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Weyl semimetal phases and implementation in degenerate optical cavities
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We propose a scheme for simulating the behaviors of Weyl semimetals by using a two-dimensional array of
degenerate optical cavities. To simplify such a three-dimensional system to a two-dimension system, the orbital
angular momentum of the light is used to support an extra synthetic dimension. We find that this system is quite
suitable for the purpose of investigating the features of the Weyl point by taking advantage of the input-output
relation of the optical cavity system. We show that the transport properties of our system are determined by the
number of sites along the constrained direction and the spin texture of the system makes the transport momentum
dependent and spin dependent.
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I. INTRODUCTION

The Weyl semimetal phase has attracted much attention in
recent years for its novel gapless band structure in the bulk
and exotic Fermi arcs on the surface. Historically, this phase
can be traced back to Hermann Weyl in 1929 as a special
solution to the Dirac equation, which plays a fundamental
role in quantum field theory and particle physics. Recently
great interest in the Weyl semimetal phase has arisen from
the possibility of realization of this phase using quasiparticles
in certain condensed matter systems or, much more broadly
in the context of quantum simulation, from the realization
of synthetic models supporting Weyl semimetal phases using
other systems. Theoretically, this phase has been predicted
in various solid materials since 2011 [1–5], and the first
experimental verification of this phase was reported in TaAs
material in 2015 [6,7]. First-principle calculation has played
an important role in unveiling a number of solid materials as
potential Weyl semimetal candidates [8–10]. Nevertheless, in
these materials, the related energy spectrum is generally very
complicated and their unique topological boundary states, i.e.,
the Fermi arc, may be fully embedded in the bulk spectrum.
The concept of an ideal Weyl semimetal recently proposed
in Ref. [8] is rare in nature, and it makes the analysis of the
properties of the Weyl semimetals, including the spin texture of
the boundary states, the flat bands, and the transport properties,
quite difficult [11,12].

To investigate the features of the Weyl point, some artificial
simulators are proposed in photonics [13–17], plasmonics
[18,19], acoustics [20,21], and circuit-QED lattice systems
[22]. Recently, to overcome the difficulty of exploring Weyl
point physics, several groups have proposed some theoretical
schemes to simulate Weyl-type topological matter in a planar
two-dimensional (2D) geometry [23,24] by virtue of a syn-
thetic dimension in the form where internal degrees of freedom
of the system mimic the third spatial dimension [25–28].
Here, the approach of a synthetic dimension refers to mapping
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discrete internal degrees of freedom of matters, such as atomic
gases [25,26,28–35] and photonics [27,36–41], to labeling
lattice sites along an additional synthetic dimension. By
adjusting the effective tunneling between the virtual sites one
can simulate the particles’ move along this extra dimension.

In this work, we provide a bottom-up construction of 3D
Weyl-type matter using a 2D array of degenerate optical
cavities [42–44], in which one of the extra dimensions is
simulated using the orbital angular momentum (OAM) of
light [27]. The OAM-carrying beams have an azimuthal phase
dependence with an integer OAM number, which can be
manipulated and measured with high precision [45–47] and
can be even taken advantage of generating high-dimensional
entangled states [48,49]. Here, the degree of freedom of the
OAM can serve as a synthetic dimension and a d-spatial
dimensional cavity crystal can be used to simulate (d + 1)-
dimensional physics. Besides immensely reducing the design
complexity, here we specify that the particular probing method
in the degenerated cavities array will contribute to unveiling
the properties of the Weyl point such as transmission properties
and spin textures. Furthermore, we also investigate the effect
of finite sizes in the constrained direction, which implies that
the Fermi arc can be observed by using only a few degenerated
cavities.

II. MODEL AND PHASE DIAGRAM

The model considered here can be written as

H =
∑

l

[φ†
l itxyσ

xφ(lx+1,ly−1,lz) + φ
†
l ityσ

yφ(lx ,ly+1,lz)

− tzφ
†
l σ

zφlx,ly,lz+1 + t ′zφ
†
l σ

zφl] + H.c., (1)

where l = (lx,ly,lz) stands for the site index (lx , ly) and the
OAM index lz; txy and ty are the hopping energy along the xy

