes repulsive in this microwave
regime because Au behaves as a good conductor in the
microwave regime, so its behavior resembles PEC. The
major difference between PEC and Au is the ohmic loss.
Without dissipative loss, the electromagnetic pressure is a
monotonically increasing function of l as the quality factor
increases with the size of the cavity (see the inset of Fig. 4),
but when the ohmic loss is taken into account, the Au
system possesses a maximum electromagnetic pressure of

FIG. 4. (Color online) Wavelength dependence of electromag-
netic pressure for different values of l in the millimeter regime, with
dotted red lines for PEC and solid blue lines for Au. The inset shows
quality factors of the PEC system and the Au system (see text for
details); the fitting curve for the quality factors for the PEC case is
y = 15x and for the Au case is y = 3 × 104/(15x + 2 × 103/x).
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about 450 Pa/(mW/μm2) at a particular size parameter of l
= 6 mm. We note that although the electromagnetic pressure
is quite a bit smaller than that of the PEC, it is still sizable
compared with the photon pressure of 6.67 Pa/(mW/μm2)
exerted on a single PEC plate by a single plane wave (we note
that the radiation pressure acting on other materials will be
less than that of the PEC). From Figs. 2(b) and 4, this value
reaches about one fifth of the peak optical pressure in the IR
regime with the same intensity of the incident electromagnetic
plane wave.

To analytically calculate the electromagnetic force in
the microwave regime, we apply the same method as in
the PEC case. One should notice that the total per-unit-
length resistance now consists of two parts: R = Rr + Rs ,
where the per-unit-length surface resistance47 takes the form
Rs = 2

√
μ0ω/2σAu/w and Rr is the per-unit-length radiation

resistance. The first factor of 2 in Rs is added because we have
two inner surfaces that the induced currents flow on. We then
follow the procedures in the PEC case to obtain the analytical
value of electromagnetic force in the microwave cases.

Figure 5 compares the analytical results with the numerical
results for the maximum electromagnetic pressure of the Au
system in the microwave regime as a function of l. At each
value of l, we do the computation for a continuous range of
wavelengths to identify the resonant wavelength (see Fig. 4),
which is shown as an open (blue) circle in the inset of Fig. 5;
the computed electromagnetic pressure at resonance for each
value l is displayed as an open (blue) circle in the main panel
of Fig. 5. The results obtained with the analytic model with a
fitting parameter of α = 5.5 are shown as the solid (red) line
in the inset for the resonant wavelength and in the main panel
for the electromagnetic pressure. Note the excellent agreement
for the resonant wavelengths and the reasonably good agree-
ment for the electromagnetic pressures. The value of α here
is the same as that of the PEC case in the micron regime, and
the effective separation between the plates is just the gap dis-
tance (deff = d = 0.1mm) because the field hardly penetrates

FIG. 5. (Color online) Numerically calculated electromagnetic
pressure (blue circles) as a function of l compared with analytical
theory (solid red lines) for Au system in the microwave regime.
The inset shows comparison between numerically calculated res-
onant wavelength and the analytical theory. The fitting parameter
is α = 5.5.

the metal. The electromagnetic pressure has a maximum value
for a certain value of l because of two kinds of resistance:
radiation resistance and ohmic resistance. For small l, radiation
resistance dominates because the resonant frequency is high.
The system basically behaves as a PEC system, and the
electromagnetic pressure increases with an increase of l, as
shown in Fig. 4. For large l, the surface resistance dominates.
Because it increases linearly with l, as in a serial circuit, and
the system becomes more lossy, the electromagnetic pressure
decreases with l in the large l limit.

