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Chip-scale simulations in a 
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An efficient simulator for quantum systems is one of the original goals 
for the efforts to develop a quantum computer. In recent years, synthetic 
dimensions in photonics have emerged as a potentially powerful approach 
for simulation that is free from the constraint of geometric dimensionality. 
Here we demonstrate a quantum-correlated synthetic crystal that is based 
on a coherently controlled broadband quantum frequency comb produced 
in a chip-scale, dynamically modulated lithium niobate microresonator. 
The time–frequency entanglement inherent with the comb modes 
greatly extends the dimensionality of the synthetic space, creating a 
massive, nearly 400 × 400 synthetic lattice with electrically controlled 
tunability. With such a system, we are able to utilize the evolution of 
quantum correlations between entangled photons to perform a series of 
simulations, demonstrating quantum random walks, Bloch oscillations 
and multilevel Rabi oscillations in the time and frequency correlation 
space (demonstrated in a 5 × 5 mode subspace). The device combines the 
simplicity of monolithic nanophotonic architecture, high dimensionality 
of a quantum-correlated synthetic space and on-chip coherent control, 
which opens up an avenue towards chip-scale implementation of 
large-scale analogue quantum simulation and computation in the  
time–frequency domain.

Despite decades of effort, a fully configurable and error-corrected 
optical quantum computer remains out of reach. The non-interacting 
nature of photons, weak nonlinearities and unavoidable losses prevent 
efficient implementation of logic gates and protocols for fault-tolerant 
computation. However, it is still possible to achieve a quantum advan-
tage in simulation using non-interacting particles, even in the presence 
of noise and loss1,2. Such intermediate-scale machines are specifically 
designed to simulate one physical system, sacrificing universality much 
like an analogue computer. To that end, linear optical circuits have 
been widely implemented3–12, where the position or path information 
of photons is employed for the simulation. This approach, however, 
faces challenges in scaling up for simulating complex problems, which 
require ever-increasing physical space (sometimes needing hundreds of 
elements with both optical and electrical interconnects12–14) that would 

impose impractical requirements on the fabrication and its precision 
of the underlying photonic integrated circuits.

An alternate approach harnesses a so-called synthetic dimen-
sion. The frequency space is a good example of this15. Here the simula-
tion runs on photons moving between distinct frequency modes, all 
of which can occupy the same physical space, for example, a spatial 
mode of a cavity. Increasing the dimensions of the system requires 
a minimal increase in the complexity of the architecture. Further-
more, the frequency domain provides a complete equivalent to linear 
optical quantum computing (LOQC)16, with all operations available 
through frequency-mixing interactions. Investigations on these syn-
thetic spaces have recently attracted considerable interest due to their 
potential for simulating a variety of condensed-matter phenomena and 
topological effects17–23. The experimental implementations have so far 
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an external gauge potential, on the biphoton temporal correlation 
space. Finally, we drive the lattice sites into the strong coupling regime 
and observe multilevel Rabi oscillations where adjacent lattice sites 
exchange energy faster than the lifetime of photons inside of the reso-
nator. Although these simulations represent well-understood pheno-
mena, this proof-of-principle experiment demonstrates the versatility 
of the device for performing diverse simulations. The considerable 
scalability of the quantum-correlated synthetic space—together with 
the electrically controlled tunability, dispersion-engineering flex-
ibility and simplicity of the nanophotonic architecture—opens a path 
towards running complex large-scale simulations and computations 
for near-term analogue quantum simulators.

Results
Device design and the synthetic space
Figure 1 shows the schematic of the device concept. The synthetic lattice 
is formed by the frequency modes of an optical cavity containing both 
a QOFC generator and a high-speed phase modulator. Experimentally, 
we implement this system on a nanophotonic lithium niobate chip with 
a racetrack resonator (Fig. 1a). There are three design requirements to 
be able to run simulations in this space. First, the entire synthetic space 
has to be able to be populated with quantum light, which is realized 
by dispersion engineering the resonator geometry for broadband 
SPDC42. A section of the resonator is periodically poled to match the 
refractive index gap between the pump frequency and the frequency 
of the generated photons. This creates a biphoton frequency comb 
that forms the skeleton for our synthetic space (Fig. 1b). Second, we 
establish a tight-binding crystal by implementing nearest-neighbour 
coupling with frequency modulation. For this we place a pair of elec-
trodes designed to operate at microwave frequencies (Fig. 1c). When 
the material refractive index is modulated at a frequency that matches 
the free spectral range (FSR) of the cavity, light can scatter to adjacent 
modes using sum and difference frequency interactions, creating a 