([110]) and y ([010]) directions, respectively; tz is the hopping
along the synthetic dimension z; t ′z is the on-site spin-splitting
energy; σx,y,z are the Pauli matrices; and φl = (φl↑,φl↓)T is
the wave function with spin ↑ and ↓, encoded by the horizontal
and vertical polarization of light.
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FIG. 1. Schematics on simulating the Weyl semimetal phase
based on degenerate optical cavities. (a) Realization of the Weyl
semimetal phase using two-dimensional degenerate cavities. Red
circles refers to degenerated optical cavities. (b) The hopping between
the neighboring sites and their corresponding spin-dependent hopping
term. (c) The spin-dependent hopping term along the z direction
emulated using the OAM of light. (d) The physical implementation
of the degenerate cavity. SLM, WP, and BS represent spatial light
modulator, wave plate, and beam splitter, respectively. The black
arrows stand for the pump and detection processes.

This model bears resemblance to the three-dimensional
tight-binding model for Weyl semimetals in solid materials.
Nevertheless, in this work, this three-dimensional structure can
be realized by using an array of two-dimensional degenerate
cavities, as schematically shown in Fig. 1(a). We first focus
on the first two terms in Eq. (1), which are rather similar
to the spin-orbit coupling and are essential for the realization
of topological phases in insulators and superconductors. These
two terms require the spin flipping during the hopping between
the neighboring sites. In particular, along the y direction, the
transition between spin up (down) and spin down (up) should
differ by a relative π phase for the realization of iσy coupling.
This can be realized by using the experimental scheme shown
as the green circuit (which connects A and B) in Fig. 1(d).
The two beam splitters (shown as BS in the figure) located
at A and B in the two main cavities are connected by a

small loop, in which the photon from A → B and B → A can
travel in two different paths, and thus can feel totally different
relative phases. Moreover, in each path, a wave plate (WP) is
added. This WP is a birefringent material, which rotates the
horizontal and vertical polarization (i.e., “spin” in our model)
of the light as eiα·σ . Here, α = (αx,αy,αz) is determined by
the Jones matrices [27,50] of the corresponding wave plates.
Thus, by choosing α = (0, ± π/2,0) in each path, one can
realize the simplest spin-orbit coupling in solid materials. The
hopping along the xy direction can also be realized in a similar
way except that now α = (±π/2,0,0); thus we have the ±iσx

coupling. It should be noted that the lengths of the auxiliary
cavities are chosen for destructive interference and that the
lengths of the main cavities are constructive; thus most of the
light still remains in the main cavities in our model [27].

To simulate Weyl semimetal phases, in addition to these
two spin-flipped in-plane hopping terms, we need a σz-
type hopping term along the third dimension, which will
be simulated by the synthetic dimension constructed by
the clock-circulating OAM. If the cavity is well designed,
these photons with different angular momenta will essentially
have the same energy. Thus each cavity in Fig. 1(a) is dubbed
a degenerate cavity [42–44]. This represents an essential
difference between the OAM and the angular momentum in
atoms. As a consequence, the tz and t ′z terms in Eq. (1) are
independent of the angular momentum index lz. To simulate
the σz hopping between the OAM states, a new auxiliary
cavity (light blue circuit) connecting the two points C and
D in Fig. 1(d) is required. Similar to the loop between A and
B, we require that the left-half cavity and right-half cavity
can travel along different paths in the auxiliary cavity, in
which these two paths are controlled by two different spatial
light modulators (SLM) to increase or decrease the OAM by
one unit. The SLMs are simple spiral phase plates, which
change the OAM of photons by ±1 and hence simulate the
hopping in the z direction. The corresponding experimental
implementation can be found in Refs. [51,52]. Along these two
beams, two additional WPs are required to introduce a relative
π phase for the spin-up and spin-down light, for the purpose
of realizing the tzσz term. It is also feasible to introduce an
effective Zeeman field term denoted by t ′z in our model, which
can be realized by adding a WP in the main photon path (the red
circuit in Fig. 1(d)) in the main cavity. By using such kind of
construction, the parameters txy , ty , tz, and t ′z can all be tuned by
the optical elements. More detailed discussions can be found
Appendix A.