The rise and fall of electromagnetic pressure as a function
of l can also be understood from the perspective of the quality
factor Q, which can be obtained from the width of the peaks
in Fig. 4. Q increases linearly with l in the PEC case (which
has no ohmic loss), whereas in the Au case (with ohmic loss),
there exists a maximum for Q. The total Q of our system can
be written as

1

Q
= 1

Qrad
+ 1

Qabs
, (21)

where Qrad is Q due to radiation and Qabs is Q from absorption
in the metal (ohmic loss). In the inset of Fig. 4, we show the
computed Q factors for both PEC (red dots) and Au (blue
triangles) plates as a function of l in the millimeter regime.
Note for the PEC case that the quality factor has a linear
relationship with length l, with Qrad = al, where a ≈ 15 can
be extracted from the fitting curve (solid black line). For a
resonant cavity,

dU

dt
= −ωU

Q
= −ωU

(
1

Qrad
+ 1

Qabs

)
= −(Prad + Pabs),

(22)

where Pabs = ωU/Qabs and Prad = ωU/Qrad are the time-
averaged absorbed power and radiated power, respectively. It is
clear that for the same resonance mode, Pabs ∝ U . Combining
with ω ∝ l−1, we obtain Qabs = b/l, where b is a constant.
Equation (21) then becomes

Q = ab

al + b/l
. (23)

In Fig. 4, we fit the numerical calculated quality factors
for the Au case with Eq. (23) and obtain b ≈ 2000. This
reveals the dependence of Q on length l of the plates. The large
value of b indicates that the magnitude of the electromagnetic
force strongly depends on the ohmic loss of the system in
the microwave regime. If there were no ohmic dissipation, the
electromagnetic forces at resonance could reach giant values
because the quality factor increases linearly with size in the
PEC case. The radiation loss is only important when resonant
frequency is relatively high, whereas ohmic loss can easily
become the dominant loss mechanism in the low-frequency
region.

The electromagnetic force in the microwave regime can be
written as

F = Uα

2l
= PcQ

ω

α

2l
≈ PcQα

2cπ
, (24)

where Pc is the effective input power. Equation (24) suggests
that a good coupling of the input power into the cavity is desir-
able for achieving a large force, which is not surprising. The
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(a) (b)

FIG. 6. (Color online) (a) The electromagnetic force (in log
scale) induced by two coherent magnetic dipole sources of 1 W/m.
(b) Amplitude of the magnetic field in the center of the system.
The fitting curve is (a) y = 2.55 × 10−5x3 and (b) y = 209x2. The
simulation parameters are d = 0.1 mm,t = 0.5 mm.

plane wave incidence we have considered is not necessarily
an efficient way to couple energy into the cavity. One possible
way to obtain good coupling is to use localized sources placed
near the air gap. For example, one may employ two magnetic
dipole sources placed at the ends of the plates instead of using
a plane wave to excite the cavity. In Fig. 6(a) we show the
numerically computed electromagnetic forces for both PEC
and Au plates with two magnetic dipoles placed at the mouth
of the opening of the air gap. The powers of the dipole sources
are normalized to 1 W/m. The electromagnetic force per unit
power is

F

Pdipole
= F

w/ωε0
≈ πcε0αU

2wl2
, (25)

where Pdipole = w/ωε0 is the effective radiation power of
the magnetic dipole source (see the Appendix). There is no
simple way to calculate the U in Eq. (25), but by fitting the
numerically calculated forces in Fig. 6(a), we found that the
peak value F ∝ l3 for the PEC case. We note that for plane
wave excitation, F ∝ l2, and so the force grows faster with
l if we employ dipole source excitation. Thus, combining
F ∝ l3 with Eq. (25), it indicates the total energy coupled
into this system has a relationship U ∝ l5. Judging from
the scaling laws, localized sources are more efficient than
plane waves in coupling energy into the cavity and in in-
ducing stronger forces. Because U = L

2

∫ l

0 w2J 2
0 sin2 π

l
ydy =

LJ 2
0 w2l/4, we may conclude that J0 ∝ l2, which means

H0 ∝ l2. (H0 is the amplitude of the magnetic field at the
center point of the system.) This conclusion is confirmed
by fitting the data of H0 obtained through real simulations
in Fig. 6(b).