been limited to the classical regime, where light from a laser populates 
the synthetic frequency lattice24–35. Simulations based on non-classical 
light, however, would provide unique insights into transport phenom-
ena at the quantum scale36,37 and bring advantages offered by quantum 
mechanics that are inaccessible to classical simulation spaces23,38–41. The 
primary challenge lies in producing a synthetic space that is capable 
of generating quantum states of light while simultaneously being 
able to coherently control their evolution depending on the specific 
simulation problem. In particular, realization of such a synthetic space 
on a chip-scale platform would offer tremendous benefits in resource 
efficiency, system scalability and operational stability12, which are 
challenging for table-top systems24–33.

Here we demonstrate an on-chip quantum-correlated synthetic 
crystal that is characterized by non-classical correlations between 
lattice sites. Such a crystal greatly extends the dimensionality of the 
synthetic space via quantum correlations inherent with energy–time 
entangled photons, in contrast to the sole frequency degree of freedom 
that is available in the classical regime24–35. We implement this concept 
using a coherently controlled quantum optical frequency comb (QOFC) 
composed of ~800 single-photon comb modes, produced inside of 
a dynamically modulated thin-film lithium niobate microresonator. 
The time–frequency entanglement associated with the spontaneous 
parametric down-conversion (SPDC) process introduces long-range 
quantum correlations between the signal and idler frequency combs, 
whereas an electro-optic modulation implemented within the QOFC 
generation process produces nearest-neighbour coupling, eventually 
creating a tight-binding quantum-correlated synthetic crystal (Fig. 1).

With such a system, we are able to utilize the evolution of the 
generated quantum correlations to perform a series of simulations 
in the time and frequency correlation space created by the entangled 
photons. We demonstrate two-particle quantum random walks simu-
lated on the biphoton spectral correlation space. We further simulate 
Bloch oscillations of an electron in a crystal lattice in the presence of 
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Fig. 1 | Concept of a quantum-correlated synthetic crystal. a–d, A nano-
photonic lithium niobate racetrack resonator (a). The synthetic lattice is 
constructed in two steps. First a periodically poled region in the resonator 
generates pairs of time–frequency entangled photons within a frequency comb, 
creating the nodes of the synthetic lattice (b). An elctro-optic modulator directly 

embedded inside of the resonator then creates coupling within the comb lines 
forming a tight-binding lattice for each photon (c). Combining these two effects 
creates a 2D quantum-correlated synthetic lattice (d). The grey shaded area is to 
illustrate movement of spectral correlations in the lattice.
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tight-binding system with a coupling strength determined by the modu-
lation depth. This effect has been recently used to produce electro-optic 
frequency combs with a laser input43–45. Here, however, it is used to 
couple quantum frequency modes, which creates a 2D synthetic space 
for running simulations with the dimensions created by the chain of 
resonances formed by the signal and idler photons as shown in Fig. 1d 
(see Supplementary Section I for a detailed theoretical treatment). This 
space is unique as it uses both classical and quantum correlation from 
frequency modulation and SPDC, respectively, to create a lattice, and is 
therefore capable of investigating both classical and quantum simula-
tion phenomena. Finally, we must be able to couple light out of each 
mode of the resonator with the same efficiency for the entire bandwidth 
of the lattice. This is implemented by using a coupling waveguide with 
an optimized wrap-around geometry placed aside with the resonator 
(see Supplementary Section II for details).

With this design, the device is fabricated on a thin-film lithium 
niobate chip. Figure 2a shows a microscope image of a fabricated 
device. The resonator modes in the telecom wavelength region are 
critically coupled with an intrinsic quality factor of 106. For the pump 
wavelengths in the near-infrared region, the modes have an intrinsic 

