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Dynamically encircling exceptional points (EPs) can lead to chiral mode switching as the system
parameters are varied along a path that encircles EP. However, conventional encircling protocols result in
low transmittance due to path-dependent losses. Here, we present a paradigm to encircle EPs that includes
fast Hamiltonian variations on the parameter boundaries, termed Hamiltonian hopping, enabling ultrahigh-
efficiency chiral mode switching. This protocol avoids path-dependent loss and allows us to experimentally
demonstrate nearly 90% efficiency at 1550 nm in the clockwise direction, overcoming a long-standing
challenge of non-Hermitian optical systems and powering up new opportunities for EP physics.
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Exceptional points (EPs) are degeneracies arising in non-
Hermitian systems at which two or more eigenvalues and
eigenstates coalesce [1]. They are at the origin of exotic
phenomena that have no Hermitian counterparts, and hence
have attracted significant interest in acoustics, quantum
mechanics, thermodynamics, and optics. The possibility of
introducing and controlling the distribution of gain and loss
in photonic systems, in particular, has recently enabled the
observation of EPs and their associated non-Hermitian
phenomena in a wide range of optical configurations
[2], including microcavities [3–6], coupled waveguides
[1,7–17], gratings [18,19], and photonic crystals [20,21].
Particularly intriguing phenomena have been found when
these systems are steered along a path in parameter space
that encircles an EP. Owing to the topological features of
complex-valued energy spectra around the EP, which form
a self-intersecting Riemann surface [22], new exotic
phenomena emerge, including enhanced sensing [5,6],
unidirectional invisibility [18,19], topological energy trans-
fer [23,24], chiral dynamics [9–17,25–27], effects of
fundamental importance for breakthrough technology.
The topological features of EPs, such as state flip and

accumulated Berry phase, can be observed in the adiabatic
evolution of the system parameters around an EP in a
quasidynamic approach [28,29]. The Berry phase is π when
the Hamiltonian encircles EP twice, indicating that the
energy spectra surface is self-intersecting around the EP.

Recent work on dynamical non-Hermitian systems due to
the presence of absorption has demonstrated that the
evolution of states can undergo nonadiabatic transitions
(NATs) due to path-dependent loss [7]. These transitions
result in counterintuitive and technologically relevant chiral
responses, based on which encircling an EP in the clock-
wise (CW) or anticlockwise (ACW) direction leads to
different final states. Such a chiral response is unrealizable
in a static [1] or quasistatic [28,29] Hamiltonian system,
where the final state is independent of the input direction.
The chiral dynamics has been experimentally demonstrated
by mapping the required Hamiltonian parameters onto
parity-time symmetric arrangements of waveguides in order
to realize asymmetric mode switching [9,12]. However, the
transmission efficiencies realized in all previous studies are
very low, largely because they inherently rely on path-
dependent losses arising from the slow encircling along a
continuous path near the EP [9,13,14,17]. Owing to this
inherently low efficiency, technological applications of chiral
transmission and other non-Hermitian phenomena remain
out of reach. The realization of practical non-Hermitian
photonic devices and systems requires EP-encircling proto-
cols that can realize high transmission efficiency with-
out gain.
Here, we overcome this challenge by demonstrating

an encircling protocol that takes advantage of rapid
Hamiltonian variations on the parameter boundaries,
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termed “Hamiltonian hopping,” which enable robust chiral
mode switching with near-unity efficiency. We show that
the eigenstates of the system Hamiltonian converge as its
parameters approach infinity, and that the chiral dynamics
associated with the corresponding EP can be accessed
without path-dependent loss by transitioning between these
states. Chiral mode switching is theoretically predicted and
experimentally demonstrated by mapping the required
Hamiltonian parameters onto suitably designed coupled
waveguides on standard silicon-on-insulator platform. We
show that the proposed protocol can achieve in principle
near-unity transmission efficiency over the entire telecom-
munication spectrum due to the robustness against the
encircling pathway, and we experimentally demonstrate
nearly 90% efficiency at 1550 nm.
For an arbitrary order Hamiltonian, the non-Hermitian

dynamics as the system changes in time can be described
by the evolution equation ð∂=∂τÞjψðτÞi ¼ iHnðτÞjψðτÞi,
whereHnðτÞ is an n × nmatrix, jψðτÞi is the system state at
time τ and i is the imaginary unit. For a second-order
system that has two entities coupled with each other, the
Hamiltonian H2ðτÞ can be written as

