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Wavelength-accurate nonlinear conversion 
through wavenumber selectivity in photonic 
crystal resonators

Jordan R. Stone    1,2 , Xiyuan Lu    1,2, Gregory Moille    1,2, Daron Westly    2, 
Tahmid Rahman    1,2 & Kartik Srinivasan    1,2 

Integrated nonlinear wavelength converters transfer optical energy 
from lasers or quantum emitters to other useful colours, but chromatic 
dispersion limits the range of achievable wavelength shifts. Moreover, 
because of geometric dispersion, fabrication tolerances reduce the 
accuracy with which devices produce specific target wavelengths. Here we 
report nonlinear wavelength converters that allow output wavelengths 
to be controlled with high accuracy despite their operation not being 
contingent on dispersion engineering. In our scheme, coupling between 
counterpropagating waves in a photonic crystal microresonator induces a 
photonic bandgap that isolates (in dispersion space) specific wavenumbers 
for nonlinear gain. We demonstrate the wide applicability of this strategy 
by simulating its use in third-harmonic generation, Kerr-microcomb 
dispersive wave formation and four-wave mixing Bragg scattering. In 
experiments, we demonstrate Kerr optical parametric oscillators in which 
such wavenumber-selective coupling designates the signal mode. As a 
result, differences between the targeted and realized signal wavelengths 
are <0.3%. Moreover, leveraging the bandgap-protected wavenumber 
selectivity, we continuously tune the output frequencies by nearly 300 GHz 
without compromising efficiency. Our results will bring about a paradigm 
shift in how microresonators are designed for nonlinear optics, and they 
make headway on the larger problem of building wavelength-accurate light 
sources using integrated photonics.

Controlling integrated microsystems to generate light with properties 
that are specifically geared to applications is a fundamental ambition of 
photonics research. For example, optical atomic clocks require ultra-
coherent laser light with wavelengths precisely matched to atomic 
transitions, and future hybrid quantum networks will interface sources 
of non-classical light (for example, single photons) tuned to qubit 
wavelengths1–4. A powerful tool to meet the demands of such systems 
is optical nonlinearity, which can mould light on a quantum level and 

stimulate wavelength conversion (for example, through four-wave 
mixing (FWM)) for spectral access beyond conventional laser gain. In 
particular, optical microresonators with Kerr (χ(3)) nonlinearity have, 
after multiple groundbreaking demonstrations, become a linchpin 
of nonlinear photonics. They support microcombs for frequency  
synthesis, timekeeping and sensing5–8; optical parametric oscillators 
(μOPOs) for wavelength-flexible sources of laser light9–11, squeezed 
light12,13 and entangled photon pairs14,15; four-wave mixing Bragg 
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Lugiato–Lefever equation (LLE). Finally, we highlight the protected 
nature of our method by tuning the μOPO output frequencies continu-
ously over 300 GHz without sacrificing efficiency or inducing mode 
hopping. Our work re-envisions the design process for nonlinear wave-
length converters, enables nonlinear optics in new spectral regions and 
with strongly dispersive materials and invites fundamental studies of 
nonlinear physics in photonic crystal microresonators.

Photonic crystal-mediated FWM
Figure 1 depicts a photonic crystal microresonator and illustrates the 
four FWM processes we study. For concreteness, we consider silicon 
nitride (SiN (that is, Si3N4)) microrings where the ring width, RW′, var-
ies along the inner boundary according to RW′ = RW + Amod cos(Nθ), 
where RW is the nominal ring width, Amod is the photonic crystal grat-
ing modulation amplitude, N is the photonic crystal grating period 
(an integer) and θ is the resonator azimuthal angle. Therefore, the 
spatial period of modulation is 2πR/N, where R is the ring radius. The 
modulation creates a refractive index grating that coherently couples 
clockwise (CW) and counterclockwise (CCW) travelling-wave modes 
with the azimuthal number m = N/2, where m is an integer related to 
the wavenumber k via k = m/R. Hence, we say that the coherent cou-
pling is ‘wavenumber-selective’. The coupling rate, J, is proportional 
to Amod and corresponds to half the frequency splitting between two 
supermodes, denoted ‘+’ and ‘−’ for the higher- and lower-frequency 
resonances, respectively (as pictured in the centre of Fig. 1). This type of 
resonator has numerous functionalities, including for sensing28,29 and 
the slowing of light30. In the context of nonlinear optics, pump mode 
hybridization has been used to induce spontaneous pulse formation 
and facilitate parametric oscillations in resonators with normal GVD31–33.  
Moreover, modulations with different N values can be combined to real-
ize multi-wavelength dispersion engineering34–36. In these experiments 
and others, J could be made larger than the resonator free spectral 
range (FSR) without reducing the quality factor.

