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Nearly 60 years after the invention of the mode-locked laser 
(MLL)1, optical frequency combs (OFCs) have evolved into 
one of the most active areas in photonics. Although the term 

‘optical frequency comb’ originally referred to only self-referenced 
combs in timekeeping experiments, its use has since expanded to 
include all light sources whose spectra consist of discrete, equally 
spaced frequency lines2. Nowadays, OFCs have also found a much 
broader application space: in communications, a single comb source 
can provide tens to thousands of optical frequency lines for massive 
parallelization in wavelength-division multiplexed (WDM) systems 
and thus address the rapid growth of data traffic in the Internet and 
data centres3,4. In time–frequency metrology, OFCs have proved to 
be a remarkable tool for coherently bridging optical frequencies in 
hundreds of terahertz (THz) and electronically accessible frequen-
cies within hundreds of gigahertz (GHz). This capability is invalu-
able for applications such as optical spectroscopy, optical frequency 
synthesizers and timekeeping5. For example, the most accurate 
atomic clock in the world, which has a relative frequency inaccuracy 
of below 10−18, relies on OFCs to count the optical oscillations and 
down-convert to detectable radio frequencies (RFs)6,7.

Despite their clear value and importance, OFC-based tech-
nologies were mainly deployed in research laboratories because 
they usually depended on bulky, power-hungry, expensive equip-
ment to generate, control and manipulate the comb light. Over 
the past two decades, the blooming of integrated photonics, par-
ticularly silicon-based integrated photonics, has allowed the pro-
duction of OFC devices through the use of advanced lithography 
and nanofabrication techniques8. By leveraging modern manufac-
turing infrastructure, integrated photonics offers great advantages 
in lowering the system size, weight and power consumption, and 
cost (SWaP-C)9. Therefore, it holds the potential to accelerate the 
transition of OFCs from research laboratory experiments to con-
sumer applications, including many emerging technologies, such 
as autonomous driving10, 5G/6G communications11 and machine 
learning12,13.

So far, remarkable achievements have been made in the devel-
opment of OFCs in integrated photonics8. Various approaches 
for enabling comb generation on-chip have emerged on different 
photonic platforms, whose performance in many aspects, such as 
the comb span14,15 and noise16, is now comparable to traditional 

solid-state or fibre-based comb sources. Over the past few years, 
efforts to combine OFCs with other photonic components have 
facilitated a number of system-level demonstrations17,18. Although 
relatively new, this area has already delivered a wide range of 
advanced technologies that extend the capabilities of integrated 
photonics.

In this article, we review the history, rapid progress, current status 
and future of integrated OFC technologies. We first give a device-level 
examination of the two main categories of comb sources in inte-
grated photonics: semiconductor mode-locked lasers (SMLLs) and 
nonlinear frequency combs. Different comb-generating strategies 
are compared using key metrics within the context of prospective 
applications. Next, at the system level, we summarize the growing 
efforts and recent advances in higher-level integration between 
OFCs and other photonic components. Furthermore, we discuss the 
challenges and opportunities of bringing OFCs into fully integrated 
photonic circuits and realizing high-volume production in photonic 
foundries in the future.

Integrated semiconductor mode-locked lasers
MLLs are a special class of lasers that output coherent combs with 
all of the longitudinal modes phase-locked and equally spaced in 
the frequency domain19. Solid-state-based and fibre-based MLLs 
have achieved great success, but are inappropriate for cost-sensitive 
and energy-consumption-sensitive applications like telecommuni-
cations. To meet these needs, integrated solutions can offer a high 
wall plug efficiency (WPE), small footprint and mass-production 
capability. The historical evolution of integrated MLLs is sketched 
in the lower part of Fig. 1. Here we focus on SMLLs, the dominant 
approach for realizing MLLs on photonic chips.

Mode-locking mechanism. Active mode locking. Mode-locked 
behaviour can be realized by applying an electrical modulation 
signal to the gain section or an optical modulator within the laser 
cavity20 (Fig. 2a). At the modulation frequency close to the cavity 
roundtrip frequency (or one of the higher harmonics), the gain sec-
tion/modulator’s modulation bandwidth (usually determined by 
the parasitic capacitance and resistance) should be large enough 
to enable efficient modulation. To get short optical pulses from the 
device, the RF signal must be stable and have a large amplitude, 
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which creates a short time window of net gain (Fig. 2b). In opera-
tion, each of the non-equidistant longitudinal modes within the 
laser cavity will acquire an equidistant modulation sideband. Since 
these sidebands are very close to the adjacent cavity modes, all of 
the lasing modes tend to couple together by the frequency pulling 
effect, leading to a mode-locked state (Fig. 2c)21.

Passive mode locking. Passive mode locking is currently the most 
widely used mode-locking strategy due to its desirable properties: 
short pulses, high frequency repetition rates and operation without a 
microwave oscillator. These advantages are achieved by introducing  

a saturable absorber (SA), which works as a nonlinear absorption 
component in the cavity22. In integrated SMLLs, this function is 
generally realized by reverse biasing a section of the active region 
that is electrically isolated from the gain section (Fig. 2d). The 
SA section can be ‘bleached’ by an optical pulse with sufficiently 
high intensity to fill its conduction and valence bands with carri-
ers, which suppresses further absorption. The pump level is chosen 
such that a continuous-wave (CW) optical field does not experi-
ence net gain due to the saturable loss, while a transient noise spike 
can bleach the saturable loss in the laser cavity to create a net gain 
window, preferentially leading to the build up of pulse oscillation19 
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(PAM4) (ref. 41), coherent communication154 and gas sensing155. Images adapted with permission from: Si3N4, ref. 62, Springer Nature Ltd; Hydex, ref. 64, 
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(Fig. 2e). The gain section shortens the trailing edge of the pulse due 
to the gain saturation, while the SA section reduces the power in 
its leading edge, sharpening the pulse. Passive MLL technology can 
also be hybridized with active techniques by applying an RF signal 
to the reverse bias of the SA23.