For the Au system, the electromagnetic force does not
increase monotonically with l because of the ohmic loss, as
expected. Nevertheless, it is interesting to note that we can still
obtain a measurable repulsive force (about 5.8 × 10−3N/m
with two coherent magnetic dipole sources of 1 W/m power).
Consider a system with a dimension of l × w × t = 14 mm ×
30 mm × 0.5 mm and d = 0.1 mm. When each dipole source

has a power of 0.1 W, we can obtain a force of about
5.8 × 10−4 N, which should be measurable.

The conclusion is, in the microwave regime, the force is
repulsive and the force is primarily derived from the field
leakage effect. It is also rather surprising that the microwave-
induced pressure in the metal sandwich is still significantly
higher than the usual photon pressure, even though it is
commonly believed that microwave photons cannot induce
a significant electromagnetic force.

C. Corrugated surfaces and rough surfaces

In the previous sections, we treated the surfaces of the plates
as if they were perfectly smooth. In reality, depending on
the fabrication process, the metal surfaces inevitably contain
some level of roughness. We shall see below that surface
roughness and corrugation can potentially lead to attractive
optical forces. This also suggests a way to engineer the optical
force via surface roughness/corrugation. In the following
discussion, the metal plates are taken to have length l =
0.4 μm, average thickness t = 0.05 μm, and average distance
d = 0.02 μm.

Figure 7 shows the optical pressure at different levels
of corrugation (or roughness) for both PEC and Au plates.
In Fig. 7(a), we show the computed optical pressure for a
sinusoidal corrugation with an amplitude of h, as shown in
the left inset of Fig. 7(a). The surface profile on both sides
of the plate has the form �(y) = hsin (41πy/400), where
y ∈ [−200,200] is the y-coordinate of the surface measured in
nanometers, and �(y) is the deviation from the originally flat
surface. In the main panel of Fig. 7(a), we show the numerically
computed optical pressure for PEC plates as a function of
wavelength for several values of h. As the amplitude of h
increases, the resonant peak red-shifts in the PEC case. More
importantly, the optical pressure gradually changes sign from
positive (repulsive) to negative (attractive) as the corrugation
increases for the case of PEC. In the inset of Fig. 7(a), we
show the optical pressures at resonance for Au plates and a
few values of h. The sinusoidal surface profile also induces
a red shift of the resonant frequencies (not shown), and the
optical pressure becomes more negative so that the attractive
forces increase as the amplitude of h increases, for the case
of Au.

We next consider randomly rough surfaces. Figure 7(b)
presents the same results as in Fig. 7(a), except we introduce
random roughness on the surfaces instead of a sinusoidal
corrugation. In the simulation, we apply the following surface-
profile-generating function to produce a quasi-random rough
surface,

�(y) =
M∑
i=1

hi cos

(
niy

100

)
, (26)

where hi ∈ [−h,h] are random uniform deviates generated
by a random number generator. In the simulation, h is
the roughness amplitude, M is taken to be 20, and ni is
another random number arbitrarily set to ni ∈ [0,200], and
the y-coordinate of the surface is measured in nanometers.
We sample hi and ni in such a way that the volume of the
plate is approximately unchanged. The left inset of Fig. 7(b)
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k
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k

(a)
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FIG. 7. (Color online) In panels (a) and (b), we show the optical
pressures for PEC plates as a function of wavelength for different
values of h in the main panels, and the optical pressures at resonance
for Au plates as a function of h are shown in the right insets. In
panel (a), h is the amplitude of the sinusoidal corrugation, and in
panel (b), h is the roughness amplitude defined in the text. The right
insets have the same units as the main panels. A schematic of the
corrugated/rough plates, drawn to scale, is shown in the left insets.