In our experiments, we focus on μOPOs, which generate mono-
chromatic signal and idler waves from a continuous-wave pump laser 
through resonantly enhanced degenerate FWM, as shown at the top 
(energy diagram and optical spectrum) of Fig. 1. Momentum conserva-
tion requires 2mp = ms + mi, where mp, ms and mi are azimuthal numbers 
for the pump, signal and idler modes, respectively. Hence, mode pairs 
with m = mp ± μ, where μ is an integer, may support μOPO if their reso-
nance frequencies obey equation (1). In general, GVD prevents such 
frequency matching; that is, the associated FWM process does not 
conserve energy. In Fig. 1, the grey dashed lines in the energy diagrams 
and optical spectra illustrate how GVD suppresses FWM. To quantify 
this concept, we define the frequency mismatch as:

Δν = νμ + ν−μ − 2ν0, (3)

where ν0 is the pump mode frequency and νμ is the mode frequency 
associated with the azimuthal number mp + μ. Normal GVD gives Δν < 0 
for all μ and thus prevents FWM. Nonetheless, applying an appropri-
ate shift to νμ (or ν−μ) will restore energy conservation and activate the 
μOPO, as illustrated by the blue lines in Fig. 1. We can realize this shift via 
the ‘+’ supermode; changing to the ‘+’ basis gives the transformation:

Δν+ = {
ΔνCW + J, m = {N/2, 2mp − N/2}

ΔνCW, else
(4)

where ΔνCW is the frequency mismatch in the CW basis. Hence, we select 
ms by choosing N = 2ms, and the μOPO is activated when J = −ΔνCW. 
Note that, from equation (3), Δν+(μ) = Δν+(−μ); hence, the mismatch 
is shifted for both signal and idler modes. In Supplementary Fig. 2, 
we theoretically compare this approach with the case where N = 2mp  
(refs. 32,33), and we identify a number of key differences; namely, choosing 

scattering (FWM-BS) for spectral translation of single photons16; 
third-harmonic generation (THG)17,18; and more. Although appreciable 
efficiencies have been shown in some cases, it remains a challenge to 
ensure a priori (that is, before testing) that a specific device will achieve 
the desired combination of wavelength accuracy and efficiency.

To elucidate the problem, we recall some basic design considera-
tions for Kerr-nonlinear microresonators, focusing on commonly used 
microring devices. Fundamentally, energy and momentum conserva-
tion regulate FWM19; therefore, to within (approximately) a resonator 
linewidth, a set of resonator modes should obey:

∑
i

νi = ∑
j

νj, (1)