Generally, a passively mode-locked laser is said to be ‘fundamen-
tal mode locking’ when the SA section is close to one facet of the 
laser. In this case, only one pulse circulates in the cavity and the rep-
etition rate is equal to the free spectral range (FSR) of the cavity. For 
a higher repetition rate (for example, >100 GHz), one must shorten 
the cavity length to increase the FSR, which can be undesirable as 
the gain from a shorter gain section may not be enough to over-
come the overall loss. Colliding-pulse mode locking can address 
this issue by placing SA sections at specific integer fractions of the 
cavity length to realize a harmonic mode-locking operation. In har-
monic mode locking, multiple pulses circulate in the cavity and pass 
through the SA section in colliding pairs that simultaneously satu-
rate the absorber, enabling up to terahertz repetition rates in cavities 
with a much lower fundamental frequency24. An alternative method 
to realize a higher repetition frequency is to build a compound cav-
ity to leverage the Vernier effect25.

Self mode locking. Self mode locking is a phenomenon by which an 
OFC can be generated directly by a single-section laser structure 
without any active or passive modulation applied (Fig. 2g). This 
approach is appealing because the SA section of a typical passive MLL 
increases the intracavity loss, resulting in reduced power and effi-
ciency. Self mode-locking behaviour is enabled by strong four-wave 
mixing (FWM) within the active medium combined with the spa-
tial hole-burning effect26–29 in a Fabry–Perot (FP) cavity (Fig. 2h). 
This effect generally exists in all types of MLLs, but is particularly 
important for quantum cascaded lasers (QCLs) where the ultrashort 
excited-state lifetime prevents passive mode locking. More recent 
findings have revealed that quantum cascade ring lasers, despite 
the absence of the spatial hole-burning effect, can still generate fre-
quency combs induced by phase turbulence30. Notably, self MLLs 
usually exhibit superior coherence over comb lines27, but they do not 
necessarily produce single pulses: while the modes of these devices 
are locked in the sense that they maintain a stable phase relationship, 
they might not share a uniform phase throughout the spectrum.

Material platforms. Integrated SMLLs were first demonstrated by 
using quantum well (QW) structures, where one-dimensional carrier 
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confinement led to overall performance improvements in the lasing 
thresholds, locking bandwidth and RF linewidth compared with bulk 
material systems31. QW material systems, including InGaN/GaN32, 
AlGaAs/GaAs33, InGaAsP/InP34 and AlGaInAs/InP35, have become 
the most widely used active media. With the advent of quantum 
dot (QD) material systems, such as InAs/GaAs36 and InAs/InP28,37, 
where carriers are confined in all three dimensions, even better MLL 
performance is expected36,38. Since QDs exhibit a delta-function-like 
density of states, an enhanced pulse-shaping mechanism in pas-
sive mode locking can be attained36. Such energy-band structures 
enable a higher population inversion efficiency, lower threshold 
current density and lower temperature sensitivity compared with 
QWs39. Furthermore, due to the random, self-assembled nature of 
QD formation, QD MLLs feature inhomogeneously broadened gain 
profiles and a near absence of gain competition, which is advanta-
geous for broad bandwidth comb generation40. The effective carrier 
localization property in the QDs makes them less sensitive to growth 
defects, which enables high-quality QD-based MLLs to be grown 
epitaxially on silicon for MLLs41.

Typical III–V QW and QD gain materials cover the wavelength 
range between 0.4 and 1.8 µm, while lasers at longer wavelengths 
often rely on interband cascade lasers (3–4 μm) or QCLs (>3 μm). 
For QCLs, it is challenging to realize the standard two-section pas-
sive MLL structures, due to a fast gain recovery (~0.3 ps)27 that is 
much shorter than the cavity roundtrip time. Instead, active or self 
mode locking can be applied to enable combs for QCLs42.

Integrated nonlinear optical frequency comb
Driven by an optical pump, nonlinear OFCs utilize the nonlin-
earities of optical media to generate comb lines. Based on the type 
of nonlinearity, they can be divided into three main classes: Kerr 
comb, electro-optic (EO) comb and quadratic comb. Even though 
the first integrated nonlinear OFCs43,44 were made 20 years later 
than the first integrated SMLLs, the past decade has witnessed rapid 
progress in their development (Fig. 1, upper half). These recent 
advances hinge on the ability to strongly confine waveguide modes 
and precisely control the waveguide geometry in integrated photon-
ics platforms. In addition to compactness and scalability, precision 
manufacturing provides chip-based nonlinear frequency combs 
with greater flexibility in design compared with earlier fibre- or 
nonlinear-crystal-based approaches.

Kerr comb. A Kerr comb is the most prevalent example of inte-
grated nonlinear OFCs. Two major categories of Kerr combs are 
supercontinuum generation (SCG) in waveguides (Fig. 3a, upper 
part) and Kerr comb generation through microresonators (so called 
microcombs) (Fig. 3a, lower part). Since both processes origi-
nate from FWM via the third-order (χ(3)) nonlinear interactions  
(Fig. 3b), much of the underlying physics share similarities. We 
highlight the key features here and a more detailed discussion can 
be found in refs. 8,45.

For Kerr comb generation, useful coherent states usually take 
the form of solitons46—self-sustaining wavepackets in which all fre-
quency comb lines are phase locked with each other. Soliton engi-
neering requires manipulation of the dependence of refractive index 
on wavelength, that is, dispersion engineering (Fig. 3c), to achieve 
phase matching of the FWM process. In integrated photonics, a 
waveguide’s dispersion can be engineered by tailoring its geometry. 
Appropriate design and fine fabrication control can create a broad 
anomalous dispersion window47 and produce dispersive waves, 
resulting in a wide comb48. Kerr combs with octave-spanning OFCs 
have been realized in integrated photonics49,50, facilitating essential 
f–2f self-reference demonstrations51.

