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Dimensionality plays a fundamental role in the classification of novel phases and their responses. In
generic lattices of 2D and beyond, however, we found that non-Hermitian couplings do not merely distort
the Brillouin zone (BZ), but can in fact alter its effective dimensionality. This is due to the fundamental
noncommutativity of multidimensional non-Hermitian pumping, which obstructs the usual formation of a
generalized complex BZ. As such, basis states are forced to assume “entangled” profiles that are orthogonal
in a lower dimensional effective BZ, completely divorced from any vestige of lattice Bloch states unlike
conventional skin states. Characterizing this reduced dimensionality is an emergent winding number
intimately related to the homotopy of noncontractible spectral paths. We illustrate this dimensional
transmutation through a 2D model whose topological zero modes are protected by a 1D, not 2D,
topological invariant. Our findings can be readily demonstrated via the bulk properties of nonreciprocally
coupled platforms such as circuit arrays, and provokes us to rethink the fundamental role of geometric
obstruction in the dimensional classification of topological states.
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Introduction.—Dimensionality is fundamental in deter-
mining possible physical phenomena, such as in Anderson
localization [1–3] and critical phase transitions [4,5]. In
particular, symmetry-protected topological phases can be
systematically classified based on Bott periodicity in the
number of dimensions via the tenfold way [6–12]. More
recently, this classification is greatly enriched [13–18] in
non-Hermitian lattices, which are increasingly studied
theoretically [19–39] and in photonic, mechanical, elec-
trical and cold-atom experiments [40–62].
Usually, it is taken for granted that the dimensionality of

the topological invariant [63–71] coincides with that of the
physical space. This is because they are defined in
reciprocal (momentum) space, which should be of the
same dimension as the physical lattice, at least in Euclidean
space [72]. Even among enigmatic non-Hermitian phenom-
ena featured lately [73–108], the highly distorted effective
Brillouin zone (BZ) is still indexed by states living in the
same dimensionality.
Yet we discover, surprisingly, that in 2D and beyond, non-

Hermiticity can in fact change the effective BZ dimension-
ality. This holds true for generic non-Hermitian lattices
beyond the simplest monoclinic structures whenever the
lattice is bounded (as all realistic lattices should be). Hence,
the effective band structure of aD-dim lattice may in reality
live inD0 < D dimensions and be classified byD0 instead of
D-dim topology.
Underlying this dimensional transmutation is a hitherto

unnoticed geometric obstruction, specifically the noncom-
mutativity in the equilibration of states that have been

directionally amplified, i.e., “pumped” by the non-
Hermitian skin effect (NHSE) along different directions.
This “equilibration process” is the mathematical elimina-
tion of nonreciprocity upon switching to the generalized
Brillouin zone, conventionally constructed one dimension
at a time. Fundamentally resulting from emergent non-
locality [75,109,110], it is reminiscent of the noncommu-
tativity of magnetic translations from the nonlocality of flux
threading, as epitomized by the Aharonov-Bohm effect
[111–113].
Non-Hermitian equilibration and its noncommutativity.—