∑
i

mi = ∑
j

mj, (2)

where mi is the azimuthal number (fundamentally related to the wave-
number) associated with a resonator mode with frequency νi, and the 
left-hand (right-hand) terms denote photons created (annihilated) 
during the FWM process. The pair of equations (1) and (2) is exact when 
νi and mi refer to field quantities. In general, group velocity dispersion 
(GVD) induces a frequency mismatch, such that a set of modes satis-
fying equation (2) does not simultaneously satisfy equation (1). The 
strategic ‘dispersion engineering’ of modes to satisfy both equations 
(1) and (2) is ubiquitous in guided-wave nonlinear photonics, with the 
most popular approach being to complement material dispersion with 
dispersion arising from the microresonator geometry20–22. However, 
modelling broadband spectra, such as octave-spanning microcombs 
or μOPOs with widely separated wavelengths, often requires retaining 
six or more orders in a Taylor expansion of νi(mi) around the pump 
wavelength23,24. In this regime, the mode wavelengths that satisfy both 
equations (1) and (2) are extremely sensitive to geometry. Hence, small 
errors in the device geometry (arising from either fabrication uncertain-
ties or incomplete modelling) can amount to substantial differences 
between the simulated and experimentally observed spectrum. This 
necessitates the fabrication of many (often, hundreds or more) devices 
with nanometre-scale parameter variations. Ultimately, one negotiates 
a trade-off between the number of devices that require testing and the 
dispersion tolerance of a given application. In many cases, a simple 
geometry-based solution to realize a particular GVD (for example, one 
based on controlling the dimensions of a waveguide) does not exist. 
To make matters worse, unwanted nonlinear couplings (for example, 
Raman scattering, mode competition, and so on) can compete with or 
even suppress the targeted process16,25–27.

Here we demonstrate Kerr-nonlinear wavelength conversion 
for which the m values of participating resonator modes are guar-
anteed from design; however, our method actually alleviates design 
constraints, naturally suppresses unwanted nonlinear couplings and 
does not rely on the sensitive control of higher-order GVD. We show 
how wavenumber-selective coherent coupling (hereafter referred to 
simply as ‘coherent coupling’) between counterpropagating waves in 
a photonic crystal microresonator induces controlled frequency split-
tings that balance the underlying GVD to satisfy both equations (1) and 
(2). We analyse optical parametric oscillation (OPO), THG, dispersive 
wave enhancement (DWE) in microcombs and FWM-BS by introducing 
coherent coupling into simulations of those systems, and we prove our 
ideas experimentally using the flexible example of μOPOs. Through 
the photonic crystal grating period, we dictate m values for the signal 
modes in three different μOPOs, and we showcase their tolerance to 
higher-order GVD by reproducing the same signal wavelength when 
pumping four separate modes of a single device. The generated signal 
wavelengths agree with simulations to within 0.3%. We character-
ize the μOPOs by their threshold power and conversion efficiency, 
and we find that our measurements agree with a model based on the 
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N = 2ms improves the robustness, wavelength accuracy and tunability of  
the μOPO.

Importantly, coherent coupling in photonic crystal resonators 
can facilitate other FWM processes, as illustrated in Fig. 1. Specifically, 
we explore THG, FWM-BS and DWE, all of which involve wide spec-
tral gaps between their constituent wavelengths and thus exhibit Δν 
spectra that are difficult to control exclusively via the cross-sectional 
geometry of the microresonator. In each case, we can re-define Δν 
according to equation (1) (see Supplementary Section I) and use coher-
ent coupling to restore energy conservation by balancing ΔνCW with J. 
In Fig. 1, the energy diagrams and optical spectra show how shifting 
the frequency of one mode can promote THG and FWM-BS. The DWE 
process merits special elaboration. Bright soliton microcombs operate 
in a regime of anomalous GVD, but certain wavelengths with normal 
GVD can exhibit local power enhancements (that is, DWE)24,37. The DWE 
phenomenon is useful to aid self-referencing, but the wavelengths of 
the dispersive waves are difficult to control due to their reliance on 
higher-order GVD. We envision using wavenumber-selective coherent 
coupling to dictate the m values of the dispersive waves. Because of 

the underlying anomalous GVD, the dispersive waves will be resonant 
with the ‘−’ supermode. This scheme could operate without tailoring 
higher-order GVD and deterministically select harmonic wavelengths 
for self-referencing, thus augmenting microcombs spectrally tailored 
with Fourier synthesis35.