quality factor of 3 × 105 and an external quality factor of 1.5 × 106. The 
Methods section provides details on device fabrication, whereas 
Supplementary Section II presents a characterization of its linear 
properties. When the device is pumped at a resonance at 776 nm, we 
obtain a broadband QOFC in the telecom band, with a 3 dB half-width 
of 19.5 THz centred at 1,552 nm (Fig. 2c) and 50 GHz mode spacing (see 
inset). Due to the detector’s cutoff wavelength at 1,590 nm, we only 
have access to the signal (blue) side of the spectrum. However, the 
energy conservation constraint of the SPDC process implies that the 
spectral extent of the comb should be symmetric around its centre 
wavelength, which infers a 3 dB spectral bandwidth of 39 THz con-
taining approximately 780 modes of the resonator. This provides a 
massive higher-dimensional space to construct a synthetic crystal 
for simulations or computational experiments, utilizing coherent 
control of the comb lines implemented directly within the generation 
process, which has been inaccessible in other quantum frequency comb 
platforms46. To verify that the photons are indeed produced through 
SPDC, we detune the laser to a resonance at 780 nm, away from the 
phase-matching wavelength. The data obtained show that the spectrum 
is quenched within this bandwidth, demonstrating that there are no 
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Fig. 2 | Characterization of the biphoton QOFC. a, Microscope image of 
a fabricated device, where I, II and III indicate a section of the embedded 
electro-optic modulator, the periodically poled waveguide region for QOFC 
generation, and the pulley coupling waveguide for broadband external coupling, 
respectively. b, Schematic showing the correlation measurement where the 
spectral correlation of the photon pairs is performed by scanning a pair of single-
photon detectors through the comb modes and counting the coincidence events 
with a time correlator. c, Recorded spectrum of produced QOFC in blue, showing 
discrete comb modes lighting up with a 50 GHz mode spacing (inset) when 
pumped at a resonance at 776 nm. The detector cuts off at 189 THz (1,590 nm), 
preventing spectral measurement at longer wavelengths. We estimate that the 

comb spectrum reaches ~1,800 nm on the longer wavelength side, as indicated 
by the left-most vertical dashed line. The spectrum is also measured at another 
resonance at 780 nm, detuned away from the phase-matching wavelength to 
obtain a baseline. d,e, Coincidence histogram (d) for different signal–idler mode 
pairs, each of which has signal and idler frequencies equally spaced from the 
the centre of the generated spectrum. Strong coincidences are measured due 
to energy conservation of signal–idler photon pairs in the SPDC process. This 
presents as a bright diagonal in a 2D JSI plot (e). When the detectors are aligned to 
off-diagonal mode pairs, there are no measurable coincidences as expected from 
a pure SPDC process.
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parasitic effects. We further characterize the frequency correlations 
for a small 18-mode subspace by filtering pairs of modes that are sym-
metric around the spectral centre and recording coincidence counts 
between the mode pair, as illustrated in Fig. 2b. As shown in Fig. 2d, all 
of the mode pairs exhibit fairly uniform correlation amplitudes, indi-
cating an equal probability of producing biphotons across the QOFC 
spectrum. We also measure these correlations for pairs of modes that 
are not frequency matched in a 5 × 5 matrix, obtaining a joint-spectral 
intensity ( JSI) map as shown in Fig. 2e. The results presented in Fig. 2e 
clearly show the well-known anti-correlation of the photon-pair modes 
expected from SPDC, indicating strong frequency correlations and a 
clean photon-pair generation process. Details on the experimental 
set-up are provided in Supplementary Section III.

Simulations in the time–frequency correlation space
Quantum random walks of correlated photons. With the strong quan-
tum correlations of the produced QOFC modes, we are in a position to 
create a tight-binding synthetic crystal. This is realized by turning on a 
microwave drive and matching its frequency with the resonator FSR at 
50 GHz. The first experiment is a quantum random walk of a particle in a 
tight-binding crystal. This is a natural outcome of this system as, at any 
given mode, a photon has an equal probability of scattering to either 
a lower or a higher frequency mode, with an amplitude that can be 
controlled with the microwave power. This creates a continuous-time 
random walk for the two photons in a 1D chain of modes; however, the 
biphoton frequency correlation is a 2D space, as shown in the JSI plot 
in Fig. 2e. We will track the trajectory of the JSI during the random walk 
by measuring coincidences at each pair of modes in a 5 × 5 space with 