Supercontinuum generation. The pump of an integrated supercon-
tinuum consists of a train of ultrashort pulses, usually from an MLL 

source. The pump light propagates through a nonlinear waveguide 
and undergoes spectral broadening. To preserve the coherence of 
the initial pulse train, the spectral growth needs to originate from 
self-phase modulation rather than noise amplified by modulation 
instability52. For this consideration, it is beneficial to use a wave-
guide with weak normal dispersion driven by short input pulses 
with a lower soliton number53. On the other hand, waveguides with 
anomalous dispersion offer a broader comb span54. Due to the high 
peak power, SCG is not usually driven by Kerr nonlinearity alone, 
but involves complex higher order processes. Detailed discussions 
can be found in ref. 55.

Kerr microcomb generation. The first mode-locked Kerr micro-
comb was achieved by incorporating a microresonator and an 
optical source within a fibre loop to form a ring laser56, which 
is a configuration now called a ‘laser cavity-soliton’. Today, the 
more widely used configuration is to drive a microresonator with 
an external CW pump: by simultaneously balancing dispersion 
against nonlinearity and loss against parametric gain, a micro-
resonator in the anomalous group-velocity dispersion (GVD) 
regime can support fully mode-locked comb states called dissi-
pative Kerr solitons (DKSs)57. To produce such low-noise combs, 
the pump laser is usually scanned into the cavity’s resonance from 
blue to red (or the resonator is tuned from red to blue using heat-
ers58), causing the spectral output to progress through primary 
sidebands and chaotic combs until it reaches the DKS regime59. 
Soliton formation occurs when the pump is red detuned from 
cavity resonances and the intracavity power is bistable. Thermal 
effects complicate this detuning procedure and therefore lead to 
non-trivial triggering and control protocols in soliton operation. 
Coherent comb states can also be generated by microresona-
tors with normal GVD, which generate ‘dark pulses’ (short dips  
in the CW background)60. These dark-pulse mode-locked states 
usually result from perturbations of dispersion due to coupling 
between two mode families60. Since dark pulses exhibit desir-
able properties in conversion efficiency, comb power and opera-
tional simplicity, they have recently attracted remarkable research 
attention.

Another emerging Kerr comb generation approach is to drive a 
microresonator with a pulse input59. Such synthesis between con-
ventional SCG and soliton microcombs takes equal advantage of 
the resonant enhancement offered by the cavity as well as the high 
peak power allowed by pulse pumping, therefore leading to both 
low threshold and high conversion efficiencies61.

Material platforms. Due to the appealing properties of Kerr combs 
and the universal existence of χ(3) in photonic materials, research-
ers have demonstrated Kerr combs in a number of integrated pho-
tonic platforms, including Si3N4 (ref. 62), SiO2 (ref. 63), Hydex64, 
Si65, AlGaAs66, AlN67, GaP68, LiNbO3 (ref. 69), Ta2O5 (ref. 70), SiC71, 
SiGe72, diamond73 and chalcogenide74. At present, Si3N4 is the 
most intensively studied and arguably the most mature platform, 
benefiting from a low material loss, a wide transparency window 
and a CMOS-compatible fabrication process16. AlGaAs is another 
promising material, with the highest nonlinear efficiencies among 
the materials mentioned here, and a quality (Q) factor that has 
dramatically improved over the past two years75. Materials with 
χ(2) effects, such as LiNbO3, AlGaAs, GaP, AlN and SiC, notably 
offer the potential to demonstrate octave-spanning Kerr combs 
and f–2f interferometry in a single nonlinear medium76.

Electro-optic comb. Another approach to generate OFCs employs 
the EO effect, the change of a material’s refractive index under 
an electric field. Here we mainly focus on combs induced by the 
Pockels effect, where the change in refractive index depends lin-
early on the electric field. EO combs display unique advantages 
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in various scenarios, due to their reconfigurability and high 
comb power. Developments over the past two years in integrated 
EO combs suggest that novel integrated devices can potentially 
address the bandwidth constraints and thus create new applica-
tion opportunities.

Electro-optic modulator comb. EO combs can be generated by pass-
ing a CW pump through modulators driven by RF sources77 (Fig. 
3e, upper part). The most straightforward way is to use a single 
phase modulator. With current integrated LiNbO3 modulators, this 
method can generate up to 40 sidebands over a 10 nm span78 (Fig. 3h, 
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line) and dispersion-engineered waveguides (orange lines) for the resonant EO comb83. The grey-shaded region shows the interference condition beyond 
which the comb generation is suppressed, suggesting that dispersion engineering can significantly extend the comb span. β is the round-trip modulation 
index. h, representative spectra for the EO modulator comb (30 GHz) (upper)78 and the resonant EO comb (10.453 GHz) (lower)83. i, Schematic 
configurations of the cascaded χ(2) comb (upper part) and χ(2)-based spectrum translation (lower part). In the cascaded χ(2) comb, the pump light can 
be either at the fundamental wavelength (yellow) or its SHG wavelength (blue), corresponding to different cascaded processes. j, Energy diagram of the 
three-wave-mixing process for the quadratic comb. k, Schematic drawing of the transfer functions of the SHG process determined by the phase-matched 
condition15. An integrated waveguide can enable a much broader bandwidth compared with bulk devices by simultaneously applying phase matching 
and dispersion engineering. l, representative spectra for the cascaded χ(2) comb (361 GHz) (upper)88 and the χ(2)-based spectrum translation (22 GHz) 
(lower)89. Panels adapted with permission from: c, ref. 8, Springer Nature Ltd; d, refs. 54,50, OSA; g, ref. 83, Springer Nature Ltd; h, refs. 78,83, IEEE and Springer 
Nature Ltd; k, ref. 15, OSA; l, refs. 88,89, Springer Nature Ltd and OSA.
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upper plot). The intensity envelope of the spectrum follows a Bessel 
function, at whose nodes the comb line power can be very low. This 
problem can be addressed by cascading a series of phase modulators 
and one intensity modulator, which allows further phase tailoring 
to realize a shorter pulse and improved spectral broadening77. This 
strategy was developed a decade ago using bulk LiNbO3 modulators 
in fibre optics and will likely be realized for integrated modulators 
in the near future.