shows a picture of the roughened plates, with the roughness
drawn to scale. We find that the effect of random roughness
is similar to that of the sinusoidal corrugation. Specifically,
we see from the PEC results [dash lines in the main panel
of Fig. 7(b)] that surface roughness induces red shifts of
the resonant frequencies and that the optical pressure at
resonance shifts gradually from positive to negative as surface
roughness increases. The right inset of Fig. 7(b) shows the
optical pressure at resonance computed for roughened Au
plates, and the negative optical pressure increases in magnitude
as surface roughness increases. The trends are qualitatively
the same for a sinusoidal surface profile [Fig. 7(a)] and a
rough surface profile [Fig. 7(b)]. This phenomenon may be
understood by considering the strong localized electric field
induced on the rough surfaces,49–51 which increases the electric
energy and, thus, the attractive force. Alternatively, it may
be understood from the viewpoint of the “spoofed surface
plasmons” created by the corrugation.52 In this point of view,
the corrugated PEC surfaces sustain “spoofed plasmons”;

thus, the results progressively approach those of “plasmonic”
plates as corrugation increases. So, the surface corrugation
and roughness generally induce an attractive component to the
optical pressure, and we can induce or increase an attractive
optical pressure simply by roughening or corrugating the
surface. Although we have only shown results at the micron
scale, the same conclusion also holds for the PEC plates in
other frequency regimes.

IV. SUMMARY

The electromagnetic force/pressure acting on a pair of
parallel metallic plates under electromagnetic illumination
is considered at both the micron and millimeter scales. The
numerical computations are carried out using a boundary
element method, which gives the solutions of the electromag-
netic fields, and the Maxwell stress tensor approach, which
gives the total force once the fields are known. We found
that the metal plates experience a sizable electromagnetic
pressure two to three orders of magnitude stronger than
the usual photon pressure if the metallic sandwich is at
resonance with the incident electromagnetic wave. The peak
value of microwave-induced pressure can reach about one
fifth of the peak optical pressure in the IR regime with the
same intensity of the incident electromagnetic plane wave.
The system can be satisfactorily modeled as an open-end
resonant transmission line after the fringe effect is taken into
account.

At all length scales, the induced electric fields give attractive
forces and the induced magnetic fields give repulsive forces,
and these two opposing effects tend to cancel each other out.
Strong forces can be obtained if the effect of one of the fields
can be suppressed one way or another. In the high-frequency
(IR) regime, the magnetic field repulsion is suppressed by the
shifting of the magnetic field energy into the kinetic energy
of electrons, and that leads to an attractive force coming
from the electric field. In the low-frequency (microwave)
regime, which is close to the PEC limit, the electric field leak-
age diminishes the attractive electric forces, leaving behind
the repulsion due to the magnetic field. The effect of surface
corrugation and surface roughness is also investigated, and we
found that corrugation/roughness generally induces attraction
between the plates.
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APPENDIX

1. Symmetric and anti-symmetric modes
in the parallel-plate system

For the parallel-plate system, two kinds of coupling modes
exist: the symmetric and the anti-symmetric. For symmetric
mode, the electric dipoles induced in the plates oscillate with
the same phase. The induced currents have parallel directions
and the localized electric charges on the same ends of the two
plates have the same sign. In this case, the parallel currents
exert attractive forces on the plates, whereas the electric
charges exert repulsive forces on the plates. The total force is
then determined by the competition of the two kinds of forces,
which is similar to the anti-symmetric mode we discussed
in the main text. However, compared with the optical force
in the anti-symmetric mode, the optical force corresponding
to the symmetric mode is much smaller in our cases. The
symmetric mode gives a very small force on one plate, it can
be more easily identified by showing the total optical pressure
acting on the whole system (i.e., the sum of pressures on
both plates), defined as Ptot = PL + PR , where PL and PR

are the optical pressures exerted on the left and right plates,
respectively. Figure 8(a) shows the wavelength dependence of
the total optical pressure. We note that the symmetric mode
has a fairly broad peak, with a higher order anti-symmetric
mode, as we mentioned in the main text. Figure 8(b) shows
the optical pressure exerted on the right plate. We note that the
peak pressures corresponding to the anti-symmetric mode are
so large compared with the symmetric mode that the symmetric
mode can hardly be noticed.