This scheme fulfills the construction of the Weyl semimetal
phase from the bottom-up design. To understand the property
of the Weyl points in the model, we transform the Hamiltonian
to the momentum space in an idealized infinite optical cavity
array,

H(k) =
∑

k

φ
†
k[εk + dα(k)σα]φk, (2)

where dx = 2txy sin(kx − ky), dy = 2ty sin ky , dz = 2tz cos kz −
2t ′z, and εk = 0, with −π � ki � π for i = x, y, and z. The
energy gap between the upper band and the lower band can be
written as

Ek = 2
√

d2
x + d2

y + d2
z ,
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(a)

(b)

(c)

FIG. 2. Distribution of the Weyl point and the band structure.
(a) The phase where the Weyl point exits with the varying of t ′

z.
(b) The distribution of the Weyl point in the momentum space. The
topological charges of each Weyl point are shown in the figure. The
dots with +2 or −2 are the projection of Weyl points in the kx-
kz plane. The green lines are the theoretically obtained Fermi arcs.
(c) The band structure when the Weyl point exits with kz = ±k0.

which is always fully gapped when |t ′z| > |tz|. For the sake of
simplicity, hereafter let us assume tz > 0. The phase diagram
for this model is presented in Fig. 2(a). In between the two
gapped phases, |t ′z| < tz (i.e., the shadow area in the figure), let
us assume t ′z = tz cos(k0); thus all the gapless Weyl points can
be found in kw

z = ±k0, kw
y = 0, ± π and kw

x = kw
y ,kw

y ± π .
This model has an inversion symmetry defined as I = σz,
through which we find σzH(k)σz = H(−k). If we expand the
Hamiltonian around one of the gapless Weyl points, we obtain
Hkw (k) = vij (kw)(ki − kw

i )σj , where

v(kw) =

⎛
⎜⎝

2s1txy 0 0

−2s1txy 2s2ty 0

0 0 −2s3tz

⎞
⎟⎠. (3)

Here, s1 = cos(kw
x − kw

y ), s2 = cos(kw
y ), and s3 = sin(kw

z ) are
determined by the location of the Weyl points kw

i . Then
σzHkw (k)σz = vij (−kw)(−ki + kw

i )σj = H−kw (−k). The chi-
rality, or topological charge, of the Weyl point is defined as
ν(kw) = sign{det[v(kw)]}, then we find

ν(kw) = sign[−s1s2s3txy ty tz]. (4)

This result demonstrates the possibility of changing the
chirality of the Weyl points by controlling si , i.e., the location
of the Weyl points. Moreover, we find

ν(−kw) = −ν(kw). (5)

This symmetry ensures that the two Weyl points with opposite
momenta should have opposite chirality. Notice that the Weyl
points in this model are rather robust due to the involvement
of all Pauli matrices in the effective Hamiltonian. In fact,
introducing other types of couplings in Fig. 1(a) will not
immediately destroy these phases, provided the Weyl points
with opposite chiralities are not confused. The introduction
of these extra terms can only slightly shift the position of the
Weyl points.

III. OPTICAL TRANSMISSION SPECTRA

Our system has the advantage of exciting the bulk states
(Dirac cones) or edge states (Fermi arcs) individually due
to the simple band structure presented in Fig. 2(c). In the
following we demonstrate the measurement of these states
using the optical transmission spectra by tuning the energy
of the input light. This is essentially analogous to initiating
quantum transport formulism in solid materials by tuning the
chemical potential of electrons.

The transmission can be obtained from the output field
amplitude of the detection process DDO

l and the input field
amplitude of the pump process DPI

l of the light at site l

(see Fig. 1), which are calculated from the Langevin equations
of the system [27,53]:

φ̇l = −i[φl,H ] −
√

γ D
l DDO

l −
√

γ P
l DPO

l −
√

γ dis
l Ddis

l

+ (
γ P

l + γ D
l + γ dis

l

)
φl/2, (6)

φ̇l = −i[φl,H ] −
√

γ P
l DPO

l −
√

γ dis
l Ddis

l

+ (
γ P

l − γ D
l + γ dis

l

)
φl/2, (7)

φ̇l = −i[φl,H ] −
√

γ P
l DPI

l − (
γ P

l + γ D
l + γ dis

l

)
φl/2. (8)

Here, the dissipation of the light due to the reflection of the
mirrors is represented by Ddis

l , and the reflection of the pump
process is represented by DPO

l . The parameters γ
P/D/dis
l are the

loss rates due to the pump, detection processes, and dissipation,
respectively. Then by a Fourier transformation of the above
equations we find √

