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Abstract—To accommodate the demand of exponentially in-
creased global wireless data traffic, the prospective data rates
for wireless communication in the market place will soon reach
100 Gb/s and beyond. In the lab environment, wireless transmis-
sion throughput has been elevated to the level of over 100 Gb/s
attributed to the development of photonic-assisted millimeter wave
and terahertz (THz) technologies. However, most of recent demon-
strations with over 100 Gb/s data rates are based on spatial or
frequency division multiplexing techniques, resulting in increased
system’s complexity and energy consumption. Here, we experi-
mentally demonstrate a single channel 0.4 THz photonic-wireless
link achieving a net data rate of beyond 100 Gb/s by using a sin-
gle pair of THz emitter and receiver, without employing any spa-
tial/frequency division multiplexing techniques. The high through-
put up to 106 Gb/s within a single THz channel is enabled by
combining spectrally efficient modulation format, ultrabroadband
THz transceiver and advanced digital signal processing routine.
Besides that, our demonstration from system-wide implementa-
tion viewpoint also features high transmission stability, and hence
shows its great potential to not only decrease the system’s com-
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plexity, butalso meet the requirements of prospective data rates for
bandwidth-hungryshort-range wireless applications.

Index Terms—Radio frequency photonics, single channel, THz
wireless transmission, ultrafast information processing.

I. INTRODUCTION

W ITH the coming of Big Data Era (BDE) and Internet
of Things (IoT) targeting the interconnection of every-

thing, the global net data traffic is increasing exponentially [1],
[2]. The ultrafast wireless network (UWN), as the supporter for
carrying the fastest-growing part, is foreseeable to play a key
role in the future internet [3]. Historically, from the comparison
of the 3rd-generation (3G)/4G and upcoming global 5G net-
works, carrier frequencies used for wireless communications
have been increasing step by step [4]–[7], to meet bandwidth
requirements for delivering higher net data rates. In this context,
the speed of wireless transmissions has been demonstrated in
the laboratories to a new level of beyond 100 Gbit/s, by the rapid
development of photonic-assisted millimeter wave (MMW) and
terahertz (THz, >300 GHz) technologies [8], [9]. Such an ultra-
fast data rate will be the prospective for wireless communication
in the market place within 10 years [10].

The full exploitation of ultra-broad bandwidth at high carrier
frequencies of over 60 GHz, and the utilization of spectrally effi-
cient modulation formats and advanced multiplexing techniques
are the main driving factors to enable the realization of beyond
100 Gbit/s net date rate [8]. In recent years, a few experimental
demonstrations of wireless transmissions at 100 Gbit/s and be-
yond, have been reported, operating in different frequency bands
ranging from MMW to THz. In the W-band (75–110 GHz),
demonstrations with data rates of from 100 Gbit/s to 400 Gbit/s
have been achieved by using the techniques incorporating opti-
cal polarization division multiplexing (PDM) and wireless spa-
tial multiple-input multiple-output (MIMO) [11]–[14]. In the
D-band (110–170 GHz), a 100 Gbit/s and a 352 Gbit/s wireless
transmissions have been reported incorporating frequency divi-
sion multiplexing (FDM), PDM and spatial MIMO techniques
[15], [16]. In the sub-THz band (200–300 GHz), spatial single-
input single-output (SISO) wireless communication systems in
the order of 100 Gbit/s have been demonstrated by employing
frequency division multiplexing techniques based on optical fre-
quency comb (OFC) sources [17]–[21]. To move beyond this,
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Fig. 1. Experimental setup of the single channel photonic-wireless link in the 0.4 THz band. ECL: external cavity laser, Pol. M: polarization maintaining,
PM: phase modulator, RF: radio frequency, EDFA: Erbium doped fiber amplifier, WS: wave shaper, AWG: arbitrary waveform generator, IQM: in-phase and
quadrature modulator, VOA: variable optical attenuator, OBPF: optical band-pass filter, PC: polarization controller, LO: local oscillator, UTC-PD: uni-travelling
carrier photodiode, DSO: digital sampling oscilloscope. Insets: optical spectra of the generated optical frequency comb (up-left) and combined modulated signal
and LO (down-left), and the DSP routine structure at the receiver (up-middle) and a picture of the actual setup (down-middle).

the THz band (300 GHz–10 THz) featuring an extremely large
bandwidth available between the millimeter-wave and infrared
radiation is considered as the “Next Frontier” to meet the data
rate target of future UWNs.