increasing modulation amplitude. Although we make measurements 
in a small subspace of the total available bandwidth due to time con-
straints (see Methods for details), the rest of the synthetic lattice will 
behave in the same way. Figure 3 shows the results of this measurement. 
As we increase the modulation amplitude, the biphoton correlation 
starts to spread perpendicular to the anti-diagonal, and the spread 
increases with increasing microwave signal power. From the initial 
state in Fig. 3b, we can observe photons jumping multiple modes within 
their lifetime before escaping the resonator, sometimes jumping up 
to four modes at strong modulation powers. The random walk of the 
photon pairs tends to reduce their frequency correlation, moving 
them from a strongly correlated state towards a separable state. This 
is also inline with the theoretical treatment of this system (see Sup-
plementary Section I). Figure 3g plots the standard deviation (s.d.) of 
the JSI as a function of the modulation voltage. The s.d. is scaled such 
that an unmodulated SPDC process gives a zero spread (see Methods 
for details). The data fit well with a line as expected from a quantum 
random walk47,48. The slight deviation from linearity at the highest 
modulation amplitude is due to the onset of nonlinearity in the gain 
of the microwave amplifier used in the experiment as well as modula-
tion on the pump laser (see Supplementary Section IA for a note on 
this discrepancy). It is known that random walks with quantum states 
of light have features that are not available to random walks with clas-
sical states (for example, see ref. 49). This can be put in mathematical 
terms by violation of a classical inequality for a random walk. We have 
performed this measurement using the data in Fig. 3 and obtained a 
violation of 7 s.d. from measurement uncertainty (see Supplementary 
Section IC, and Supplementary Figs. 6 and 7 for details). It is important 
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Fig. 3 | Quantum random walk of correlated photons in the synthetic lattice. 
a, The microwave signal frequency Ω is tuned to match the FSR of the resonator 
at 50 GHz, and the modulation amplitude V0 is varied. b–f, Measured JSI of the 
photon pairs in a 5 × 5 mode space for increasing microwave signal amplitude 
with the signal modes on the x-axis and the idler modes on the y-axis.  

The bar plots below the JSI show the values along the secondary diagonal of the 
matrices indicating the spread of the JSI. g, The s.d. of the random walk for each 
modulation amplitude along with a linear fit to the applied root-mean-square 
voltage Vrms. Error bars indicate 1 s.d. of uncertainty using Poisson statistics.
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to note that this evolution of the spectral correlations is realized within 
the SPDC generation process without any post-processing, in contrast 
with other similar random walk experiments that have to rely on com-
plex circuit structures such as a network of beam splitters or wave-
guides50 or post-processing tools such as pulse shapers and filters48,51 
to perform the random walk. This experiment provides a much simpler 
architecture—an optical cavity with a time-dependent length, for these 
experiments. Moreover, the fully integrated device approach indicates 
the possibility for a tunable photon pair source with active control over 
the time–frequency entanglement.

Synthetic electric fields and Bloch oscillations. Apart from the 
modulation amplitude, the high-speed phase modulator embedded 
in the microresonator enables free tuning of the microwave signal 
frequency, Ω. Physically, a detuning Δ = FSR − Ω imparts a phase on the 
coupling in the tight-binding model (see Supplementary Section IB 
for details), which is directly equivalent to the presence of an external 
gauge potential applied on a solid-state system52. For a constant detun-
ing, this corresponds to the simulation of a constant electric field acting 
on electrons in the crystal lattice, which leads to Bloch oscillations. By 
introducing this detuning, we can simulate an effective electric field for 
the photon pairs, forcing them into oscillations. Simulations of Bloch 
oscillations have been realized in many experiments in the past (see, 
for example, refs. 53,54). However, our system creates a unique situa-
tion in which all of the modes in the synthetic space are equally likely 
to be populated with a photon, and they all exchange photons between 
them at the same rate. This means that, on average, photon flux in each 
mode has no time dependence, and no net movement of photons can 
be observed with intensity measurements. The temporal dynamics of 
the oscillation are revealed only in the second-order intensity correla-
tion of the QOFC modes. To observe such Bloch oscillations, we pick 
an off-diagonal term in the frequency space which, ordinarily, will not 