Resonant electro-optic comb. Some early demonstrations of EO 
combs involved a modulator positioned inside an FP or fibre cav-
ity, driven by an RF source whose repetition rate matches the FSR 
of the cavity; under these conditions, the resonance assists in side-
band generation79,80. In integrated photonics, the resonant cavity is 
a microresonator with an internal phase modulator (Fig. 3e, lower 
part). The tight confinement of the waveguide enables more effi-
cient modulation since the two electrodes can be placed only a few 
micrometres away81. More importantly, dispersion engineering 
allows constructive interference for cascaded frequency generation 
over a broader wavelength range82 (Fig. 3g). When implemented 
with high-Q resonators, integrated EO combs can now cover the 
entire telecom C band with over 900 lines83 (Fig. 3h, lower plot).

Material platforms. Since the Pockels effect is a second-order non-
linear property and therefore only appears in non-centrosymmetric 
crystals, suitable material platforms are scarcer than for Kerr pro-
cesses. An attractive platform for integrated EO combs is lithium 
niobate-on-insulator (LNOI), which has become commercially 
available on high-quality wafers in the past few years. One key 
advance in LNOI is the reduction of waveguide propagation loss to 
as low as 3 dB m−1, enabling resonator Q values of over ten million84. 
Other materials exhibiting EO effects, including AlGaAs, GaP, AlN 
and SiC, also have the potential to realize EO combs. Outside of the 
Pockels effect, modulators based on carrier-induced index change, 
such as Si or InP devices, can also be used to produce EO combs85, 
but so far these mechanisms suffer from undesirable nonlinearity 
and high waveguide losses.

Quadratic comb. Frequency combs originating from a quadratic 
nonlinearity were theoretically predicated and experimentally 
observed two decades ago86. Since χ(2) is usually a stronger effect 
than χ(3), quadratic combs have an intrinsic advantage in efficiency 
compared with Kerr combs. To generate such combs with desir-
able spectra requires both dispersion engineering and phase-match 
engineering15 (Fig. 3k), which dictates phase relations between 
interacting waves in three-wave-mixing processes.

The early experiments with quadratic combs were all per-
formed using bulk nonlinear crystals. The implementation of  
quadratic combs in integrated photonics over the past two 
years has enriched the study of comb-formation dynamics and 
has exposed novel features by leveraging certain advantages of 
high-index-contrast waveguides.

Cascaded χ(2) comb. A back-to-back three-wave-mixing process  
(Fig. 3j), either by second-harmonic generation/sum frequency 
generation (SHG/SFG) followed by optical parametric oscilla-
tion/differential frequency generation (OPO/DFG) or the reverse 
way, can exhibit χ(3)-like effects, such as self-phase modulation, 
cross-phase modulation and so on. Thus, combs can be produced 
from the quadratic nonlinearity alone (Fig. 3i, upper part). The 
effective nonlinear index of this process is determined by the mate-
rial’s second-order nonlinearity and the phase mismatch of fre-
quency carriers, and is usually 1–2 orders of magnitude higher than 
a material’s ordinary Kerr effect87. As a result, cascaded χ(2) combs in 
integrated photonics, from either waveguide SCG15 or microcomb 
generation88 (Fig. 3l, upper plot), show efficiencies higher than DKS 

devices. Moreover, such combs produce useful double OFCs around 
the fundamental and harmonic wavelengths; the dual-combs facili-
tate spectral broadening and can be used for f–2f self-reference 
when their spectra overlap.

χ(2)-based comb translation. Three-wave-mixing processes can also 
be used to translate an existing comb to another spectral regime 
(Fig. 3i, lower part). At visible or mid-infrared wavelength ranges 
where regular approaches for generating comb sources are usually 
challenging, due to either strong material dispersion or high wave-
guide loss, translation provides a flexible way to enable comb for-
mation. Starting from the well-developed combs at telecom bands, 
integrated SHG/DFG has been demonstrated for either up- or 
down-conversion of the initial comb69,89 (Fig. 3l, lower plot).

Material platforms. As with EO combs, most integrated quadratic 
combs currently rely on LNOI (second-order nonlinear coefficient, 
d33 ≈ 27 pm V−1), particularly integrated periodically poled lithium 
niobate (PPLN) waveguides. One advantage of using PPLN is that 
the phase match and dispersion can be engineered independently 
through periodic poling and geometry tailoring, which is essential 
for attaining a high conversion efficiency and a large bandwidth 
at the same time (Fig. 3k). The AlGaAs-on-insulator (AlGaAsOI) 
(d14 ≈ 180 pm V−1) exhibits one order of magnitude higher efficien-
cies than PPLN in χ(2) processes90 and is therefore another promis-
ing candidate for achieving quadratic combs. Cascaded quadratic 
microcombs have recently been achieved in AlN (d33 ≈ 1 pm V−1) 
resonators88, whose large bandgap is appealing for extending combs 
into short wavelengths. Interestingly, recent work has revealed that 
both Si91 and Si3N4 (ref. 92) can also exhibit χ(2) effects under the 
influence of a d.c. electric field, which potentially can lead to qua-
dratic combs in CMOS-compatible platforms.

Key metrics and properties
Integrated OFCs provide a versatile toolbox for diverse applica-
tions. The design of a comb source for a specific purpose benefits 
from careful consideration of both the type of comb and the specific 
design parameters; the different aspects of comb performance pre-
clude a one-size-fits-all solution. Table 1 summarizes the metrics of 
OFCs that are available using existing approaches. These metrics, as 
well as some other essential properties, are discussed in detail below.