In the THz band, we have recently contributed to the de-
velopment of THz wireless communication by demonstrating a
series of high-speed photonic wireless transmission systems in
the 0.3–0.5 THz regime with multi-channel Nyquist-quadrature
phase shift keying (QPSK)/16 quadrature amplitude modula-
tion (QAM) signals, [22]–[31]. These work is enabled by ul-
trafast THz transceivers, particularly the availability of ultra-
broadband uni-travelling photodiodes (UTC-PDs) as efficient
photo-mixing emitters and Schottky diodes as broadband elec-
tronic receivers, and the highest net data rate has reached up to
260 Gbit/s [31]. However, most of the demonstrations aforemen-
tioned are in view of the optical PDM, and/or the spatial MIMO
and/or the frequency multiplexing techniques, all of which will
in turn increase the system’s size, energy consumption and the
complexity in terms of both the hardware and the digital signal
processing (DSP) module, resulting in increased overall cost.
Therefore, a single channel wireless transmission system at a
data rate of over 100 Gbit/s without employing multiplexing
techniques, will show an exciting potential to not only low down
the system’s energy consumption, complexity and cost, but also
meet the requirements of prospective data rates for future UWNs
and burgeon bandwidth-hungry wireless applications.

In this paper, we propose and experimentally demonstrate
a single channel THz photonic-wireless transmission system
at the 0.4 THz band without using any multiplexing tech-
niques, reaching a net data rate of up to over 100 Gbit/s

based on a single pair of THz emitter and receiver. The ca-
pacity of over 100 Gbit/s within a single channel is enabled by
combining 16QAM modulation format, ultra-broadband THz
transceivers and a tailored DSP routine with pre- and post-
equalization, which can accurately reconstruct the frequency
response within a single broadband THz channel. At the trans-
mitter side, an OFC source is coherently generated for pho-
tonic heterodyne mixing in an ultra-wideband antenna integrated
UTC-PD [32], which generates and radiates a single channel
THz signal with high frequency stability. At the reception side,
the over 100 Gbit/s wirelessly propagated 400 GHz band sig-
nal is received in a Schottky mixer based electrical receiver.
Finally, we have successfully recovered up to 32 Gbaud wire-
lessly transmitted 16QAM signals in the experiment, resulting in
pre-forward error correction (FEC) line rates of up to 128 Gbit/s
and post-FEC error-free bit rates of up to 106 Gbit/s in a single
THz channel.

To extend the operational principle and details of the exper-
iment, as well as the DSP routine based on our previous work
reported in [33], this paper is organized as follows. In Section II,
we present the details of our THz photonic-wireless link with an
emphasis on the experimental setup and DSP routine. Section III
shows the experimental results and gives the corresponding dis-
cussions. Finally, the conclusions are drawn in Section IV.