2. Telegraph equations for the transmission line model
of our system under incident electromagnetic wave

Under the illumination of an electromagnetic wave with
frequency ω, the telegraph equations for the transmission line

(a)

(b)

FIG. 8. (Color online) Symmetric mode and anti-symmetric
mode in the parallel-plate Au system: (a) total optical pressure exerted
on the whole system; (b) optical pressure exerted on the right plate.
We set l = 0.4 μm,t = 0.05 μm and d = 0.01 μm.

FIG. 9. (Color online) The transmission line model.

are (see Fig. 9):

dV (y)

dy
+ (R − iωL)I (y) = iωμ0

∫ x2

x1

ẑ · Hin(x) dx, (A1)

dI (y)

dy
+ (G − iωC)V (y) = iω(G + C)

∫ x2

x1

x̂ · Ein(x) dx.

(A2)

Here, Hin(x) is the incident magnetic field and Ein(x) is the
incident electric field. R is the per-unit-length resistance of
the metal plates, G is the per-unit-length conductance of the
medium sandwiched between the plates (0 in this case), L
and C are the per-unit-length inductance and capacitance of
the system, respectively, and deff = x2 − x1 is the effective
separation of the lines.

A detailed derivation of such equations can be found in
the literature (see, e.g., Paul40). In the standard treatment of
the problem, the metals are assumed to be good conductors.
This can be extended to plasmonic systems by including the
kinetic inductance (i.e., the total conductance becomes L =
Lm + Le), and an effective separation of the plates is defined
to take care of field penetration into the metal plates. The final
expressions of the telegraph equations remain formally the
same.

3. Current distributions on the metal plates

Differentiating Eq. (A2) with respect to y and then
substituting it into (A1), we obtain the differential equation
for I (y) as

dI 2(y)

dy2
+ A2I (y) = B, (A3)

where A = √
ω2CL + iωRC and B = −μ0ω

2C
∫ x2

x1
ẑ·

Hin(x)dx. Solving Eq. (A3) with the boundary condition
I (0) = I (l) = 0 (currents at the ends of the plates are zero),
we obtain

I (y) = B

A2
[1 − cos(Ay) − tan(Al/2)sin(Ay)] . (A4)
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Equation (A4) indicates that the resonance condi-
tion is given by Al = (2n + 1)π . At resonance, it
is expected that tan (Al/2) � 1, so we have I (y) ≈
−(B/A2)tan(Al/2)sin(Ay). We then do a substitution
with A = ξ + iζ , where ξ = Re

√
ω2CL + iωRC and ζ =

Im
√

ω2CL + iωRC. Considering

sin(Ay) = 1

2i
(eiAy − e−iAy) = 1

2i
(e−ζyeiξy − eζye−iξy),

(A5)

we rewrite the current distribution equation as

|I (y)|2 = I (y) · I (y)∗

= B2

|A|4 |tan(Al/2)|2sin(Ay)sin∗(Ay)

= B2

4|A|4 |tan(Al/2)|2[e−2ζy + e2ζy − 2cos(2ξy)].

(A6)

FIG. 10. (Color online) Current distributions on the metal plates
for the cases of R = 0, R = Rplas, and R = 200Rplas in the
micron-scale system under illumination of an incident plane wave
with intensity 1 mW/(μm)2. The relevant geometric parameters are:
l = 0.4 μm,t = 0.05 μm,d = 0.01 μm,w = 100 μm.