Consider a generic lattice Hamiltonian under open boun-
dary conditions (OBCs),

H ¼
X
x;α;β

X
feg

hαβe c†xþe;αcx;β; ð1Þ

where e ranges over all coupling displacements from each
unit cell, and α, β are sublattice components. When the
couplings have asymmetric amplitudes jhαβe j ≠ jhβα−ej, all
left and right moving states are invariably attenuated or
amplified by a factor of jhαβe j=jhβα−ej per unit cell shifted
[114–116]. This leads to a dramatic density accumulation
of directionally NHSE amplified states at lattice boundaries
or impurities. When it is just simple exponential buildup,
they are NHSE eigenstates; in more esoteric critical
cases, they can assume special scale-free eigenstate
profiles [89,101,106,117–120]. In generic higher-dimen-
sional lattices that we focus on, such boundary accumu-
lations have not been properly understood.
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Since the Bloch eigenstates that define the original BZ
are highly distorted by non-Hermitian pumping (directed
amplification), all “bulk” properties such as band topology,
transport, and geometry will be radically modified. To
correctly characterize them, it is necessary to construct the
effective BZ where the spatially nonuniform pumped
eigenstates are “equilibrated” to approximately resemble
Bloch states. This equilibration is mathematically a trans-
formation to a basis where the NHSE is eliminated—in that
basis, the couplings appear symmetrized and the NHSE no
longer acts [83,110]. The simplest illustrative example,
well-known in the NHSE literature, is the 1D “Hatano-
Nelson” chain with asymmetric nearest-neighbor couplings
h�x̂ ¼ he∓κ [Fig. 1(a)] [86,114–116]. Under OBCs,
its eigenstates assume the boundary-localized form
ψHNðxÞ ∼ e−κx[Fig. 1(a) (balls increasing in size)], which
can be “equilibrated” into the bulk through a basis rescaling
operator Γ: c†x → eκxc†x, cx → e−κxcx. (We write Γj for Γ
corresponding to a boundary in the jth direction). At the
same time, Γ also “balances” the equilibrated couplings, as
shown in Fig. 1(a), as well as induce an effective complex
deformed BZ viz. c†k ¼

P
x e

ikxc†x →
P

x e
iðk−iκÞxc†x ¼P

x zðkÞxc†x where −i log zðkÞ ¼ k − iκ is the complexified
momentum. The assumption here is that, even though
translation invariance is lost due to OBCs, the eigenmodes
are still approximately labeled by appropriately discretized
wave numbers, albeit with an additional e−κx spatial factor
to account for NHSE accumulation.

In higher-dimensions D, only the simplest lattices, i.e.,
monoclinic lattice forD ¼ 2 [Fig. 1(b)] can be “unentangled”
into separate sets of 1D chains Hðk1; k2;…Þ ¼ H1

1Dðk1Þ ⊕
H2

1Dðk2Þ ⊕ …. For these, the equilibration operatorΓj can be
analogously applied whenever OBCs are taken along the jth
direction.
But generically, most D ≥ 2 lattices are “entangled” due

to nontrivial interchain couplings, and this NHSE-inspired
equilibration procedure (generalized BZ construction) fails
to give the correct equilibrated lattice couplings and hence
effective BZ. Consider the minimal model with three
nonorthogonal asymmetric hoppings from each site non-
trivially “entangling” the two lattice directions [Fig. 1(c)].
Let us derive the boundary-accumulated eigenstates when
its lattice (not explicitly shown) is under OBCs in both
x and y directions. At each equilibration step Γj, the
combined coupling strength components in the jth direc-
tion are to be “balanced”: in Fig. 1(c), the Γx operation
modifies the original couplings negligibly because the
x components are already approximately equal, but not
so for Γy. But therein lies the paradox: exchanging the order
of performing the equilibrations Γx, Γy yield different
equilibrated couplings, even though the effective lattice
should of course not depend on the order in which the x,y
OBCs are taken. This noncommutativity of Γx and Γy, even
for such a minimal example, suggests that physical states
are pumped in a peculiar nonlocal manner, and an entirely
new approach is needed for correctly characterizing the
effective BZ whenever a multidimensional lattice cannot be
trivially decoupled into 1D chains, as further explained in
the Appendix.
Dimensional transmutation from noncommutative equi-

libration.—We next show how multidimensional non-
Hermitian directed NHSE amplification, i.e., pumping
on the energy spectrum advocates an effective BZ of a
different, lower dimension. Consider a 2D model
H2Dðkx; kyÞ in momentum space. Under periodic boundary
conditions (PBCs), its spectrum E2Dðkx; kyÞ generically
resembles a deformed torus projected onto a 2D plane
(Fig. 2), since it takes complex values and is parameterized
by two periodic momenta. Going from PBCs to OBCs, this
spectrum E2D ⇝ Ē2D must necessarily be “squashed,” i.e.,
flattened into lines or curves in the complex plane by non-
Hermitian pumping, since under OBCs, any 1D subsystem,
i.e., any 1D loop traced by E2Dðkx; kyÞ with fixed kx
or ky must enclose zero area (be degenerate) in the
complex energy plane:

H
∂kj log½Ē2DðkÞ − E0�dkj ¼ 0 for

all E0 ∈ C, j ¼ x, y [81]. Intuitively, this is because
nontrivial spectral winding requires nonreciprocity, but
OBC eigenstates are fully “equilibrated” at the boundaries
and are no longer pumped nonreciprocally [121].
However, the spectral squashing in 2D is often not straight-

forward like in 1D, where equilibration always amounts
to a complex BZ deformation eik → zðkÞ → ei½k−iκðkÞ� that
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FIG. 1. Failure of effective BZ construction in 2D through
conventional basis rescaling. (a) To obtain the effective BZ of a
nearest-neighbor 1D lattice, all couplings can simply be “sym-
metrized” through a change of basis known as the equilibration
operation Γ. (b) Higher-dimensional “unentangled” lattices can
still be similarly symmetrized via independent equilibrations
Γx;Γy;… (c) Generic “entangled” lattices of 2D and beyond
cannot be completely equilibrated, since equilibrations Γj do not
commute in general; shown is a minimal example where ΓxΓy ≠
ΓyΓx (noncommutativity), i.e., where symmetrization in one
direction can unsymmetrize the coupling components in the
other direction (arrow thickness depicts coupling strength).
Hence, obtaining the effective BZ through naive NHSE-inspired
equilibration (change of basis to the generalized BZ) is doomed to
failure.
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completely squashes E1DðkÞ→E1DðkÞ½k− iκðkÞ�¼ Ē1DðkÞ
into a degenerate spectral loop with no spectral wind-
ing, i.e., Ē1DðkÞ ¼ Ē1Dðk0Þ for some k ≠ k0. As sketched
in Fig. 2(a) for an “unentangled” 2D lattice, the Hamiltonian
can be written by HðkÞ ¼Pn AnðkxÞ expðinkyÞ with the
solution zy of

P
n AnðkxÞzny sinðqyÞ ¼ 0 independent of kx,

Γx, and Γy is allowed to successively “squash” the spectral
torus until it contains no nondegenerate loops enclosing
nonzero area, since the lattice trivially decouples into two
nonparallel 1Dchains.However, for an “entangled”2D lattice
[Figs. 2(b) and 2(c)], jAnðkxÞ=A−nðkxÞj dependent of kx,
ΓxΓyΓ−1

x Γ−1
y ≠ I and the “squashing” cannot be complete—

picture a filled balloon that can be compressed in one
direction, but not squashed in all directions simultaneously.
As the incompletely “squashed” spectral torus still contains
nondegenerate loops, the only solution is to exclude them
from the effective BZ itself. In this case, the effective BZ can
only be spanned by the homotopy generator independent
from any nondegenerate spectral loop, and can only be of 1D
despite the physical lattice being of 2D.Figure 2(c) shows two
possible loops (blue, orange) that enclose zero area on the
complex E plane, and either (or both) of them would rightly
span the effective BZ. Figure 3(a) shows an example where
successive application of Γx followed by Γy gives the
incorrect spectrum (dark blue), different from the numerically
obtained spectrum (blue). As such, even though effective 1D

BZs possess well-defined complex momenta, viz., zðkÞ ¼
ei½k−iκðkÞ� in 2D or higher, in general zjðkÞ ≠ ei½kj−iκjðkÞ�,
j ¼ x; y;…, defying the well-established NHSE framework.
Construction of dimensionally transmutated effective

BZ.—We now construct the effective BZ of a 1-component
example of the type in Figs. 2(b) and 2(c) [122]:

H2D¼
X
x

t1c
†
xcxþαx̂þaŷþ t2c

†
xcx−βx̂þaŷþ t3c

†
xcx−βx̂−bŷ: ð2Þ

Applying the ansatz ψ2Dðx; yÞ ∝ zxxz
y
y for an eigenstate,

we obtain the energy relation

E2Dðzx; zyÞ ¼ t1zαxzay þ t2z
−β
x zay þ t3z

−β
x z−by : ð3Þ

Here, no assumption is made about the boundary con-
ditions, and the assertion is that E2Dðzx; zyÞ yields the
correct eigenenergies given appropriate forms of zx, zy.
To correctly obtain the effective BZ from E2Dðzx; zyÞ, we

would need to treat the effects of both x and y OBCs on
equal footing, such the order of opening up OBCs in
different directions does not matter, as physically expected.
This can be achieved by alternately implementing the two
OBCs one at a time by considering the other momentum as

lattice couplings PBC spectrum OBC spectrum
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FIG. 2. Noncommutativity of NHSE equilibration violates the
requirement of vanishing OBC spectral winding. (a) An “un-
entangled” lattice admits fully commuting equilibration operators
Γx, Γy that completely “squashes” (flattens) its PBC spectral torus
E2D into a “flattened” OBC torus Ē2D, reminiscent of 1D cases,
where the OBC spectrum consists of PBC spectral loops
“squashed” into interior curves [83]. (b) An “entangled” lattice
is subject to noncommuting equilibrations ΓxΓyΓ−1

x Γ−1
y ≠ I, such

that its PBC spectrum can no longer be completely “squashed”
into a valid OBC spectrum with no spectral winding, akin to a
filled balloon. (c) The correct OBC spectrum of the “entangled”
2D lattice is traced out by up to two 1D homotopy paths (blue,
orange) on the incompletely squashed spectral torus that avoid
any spectral winding. The tori so illustrated do not live in 3D, but
are projections on the 2D energy plane, being composed of
collections of 1D spectral loops.

(a) (b)

(c) (d)

FIG. 3. Dimensionally transmutated effective BZ gives the
correct OBC spectrum. (a) Sequentially applying Γx and then Γy
(x OBCs and then y OBCs) yields an incorrect OBC spectrum
ĒΓx→Γy

(dark blue) for the illustrative “entangled” 2D lattice H ¼P
x 2c

†
xþx̂cx þ c†xþŷcx þ c†x−x̂−ŷcx (no dimensional transmuta-

tion), at odds with the symmetrically obtained Ēðzx; zyÞ (light
blue), which reproduces the exact numerical EOBC (blue circles).
(b) Necessity of dimensional transmutation of the BZ: For our
model H2D [Eq. (2)], the effectively 1D Ē2D (light blue) agrees
with the numerical EOBC (blue circles), while the unconstrained
E2D from Eqs. (3), (5a), and (5b) gives extraneous eigenenergies
(gray). The systems of Figs. 3(a) and 3(b) belong to scenarios
depicted in Figs. 2(a), 2(b), and 2(c) respectively. (c) The
effective 1D BZ is given by the union of 1D winding paths
(blue, red for k, k0, respectively) on the k1-k2 2-torus. (d)M (gray
blob) of an illustrative 3D model, with effective BZ given by its
blue and black loops that correspond to degenerate spectral loops
in the complex E plane below.
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a parameter. Given a quasi-1D energy function E1DðzÞ, we
determine the effective BZ by finding a complex effective
momentum function, −i log zðkÞ, k ∈ ½0; 2πÞ, such that
every energy eigenvalue E ¼ E1D½zðkÞ� corresponds to at
least two different k solutions with identical jzðkÞj [77,82].
In a trivial case without non-Hermitian pumping, we
simply have zðkÞ ¼ eik, such that the effective and original
BZs coincide. For E1DðzÞ ¼ Azp þ Bz−q corresponding
to left (right) hoppings over p (q) sites, we have from
Sec. I of [123]

zðkÞ ¼
�
B sin qk
A sinpk

� 1
pþq

ee
i 2πνpþqeik ¼ e−κ1DðkÞeik ð4Þ

for k ∈ ½−π=ðpþ qÞ; π=ðpþ qÞ�, ν ¼ 1; 2;…; pþ q
labeling the solution branch. The decay function e−κ1DðkÞ
encodes how non-Hermitian directed amplification distorts
the Bloch phase factor eik.
By applying Eq. (4) on zx, zy of Eq. (3) separately, we