II. THZ PHOTONIC-WIRELESS LINK

A. Experimental Setup

Fig. 1 shows the experimental configuration of a high-speed
single channel THz photonic-wireless transmission system, in-
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cluding the spectra after the OFC generation and before the
UTC-PD, as well as the DSP routine structure at the receiver.
First, a continuous wave (CW) light from an external cavity laser
(ECL, <100 kHz linewidth) at a wavelength of around 1550 nm
is launched into two cascaded phase modulators (PMs), with a
tunable optical delay line (ODL) in-between, to generate a co-
herent OFC. Both PMs are driven by a 25 GHz radio frequency
(RF) sinusoidal signal, which determines the comb line spacing
of the OFC. The amplified RF driving power on the two PMs
(Vπ of 3–V) are 31 dBm and 22 dBm, corresponding to the
modulation indices of around 3.8–Vπ and 1.4 Vπ, respectively.
The delay of the ODL in-between can be optimized to achieve
a timing match between the two PMs, to broaden the optical
spectrum for generating the desired THz carrier frequency. Af-
ter amplified by using an Erbium-doped fiber amplifier (EDFA),
the OFC with 25 GHz line spacing is fed into a programmable
wave shaper (WS, Finisar 4000S) to be selected, separated and
equalized into two comb lines with 425 GHz spacing, as two
different output ports. In one port, a single optical tone is se-
lected to act as a remote local oscillator (LO) for photo-mixing
for THz signal generation. The other tone at the output of the
other port, positioned at 425 GHz from the LO tone, is se-
lected as a signal carrier and launched into an in-phase (I) and
quadrature (Q) optical modulator (IQM) for data modulation.
A two-channel arbitrary waveform generator (AWG, 64 GSa/s)
is used to map and modulate two shifted pseudorandom binary
sequence (PRBS) 215 − 1 sequences into a 16QAM signal at
the IQM. The 16QAM signal waveform is pulse shaped with
a root-raised-cosine (RRC) filter of 0.15 roll-off factor. Then a
resampling process of the signal to match the AWG sampling
rate of 64 GSa/s is performed. Static digital pre-equalization is
performed prior to the modulation to pre-compensate the AWG
output frequency roll-off and the skew between the two electri-
cal cables. The optical carrier signal modulated with 16QAM
after the IQM is amplified by an EDFA followed by an opti-
cal band-pass filter (OBPF) to remove out-of-band amplified
spontaneous emission (ASE) noise. Here, a variable optical at-
tenuator (VOA) is employed to control the power of the optical
16QAM signal before combining with the optical LO branch,
to keep the power ratio balanced between the optical LO and
signal, for the best photo-mixing efficiency in the UTC-PD. A
polarization controller (PC) is placed in the optical 16QAM sig-
nal branch before a 3-dB coupler, to align the polarization states
between the two branches. It should be noted that the two critical
technical rules mentioned above are found to have significant
impacts on the generated THz signal power and signal-to-noise
ratio (SNR) with heterodyne mixing in the UTC-PD, thus re-
quiring precise optimization [34]. After combining with the LO
in the 3 dB coupler, the optical signal is amplified and filtered
by an EDFA and OBPF respectively.

Finally, a polarizer pre-posed by a PC ensures the modulated
optical tone and unmodulated LO are co-polarized to match the
input polarization state of the UTC-PD. After that, a polarization
maintaining (Pol. M) VOA is utilized to accurately control the
incident optical power launched into the broadband UTC-PD for
heterodyne mixing, while maintaining the matched polarization
with the input of UTC-PD. The optical spectra of the generated
OFC and the combined signals after the 3 dB coupler are shown

Fig. 2. Principle of the static post-emphasis equalization of the IF signal prior
to frequency down-conversion to base band.

in insets of Fig. 1. At the output of the broadband UTC-PD, a
single channel THz 16QAM signal centered at around 425 GHz
is generated by optical heterodyne mixing, and emitted into a
0.5–m free-space line-of-sight (LOS) link, where a pair of THz
lenses with a 38 mm diameter and 50 mm focus length is em-
ployed to collimate the THz beam. At the wireless reception, the
received single channel THz signal is down-converted at once to
the intermediate frequency (IF) domain by using a sub-harmonic
Schottky mixer operating at the 300–500 GHz band, driven by
a 12-time frequency multiplied electrical LO. The electrical LO
signal is tunable in the frequency range of 33.8–34.3 GHz,
resulting in a corresponding IF carrier frequency ranging
13–19 GHz in accordance with the baud rate of transmitted
signal. The IF output signal is amplified by a RF amplifier
with around 21 dB gain and 40 GHz bandwidth, and then
fed into a broadband real-time digital sampling oscilloscope
(Keysight DSOZ634A Infiniium) with 160 GSa/s sampling rate
and 63 GHz analog bandwidth, for analog-to-digital conver-
sion, demodulation and communication performance analysis.
The digital signals are processed and analyzed offline with a
specifically designed DSP routine in a quasi-real-time manner
with a loop probing the captured samples every ∼6 seconds.

B. Digital Signal Processing (DSP) Routine

The structure of the DSP routine at the receiver is shown
in Fig. 1 inset. In fact, the overall DSP routine utilized in this
high-speed single channel THz photonic-wireless transmission
experiment consists of a transmitter (Tx) DSP for pre-processing
the signal before loading it to the AWG, and a receiver (Rx) DSP
segment to perform post-processing for signal reconstruction
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Fig. 3. Block diagram of the two-stage frequency offset recovery (FOR) and phase noise compensation (PNC) scheme used in this work. The first stage is
frequency offset recovery based on QPSK partitioning method; the second stage if blind phase search (BPS) based phase noise compensation.

and demodulation. Both Tx and Rx DSP algorithms are per-
formed offline with MATLAB. The Tx DSP for pre-processing
has been roughly described in Section II-A, and the details of
Rx DSP for post-processing will be introduced in the following
of this part.