To prove our ideas, we analyse THG, FWM-BS and DWE in resona-
tors with either purely normal (for THG and FWM-BS) or purely anoma-
lous (for DWE) GVD by including coherent coupling in the simulations 
of those systems. We reserve μOPO simulations for the next section, 
where we aim to verify our model with experiments. We use a set of 
coupled-mode equations to simulate THG and a pair of coupled LLEs to 
simulate FWM-BS and DWE (for details, see Supplementary Section I). 
Importantly, we include the coherent coupling explicitly in our models; 
that is, we do not manually insert frequency shifts into the GVD, since 
this would not account for the hybridization of the CW/CCW modes. We 
define the mode spectra and perform simulations in the CW/CCW basis. 
To include coherent coupling, we allow one CW mode to exchange 
energy with its CCW counterpart at a coupling rate J that is continu-
ously tunable. In Fig. 2, we present simulated optical spectra for THG, 
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Fig. 1 | Conceptual depictions of wavenumber-selective nonlinear 
wavelength conversion in Kerr photonic crystal microresonators. Spatial 
modulation of the microresonator inner sidewall (pictured centre) with a 
grating period 2πR/N, where N is an integer, coherently couples CW and CCW 
travelling-wave modes with the azimuthal mode number ms (= N/2) and creates 
two supermodes, denoted ‘+’ and ‘−’, with frequency separation 2J, where J is 
proportional to the sidewall modulation amplitude. We link the spatial frequency 
of sidewall modulation, N, to the wavenumber, ks = N/2R, of an output wave 

that is generated via nonlinear wavelength conversion. Hence, the photonic 
crystal resonator functions like a gear, as illustrated in the top left, to accurately 
control the wavelengths produced by a given device. Bottom: in resonators with 
normal GVD, FWM cannot occur between travelling-wave modes due to energy 
non-conservation (see the energy level diagrams), but frequency matching 
can be realized using one of the supermodes. This enables, for example, OPO, 
THG and FWM-BS in microresonators with purely normal GVD, and DWE in 
microresonators with purely anomalous GVD that support soliton microcombs.
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FWM-BS and DWE. The grey data correspond to simulations with J = 0, 
and the blue or purple data (when utilizing the ‘+’ or ‘−’ supermodes, 
respectively) correspond to simulations where J is tuned to maximize 
the signal (or dispersive wave) power.

In our simulations, we assign to all modes a (critically coupled) 
loaded linewidth κ/2π = 500 MHz. In the THG simulations, we set 
ΔνCW = 12.5 GHz and Pin = 250 μW, where Pin is the pump power. This  
Pin value efficiently drives THG but is below the saturation power 
(see Supplementary Fig. 1). We apply coherent coupling to the 
third-harmonic mode. When J = 0, the third-harmonic power 
P3H ≈ 2.7 nW. We find that J = 12.425 GHz maximizes P3H, in accordance 
with equation (4), increasing it to P3H ≈ 3 μW, as shown in Fig. 2a.

To model FWM-BS, we simulate a microresonator pumped by two 
separate pump lasers resonant with modes m = 370 and m = 420. For 
both lasers, Pin = 5 mW. A low-power input seed, resonant with mode 
m = 410, is also injected into the resonator. FWM-BS converts the input 
seed photons to output signal photons resonant with m = 360. We set 
D2/2π = −25 MHz per mode, where D2 is the second-order term in a Taylor 

series expression of the integrated dispersion, Dint = νμ − (ν0 + μ × FSR).  
This D2 value corresponds to ΔνCW = 12.5 GHz. We apply coherent  
coupling to the signal mode. When J = 0, virtually no seed photons are 
converted. When J = 12.6 GHz, ~25% of input photons are converted to 
wavelength-shifted output photons, as shown in Fig. 2b. Notably, Liu 
et al. recently proposed a dispersion engineering approach to FWM-BS 
that is also based on coherent coupling between CW/CCW modes38.