H2ðτÞ ¼
�
βðτÞ þ iγðτÞ κðτÞ

κðτÞ −βðτÞ − iγðτÞ

�
; ð1Þ

where jψðτÞi ¼ ½b1ðτÞ; b2ðτÞ�T , and βðτÞ, γðτÞ, and κðτÞ
represent the degree of detuning, relative gain or loss rate,
and coupling strength of the system, respectively. The
eigenvalues are E ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ðβ þ iγÞ2

p
and the corre-

sponding eigenstates X ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M

p
;� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 ∓ M
p �T , where

M ¼ ðβ þ iγÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ ðβ þ iγÞ2

p
, indicating that the system

has an EP at ðβ=κ; γ=κÞ ¼ ð0; 1Þ. For a general coupled
system with unbalanced detuning or gain or loss rate,
the coupling equations can also be transformed to the gain
or loss balancing form as Eq. (1) by using a suitable
gauge transformation (Supplemental Material [30],
note 1). Assuming that H2 remains constant over the time
interval ½τ0; τ�, associated with the two eigenvalues
and eigenstates E1 [ImðE1Þ ≤ 0], E2 [ImðE2Þ ≥ 0],
and X1, X2, respectively, the state evolution can be written
as

jψðτÞi ¼ c1ðτ0ÞeiE1ðτ−τ0ÞX1 þ c2ðτ0ÞeiE2ðτ−τ0ÞX2 ð2Þ

if the initial state is expressed as jψðτ0Þi ¼ c1ðτ0ÞX1þ
c2ðτ0ÞX2, with c1 and c2 being arbitrary coefficients. The
mathematical form of jψðτÞi indicates that the real parts of
the eigenvalues cause phase variations, while the imaginary
parts lead to amplitude changes. As previously reported, the
chiral dynamics in a lossy non-Hermitian system relies
on slowly encircling the EP with path-dependent loss
[1,9–17,34], which leads to very low transmittance for
the output state [9,13,14,17].

We show here how the efficiency limitation can be
overcome by encircling an EP with Hamiltonian hopping
on the parameter boundaries. Figures 1(a) and 1(b) show
the amplitudes of X1 and X2 in the parameter space of H2

as a function of β=κ and γ=κ (>0). The corresponding
phase can be found in Fig. S1 of the Supplemental Material
[30]. When H2 approaches the parameter space boundaries
(β=κ → �∞ and/or γ=κ → þ∞), the two eigenstates con-
verge to X1 ¼ ½0; 1�T and X2 ¼ ½1; 0�T . When H2 is far
from the parameter space boundaries, we have two distinct
eigenstates. Consider two points [Aþ∶ðβ=κ; γ=κÞ →
ðþ∞; 0Þ and A−∶ðβ=κ; γ=κÞ → ð−∞; 0Þ] and a point set
fBg∶ðβ=κ; γ=κÞ → ðR;þ∞Þ on the parameter space boun-
daries, where R denotes an arbitrary real value. The system
state (c1½0; 1�T þ c2½1; 0�T) will have the same coefficients
c1 and c2 when the Hamiltonian hops between AþðA−Þ and
fBg (see the Supplemental Material [30], note 3). It is
worth stressing that, the eigenstate ½1; 0�T at fBg, associ-
ated with the imaginary part of the eigenvalue, þ∞i,
suffers from very large loss. On the contrary, the other
eigenstate ½0; 1�T at fBg has the imaginary part of the
eigenvalue,−∞i, and for a purely lossy system, the
eigenvalue of ½0; 1�T at fBg has the imaginary part of zero
as −iγ is removed in Eq. (1), hence it is lossless due to the
significant coupling mismatch.