In the limit R → 0, ζ → 0, A = ξ = π/l, we have

|I (y)| = |B|
2|A|2 |tan(Al/2)|

√
2 − 2cos(2ξy)

= |B|
|A|2 |tan(Al/2)|sin

πy

l
, (A7)

where sin(πy/l) represents the distribution effect of the
transmission line. Equation (A7) indicates that as long as the
loss is small, we can always assume the current distributions
on the plates are sinusoidal. In Fig. 10, we show the current
distributions given by Eq. (A4) for three cases: R = 0,
R = Rplas, and R = 200Rplas, where Rplas is the per-unit-length
resistance in our plasmonic system. Please note that for an
ideal case of R = 0 and d/l → 0, the current amplitude
given by Eq. (A7) should be infinitely large. However, in a
real case with a non-zero d/l, the resonant current is finite.
From the comparison in Fig. 10, we see that the assumption
of a sinusoidal current distribution in our plasmonic system is
reasonable. For the microwave regime, this assumption should
be even more accurate because the loss is smaller. We note that
the assumption gradually breaks down as the resistance of the
system increases (the R = 200Rplas case).

4. Derivation of the electromagnetic forces

With the fringe effect correction, the zeroth-order resonant
frequency is

ω0 = 2πc

λ
= π

l
√

LC(1 + αd/l)
, (A8)

where, for the plasmonic system,

L = Lm + Le = μ0d

w
+ 1

ε0ω2
pδw

, C = ε0w

d
. (A9)

Combing Eqs. (A8) and (A9), we deduce the expression for
electromagnetic force in the plasmonic system at resonance.
The resonance is dominated by a single mode with resonance
frequency ω0, and U is the electromagnetic energy stored in
the system:

F = −∂U

∂d
≈ − ∂U

∂ω0

∂ω0

∂d
≈ − U

ω0

∂ω0

∂d

= − U

ω0

∂{π [LCl2(1 + αd/l)]−
1
2 }

∂d

= U

2

1

(μ0d/w + Le)[(d/l) + α(d/l)2]

μ0αd2 − Lewl

wl2

≈ U

2d

1

(μ0d/w + Le)

(
−Le + μ0αd2

wl

)

= U

2d(Lm + Le)

(
−Le + μ0αd2

wl

)
. (A10)

For the PEC, there is no contribution from the kinetic induc-
tance (Le) in Eq. (A10), and the corresponding electromagnetic
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force is

F ≈ U

2dLm

μ0αd2

wl
= αU

2l
. (A11)

5. Time-averaged radiation power of the magnetic
dipole source

In the BEM simulations, we define the magnetic dipole
source through the magnetic field as

H(ρ,θ ) = H
(1)
1 (kρ) cos θ ẑ, (A12)

where H
(1)
1 (kρ) is the first order of the first-kind Hankel

function, k is the wave number, ρ is the distance from the
evaluation point to the source point, and θ defines angular
dependence. Equation (A12) defines the field value in the
x-y plane, and we assume no change in the third dimension. In
the far-field limit, Eq. (A12) becomes

lim
ρ→∞ H(ρ,θ ) =

√
2

πkρ
ei(kρ− 3π

4 ) cos θ ẑ. (A13)

The corresponding electric field is

E(ρ,θ ) = 1

−iωε0
∇ × H(ρ,θ )

= −i sin θ

ωε0ρ

√
2

πkρ
ei(kρ− 3π

4 )ρ̂

+ k cos θ

ωε0

√
2

πkρ
ei(kρ− 3π

4 )θ̂ . (A14)

The time averaged Poynting vector in the far field can be
written as

S = 1

2
Re(E × H∗) = 1

πωε0

cos2 θ

ρ
ρ̂. (A15)

Assume in the third dimension (along the z-axis) that the
source has the same length w as our parallel-plate system. We
then integrate the above Poynting vector around a cylindrical
surface surrounding the source to obtain the time-averaged
radiation power:

P = w

∫
ρ→∞

S d� = w

ωε0
. (A16)
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