To simulate DWE, we set D2/2π = 10 MHz per mode and apply  
coherent coupling to the m = 419 mode. A laser, resonant with mode 
m = 370, pumps the resonator with Pin = 15 mW. When J = 0, the micro-
comb spectrum exhibits a smooth sech2 profile with no DWEs. When 
J = 13.75 GHz, we observe a 26 dB power enhancement at the targeted 
mode, as shown in Fig. 2c. In Supplementary Section I, we characterize 
our simulations in more detail. Remarkably, our modelling captures 
wavelength conversion into the supermodes, thus illustrating the 
applicability of our scheme to a variety of Kerr-nonlinear processes.

To validate the main elements of our approach in experiments, 
we choose an additional Kerr-nonlinear process, that of degenerately 
pumped μOPO. In processes such as THG and FWM-BS, the potential 
output wavelength is known a priori from the input wavelengths, with 
the efficiency of conversion depending on Δν (as well as other param-
eters not dependent on the phase- and frequency-matching strategy, 
namely, resonator–waveguide coupling16). By contrast, the μOPO out-
put wavelengths are not determined solely by the input wavelengths, 
but can vary widely depending on GVD. Therefore, μOPOs provide an 
ideal experimental test of wavenumber-selective FWM.

To this end, we perform experiments that demonstrate a priori 
control over ms in μOPO devices with N = 2ms. In Fig. 3 we present 
optical spectra generated in three different photonic crystal micro-
resonators with RW′ modulations parameterized by N = 750, 800 and 
920 and Amod = 5, 10 and 25 nm, respectively. In each device, Amod is 
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Fig. 2 | Simulations of nonlinear wavelength conversion in Kerr photonic 
crystal microresonators. The m values designated for coherent coupling are 
marked by a blue ‘+’ or a purple ‘−’, depending on which supermode is utilized. 
a, Simulated THG spectrum, both with (blue) and without (grey) photonic 
crystal-mediated coherent coupling (J). The simulation parameters are 
ΔνCW = 12.5 GHz, J = 12.425 GHz (blue data only) and Pin = 250 μW. b, Simulated 
FWM-BS spectrum, both with (blue) and without (grey) coherent coupling. The 
simulation parameters are D2/2π = −25 MHz per mode (which corresponds to 
ΔνCW = 12.5 GHz), J = 12.6 GHz (blue data only) and Pin = 5 mW for both pump lasers. 
c, Simulated Kerr-microcomb spectrum with (purple) and without (dashed grey) 
coherent coupling. Coherent coupling is used for DWE, to increase the power of a 
single microcomb tone by 26 dB. The simulation parameters are D2/2π = 10 MHz 
per mode, J = 13.75 GHz (purple data only) and Pin = 15 mW. Higher-order 
nonlinear effects such as Raman scattering and self-steepening are neglected. 
Definitions of Δν for THG and FWM-BS are given in Supplementary Section I.

700 800 900 1,000
Po

w
er

 (5
0 

dB
 p

er
 d

iv
is

io
n)

N = 920

N = 800

N = 750

Wavelength (nm)

Fig. 3 | Wavenumber-selective μOPOs in Kerr photonic crystal 
microresonators. Optical spectra generated in three μOPO devices. From top 
to bottom, N = 750, 800 and 920 and Amod = 5, 10 and 25 nm, respectively. In each 
spectrum, the line corresponding to the signal wave is coloured blue, and the 
signal mode number ms = N/2. Each device exhibits normal GVD at the pump, 
signal and idler wavelengths.
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chosen to balance the underlying normal GVD (in the next section, we 
explain our design process in more detail). We pump a fundamental 
transverse-electric (TE0) resonator mode near 780 nm and we observe 
one of two outcomes: a μOPO with ms = N/2 when J compensates for 
ΔνCW (that is, the three spectra in Fig. 3); or a CW state (that is, no wave-
length conversion; data not shown in Fig. 3) preserved by normal GVD 
and an incommensurate balance of ΔνCW and J. We confirm the ms values 
from mode transmission spectroscopy, and we measure (simulate) 
signal wavelengths of 763.5 nm (761.5 nm), 735.0 nm (735.8 nm) and 
648.0 nm (649.9 nm). This binary distribution of measurement out-
comes affirms the protected nature of wavelength conversion in our 
experiments.