γ D
l DDO

l (ω) = γ D
l φl(ω), (9)√

γ P
l DPI

l (ω) = (iω − γl/2)φl(ω) − i
∑

l′
Hl,l′φl′(ω), (10)
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Here γl = γ D
l + γ P

l + γ dis
l and H = ∑

l,l′ φ
†
l Hl,l′φl′ . Thus, the

transmission coefficient is obtained as

tl1,l2 (ω) = DDO
l1

(ω)

DPI
l2

(ω)
=〈l1|

√
γ D

−i

ω − H + iγ /2

√
γ P|l2〉. (11)

Here ω is the frequency of the input light; |l1〉 and |l2〉
stand for the input light at sites l1 and the output light at
sites l2. H is the coefficient matrix of the Hamiltonian H :
〈l|H|l′〉 = Hl,l′ . γ P/D/dis = diag{γ P/D/dis

l1
,γ P/D/dis

l2
, . . .} and γ =

diag{γ P
l1

+ γ D
l1

+ γ dis
l1

,γ P
l2

+ γ D
l2

+ γ dis
l2

, . . .} are the matrices
of the pump/detection/dissipation and the total loss rates,
respectively.

In our scheme, in principle, the input light can be injected
into all sites due to such kind of 2D structure. It is worth
stressing that, compared to the usual electrical detection in
the solid system, this is the special advantage of simulating
3D material by using 2D structure and an extra synthetic
dimension. It provides the possibility of mimicking a specific
momentum by tuning the related phases of the input light at
different sites. As we only care about the boundary states, it
is sufficient to inject the light into the sites with ly = 1 and lx
from 1 to Nx . Therefore, the input light takes the following
form (at ly = 1 only, unless otherwise specified):


in(ly = 1) =
∑
lz,lx

eikzlz+ikx lx+iky ly |lz,s〉, (12)

with s denoting the “spin.” Here we just simulate the momen-
tum along the z and x directions, which are controlled by kz and
kx , respectively, as shown in the formula. The construction of
the input light is discussed in detail in Appendix B. Neverthe-
less, it should be noted that the momentum ki (i = x,y,z)
defined here is essentially different from the momentum
of light in free space. Here, the momentum refers to
the momentum of the simulated particles, which can be
tuned by controlling the relative phase between adjacent
sites.

With this input light, the transmission coefficient becomes

tl,
in (ω) = 〈l|
√

γ D
−i

ω − H + iγ /2

√
γ P|
in〉. (13)

From this equation, one understands that tl,
in (ω) reaches
its maximum value when ω is close to the eigenvalues of
H, and meanwhile |
in〉 only couples to the corresponding
eigenstates. This is just the resonance transmission, which
means that the energy spectrum can be detected via tl,
in (ω).
Nevertheless, the direct detection of tl,
in (ω) is possible but
complex since the detection on a specific OAM lz needs extra
experimental methods [54]. Hence, in this work, we detect the
total transmission of all the sites instead. It is obtained by the
Landauer-Buiticker formula,

T = Tr(t†t) =
∑

l

|tl,
in |2, (14)

which is actually the intensity of the output light.

Considering the fact that a small system is much easier to
realize in experiment, we investigate the transmission spectra
in a small Nx × Ny cluster with a periodic boundary condition.
The calculated transmission coefficient T as a function of kz

and energy ω at different kx is presented in Figs. 3(a)–3(c),
in which we see that the full band structure of the bulk can
be clearly mapped out via the selection rules of energy and
momenta. Here the input light is injected into the system at all
sites with their phase irrelevant to ly . Hence, the momentum
along the y axis, i.e., ky , is chosen to be zero. Moreover, it is
necessary to emphasize that, in a small cluster, the value of
kx is restricted to several discrete values, i.e., kx = 2πn/Nx ,
with n = 0,1, . . . ,Nx − 1. However, since the value of kz in
the synthetic dimension can be very large, the band structure
can still be clearly observed in experiment.