frequency match SPDC, as shown in Fig. 4a. Any coincidences in this 
mode pair will only occur when the biphoton frequency correlations 
spread due to the random walk. For this simulation, we collect a histo-
gram of coincidence counts for differences in arrival times between the 
two photons. This gives the biphoton temporal correlation function, 
which typically shows an exponentially decaying envelope correspond-
ing to the photon lifetime of the loaded resonator; this is all we see at 
zero detuning (Fig. 4b). When detuning is introduced, oscillations 
emerge with a period matching the detuning frequency, as shown 
in the coincidence histograms in Fig. 4c–f, indicating an oscillatory 
probability of detecting a photo pair in the selected mode pair. The 
modulation signal initially causes the biphoton correlations to spread, 
but at a characteristic time corresponding to π/Δ, the effective electric 
field forces the photons to backtrack their movement, returning to the 
original correlated spectrum. This process repeats until the photons 
escape the resonator and this movement is imprinted onto the coin-
cidence histogram. The simulation of Bloch oscillations is therefore 
run in the temporal correlation space, in which the effective electric 
field forces the photon pairs to oscillate between a strongly correlated 
and an uncorrelated state in the frequency space. Figure 4g plots the 
ratio of the oscillation frequency measured by a sinusoidal fit of the 
coincidence histogram to the microwave signal detuning (see Methods 
for details), which shows good agreement. A theoretical treatment for 
this oscillatory evolution of the biphoton correlations is presented in 
the Supplementary Section IB.

Strong coupling regime and Rabi oscillations. In systems of coupled 
modes, Rabi oscillations emerge when the rate at which the modes 
exchange energy exceeds the system’s decay rate. Typically seen in 
coherently driven atomic two-level systems55, Rabi oscillations are 
characterized by the energy levels splitting into dressed states. The 
synthetic lattice can simulate these effects when the coupling strength 
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the two photons for increasing values of Δ. Orange lines are theoretical fittings 
of the data. g, The ratio of the measured oscillation frequency to the detuning 
obtained by a sinusoidal fit of the coincidence histogram after correcting for the 
exponential decay envelope. Error bars indicate a 95% confidence bound on the 
frequency fit.
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of the signal and idler modes exceeds their linewidth. In this case, the 
lattice sites exchange energy several times before the photons escape 
the resonator. These oscillations, like Bloch oscillations, are imprinted 
in the biphoton temporal correlations (at zero detuning of the micro-
wave frequency, Δ = 0, and a sufficiently strong driving amplitude). We 
used a different device with a smaller linewidth than the one used in the 
previous two experiments to demonstrate this phenomenon. Figure 5 
shows the results for a pair of comb modes on the central correlation 
diagonal. These modes have a loaded linewidth (γt = 200 MHz). When 
the mode coupling strength G proportional to the microwave signal 
amplitude, is small, the system falls within the weak coupling regime 
as evident by the transmission spectrum of a cold-cavity resonance 
(Fig. 5b). Here, the effective mode coupling strength, given by G/2, 
is 140 MHz, which is less than the 200 MHz linewidth of the modes. 
Accordingly, the recorded coincidence histogram of the mode pairs 
exhibits a normal exponentially decaying envelope (Fig. 5d); however, 
we achieved a coupling strength of G/2 = 380 MHz when using a strong 
microwave driving amplitude. This gives a coupling-to-loss ratio of 
G/2γt = 1.9, which is nearly twice the linewidth of the cavity, as is evident 
by the large mode splitting of the cold-cavity resonance shown in Fig. 5c. 
Consequently, the recorded coincidence histogram becomes oscillatory 
in this strong coupling regime (Fig. 5e). The measured correlations are in 
good agreement with the theoretical expectations, and the oscillation 
period of 0.65 ns in Fig. 5e matches the ~12 pm mode splitting in Fig. 5c. 
The Rabi oscillations observed here are unique given that we are deal-
ing with a multilevel system instead of the traditional two-level system 
where these effects are typically studied. Here the generated photons 
oscillate between three adjacent coupled modes. We also obtain a mode 
splitting that is close to twice the coupling strength—double that of a 
two-level system. Supplementary Section ID provides a detailed theo-
retical treatment for the strong coupling regime.

Overall, the three experiments characterized on the biphoton 
spectral and temporal correlations demonstrate the versatility and 
richness of the device physics available to us with active control over 
the time–frequency domain.