OPO using selective splitting in undulated 
microresonators (OPOSSUM)
We now explain our procedures for designing photonic crystal micro-
resonators and testing them post-fabrication (for details about the 
fabrication process, see Methods). We refer to the μOPO mechanism 
as OPOSSUM, which stands for optical parametric oscillation using 
selective splitting in undulated microresonators. To start, we reiter-
ate the impact of wavenumber-selective coherent coupling on the 
resonator mode spectrum: CW and CCW modes with m = N/2 hybridize 
into two supermodes with frequency separation 2J, as illustrated in 

Fig. 4a. Hence, OPOSSUM devices exhibit three Δν spectra, denoted 
ΔνCW/CCW, Δν+ and Δν−, depending on the basis used. To choose values 
for RW, N and Amod (the SiN thickness H is fixed by our current stock of 
SiN and R = 25 μm), we simulate mode spectra using the finite-element 
method for devices without RW′ modulation. We calculate ΔνCW accord-
ing to equation (3) and choose an RW value that exhibits broadband 
normal GVD. Then, we identify a target signal wavelength (for exam-
ple, 760 nm, 735 nm or 650 nm for the three devices related to Fig. 3b) 
and choose N accordingly. To select Amod, we fabricate a set of devices 
with variations in RW, Amod and N, and we measure the frequency split-
tings to calibrate J(N, RW, Amod). Using our calibrations, we set Amod for 
a particular device to balance ΔνCW. Figure 4b depicts the simulated  
ΔνCW/CCW, Δν+ and Δν− spectra for a device with RW = 925 nm, H = 600 nm 
and N = 800. Notably, the Δν+ spectrum is discontinuous at the signal 
and idler frequencies, where Δν+ = ΔνCW + J (note that, even though 
coherent coupling is only applied to the signal mode, the Δν+ values 
are shifted equally for signal and idler modes because, according to 
equation (3), Δν+(μ) = Δν+(−μ)). This suggests that OPOSSUM suppresses 
FWM involving modes other than the targeted signal and idler, since 
at these frequencies the resonator exhibits strong normal dispersion.

Next, we perform experiments to characterize OPOSSUM. We  
fabricate the OPOSSUM device simulated in Fig. 4b and measure the 
TE0 mode wavelengths to calculate Δν+[ms] (that is, the value of Δν+ at 
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Fig. 4 | Optical parametric oscillation using selective splitting in undulated 
microrings (OPOSSUM). a, Conceptual transmission spectrum illustrating 
the frequency splitting of a travelling-wave mode (grey dashed line) into two 
standing-wave supermodes with frequency separation 2J. b, Simulated Δν 
spectra of an OPOSSUM device in the CW/CCW basis (left), the ‘+’ basis (centre) 
and the ‘−’ basis (right). In the ‘+’ basis, a single mode pair is frequency-matched 
to enable FWM, and normal GVD mismatches all other mode pairs. c, Plot of Δν+ 
versus pump wavelength for an OPOSSUM device with R = 25 μm, RW = 925 nm, 