Repetition rate and comb span. The starting point for a comb 
design usually focuses on two factors: the repetition rate and the 
comb’s spectral breadth. For most applications, the repetition rate 
of the comb needs to be low enough to interact with the elec-
tronics used for signal detection and processing, typically at RF 
frequencies of the order of tens of gigahertz or less. At the same 
time, in optical-frequency-counting applications (metrology), large 
comb spans, usually broader than one octave, are required for the 
self-reference process. Unfortunately, it is challenging to achieve 
both simultaneously. For a given span, a lower repetition rate means 
more comb lines must be generated, therefore imposing more strin-
gent requirements on the conversion efficiency from the pump to 
the sideband lines. In resonator-based nonlinear OFCs, the prob-
lem is highlighted because the cavity has to be relatively long (at 
the millimetre-to-centimetre scale) to realize the RF repetition rate, 
which results in low resonant enhancement of the intracavity power, 
as well as small temporal overlap between the driving CW laser and 
soliton pulses in DKS generation.

A map summarizing the repetition rate and spectral cover-
age for current integrated comb technologies is shown in Fig. 4a. 
Integrated SMLLs have been demonstrated with FSR values down 
to the sub-gigahertz range93, but the bandwidths of SMLLs are only 
within tens of nanometres, limited by material gain and intracav-
ity dispersion. By contrast, integrated nonlinear OFCs can deliver 
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much broader nonlinear gains. At present, SCG is the most popular 
strategy for generating broad combs with detectable repetition rates. 
Multiple-octave spans, ranging from visible to mid-infrared wave-
lengths, have been achieved by both Kerr and quadratic SCG14,15. 
Dispersion engineering in Kerr microcombs has also produced 
combs from 1,000 to 2,400 nm (ref. 50), but such combs have their 
FSR around 1 THz. Self-reference experiments with these devices 
rely on a second comb with a microwave repetition rate and whose 
comb spans only tens of nanometres17,18,94. Recent advances in 
pulsed driven microcombs can potentially bridge this gap with 
much higher conversion efficiencies by utilizing enhanced tempo-
ral overlap between the pump and the DKSs59. The high nonlinear 
coefficients and the dual-comb nature of quadratic combs provide 
another prospective solution to this problem.

Power and efficiency. In many applications, the key factor that 
determines a system’s performance is the comb output power. For 
instance, in communications, an optical link often requires more 
than 1 mW power at each wavelength to attain a satisfactory bit error 
rate. However, integrated OFCs generally exhibit a lower total out-
put power than integrated single-wavelength lasers, and this power 
must be shared across multiple comb lines. For integrated SMLLs, 
the reduced power is usually due to the incorporation of the SA 
section. State-of-the-art integrated SMLLs95 at the C band emit an 
average output power of nearly 100 mW and tens of comb lines with 
a milliwatt-level power, where the maximum total WPE is beyond 
10% (Fig. 4b). Self mode-locked QCLs without a SA section can 
attain up to a power of 1 W (refs. 96,97). Optical nonlinear processes 
are usually less efficient than direct electrical pumping method and 
generate lower comb powers. Although the highest on-chip optical 
pump-to-comb conversion efficiencies can reach over 50% in SCGs 
(Fig. 4c), the power of the individual comb lines is usually below 
100 μW (ref. 98). The conversion efficiencies of single DKSs99 are usu-
ally low (1–5%), but they can be significantly higher in multi-soliton 
states (particularly soliton crystals100) or when using pulse pump-
ing. Dark pulses can enable a conversion efficiency of >20% and 
generate about ten comb lines with a power of 1 mW (ref. 101).  
Recent efforts to leverage χ(2) in quadratic combs could yield further 
improvements in efficiency and power88. Another strategy to gener-
ate a high-power comb is to use EO combs with cascaded modula-
tors, but these combs usually have a limited bandwidth and require 
RF supporting circuitry, which significantly increases the total 
power consumption78.

Optical and microwave noise. In high-precision measurements 
such as sensing and timekeeping, optical and microwave spec-
tral purity can directly impact the performance of the system. For 
instance, a narrow-linewidth laser is used to probe and manipu-
late atomic transitions with long coherence times in optical atomic 
clocks, while a low-noise microwave oscillator plays key roles in 
frequency division and synthesizing output signals102. When dis-
cussing optical noise, it is important to distinguish between two 
types of ‘linewidths’ that appear in the literature: the fundamen-
tal Lorentzian linewidth represents the noise floor far from the 
carrier frequency, while the Gaussian linewidth is defined as the 
full-width-half-maximum of the optical field power spectral density 
profile—usually for noise in the low-frequency range only. In the 
discussion here, all the optical linewidths refer to the fundamental 
Lorentzian linewidth103.

Integrated SMLLs generally exhibit optical fundamental 
Lorentzian linewidths similar to FP semiconductor lasers—in the 
range of hundreds of kilohertz (kHz) to megahertz (MHz), limited 
by spontaneous emission noise and intracavity losses104. Injection 
locking has been used to reduce the optical linewidth down to 
the kilohertz level, but this technique usually requires a fibre- or 
free-space-based external setup105. On the other hand, the optical 

noise of nonlinear OFCs is usually dominated by noise translated 
from the pump light; therefore, using commercial narrow-linewidth 
lasers, the generated comb lines can achieve linewidths at the kilo-
hertz level. In non-resonant nonlinear OFCs, such as SCG and EO 
combs, the coherence between the pump and the generated comb 
lines may not be preserved, which can degrade the spectrum purity. 
For evaluating the coherence over comb lines, various techniques 
have been developed, usually relying on coherence beatnote spec-
troscopy referenced to either a second comb source or a single 
mode laser106.

Low-noise microwave oscillators play a key role in microwave 
photonics applications, such as radar107, signal processing108 and 
time–frequency metrology17,18. Such a capability was previously 
limited to bulk MLLs. So far, optical noise in integrated SMLLs has 
limited their RF performance and has prevented them from serv-
ing as an adequate substitute. Using an external fibre cavity, the 
RF linewidth of a free-running integrated SMLL based on a purely 
III–V cavity has been reduced from the order of hundreds of kilo-
hertz down to the sub-kilohertz level109. Recently, a heterogeneously 
integrated III–V-on-Si MLL with a centimetre-long low-loss pas-
sive section achieved a sub-kilohertz RF linewidth93. Purely passive, 
high-Q resonators in integrated nonlinear OFCs perform con-
siderably better as microwave oscillators; Kerr microcombs have 
achieved hertz-level RF linewidths110.