obtain zαþβ
x ¼ ½t2 þ t3z

−ðaþbÞ
y �=ðt1 sin αk1Þ sin βk1eiðαþβÞk1

and z−ðaþbÞ
y ¼ ðt2 þ t1z

αþβ
x Þ=ðt3 sin bk2Þ sin ak2e−iðaþbÞk2 ,

where we have used k1, k2 instead of kx, ky to emphasize
that they may not be conjugate momenta to the x, y
coordinates. We can simultaneously solve these to obtain

zαþβ
x ¼ t2

t1

ðsinak2þ eiðaþbÞk2 sinbk2ÞeiðαþβÞk1 sinβk1
eiðaþbÞk2 sinαk1 sinbk2− eiðαþβÞk1 sinβk1 sinak2

;

ð5aÞ

zaþb
y ¼ t3

t2

eiðaþbÞk2 sinαk1 sinbk2− eiðαþβÞk1 sinβk1 sinak2
ðsinαk1þ eiðαþβÞk1 sinβk1Þ sinak2

:

ð5bÞ
We reiterate a major distinction between the zx, zy above
and the effective “generalized” BZ of NHSE systems: In
the latter, the BZ is “generalized” in the sense that zj; j ¼
x; y encapsulates complex momentum via −i log zj ¼
kj − iκjðkÞ, with κjðkÞ representing the complex deforma-
tion. But in Eqs. (5a) and (5b), −i log zj manifestly do not
correspond to any single well-defined complex momentum
[recall that ψ2Dðx; yÞ ∝ zxxz

y
y]. Even though k1, k2 are the

individual “momenta” associated with quasi-1D chains
within H2D, they are now “entangled,” as evident in the
highly nonlinear functional form of Eqs. (5a) and (5b).
Importantly, the zx, zy from Eqs. (5a) and (5b) still do not

describe the correct effective BZ unless k1, k2 are further
constrained, since we have not eliminated the possibility of
Eðzx; zyÞ exhibiting nontrivial windings as one of k1 or k2 is
varied over a period (Sec. II and III of [123]). Indeed, from
Fig. 3(b), naive substitution of the unconstrained zx, zy into
Eq. (3) gives extraneous eigenenergies across the complex
plane (gray), different from the numerical OBC spectrum
(blue circles) that exhibits no spectral winding.

For our model, all spectral windings vanish along the two
1D parameterization paths ðk1;k2Þ¼ðbk;βkÞ and ðk1; k2Þ ¼
ðak0; αk0Þ, as rigorously shown in Sec. III of [123]. Indeed,
in Fig. 3(b), the union of these energies Ē2DðkÞ ¼
E2D½zxðkÞ; zyðkÞ� and Ē0

2Dðk0Þ ¼ E2D½zxðk0Þ; zyðk0Þ� also
agrees with the numerical OBC spectrum. The union of
the 1D loops traced by k and k0 forms the dimensionally
transmutated effective BZ, as illustrated in Fig. 3(c) and the
Appendix.
Interestingly, this effectively 1D BZ reveals a new

avenue of topological winding, with winding numbers
greatest common divisors ða; αÞ and ðb; βÞ describing
how the sectors k0 and k loop around the k1-k2 torus [both
windings ¼ 2 in Fig. 3(c)]. Physically, k1, k2 represent the
non-Bloch wave numbers from separately taking OBCs in
each direction; yet, when both OBCs are simultaneously
applied, the effective BZ collapses into closed 1D paths that
mixes k1 and k2. As such, these winding numbers capture
the amount of “entanglement” caused by 2D non-Hermitian
pumping.
Generalizations.—The construction of the dimensionally

transmutated effective BZ from our particular H2D lattice
can be generalized to a generic model H in D dimensions.
First, acting on the ansatz eigenstate ψDðxÞ ∝