H = 600 nm and N = 800. Vertical error bars correspond to the range in Δν+ 
values obtained when the measurement is repeated ten times. The pale green 
stripe indicates Δν+ values conducive to OPO. d, Optical spectra obtained from 
pumping four different modes (with wavelengths between 768 nm and 774 nm) in 
the OPOSSUM device. e, Transmission spectrum of the same device. f, OPOSSUM 
signal (blue circles) and idler (gold circles) frequencies versus the pump 
wavelength. The pale stripes show the same data, taken from ref. 9, for a device 
that relies on higher-order GVD engineering for frequency matching.
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the targeted signal mode). Importantly, Δν+[ms] depends on mp; hence, 
tuning the pump wavelength can correct for fabrication uncertainties 
and, more generally, ensure reliable operation. To concretize this idea, 
we measure Δν+[ms] versus the pump wavelength, as shown in Fig. 4c. 
We find that Δν+[ms] decreases with increasing pump wavelength, 
with an exception near 776 nm, where we observe mode crossings at 
the pump and idler wavelengths. In principle, we can generate a μOPO 
using any pump mode such that Δν+[ms] > 0, provided that Pin is large 
enough to induce compensating nonlinear mode frequency shifts25. 
Realistically, however, we prefer Δν+[ms] to be <3 GHz. Greater Δν+ val-
ues require Pin > 50 mW to produce appreciable signal and idler powers; 
at this level, absorption-induced temperature shifts can destabilize the 
μOPO. At the same time, we require Δν+[ms] > κ/4π. In our OPOSSUM 
devices, we measure typical loaded quality factor (Q) values between 
5 × 105 and 7 × 105 (with some dependence on wavelength), so the four 
pump modes spanning wavelengths 768–774 nm satisfy these require-
ments, as indicated by the pale stripe in Fig. 4c. Indeed, pumping any 
of these modes results in a μOPO. We record the optical spectra and 
present them in Fig. 4d. As expected, ms is fixed—its value is protected 
by the wavenumber-selective coherent coupling, with an example 
transmission spectrum shown in Fig. 4e. In Fig. 4f, we present meas-
urements of the signal and idler frequencies (νs and νi, respectively) 
versus the pump wavelength. We overlay similar data (pale stripes), 
taken from ref. 9, for a μOPO system that relies on higher-order GVD, 
where the dispersion sensitivity is apparent from the large shifts in νs 

(and νi) when tuning the pump laser between adjacent pump modes 
(that is, with consecutive mp values). By comparison, OPOSSUM is a 
robust mechanism for targeting specific wavelengths. In Supplemen-
tary Section II, we analyse the microresonator GVD and its connection 
to such robustness.

Next, we investigate the OPOSSUM efficiency and threshold behav-
iour. To model OPOSSUM, we simulate a pair of coupled LLEs that 
describe the intraresonator evolution of the CW and CCW fields. We 
are especially interested in connections between our experimental 
parameters and the power generated in the signal and idler waves. Intui-
tively, we expect the signal wave, which occupies the ‘+’ supermode, 
to propagate in both CW and CCW directions; hence, we should detect 
some signal light at the input (reflection) port of a device, as shown 
in Fig. 5a. In simulations, we observe approximately 20% more signal 
power in the reflection port than the transmission port. This distribu-
tion is approximately independent of Pin and Δν+. In experiments, we 
measure an approximately equal distribution of signal power to the 
two ports. The top panel of Fig. 4 shows the optical spectra calibrated 
to estimate the on-chip power levels at the transmission (blue) and 
reflection (purple) ports of the OPOSSUM device characterized in 
Fig. 5a. The presence of reflected pump and idler light is due to Fresnel 
reflections at the waveguide facets, but such light is still strongly  
suppressed relative to the transmission port (for example, ~20 dB for 
the idler). Ultimately, large optical losses that occur during propaga-
tion from the reflection port to the optical spectrum analyser prevent 
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a precise measurement of the signal power distribution. A more  
precise comparison can be made between the transmitted powers of 
the signal and idler waves, denoted Ps and Pi, respectively. Specifically, 
we calculate Pi/Ps versus Pin and indicate our measurements with blue 
data points in the bottom panel of Fig. 5b. Our measurements agree 
with simulation results shown by the orange dashed line. Notably, we 
find that Pi/Ps does not depend on Pin. Moreover, the unequal distribu-
tion of photons between signal and idler waves is unique within the 
Kerr microring resonator platform—previous (non-OPOSSUM) μOPO 
systems exhibited an equal distribution of photons ensured by the sym-
metry of degenerate FWM25. In OPOSSUM, this symmetry is broken by  
CW/CCW coupling. Finally, we note that signal light propagating in the 
CW/CCW directions can be coherently re-combined outside the resonator  
to increase Ps.