In addition, an extra benefit from such kind of synthetic
photonic system is that one can easily detect the spin texture
of the energy band. From the transmission coefficient, one can
deduce that it will lead to a negligible response if the spin of
the input light is orthogonal to that of the eigenstate of the
system. Therefore, in Fig. 3, we not only scan the energy band
by detecting the transmission rates but also investigate the spin
texture. When kx = 0, as shown in Fig. 3(a), we demonstrate
two Weyl points at kz = ±k0 along the z axis, as expected
from Fig. 2(b). In this case, the spin directions in the band
remain unchanged as kz varies. On the other hand, for the
cases of kx = 2π/3 and 4π/3 [see Figs. 3(b) and 3(c)], the
spin directions of these states vary as kz. To show the variation
of the spin direction more clearly, we plot the results with only
spin-up or only spin-down input light in the inset. It is noted
that the obtained results for kx = 2π/3 and 4π/3 are the same;
hence we only plot spin up in the inset in Fig. 3(b) and spin
down in the inset in Fig. 3(c).

In such a synthetic system, the coefficients txy , ty , tz, and tz′

are determined by the parameters of the main cavity and the
BS (see Appendix A). Without loss of generality, they are set
to be 1 in our calculation. Due to the topological stability, the
variation of the parameters txy , ty , t ′z, and tz have no essential
effects on the Weyl points except changing their locations. This
can be seen from Eq. (2), where the location of the Weyl points
is only determined by tz and t ′z. This means that our main results
are robust against the variation of these parameters. To show
this point more clearly, we plot the results under different txy

(ty and tz with k0 = π/2 are the same) and t ′z in Figs. 3(d)–3(f).
We find that the variation of txy has little effect on the results
while the variation of t ′z makes two Weyl points move closer
to each other.

Under the open boundary condition, the edge modes will be
detectable by measuring transmission spectra. In this system,
since the chiralities of the Weyl points projected onto the x-z
plane have the same sign, this ensures that they cannot be
canceled by each other, giving rise to the twofold degenerate
flat bands [see Fig. 2(b)]. The calculated transmission rate
T obtained by scanning the momentum kz and kx under
pumping eigen cavity-frequency (with zero shift) is presented
in Fig. 3(g), in which the strong transmission indicates a
resonance due to the presence of localized edge modes.
Different from the result in the bulk [Fig. 3(a)], we find that
the resonant transmission can always be found for all kx at the
same kz = ±k0. The discrete value of kx again is attributed to
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FIG. 3. Transmission rates along the z direction for the bulk system at (a) kx = 0, (b) kx = 2π/3, and (c) kx = 4π/3. The results with
only “spin-up” or “spin-down” input light are marked by the up and down arrows in panel (a) and shown in the insets in panels (b) and (c).
(d) Transmission rates with txy = 1.2 with the other parameters being the same as those in panel (a). (e) and (f) t ′

z = −0.59 with the other
parameters being the same as those in panels (a) and (b), respectively. (g) Transmission rate in the momentum space with the y direction being
the constrained direction. Here, Ny = 3 for blue curves and Ny = 5 for red curves. (h) Transmission rate with the spin of the input light being
up. (i) Transmission rate with the ‘spin of the input light being down. Here Ny = 4 or 6. The inset figure in panel (h) is the case with kx being
1.2 times larger. In the calculation, Nz = 100, Nx = 3, k0 = π/2, γ P

l = γ D
l = 0.1 = 10γ dis

l , and txy = ty = tz = 1.

the finite size of our system, and it will become a continuous
Fermi arc when Nx → ∞. This observation is independent of
the spin of the input light.

The above observed phenomena depends strongly on the
size of the system along the ky direction, in which the edge
states may be destroyed with a small energy splitting when
Ny is even [see Figs. 3(h) and 3(i) where the strong resonant
transmission is absent). This even-odd alternating behavior
is a typical feature in finite-size systems [55]. In our model,
the edge states have exactly zero energy when the size Ny

is odd, and finite coupling between the edge states can be
realized when Ny is even. Consider the following Hamiltonian
at kz = k0:

H =
∑

k

φ
†
kx ,ly

(itxyσxe
ikx − ityσy)φkx,ly+1 + H.c. (15)

The band structures are determined by the following equations:

Eφkx,ly = (itxyσxe
ikx − ityσy)φkx,ly+1

+ (itxyσxe
ikx − ityσy)†φkx,ly−1, ly 	= 0,Ny, (16)

Eφkx,1 = (itxyσxe
ikx − ityσy)φkx,2, (17)

Eφkx,Ny
= (itxyσxe

ikx − ityσy)†φkx,Ny−1. (18)

When Ny is odd, we find that eigenvalue with E = 0 is possible
and the corresponding two degenerate wave functions are
written as