In the past few years, the integration of a laser and an ultra-high-Q 
microresonator has led to orders of magnitude reduction in both 
optical and microwave noise compared with regular-pumped 
OFCs16,111 (Fig. 4d,e), as will be discussed in a later section.

Operation simplicity and reconfigurability. All integrated OFC 
applications can benefit from a straightforward and standardizable 
OFC operation protocol. For most integrated SMLLs, a comb can be 
initialized by simply turning the laser on with an appropriate gain 
current and SA bias (passive MLLs). Given suitable RF modulation 
inputs, active MLLs and EO combs can also be operated easily. To 
produce a coherent state in χ(2) or χ(3) microcombs, however, is usu-
ally more challenging; coherent states only exist within a certain 
detuning range of the pump frequency relative to the resonances of 
the cavities, and establishing those states therefore requires careful 
attention to the thermal instability caused by varying the intracav-
ity power. Common pump schemes have required a series of com-
plex laser-tuning-and control procedures to initiate and stabilize 
the soliton combs112. These procedures have been a major obstacle 
for the microcomb research community. Soliton crystals can allevi-
ate this problem thanks to the moderate intracavity power change 
that accompanies a state transition100. A newly developed ‘turnkey’ 
self-injection locking approach can (Fig. 4f) enable the direct gener-
ation of a soliton microcomb via an intrinsic optical-locking mecha-
nism that requires no tuning or control procedures111.

Some applications, such as dual-comb-based optical spec-
troscopy and light detection and ranging (or LIDAR) systems, 
require OFCs that can be tuned in both the repetition rate and 
carrier frequency, ideally with a wide tuning range. At present, 
non-resonant-comb-generation approaches generally exhibit the 
best tunability. For cavity-based comb sources, SMLLs can be effi-
ciently tuned up to several nanometres of carrier wavelength when 
operated at the C band. Repetition-rate tuning via carrier injection 
and temperature has yielded a tuning width of up to 1 GHz while 
operating around 40 GHz (ref. 113). High-Q dielectric resonators 
for integrated nonlinear OFCs usually suffer from a limited tun-
ing range due to their narrow resonance and the lack of efficient 
index-changing strategies. For a 100 GHz Si3N4 comb, the FSR can 
be varied by only a few megahertz, with gigahertz-level wavelength 
chirping10. Resonator EO combs have a better detuning tolerance 
and can produce a repetition-rate tuning range (Δ) of up to 100 MHz 
while operating around 10 GHz (ref. 83) (Fig. 4g).
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Reliability and scalability. Although OFCs are already crucial for a 
variety of technologies, their use will be accelerated by high-volume, 
low-cost production in industry. Thanks to advances in semicon-
ductor laser manufacturing, integrated SMLLs are currently closer 
to industry-scale use than other OFC technologies: various imple-
mentations of SMLLs have been successfully demonstrated in 
major commercial photonics platforms, including InP, GaAs and 
heterogeneous III–V on silicon-on-insulator (SOI). Recent break-
throughs with epitaxially grown QDs on Si suggest an economically 
viable way to integrate SMLLs with CMOS foundry processes41,114. 
Ageing tests of lasers on this platform have shown million-hour life-
times at 80 °C (refs. 114,115) (Fig. 4h), which can meet the stringent 
requirements of data centres and other demanding applications. 
On the other hand, similar studies for integrated nonlinear OFCs 

are relatively sparse. Although passive optical devices tend to last 
much longer than SMLLs, nonlinear devices experience prolonged 
high light intensities, which may affect the material properties. In 
addition, without suitable mitigation, the high-Q cavities used in 
many nonlinear OFCs are usually influenced by various external 
factors such as the ambient air conditions, stress, temperature and 
pump-source considerations. Furthermore, any attempt to scale 
up the manufacturing of nonlinear OFCs must meet the precise 
waveguide-loss and geometry-control specifications for dispersion 
engineering and phase matching. Nevertheless, remarkable suc-
cess has been achieved in adapting Kerr microcomb fabrication in 
CMOS lines62,64. Early efforts have been carried out by several com-
panies providing dedicated wafer-scale processes for materials like 
Si3N4 (ref. 116) and LiNbO3 (ref. 117), which are suitable for nonlinear 
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purposes. One recent milestone resulting from these efforts is the 
Kerr microcomb in Si3N4 microresonators on standard 200 mm Si 
wafers from a CMOS foundry line16 (Fig. 4i).

OFCs in photonic integrated circuits. Despite the phenomenal 
success of integrated OFCs at the device level, incorporating them 
into fully integrated photonic integrated circuits (PICs) remains 
elusive. In most integrated OFC demonstrations so far, the comb 
generators are the only components integrated on-chip. Hence, a 
large amount of bulk electronic and optical equipment is required 
for operating those systems, undermining practically all the ben-
efits promised by integrated photonics. To dramatically reduce the 
system SWaP-C in commercial products, OFCs must be combined 
with at least a substantial portion of the photonic systems used in 
PICs. Here, we discuss the current status of high-level OFC integra-
tion with an eye towards further development.

Integration approaches. There are three important approaches to 
combining OFCs with other photonic components: monolithic, 
heterogeneous and hybrid techniques. Monolithic integration of 
multiple photonic devices has been widely deployed in large-scale 
foundry production118 (Fig. 5a). Commonly used monolithic plat-
forms in photonic foundries include InP and GaAs; these III–V 
semiconductors and epitaxial stacks of their alloys are grown at an 
industrial scale on native substrates. The high-quality QW and QD 
gain media that are available on those platforms naturally support 
integrated SMLLs and pump lasers for integrated nonlinear OFCs. 

These light sources can then be joined to other active and passive 
components by intermixing or regrowth119. While active devices are 
well supported, the monolithic approach is less suitable for passive 
elements because of the relatively high waveguide losses and weak 
optical confinement. These issues have limited the scale-up and effi-
ciency of monolithic III–V OFC PICs.