FIG. 1. (a),(b) Amplitudes of X1 ¼ ½X1ð1Þ; X1ð2Þ�T and X2 ¼
½X2ð1Þ; X2ð2Þ�T of H2 in the parameter space described by β=κ
and γ=κ. The surfaces covered by solid and dashed meshes
represent the amplitudes of the first and second terms of X1

(a) [X2 (b)], respectively. Red regions represent the parameter
space boundaries that share the same convergent eigenstates as
½0; 1�T and ½1; 0�T . (c),(d) CW and (e),(f) ACW Hamiltonian-
hopping-assisted loop around EP in the Riemann surfaces
formed by the real part ReðEÞ and imaginary part ImðEÞ of
the energy spectra of H2. The red and blue surfaces denote
ImðEÞ ≥ 0 and ImðEÞ ≤ 0, respectively. The surfaces formed by
the dotted lines symbolically show β=κ or γ=κ extending to
infinity. The two eigenvalues, associated with ½1; 0�T and ½0; 1�T ,
are denoted by magenta and cyan lines, respectively. The
dashed lines indicate the Hamiltonian hopping among Aþ,
A−, and fBg.
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The approach of using Hamiltonian hopping along the
parameter space boundaries mentioned above inspires us
to build a Hamiltonian-hopping-assisted loop around an EP
that does not suffer from path-dependent loss. Figures 1(c)–
1(f) show the dynamic trajectory of the second-order
Hamiltonian for CW [Figs. 1(c) and 1(d)] and ACW
[Figs. 1(e) and 1(f)] Hamiltonian-hopping-assisted loop
around the EP. For a CW loop, the Hamiltonian starts at the
origin,ðβ=κ; γ=κÞ ¼ ð0; 0Þ, associated with the initial eigen-
state of jψðτ0Þi ¼ ½1; 1�T (the other eigenstate is ½1;−1�T).
Next, H2ðτÞ evolves slowly along the edge (γ ¼ 0) of the
Riemann surface, and reaches A− at τB1. Because of the
adiabatic theorem, the state at A− can be expressed as
jψðτB1Þi ¼ X1ðτB1Þ þ εX2ðτB1Þ, where X1ðτB1Þ ¼ ½0; 1�T ,
X2ðτB1Þ ¼ ½1; 0�T , and ε is a small number, originating
from the fact that ∂H2ðτÞ=∂τ → 0 is not strictly fulfilled.
Next, H2ðτÞ hops from A− to fBg at τB1, and stays there
for a time interval ½τB1; τB2�. According to Eq. (2), the
state at τB2 is jψðτB2Þi ¼ expði R τB2

τB1
EB
1 dτÞX1ðτB1Þ þ

ε expði R τB2
τB1

EB
2 dτÞX2ðτB1Þ, where EB

1 [ImðEB
1 Þ→−∞]

and EB
2 [ImðEB

2 Þ→þ∞] are the two eigenvalues of
H2ðτÞ at fBg. Thus, the ratio X1ðτB1Þ=X2ðτB1Þ increases
as time progresses, and reaches its maximum value at
τB2. H2ðτÞ then hops to Aþ at τB2, and then evolves
slowly along the edge (γ ¼ 0) to return to the starting
position at τend. The final state can be expressed as
jψðτendÞi¼X1ðτendÞþεX2ðτendÞ with X1ðτendÞ¼ ½1;−1�T
and X2ðτendÞ ¼ ½1; 1�T , and is further simplified as
jψðτendÞi ¼ ½1;−1�T by neglecting ε. The convergent
eigenstate ½0; 1�T , denoted by cyan lines on the parameter
space boundaries in Fig. 1(c), is always the dominant
eigenstate at Aþ, A−, and fBg for the CW loop. The self-
intersecting Riemann surface features sustained by the EP
make sure that ½0; 1�T lies on the upper Riemann surface at
A− and on the lower Riemann surface at Aþ, hence the
initial state ½1; 1�T on the upper surface switches to the final
state ½1;−1�T on the lower surface.
Let us now consider the reverse ACW loop. Initially,

H2ðτÞ evolves to H2ðτB2Þ at Aþ, associated with
jψðτB2Þi ¼ ½1; 0�T þ ε½0; 1�T , and hops to fBg. The state
can be described as jψðτB1Þi ¼ expði R τB2