φ±
ly

= 1

2

⎧⎨
⎩

(
t2
y +t2

xye
−2ikx

ξ±

)i
(

1 ± 1

1 ∓ 1

)
, ly = 2i − 1,

0, ly = 2i,

(19)
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FIG. 4. Energy splitting induced by wave-function overlap be-
tween the two edge modes (see dots) in the case with even Ny . The
lines represent the splitting determined by Eq. (20).

where ξ± = t2
xy + t2

y ∓ 2tx txy sin kx . These two degenerate
states possess different spin textures. However, through the
resonance transmission, both of them lead to large transmission
amplitude. On the other hand, when Ny is even, the zero energy
localized states are coupled and their energy splitting is of the
following form,

δEedge ∼ e
−Ny ln | ξ+

ξ− |/4
, (20)

following the method in Ref. [56]. This accounts for the
splitting of T observed in Figs. 3(h) and 3(i). The numerical
verification of this result is presented in Fig. 4. The detailed
numerical simulation also shows that the localized edge states
depend strongly on the spin degrees of freedom and thus
explains the strong spin-dependent effect in Figs. 3(h) and 3(i).
We should also note here that the splitting obtained from our
calculation in the case with Ny = 4 is 0.12txy , with txy = ty =
tz. This is larger than the dissipation γl/2 = 0.105txy . As a
result, it leads to a much smaller transmission rate as shown
in Figs. 3(h) and 3(i), which is experimentally resolvable.

Consider the imperfect momentum shift of the input light
used in the experiment. If the deviation is small, the effect from
the selected momentum will still be dominant. To show this
point more clearly, we first calculate the case with kx being 1.2
times larger than the ideal parameter. As shown in the inset
of Fig. 3(h), besides the ideal resonance peak, an extra small
peak appears at a different momentum value. On the other
hand, if we change kz from 0.5π to 0.38π , the corresponding
transmission rate changes from 0.031 to 0.021. This is still
much larger than the response away from the Weyl points,
which means that it is still experimentally resolvable.

IV. SUMMARY

In summary, we have shown the potential value of taking
advantage of the OAM property of the light to simulate
the Weyl semimetal system. This approach is experimen-
tally accessible since the required experimental techniques
(i.e., reliable manipulation of the OAM states [47,54], design
and operation of degenerate cavities [42–44], and locking of
multiple optical cavities [57]) have been realized.

Furthermore, compared to the real solid material obtained
recently, the platform based on photonic synthetic dimension
provides a more flexible way of investigating the properties of
the Weyl point. We show that, using the input-output relation,
both the Dirac cone of the bulk system and the Fermi arcs on
the surface can be easily detected. More interestingly, when
the number of the sites in the constrained direction is odd,
the boundary states in the two boundaries do not interact with
each other. This means that to observe the Fermi arc, only a
few sites is sufficient.

In addition, we also show the case with an even number
of sites in the constrained direction. In this case, both the
influence of the coupling between the boundary states and the
strong kx-dependent spin texture can be easily observed, which
leads to a momentum-dependent transport property. These
results further indicate that our system is a valuable system
which is especially suitable for investigating the properties of
the Weyl semimetals.
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APPENDIX A: EXPRESSION OF THE HOPPING ENERGY

In this appendix, we show how to tune the value of ty in
Hamiltonian (1) in the main text. Since the other parameters
(txy and tz) can be obtained in the same way, for simplicity, we
omit their derivation steps.

The hopping Hamiltonian along the y direction can be
written as

H = it
∑

l

ei2πφφ
†
l σ

yφl+1 + H.c., (A1)

with σy being the Pauli matrix and t being the hopping energy.
To obtain the hopping energy, a basic idea is that we can

take advantage of transfer matrix analysis [50] to derive the
dispersion relation of the system. Then, we can get the hopping
energy. The schematics of the hopping between sites l and
l + 1 is shown in Fig. 5, where we introduce the photon field
amplitudes al , bl , cl , and dl at site l. We further assume that the
reflection and transmission coefficients of the BS is re = i|re|
and tr = |tr |, with |re|2 + |tr |2 = 1. Then, the transfer matrix
is written as

MBS =
(

1
−i|re |

tr
i|re|

tr
−i|re |

1
i|re|

)
. (A2)
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FIG. 5. Schematics on the model Hamiltonian, Eq. (A1). al , bl ,
cl , and dl are the amplitudes of lights at the corresponding places
shown in the figure at site l. The other elements are the same as those
in Fig. 1.