Discussion
The ability to scale a quantum system to include enough particles 
and dimensions to the point at which the computation becomes 

advantageous over a classical computer has become a critical metric 
for competing architectures. In this regard, this work demonstrates sev-
eral useful properties of the monolithic lithium niobate nanophotonic 
platform and the fabricated device. First, the device design requires 
only a single microresonator with a time-varying optical path length to 
create the synthetic space. Together with dispersion engineering, we 
are able to create a nearly 800-dimensional coupled-mode network. 
Second, the resonator is capable of generating quantum-correlated 
photons across the entire space, requiring only a single-mode laser 
and a microwave signal as inputs to generate and coherently control 
a QOFC, and without the need for post-processing optics. This allows 
us to run both classical and quantum simulations on this device. As 
stated earlier, the quantum random walk of correlated photons has 
features that are not present in random walks with classical states. On 
the other hand, Bloch oscillations can be simulated on classical systems. 
The simplicity in the device design is also beneficial for scaling up this 
proof-of-principal demonstration to run complex computations. For 
instance, we have shown that the microwave signal can provide flexible 
control over the nature of the synthetic space. Taking this further, a 
multitone excitation can create short and long-range coupling in the 
lattice, and amplitude/phase modulation can be used to explore com-
plex lattices. Furthermore, the highly multidimensional nature of the 
SPDC process in the lattice can be used for multiphoton generation, 
approaching the continuous variable regime in which the squeezing 
parameter is reasonably large. In this scenario, the correlation imparted 
by SPDC can be complemented by the correlation that results from the 
resonator mode coupling to create cluster states for one-way computa-
tion56. Our device is well-suited to this task. The pump spectral profile 
can also be used to create an additional layer of complexity in the lattice, 
for example, by implementing SPDC though multiple pump modes.

Finally, we can consider the limitations of the current device. First, 
the demultiplexing of each frequency mode required for measurement 
causes substantial losses (see Supplementary Section III for details). It 
limits the size of the lattice than can be measured within a reasonable 
time. This can be resolved by further optimizing the device design for 
a higher SPDC efficiency as well as a lower chip-to-fibre coupling loss. 
Second, we are currently focused on a square lattice with uniform 
coupling, which limits the physics that can be explored. Multitone 
microwave driving signals and dispersion control of the mode spacing 
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Fig. 5 | Strong coupling and Rabi oscillations. a, The microwave signal 
frequency Ω is tuned again to the resonator FSR and V0 (represented here as the 
effective mode coupling strength, G/2) is varied. When the coupling strength 
exceeds the resonator linewidth, the resonator modes split into two dressed 
modes that are spaced from each other by 2G, indicating the onset of a strong 
coupling regime. We pick a site corresponding to a signal–idler mode pair 
on the main SPDC diagonal (orange) for the biphoton temporal correlation 

measurement. Arrows indicate an exchange of photons between adjacent lattice 
sites, highlighted in green. b,c, Transmission spectrum of a signal-mode cold-
cavity resonance is plotted for two coupling strengths that indicate weak (b) 
and strong (c) coupling regimes, with a mode splitting clearly visible. d,e, The 
corresponding biphoton coincidence histograms for the chosen lattice site. Here 
we observe Rabi oscillations in the strong coupling regime. Orange lines indicate 
theoretical results.
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can allow creation of more complex lattices. Finally, the photon lifetime 
in the resonator and the saturation voltage limit the maximum number 
of modes that a photon can hop through before exiting the resona-
tor to approximately ten. This can also be increased with multitone 
microwave signals, reduced FSR and improving fabrication to reduce 
material loss. We expect that the device would be able to run more 
complex simulations with these improvements.