Q
D
j z

xj
j ,

we express the model as a multivariate polynomial

EðzÞ ¼Pμ tμ
Q

j z
lμj
j , where lμj is the range of the μth

hopping tμ in the jth direction. Next, we apply the D
equilibrations Γj, j ¼ 1;…; D separately on EðzÞ such that
each becomes a quasi-1D problem in zj, with all the
components of z̃ ¼ ðz1;…; zj−1; zjþ1;…; zDÞ as spectator
parameters. Solving for the effective 1D BZs for each of
them [82,99,110,123], i.e., replacing each zj by appropriate
e−κjðz̃Þeikj [of which Eq. (4) is a special case], we obtain D
relations (Sec. III of [123]) F jðz̃; kjÞ ¼ 0. Inverting these
relations, we will in principle obtain D expressions zj ¼
F jðkÞ where k ∈ TD, which generalize Eqs. (5a) and (5b).
In general, this nonlinear inversion may have to be
performed numerically, and yields a highly complicated
D-dimensional base manifold M in z space, possibly with
cusps and singularities that give rise to higher dimensional
esoteric gapped transitions [117].
The effective dimensional-transmutated BZ depends

crucially on the topology of M. Specifically, it is
M=fLg, where fLg is the span of homotopy loops l on
M in which E½zðlÞ� exhibits nontrivial spectral winding,
i.e., the effective BZ is union of submanifolds of TD

parameterized by ðk01;…; k0dÞ, d < D, such that the recov-
ered OBC spectrum Ēðk0Þ ¼ E½zðk0Þ� exhibits trivial spec-
tral winding in all directions, as detailed in Sec. III of [123]
As schematically sketched in Fig. 3(d) for a 3D model, the
effective BZ consists of the blue and black loops that wind
around M (gray), not the red loop that encloses nonzero
spectral area.
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Dimensional transmutated topology.—The fundamental
dimensional modification of the effective BZ by non-
Hermitian pumping (directed amplification) is not just a
mathematical subtlety, but a very physical phenomenon
with experimentally observable consequences. In the fol-
lowing, we illustrate a 2D lattice whose topological zero
modes are protected by a 1D, not 2D, topological invariant
due to dimensional transmutation of its BZ. We consider
the 2-component 2D model

HtopoðzÞ ¼
 

0 zαx þ z−βx þ z−βx z−a−by þ cz−ay
zay 0

!
; ð6Þ

with constant c introduced such that the PBC spectrum
Etopoðeikx ; eikyÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2Dðeikx ; eikyÞ þ c

p
is gapped.

When regarded as a 2D model, Htopo is topologically
trivial by construction, as can be seen from its Pauli de-
composition Htopo¼½ðH12þiH21ÞσxþðH12−iH21Þσy�=2,
which contains only two Pauli matrices and is thus of
trivial 2nd homotopy. However, the effective bulk descrip-
tion of Htopo is actually 1D, not 2D, since Etopoðzx; zyÞ and
E2Dðzx; zyÞ are conformally related and must therefore
possess identical effective 1D BZs [99,110]. Under
OBCs, an effectively 1D Hamiltonian possesses topologi-
cal zero modes if the phase windings of H12ðzÞ and H21ðzÞ
around z ¼ 0 are both nonzero and of opposite signs
[75,77]; if there is more than one BZ sector, the windings
should be added, as performed in Sec. IV of [123]. This is
indeed the case in Fig. 4(a), with the windings of H12 and
H0

12 summing to−1, and that ofH21 andH0
21 summing to 1.

Correspondingly, these windings protect the isolated zero
modes in the double OBCs spectrum [black diamond in
Fig. 4(b)]; these modes are topological since they appear in
the double PBCs’ band gap. Despite being protected by 1D
topological winding, they do not appear in the quasi-1D
scenario with only x OBCs (light blue).
Discussion.—Existing higher-dimensional non-Hermitian

studies, i.e., Chern or higher-order skin-topological

characterizations [33,68,69,101,131–133] have mostly been
based on simple hyperlattices. Beyond that, in generic lattices
with “entangled” couplings, we discover that non-Hermitian
pumping does not commute, transmuting the momentum-
space lattice (BZ) to an effectively lower dimension. As a
fundamentally dynamical phenomenon, this dimensional
transmutation contrasts with the dimensional reduction in
topological classification [8,65,134], aswell as the emergence
of an extra scaling dimension in lattice-based holography
approaches [135–138].
Physically, the dimensional transmutation can be man-

ifested through bulk response and topological properties.
Topological states protected by lower-dimensional invari-
ants can be constructed and observed in open nonreciprocal
arrays with sufficiently versatile engineered couplings,
such as lossy photonic resonator arrays [19,44,139,140],
electrical circuits [19,48,49,52,53,60,62,123,141–156], or
even quantum computers [157–165].