τB1
EB
2dτÞ½1; 0�T þ

ε expði R τB2
τB1

EB
1dτÞ½0; 1�T at τB1, with the ratio ½0; 1�T=½1; 0�T

being much larger than 1 under the condition ImðEB
1 Þ →−∞ and ImðEB

2 Þ → þ∞. In other words, a NAToccurs and
the state can be further simplified as jψðτB1Þi ¼ ½0; 1�T þ
ε½1; 0�T at τB1. Finally, H2ðτÞ hops from fBg to A− and
slowly evolves into the starting position with the final state
of jψðτ0Þi ¼ ½1; 1�T . In the aforementioned analysis, the
hopping time is neglected since the Hamiltonian hopping
takes a very short time. It can be proven, however, that a
chiral response can also be observed if the Hamiltonian
hopping takes a long time (Supplemental Material [30],
Note 4). It is also worth emphasizing here that the final state
is always ½1;−1�T for CW loop and ½1; 1�T for ACW loop,

no matter which eigenstate is chosen as the starting state
(Supplemental Material [30], note 5).
The system does not suffer from dissipation as the state

moves along the edge of the Riemann surface (γ ¼ 0). For
the CW process, the triggered eigenstate X2 [ImðE2Þ ≥ 0],
which takes up a small portion of the system energy, is
dissipated in the time interval (τB1, τB2) so that almost no
energy is lost in the entire process. For the ACW process,
loss merely arises during the NAT process in the time inter-
val (τB2, τB1). Hence, compared with the previous path-
dependent loops in purely lossy systems [9,13,14,17], the
proposed Hamiltonian-hopping-assisted loop is capable
of highly suppressing energy dissipation (Supplemental
Material [30], note 6). The chiral dynamics around the EP
with this Hamiltonian-hopping-assisted loop takes advan-
tage of the EP topological features, but avoids the insur-
gence of loss except for the NAT process. In addition, the
low-loss chiral mode switching is robust against the speci-
fic pathway choice (Supplemental Material [30], note 7).
The required Hamiltonian parameters for Hamiltonian-

hopping-assisted loop around EP can be mapped onto
suitably designed purely lossy silicon coupled waveguides,
schematically shown in Fig. 2(a), where the detailed
structural parameters can be found in Fig. S9 of the
Supplemental Material [30]. b1ðτÞ and b2ðτÞ are related
to the complex amplitudes of the electric field in the first

FIG. 2. (a) Double-coupled silicon waveguides for state evo-
lution in a Hamiltonian-hopping-assisted loop around EP. The
width of the first (second) waveguide is W1 (W2) and d is the
separation distance between the two waveguides. (b),(c) β and κ
as a function of ΔW and d at 1550 nm. (d),(e) Retrieved β and κ
along the z direction in the region of the coupled waveguides.
(f) Hamiltonian-hopping-assisted loop around EP for different
wavelengths.
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and second waveguides, respectively. The eigenstates
½1; 1�T and ½1;−1�T denote even and odd modes, respec-
tively, associated with TE0 and TE1 modes in the bus
waveguide. τ is mapped onto the propagation distance z.
The width difference ΔW ¼ W1 −W2 and separation
distance d between the two waveguides are mapped onto
β and κ based on coupled mode theory [31]. β and κ versus
ΔW and d are shown in Figs. 2(b) and 2(c) at 1550 nm (see
more data at 1200 and 1700 nm in the Supplemental
Material [30], Fig. S10). Figures 2(d) and 2(e) present the
dependence of β and κ on z, respectively, for different
wavelengths. Aþ (A−) can be reached by increasing d,
which effectively makes κ → 0, and by adjusting ΔW to
make β take a positive (negative) value. Large loss rate, γ,
at fBg can be implemented using a semi-infinite slab
waveguide to replace the first waveguide. Bend waveguides
are used to connect the first waveguide with the slab
waveguide. Once the guided waves reach the slab wave-
guide through the bend, light is not reflected back, i.e.,
γ=κ → þ∞ as required at fBg. Light input into the
bus waveguides from the left (right) port indicates that
the Hamiltonian evolves in the CW (ACW) direction.
Figure 2(f) presents the parameter loop for the coupled
waveguides at different wavelengths.
The chiral mode switching is clearly demonstrated when

the TE0 mode inputs from the left and right ports at
1550 nm [Figs. 3(a) and 3(b)], i.e., the TE1 and TE0

modes output from the right and left ports, respectively. For
the CW direction, the TE modes are mainly distributed in
the second waveguide at A−, fBg, and Aþ, consistent with
the above conclusion that ½1; 0�T is always infinitesimal
during evolution. For the ACW direction, the TE mode is
mainly distributed in the first waveguide with jψðτB2Þi ≈
½1; 0�T at Aþ. The state shifts to ½0; 1�T at A− after the
system undergoes NAT at fBg, associated with the electric
field being located at the second waveguide.
A scanning electron microscope (SEM) image for one