To conclude, we have demonstrated on-chip generation and coher-
ent control of an ultra-broadband biphoton QOFC on the lithium nio-
bate integrated photonic platform. We have used this QOFC to create 
a quantum-correlated synthetic lattice with a nearly 400 × 400 mode 
space. We have demonstrated the capability of this system by running 
three simulations—(1) a two-particle quantum random walk, (2) genera-
tion of a synthetic electric field and Bloch oscillations, and (3) multilevel 
Rabi oscillations—on the biphoton spectral and temporal correlation 
functions. The device presented here combines the simplicity of mono-
lithic nanophotonic structure, a high-dimensional quantum-correlated 
synthetic space and electrically controlled tunability, which now opens 
up an avenue towards running complex large-scale simulations and 
computational tasks. We envision this work will motivate further inves-
tigations into chip-scale implementations of analogue quantum simula-
tion and computation in the time–frequency domain.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-023-01236-7.
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Methods
Device fabrication and poling
The device was fabricated on a 600 nm-thick x-cut lithium niobate 
thin film on a 4.7 μm silicon dioxide bottom cladding layer and a 
silicon substrate (NanoLN). The waveguide was first patterned with 
electron-beam resist (ZEP-520A) via electron-beam lithography, which 
was then transferred to the lithium niobate layer by 300 nm etching 
using Ar+ ion milling. After resist removal, a second electron-beam 
exposure was performed to pattern the electrode structures. The 
electrodes (20 nm titanium/400 nm gold) were then deposited via 
electron-gun evaporation, which was then followed by a standard 
lift-off process. After fabrication, the resonator was poled using a 
sequence of 240 V, 10 ms square-wave electrical pulses applied to the 
periodically patterned electrodes. The poling efficiency was monitored 
heuristically by optimizing second-harmonic generation. A tunable 
laser was scanned through the resonator while the poling pulses were 
applied (these were applied until the second-harmonic signal power 
saturated). To further increase the quality factor for measurements in 
the strong coupling regime in Fig. 5, a fabricated device was annealed 
after fabrication. Annealing the devices can boost the quality factor57 by 
recovering the damage caused during fabrication and remove absorp-
tive contaminants like O–H bonds; it can also help in mitigating the 
photo-refractive effect in lithium niobate58. Annealing was performed 
at 450° C for 1 h with oxygen flow, which doubled the intrinsic quality 
factor and reduced the loaded linewidth to 200 MHz.

Data acquisition
The QOFC spectrum in Fig. 2c was obtained directly using an infrared 
spectrometer. The spectrometer camera captures a 70 nm bandwidth 
in a single exposure. The full spectrum covering 1,300–1,600 nm was 
pieced together by rotating the diffraction grating to change the centre 
wavelength by 60 nm each time, and capturing a spectrum with a 1 min 
integration time. The spectrum in Fig. 2c was normalized to the average 
peak of the spectrum at approximately 10,000 counts. The spectral 
correlation measurements were made by scanning two tunable filters 
over the resonator modes. Typical coincidence rates on the detectors 
were around 85 Hz. The normalization in Fig. 2d was performed at a 
peak value of 5,130 counts per 60 s. The coincidence-to-accidental 
ratio for a pair of modes in the comb was approximately 500 (varying 
from 400 to 600), limited by the losses in the experiment that total to 
15 dB per channel. A detailed analysis of coincidence-to-accidental ratio 
of individual comb modes and the full SPDC spectrum is provided in 
Supplementary Section IE and Supplementary Fig. 9.

For the random-walk data in Fig. 3, each point on the JSI was taken for 
a integration time varying from 2 to 8 min depending on the modulation 
depth. This is because the generation efficiency was much lower at high 
modulation due to the pump scattering away into unwanted frequen-
cies that do not phase-match SPDC, as well as the spreading of the JSI 
to off-diagonal modes, reducing detection probability per mode pair. 
The measurement time for the random-walk matrices in Fig. 3 scales 
as the square of the number of signal modes. We therefore limited our 
measurement to a 5 × 5 space, which could be measured within 3.5 h for 
the highest modulation amplitude. The JSI value at each data point in the 
matrices in Fig. 3 was obtained by integrating within the envelope of the 
coincidence histogram for the corresponding mode pair. Each colour 
map was normalized to the peak value in the matrix. The Bloch oscilla-
tion plots were obtained for integration times varying from 30 min to 
1 h for the highest frequency oscillations. All temporal correlation plots 
in Figs. 4 and 5 are normalized to the peak correlation value at δt = 0. See 
Supplementary Section III for details on the full experimental set-up.

The random-walk variance can be calculated as

s.d.2 =
∑X,Yd

2
X.YJSIX,Y

∑X,YJSIX,Y
, (1)

where dX.Y is the diagonal distance of each point on the JSI from the 
main matrix diagonal in integer units. Equation (1) was used to evaluate 
spread of the random walk in Fig. 3g. The Bloch oscillation frequencies 
were measured by first correcting the coincidence histogram for the 
exponential decay envelope and then numerically fitting the flattened 
oscillations with a sinusoidal function. The frequency of the fitting 
function is varied until the RMS error of the fit reaches a minimum. 
The resulting frequency is plotted in Fig. 4g, in which the error bars 
represent a 95% confidence bound on the frequency parameter.

Data availability
Data and information supporting the results in the article and its con-
clusions, and to reproduce the experiment are provided in the main 
article and the Supplementary Information.
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