This work is supported by the Ministry of Education,
Singapore (MOE) Tier-I grant iRIMS no. A-8000022-00-00
and the MOE Tier-II grant (grant no. MOE-T2EP50222-
0003).

Appendix: Details on the dimensional transmutation
approach.—Here, we present a pedagogical summary of
our new dimensional transmutation approach and clarify
the differences between our approach and the conventional
generalized Brillouin zone (GBZ) approach [75–85,110].
For ease of notation, we shall specialize to two dimensions
(2D), and readers may refer to Sec. V of [123] for the ge-
neralization of our approach to arbitrarily high dimensions.
Our approach is motivated by the fact that the conven-

tional GBZ approach cannot predict the correct Ē under full
open boundary conditions (OBCs) whenever the lattice is
“entangled” in 2D or higher [Fig. 5]. This is because

(b)(a)

FIG. 4. Dimensional transmutated topology in 2-band model.
(a) Despite being a 2D model, Htopo exhibits nontrivial topo-
logical winding in its effectively 1D BZ, as seen from the zero
windings of H12ðkÞ and H0

12ðk0Þ summing to −1, and that of
H21ðkÞ and H0

21ðk0Þ summing to 1. (b) Although protected by 1D
topological winding, in-gap zero modes for Htopo appear under
double OBCs (black), and not quasi-1D single OBC (light blue).
Parameters are t1 ¼ t2 ¼ t3 ¼ 1 and c ¼ 5.

Unentangled model Entangled model 

FIG. 5. Left: An “unentangled” lattice model H can be
decomposed into arrays of 1D chains, in this case into a vertical
and a horizontal array of Hatano-Nelson models. As such, its full
OBC properties can be correctly predicted with conventional
GBZ theory, well-established for effectively 1D models. Right:
With additional couplings between different arrays of 1D chains,
the lattice becomes “entangled”—the scenario for most realistic
systems with longer-ranged effective couplings (shown here is
the simplest possible case). Our dimensional transmutation
approach is required to correctly characterize the full OBC
system, as explained below and summarized in Fig. 6.
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(i) sequentially obtaining GBZs for each OBC direction can
lead to inconsistent results, and (ii) it may not be possible
[Fig. 2] to ensure zero spectral winding in all momentum
directions (a necessary condition for all OBC spectra
[81,100,101]), unless the effective BZ itself is of a lower
dimensionality than the physical system.
Our approach first treats all OBC directions on equal

footing, obtaining a simultaneously solved provisional
effective BZ ðzx; zyÞ, and then dimensionally transmutes
(reduce) it such that zero spectral winding is respected. This
yields an effective 1D GBZ in which Ē agrees with the
numerically obtained full OBC spectrum.

Detailed walk-through: We now walk through our
general approach in detail, illustrating it with the model
of Eq. (3) with α ¼ b ¼ 2, β ¼ a ¼ 1, and summarized
with flowcharts in Fig. 6. The starting point for a generic
2D model is its energy dispersion Eðzx; zyÞ, where
zx ¼ expðikxÞ, zy ¼ expðikyÞ under periodic boundary
conditions (PBCs), but would be complex deformed under
OBCs.
Under x OBC, we treat Eðzx; zyÞ as a 1D model

with parameter zy, and obtain the x GBZ zxðk1; zyÞ via
the condition [75,81,82]. that every OBC energy