An alternative to monolithic PICs is heterogeneous integration, 
which leverages wafer-bonding or transfer-printing techniques to 
combine different material systems on the same wafer120 (Fig. 5b) 
while maintaining the potential for wafer-scale processing121. In sili-
con photonics, heterogeneous integration has been used to transfer 
III–V materials onto silicon to unite electrically pumped lasers with 
low-loss waveguides and high-performance SOI passive devices9. 
Taking advantage of both materials, recent work has investigated 
III–V-on-Si MLLs with external SOI cavities as a means to over-
come the linewidth bottleneck of pure III–V-based lasers93. Outside 
silicon photonics, a few novel nonlinear-medium-on-insulator 
platforms, such as LNOI84 and (Al)GaAsOI66, have been developed 
based on wafer-bonding technologies and used to produce inte-
grated nonlinear OFCs. Furthermore, the recent demonstrations of 
a heterogeneous laser-soliton microcomb on silicon122, enabled by 
III–V/Si/Si3N4 integration technology123,124, paved the way towards 
integration of pump lasers and nonlinear media on the same wafer, 
which is expected to enable the mass production of integrated 
microcombs using photonic foundry processes in the near future. 
While heterogeneous integration offers large benefits over mono-
lithic production, one drawback of processing diverse materials on 
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the same substrate is compatibility in fabrication, as in thermal bud-
gets or etch steps.

In hybrid integration, fabrication restrictions are lifted by 
photonic-packaging techniques125 (Fig. 5c). By combining chips 
after processing, these methods enable increased process indepen-
dence111,126,127, since the best devices can be selected beforehand 
to improve the yield compared with fully heterogeneous integra-
tion128. Those features are especially desirable for applications that 
demand fabrication-strict parts, for example, ultra-high-Q resona-
tors whose performance can be degraded during multi-material 
processing. The commercial disadvantages of hybrid integration 
are cost and scalability. In addition, while the on-chip performance 
can be optimized, hybrid packaging processes result in lossier, less 
stable chip-to-chip and chip-to-fibre coupling. The higher reflec-
tions from those interfaces may affect laser operation, which could 
be potentially addressed by using QD lasers or a self-injection lock-
ing scheme.

High-level integration for SMLLs. The high-level integration of 
SMLLs has mainly been realized in monolithic III–V platforms. On 
InP, QW-based MLLs were successfully integrated on multi-project 
wafers alongside distributed Bragg reflectors, multimode inter-
ferometer couplers, phase modulators and semiconductor optical 
amplifiers (SOAs)—all fabricated via a generic foundry process129. 
In another study, an arrayed waveguide grating was implemented 
within a laser cavity to produce a multichannel harmonic MLL, 
which can potentially serve as a source for WDM communica-
tions130. Heterogeneously integrated SMLLs, however, have so far 
been produced only at the individual device level. We anticipate 
higher-level integration of heterogeneously fabricated MLLs in the 
near future, leveraging the mature process-development kit9 com-
ponent library of silicon photonics.

High-level integration for nonlinear OFCs. The crucial step for 
realizing nonlinear-OFC-based PICs is to connect the pump lasers 
with nonlinear devices. There were two considerable obstacles, but 
these can now be overcome. First, the pump power required for 
efficient comb generation was beyond the reach of integrated lasers 
in almost all nonlinear-OFC-generation approaches. Second, in 
the conventional pumping scheme, an optical isolator is required 
to protect the pump laser from feedback-induced interference, 
and such isolation is hard to realize in a PIC. Therefore, such 
laser–nonlinear-OFC integration was not possible until several 
recent breakthroughs. One key advance was the improvement 
in Q factors of microresonators, which enabled soliton genera-
tion for pump power at the milliwatt level in Si3N4 (ref. 110) and 
AlGaAsOI75 platforms. Regarding source-feedback issues, several 
strategies have been developed to circumvent the need for isolators 
by using new integrated photonic pumping schemes; one approach 
is to implement the nonlinear microresonators inside an external 
cavity coupled to the III–V gain section127. In that configuration, 
the resonator serves as both the comb generator and the reflector 
that provides feedback for lasing. Another recent approach that has 
been intensely studied is ‘turnkey’ self-injection locking of a pump 
laser via backscattering from a high-Q resonator111,126,127. This 
scheme enables a new operating regime for microcombs, where the 
soliton can be generated simply by turning on the laser power111. 
Such a turnkey operation eliminates the optical and electronic 
control circuitry, thereby dramatically reducing the microcomb 
system footprint and complexity. Another remarkable advantage 
of self-injection locking is the easing of dispersion requirements 
for Kerr comb generation. One milestone work16 leveraging this 
technique is the generation of dark pulses in a thin-Si3N4, CMOS 
foundry platform that is directly pumped using a distributed feed-
back (DFB) laser. The resulting comb exhibited unprecedented low 
optical and microwave noise.

System-level applications. Several integrated photonic system 
demonstrations have been realized that make use of OFC devices 
in conjunction with other photonic components. An optical link 
has been reported that features an integrated SMLL, an SOA and 
silicon photonics transmitters and receivers packaged with support-
ing electronics chips; it supported a signal of 25 gigabits per second 
per comb line for dense wavelength division multiplexing (DWDM) 
communication131. In time–frequency metrology, one landmark 
study has reported an optical frequency synthesizer using a wide 
range of integrated photonic devices, including one 22 GHz SiO2 
comb, one 1 THz Si3N4 comb, a heterogeneously integrated III–V/
silicon laser and one waveguide-based PPLN frequency doubler. 
This system generated a laser frequency output across 4 THz near 
1,550 nm with 1 Hz resolution and 7.7 × 10−15 uncertainty17. In a 
subsequent generation, the integration level of this system was dra-
matically improved (Fig. 5d); both the microwave and terahertz 
soliton combs were generated using a Si3N4 resonator in a direct 
DFB-pumping manner. All the previously used fibre components 
were replaced by one Si3N4 interposer chip, where the AlGaAs dou-
bler and InP QW photodiodes were heterogeneously integrated. 
Finally, all of the photonic chips were successfully packaged in a 
centimetre-scale assembly (Fig. 5e), connected to CMOS electron-
ics chips through a flexible circuit board. Another demonstration 
has used a similar set of devices to realize an optical atomic clock 
by stabilizing the laser to an optical transition in a microfabricated 
rubidium vapour cell18. An interlocked frequency comb enabled the 
generation of an electronic 22 GHz clock signal with a fractional 
frequency instability of 10−13. Although some bulk optics and elec-
tronics are still required in those systems, such proof-of-concept 
demonstrations show the promise of delivering integrated photonic 
solutions for high-level OFC-involved systems.