At the receiver, a 2-tap static post-emphasis filter is employed
to compensate the limitation of receiver bandwidth. It should be
noted that this process needs to be performed prior to the fre-
quency down-conversion, because the low-pass filtering effect
from the mixer to the IF signal is not symmetrical around the
IF carrier but around DC, as shown in Fig. 2. Therefore, if
the post-emphasis filtering is performed after frequency down-
conversion and low-pass filtering, the baseband signal will have
a low-pass asymmetry property, making it difficult to be further
equalized. This is in line with the generic equalization concept
that the last filtering effect occurred in the channel should be
equalized first. The post-emphasis equalizer coefficients are op-
timized by observing the final bit-error-rate (BER) performance
instead of observing the evenness of the signal spectrum, as
there is a trade-off relation between the compensated filtering
effect and the high-frequency noise enhancement. A digital fre-
quency down-conversion is performed after the post-emphasis
filter. This process converts the real-valued IF signal into a
complex baseband signal composing I and Q components, as
illustrated in inset of Fig. 1. The detailed principle of this down-
conversion process is derived in [34]. We have performed the
clock recovery in a joint way that the complex baseband signal is
firstly up-sampled to 8 samples per symbol. Then the sampling
points within the symbol period that statistically provide max-
imum variance of amplitude are selected, indicating maximum
eye diagram openings in both I and Q components are obtained.

In this work, an adaptive channel equalization is implemented
based on a 29-tap lattice filter with the classical butterfly struc-
ture, which is driven by the multi-modulus algorithm (MMA)
[35]. The algorithm performs blind equalization by minimizing
the time-averaged mean-square error, and works independent of
carrier frequency and phase which are still not available by this
stage.

The frequency offset recovery (FOR) and phase noise com-
pensation (PNC) are the essential blocks after the adaptive chan-
nel equalization to estimate and compensate for the phase noise

introduced by the incoherent heterodyne beating between the op-
tical signal and LO for frequency up-conversion. The schematic
of the used 2-stage FOR and PNC scheme is described in Fig. 3.
The first stage is based on QPSK partitioning and Viterbi &
Viterbi (V&V) algorithm to recovery the frequency offset due to
imperfect IF down-conversion [36]. First, the received symbols
are sent into a decision circuit where the symbols are mapped
into the closest amplitude radius in the 16-QAM constellation.
Then, the angle between the mapped symbols and its closest
QPSK angle is calculated and employed to angularly rotate the
modulation component of the input symbols to QPSK positions.
The normalized V&V algorithm utilizing the fourth power op-
eration can now be used to remove the modulation and a block
of 2M1 + 1 symbols is considered for additive white Gaussian
noise (AWGN) mitigation. The calculated phase noise estimator
needs to be unwrapped to reduce cycle slip occurrence, before
being linearly fitted and differentiated to derive the estimated
frequency offset. The estimated frequency offset at the output
of the first stage is then applied to the transmitted signal, before
feeding forward to the second stage for phase noise compensa-
tion based on blind phase search (BPS) [37]. A block of 2M2+1
symbols is rotated by a number of test phases, sent into a de-
cision circuit module and the square distance to the closest
constellation points is calculated. The test phase that provides
the minimum distance error corresponds to the estimated phase
rotation of the symbol block.

Finally, after the FOR and PNC block the symbols are de-
coded into binary format and the BER is counted by comparing
the received binary sequence with the transmitted PRBS-15 se-
quence. It should be noted that the first two bits of the symbol
is differentially Gray-decoded to determine the quadrant of the
complex plane. This step is essential to eliminate burst errors
induced by any cycle slips occurred during the FOR and PNC.
The details of the differential decoding can be found in [37].