FIG. 6. Summary of the key differences between our dimensional reduction approach and the conventional GBZ approach,
accompanied by an illustrative example. (Here, we specialized to 2D; see Sec. V of [123] for higher-dimensional generalizations).
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Eðzxðk1; zyÞ; zyÞ corresponds to at least two different k1
solutions with identical inverse localization length
− log jzxðk1; zyÞj. To obtain the full OBC spectrum, the
conventional approach would be to next implement y
OBCs, yielding Efzx½k1; zyðk1; k2Þ�; zyðk1; k2Þg (left col-
umn of Fig. 6). However, this may not correctly predict the
full OBC spectrum in generic “entangled” lattices [Fig. 2].
Instead, in our approach (middle and right columns of

Fig. 6), we simultaneously obtain the y GBZ zyðzx; k2Þ by
treating zx as a parameter, and then obtain the provisional
GBZ by simultaneously solving for zx, zy in terms of k1, k2.
Explicitly for our example described by

Eðzx; zyÞ ¼ t1z2xzy þ t2z−1x zy þ t3z−1x z−2y ; ðA1Þ

the provisional GBZ is given by(
z3x ¼ t2

t1
2 cos k1þe3ik1

4 cos k1 cos k2e−3ik2−e3ik1
;

z3y ¼ t3
t2
4 cos k1 cos k2e−3ik1−e3ik2

2 cos k2þe3ik2 ;
ðA2Þ

such that the spectrum is deformed as Eðzx; zyÞ →

Eðk1; k2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
t1t2t33

p ð2cos2k1þ 1Þ23ð2cos2k2þ 1Þ23
ðe2ik1 þ e2ik2 þ 1Þ13 e2inπ=3

ðA3Þ
with real k1, k2 and solution branches n ¼ 1, 2, 3.
Importantly, Eðk1; k2Þ should never possess nonzero spec-
tral winding [81,87], being an OBC spectrum. For many
cases such as Eq. (A3), it is however complex with
nontrivial winding. Yet, Eðk1; k2Þ can be rigorously veri-
fied to satisfy all the model hopping constraints, and thus
cannot be incorrect. Hence, we conclude that the correct
effective BZ consists of 1D subspaces of the provisional 2D
GBZ. For generic Eðk1; k2Þ with nontrivial spectral wind-
ing, we stipulate that the 1D effective GBZ consists of paths
parameterized by k1 ¼ fðkÞ; k2 ¼ gðkÞ, such that Ē ¼
E½fðkÞ; gðkÞ� has vanishing k winding. Numerically, it
indeed predicts the correct full OBC spectrum (bottom
right of Fig. 6).
For our example, 1D paths given by ðk1; k2Þ ¼ ð2k; kÞ or

ðk1; k2Þ ¼ ðk; 2kÞ, k ∈ ½−π; πÞ yield zero spectral winding,
leading to two effective 1D GBZ sectors:

GBZ1 ¼
�
z3x;1 ¼

t2
t1
eik; z3y;1 ¼

t3
t2

1

2 cos ðk=3Þ − 1

�
;

GBZ2 ¼
�
z3x;2 ¼

t2
t1
ð2 cos ðk0=3Þ − 1Þ; z3y;2 ¼

t3
t2
e−ik

0
�
ðA4Þ

whose union GBZ1 ∪ GBZ2 forms the full effective BZ.
Instead of sequentially eliminating boundary conditions

in the different directions, as in the conventional GBZ
method, our new approach computes the double OBC

spectrum Ē by first simultaneously imposing x and y
OBCs, and obtaining their simultaneous solution. Then
we check if the spectral winding vanishes: if yes, we are
done; if not, perform the additional step of dimensional
transmutation, reducing the 2D effective BZ to the union of
1D GBZ sectors consistent with vanishing spectral wind-
ing. As shown in Fig. 3(b), the 1D-transmuted ĒðkÞ (light
blue) agrees with the numerically obtained 2D OBC
spectrum EOBC (blue circles), while the unconstrained
E½zxðk1; k2Þ; zyðk1; k2Þ� in the 2D GBZ gives the incorrect
spectrum with extraneous eigenenergies (gray).
Our new approach is valid for all 2D lattices, whether

entangled or unentangled. For its extension to higher
dimensions, please refer to Sec. V of [123].
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