Thus, the relation between the amplitudes in sites l and l + 1
is obtained as(

al+1

dl+1

)
=

(
e−iKSc/8 0

0 eiKSc/8

)
MBS

×
(

e−iKSa/2−2iπφeiα·σy

0

0 eiKSa/2−2iπφeiα·σy

)

× MBS

(
e−iKSc/8 0

0 eiKSc/8

)(
bl

cl

)
(A3)

and

bl = ale
−iKSc/4, dl = cle

−iKSc/4. (A4)

Here α = (0,π/2,0), and Sc and Sa are the total optical path
length of the main cavity and the coupling cavity. Moreover,
K is the momentum of the light, which is different from the
momentum k of the simulated particles in the system. This k

appears in the Bloch theory which leads to the formula⎛
⎜⎜⎜⎝

al+1

bl+1

cl+1

dl+1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

al

bl

cl

dl

⎞
⎟⎟⎟⎠e−ik. (A5)

Here,  is the unit spacing. With Eqs. (A3)–(A5), one obtains
the relationship between k and K under the condition tr ∼ 1,
i.e., |re| � 1, as [27]

|re|2σy sin(2πφ − k)

≈ cos[K(Sa − Sc)/2] − cos[K(Sa + Sc)/2]. (A6)

Since the length of the main cavity is constructive, and
that of the auxiliary cavity is destructive, one understands that
KSa = (2n + 1)π + �KSa and KSc = 2mπ + �KSc, with n

and m being integers. Here �K = K − K0, with K0 being the
resonance momentum of the cavity and �KSa as well as �KSc

being small. With this condition, one obtains

|re|2σy sin(2πφ − k) ≈ (−1)ν�KSc, (A7)

FIG. 6. Schematics on the input light (orange lines). The WPs are
used to tune the relative phases of the cavities to simulate the particle
momentum. The other elements are the same as those in Fig. 1.

with the integer ν depending on n and m. Here we take ν = 1
and further use the relation K = ω/c; then one obtains

|re|2σy sin(k − 2πφ) = (ω − ω0)Sc/c. (A8)

Here ω is the energy of the light and ω0 is the resonance
frequency of the cavity. Comparing this equation to the model
Hamiltonian, one understands that the hopping energy

t = c|re|2
2Sc

. (A9)

As for the parameter t ′z, it is simulated by a WP, which tunes
the resonance frequency of the main cavity, i.e.,

KSc + αt ′σz = 2πn, (A10)

with n being an integer. Then, for the resonance frequency of
spin up, it becomes

ω0↑ = ω0 − αt ′c/Sc, (A11)

with ω0 being the resonance frequency without the WP. On the
other hand, the resonance frequency of spin down is

ω0↓ = ω0 + αt ′c/Sc. (A12)

Hence,

t ′z = −αt ′c/Sc. (A13)

APPENDIX B: CONSTRUCTION OF kz

FOR THE INPUT LIGHT

In this appendix we discuss the construction of the input
light. As shown in the main text, the input light needs to
fulfill Eq. (12) to simulate the particle momentum. For the
momentum in the x-y plane, this is easy to be realized by
adding wave plates to tune the relative phases between cavities
as shown in Fig. 6.

On the other hand, for the momentum in the z direction,
this will be more difficult since the cavity is simulated by
the OAM. It is well known that if the optical elements have
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cylindrical symmetry, the solutions are the Laguerre-Gaussian
(LG) modes Ep,l(r,φ)e−ikz [58] with

Ep,l(r,ψ) = E0
W0

W (z)

(
r
√

2

W (z)

)|l|
L|l|

p

(
2r2

W 2(z)

)
e

−r2

W2(z)

× e
−ikr2

2R(z) ei(2p+|l|+1)ζ (z)eilψ . (B1)

Here W (z) = W0

√
1 + (z/z0)2, R(z) = z[1 + (z/z0)2], and

ζ = arctan(z/z0), with z0 = πW 2
0 /λ, and L|l|

p (x) is the gener-
alized Laguerre polynomial. Thus, to simulate the momentum
in the z direction, one only needs to generate the light with its
transverse field being

Et(kz,r,ψ) =
∑

lz

eikzlzE0,lz (r,ψ). (B2)
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