III. RESULTS AND DISCUSSIONS

In this work, a single channel THz photonic-wireless trans-
mission at the 0.4 THz band with 16QAM signal symbol rates of
16 Gbaud, 20 Gbaud, 28 Gbaud and 32 Gbaud have been investi-
gated and experimentally evaluated, which correspond to line bit
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Fig. 4. (a). BER performance versus the incident optical power launched into
the UTC-PD. (b). Constellations for all 4 baud rates at 14 dBm optical power.
(c). The electrical spectra of the 32 Gbaud signal both before and after down
conversion and filtering. (d). System stability tests for all 4 configurations (250
traces (∼25 min) per channel, 800 k Sa/Trace).

rates of 64 Gbit/s, 80 Gbit/s, 112 Gbit/s and 128 Gbit/s, respec-
tively. As shown in Fig. 4(a), the BER performance for all cases
of four different baud rates has been measured as a function of
the incident optical power launched into the UTC-PD, and the
below-FEC threshold performance in all cases are successfully
achieved. It should be noted that both cases of 16 Gbaud and

Fig. 5. The BER results of the 32 Gbaud signal at power into the UTC-PD of
15 dBm as a function of the post-emphasis coefficients.

20 Gbaud transmissions have realized the BER performance
below the hard-decision forward error correction (HD-FEC)
threshold of 3.8 × 10−3 with 7% overhead (7%-OH HD-FEC),
reaching the error-free post-FEC net bit rates of 59 Gbit/s and
74 Gbit/s, respectively. In the cases of the 28 Gbaud and 32
Gbaud transmissions, the BER performances below the soft-
decision FEC threshold of 2 × 10−2 with 20% overhead (20%-
OH SD-FEC) are achieved, resulting in the overall post-FEC
error-free net bit rates of 93 Gbit/s and 106 Gbit/s, respectively,
as seen in Fig. 4(a). The corresponding signal constellations
captured at 14 dBm for all the cases of four symbol rates are
displayed in Fig. 4(b). We show the electrical spectra of the 32
Gbaud signal both before and after down conversion and filter-
ing in Fig. 4(c). And the IF frequency for this baudrate is set
to be 18.5 GHz. The overall performance of the wireless trans-
mission system is basically limited by the SNR of the received
signals and the IF bandwidth of the THz receiver. The former is
primarily due to the low conversion efficiency of the UTC-PD
(0.15 A/W) and the THz Schottky mixer (with around 17 dB
conversion loss), and the latter further leads to the enhancement
of the high frequency noise after post-emphasis equalization.
The performance difference between different symbol rates can
also be found from the spreading clusters of the corresponding
16QAM constellations. It should be noted that further increase
of the incident optical power launched into the UTC-PD above
14 dBm cannot reach better BER performances, and this case
can be attributed to the saturation of the UTC-PD in terms of
THz output power. However, in the future, it is expected that a
larger margin can be achieved by using multi-subcarrier mod-
ulation formats with higher noise tolerance, and THz emitters
and receivers with enhanced performance. In addition, the THz
power/low noise amplifiers and an optimized layout of THz
lenses will be employed in the system to extend the wireless
transmission distance for the future perspective.

Finally, the BER performance stability of the THz photonic-
wireless communication system is evaluated in the lab environ-
ment, and the measured results are shown in Fig. 4(d). For each
symbol rate, we run the system continuously over 25 minutes,
collecting 250 traces with 800 k samples per trace and counting
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errors. As seen in Fig. 4(d), it is observed that for all cases the
system could maintain the BER performance within a small fluc-
tuation range, below the corresponding FEC thresholds. This
measurement indicates that the experimentally demonstrated
THz photonic-wireless link operating at high symbol rates is
stable from system-wide implementation viewpoint because of
the sophisticated DSP algorithms used in this work. In addition,
in order to provide a clear picture of how the post equalization
impacts on the demodulation performance, we sweep the 2nd
tap coefficient of the 2-tap post filter from 0 (no post-emphasis)
to 0.9 (strong post-emphasis). And the BER results of the 32
Gbaud signal at power into the UTC-PD of 15 dBm as a function
of the post-emphasis coefficients are shown in Fig. 5.

IV. CONCLUSION

We have proposed and experimentally demonstrated a high-
speed single channel THz photonic-wireless transmission sys-
tem operating in the 0.4 THz band by using a single pair of THz
emitter and receiver. The high throughput of up to 106 Gbit/s
within a single channel in the THz band is enabled by employing
spectrally efficient 16QAM modulation format, ultra-broadband
THz transceivers and advanced DSP routine, without using any
spatial MIMO, PDM or frequency division multiplexing tech-
niques. The demonstration of high-speed THz wireless link be-
yond 100 Gbit/s shows stable transmission performance, indi-
cating its high potential to support future UWNs and burgeon
bandwidth-hungry ultrafast short-range wireless applications.
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