Challenges and outlook
Following the rapid research progress made in device develop-
ment and system-prototype demonstrations, the field of integrated 
OFCs now stands at a critical point. On the one hand, the various 
comb-generation approaches have produced impressive figures of 
merit in device performances, many of which are comparable to 
bulk instrumentation, thus inviting many preliminary system-level 
applications. On the other hand, remarkable difficulties still exist 
and must be addressed to deliver the promised benefits of OFCs 
in PICs and ultimately transition this technology into commercial 
production.

One critical problem is the power. Although integrated SOAs 
could amplify the comb to power levels that are compatible with dis-
crete lasers on-chip (milliwatts or higher), and which is compatible 
with current system applications of integrated photonics131, they can 
only perform over a limited spectral bandwidth, usually less than 
tens of nanometres. Furthermore, amplification cannot improve the 
optical signal-to-noise ratio that is critical in optical networks. For 
the case of nonlinear OFCs, the pump power currently provided by 
integrated sources is still relatively low for octave-span generation, 
hindering applications that require self-referencing.

Another key challenge is the complexity of integrated OFC 
technologies, which impose more rigorous requirements on reli-
ability, manufacturing and cost compared with previous PICs. For 
instance, replacing a sophisticated array of lasers in a WDM sys-
tem with a single comb source may dramatically reduce the sys-
tem SWaP-C, but the comb source must be proportionally more 
reliable and efficient. In addition, the rich dynamics behind comb 
formation often lead to multiple OFC states, adding significant 
instability during the operation. The required monitoring and 
control capabilities for comb operation present obstacles to full 
integration and deployment.

As such, a simplified, deterministic and reliable comb-operation 
protocol, with highly efficient comb-generation processes, will 
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essentially be the foundation of the whole integrated OFC technolo-
gies. Recent advances in the nanofabrication of diverse material 
platforms75,110,123,132 and comb-generation schemes100,111,133 suggest 
several promising solutions by combining high-quality devices 
with novel comb-formation dynamics. One example is the genera-
tion of soliton crystals in Kerr microcombs100, which exhibit sig-
nificantly higher efficiencies than the widely used single DKS and 
can be triggered by manual tuning. We also anticipate that har-
nessing the lower-loss cavities, the newly developed self-injection 
locking scheme111 as well as the on-chip MLL stabilization134, will 
play key roles since they can boost the efficiency of OFC generation 
and eliminate the need for tuning and control circuitry. Another 
exciting opportunity, which potentially can be offered by high-level 
integration, is the implementation of nonlinear devices inside the 
laser cavity, in the form of laser cavity-solitons133, which may lead 
to high-efficiency, spontaneously formed combs by recycling the 
pump light.

Although a universal solution for comb generation that performs 
well in all aspects discussed in the ‘Key metrics and properties’ sec-
tion would be ideal, in practice, integrated OFC deployment will 
mainly be application-driven. For communication use, integrated 
SMLLs with a repetition rate of less than 120 GHz will be used in 
photonic transceivers due to their advantages in comb power and 
efficiency as well as their compatibility with existing commercial 
photonic platforms. However, when data-rate requirements eventu-
ally push the comb span beyond the conventional telecommunica-
tions band, or demand extreme high-order quadrature amplitude 
modulation in coherent communications, the need for wide comb 
spectra and low noise will begin to favour microcombs. On the other 
hand, for timekeeping and frequency synthesis, Kerr combs will 
probably remain the predominate strategy in the foreseeable future 
due to their octave bandwidth that is required for self-referencing. 
In scenarios requiring greater reconfigurabilities, EO combs will 
probably play key roles. In the longer term, for systems of high com-
plexity17,18, multiple types of comb sources will co-exist and serve 
different purposes.

For commercial applications, the first widespread application 
for wafer-level-produced integrated OFC technologies will prob-
ably happen in DWDM photonic interconnects for data centres and 
high-performance computing. The integration of a comb source, 
photonic transceivers and microelectronics will enable data links 
with unprecedented bandwidth density, efficiency and reach121. The 
demands from industry will accelerate the adoption of OFC tech-
nologies in photonic foundries. Moving forwards, high-precision 
timekeeping and frequency synthesizing will embrace a mas-
sive market when integrated systems can maturely accommodate 
broader-span combs and attain higher-level complexity. Along 
the way, we do expect that integrated OFCs will find new markets 
in various important applications: the next generation of pho-
tonic neural network processor using microcomb parallelization 
holds promise in surpassing the speed and energy efficiency of 
cutting-edge graphics processing units12,13; the extension of OFCs 
to novel wavelength ranges, such as the visible region, could poten-
tially bring new opportunities in areas like atomic physics and bio-
sensing by integrated photonics, leveraging the recently developed 
CMOS-foundry-based visible photonic platform135.

In just a few decades, integrated OFCs have overcome a number 
of difficult technical obstacles and have proved their viability as a 
means to support numerous invaluable integrated photonics tech-
nologies in a scalable fashion. With this rapid progress, we anticipate 
that the next decade will see implementations of OFCs in large-scale 
PICs, fuelling a new generation of emerging technologies in data 
transmission, sensing, timekeeping and fundamental science.
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