fabricated sample of the double-coupled silicon wave-
guides is shown in Fig. 3(c), and grating couplers and
mode (de)multiplexers [35] are used to couple and measure
TE modes (see note 8 of the Supplemental Material and
Fig. S11 [30]). Tmn (T 0

mn) represents the transmission
efficiency of the TEm mode from the output port as TEn
mode inputs from the left (right) port. For the left-port
input, the transmission efficiency of TE1 mode from the
right port is −0.20 to −0.01 dB within 1200–1700 nm in
the simulations [Fig. 3(d)], and −2.73 to −0.34 dB within
1525–1575 nm in the experiment [Fig. 3(e)]. The meas-
urable bandwidth is limited by the operation wavelength
range of the laser. The measured T10, T00, T 0

00, and T 0
10 are−0.56, −14.1, −12.74, and −34.04 dB at 1550 nm,

respectively, associated with mode purities of 96% and
99% for the TE1 and TE0 modes that output from the right
and left ports, respectively. Here the mode purity is defined
as the energy ratio of the desired mode to total output [36].

The experimental results show some deviation from sim-
ulations, originating from fabrication error in terms of
etching roughness and precision [35,37]. In light of Lorentz
reciprocity theorem [38], T00 should be identical to T 0

00,
which is verified in simulations, but the experimental
results show some minor deviation due to measurement
errors probably associated to the grating couplers and noise
arising from light source and spectrometer. If we take steps
to increase T 0

00, the TE0 mode that outputs from the right
port undergoes a transmission increase as well, and hence
increases mode crosstalk (Supplemental Material [30],
Fig. S12).
Our encircling protocol can be extended to implement

a Hamiltonian-hopping-assisted loop in a higher-order
Hamiltonian system. We have taken three coupled silicon
waveguides as an example to build a Hamiltonian-hopping-
assisted loop in a three-order Hamiltonian system
(Supplemental Material [30], notes 9,10). The device is
designed to output TE2 mode for the left-port TE0 mode
input [CW direction, Fig. 4(a)], while TE0 mode outputs for
the right-port TE0 mode input [ACW direction, Fig. 4(b)]
due to the emergence of NAT. The modal field distributions
at A−, fBg, and Aþ clearly exhibit how the state evolves

FIG. 3. (a),(b) Simulated field distributions of the transverse
components of electric field (Ex) at 1550 nm. The TE0 mode
inputs from the left port (a) and right port (b), respectively.
(c) SEM image of the device. (d) Simulated transmittance spectra
for TE0 and TE1 mode at the output port over 1200–1700 nm
wavelength range. Solid (dashed) lines represent input from the
left (right) port. (e) Measured transmittance spectra over 1525–
1575 nm wavelength range. Numerical simulations are conducted
by finite-difference time domain with commercial software
Lumerical FDTD Solutions.
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after the Hamiltonian hopping. The SEM image of the
coupled waveguides is illustrated in Fig. 4(c). Simulated
and experimental results reveal high transmission efficien-
cies and mode purities for the output modes over a wide
spectral band [Figs. 4(d) and 4(e)]. The transmittance and
mode purity are 89% (5%) and 93% (92%) for the TE2

(TE0) output mode at 1550 nm in the experiment, respec-
tively. More information for demonstrating chiral dyna-
mics with four- and five-coupled silicon waveguides can
be found in Figs. S16 and S17 of the Supplemental
Material [30].
In conclusion, we have introduced the concept of

Hamiltonian hopping and demonstrated low-loss and
robust chiral mode switching via rapid Hamiltonian tran-
sitions between convergent eigenstates in EP encircling.
This protocol exploits the convergence of the system
eigenstates as its Hamiltonian parameters approach infinity,
and it overcomes path-dependent losses that have limited
the achievable transmission efficiency in previous demon-
strations of EP encircling. Counterintuitively, near-unity
efficiency of chiral transmission results from the addition of
large loss rate in the optical system. These results enable
non-Hermitian dynamics to be efficiently harnessed not
only in optics, but also acoustics, electronics, and con-
densed matter physics, for practical devices and applica-
tions based on exceptional-point physics.
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