To characterize OPOSSUM further, we measure the threshold 
power for parametric oscillation (Pth), which is another important 
parameter of μOPO systems. Conveniently, we can measure Pth versus 
Δν+ by choosing different pump modes, as shown in Fig. 5c. The Pth 
values predicted from our model are shown by the blue stripe, and 
the Pth values predicted from a crude model (consisting of a single LLE 
wherein we shift the signal mode frequency by J) are shown by the grey 
stripe. Our measurements support the validity of our model. Next, we 
explore the robustness of OPOSSUM with respect to variation in J. Such 
an investigation conveys the design tolerance of OPOSSUM, that is, the 
allowable errors in device geometry that can arise from fabrication 

uncertainties. Specifically, we simulate OPOSSUM and calculate the 
conversion efficiency (Pi/Pin) versus J for Pin = 10, 20 and 30 mW, as 
shown in Fig. 5d. We find that the maximum conversion efficiency 
is 12.5% for a critically coupled resonator, which is the same result 
derived recently for other μOPO systems (the maximum conversion 
efficiency can be increased by overcoupling the resonator, at the cost of  
greater Pth). Moreover, the range of J values that supports a given 
efficiency increases with Pin. For instance, to realize Pi ≥ 2 mW with 
Pin = 20 mW, we find 22 ≤ 2J ≤ 25 GHz, where κ/2π = 500 MHz and 
ΔνCW = 10 GHz. For the device characterized in Fig. 5b,c, this corre-
sponds roughly to 11 ≤ Amod ≤ 12.5 nm. The possibility of increasing 
design tolerances using, for example, temperature tuning, requires 
further study.

Finally, we explore the wavelength tunability of OPOSSUM using 
the same device characterized in Figs. 4 and 5. Such tunability is of 
practical importance to nonlinear wavelength converters aiming for, 
for example, specific atomic transitions. In our experiments, we sweep 
the pump frequency νp by ~25 GHz in 5 s while sustaining a μOPO, and 
we observe the resulting changes in νi using a wavemeter (νs can be 
inferred from νi and νp using equation (1)). An example of these data  

is shown in the inset to Fig. 6a. We find that dνi
dνp

≈ 1. To extend the  

wavelength access of our OPOSSUM device, we increase its temperature 
T according to dν0

dT
≈ −4GHzK−1 and repeat the νp sweep while record-

ing νi. Figure 6a shows our results from repeating this measurement at 
11 different temperatures (corresponding to the 11 different colours in 
Fig. 6), from T ≈ 295–340 K, chosen to access all frequencies between 
367.73 ≤ νi ≤ 368.02 THz. (At some temperatures, we found that νp could 
be swept >25 GHz while sustaining the μOPO. This is why some colours 
comprise more frequencies than others in Fig. 6a.) At each tempera-
ture, we record the optical spectrum, as shown in Fig. 6b where we have 
magnified the idler, signal and pump bands in the left, middle and right 
panels, respectively. Importantly, the μOPO output power is main-
tained across the entire tuning range. Moreover, the nearly 300 GHz 
of tuning reported here was only limited by instabilities in our setup at 
the higher temperatures. Given such stability, we expect that greater 
tuning ranges, possibly exceeding the FSR, are attainable. Our measure-
ments suggest that a suitable choice of N, combined with continuous 
tunability, gives deterministic wavelength control with high 
accuracy.

Discussion
Importantly, through the OPOSSUM mechanism we achieve 99.7% 
wavelength accuracy without iterating fabrication runs (that is, to 
target specific wavelengths, we identify N values based only on our 
finite-element simulations, with little guidance from previous meas-
urements). Moreover, temperature tuning beyond the ~50 K range 
that we can achieve in experiments will compensate for wavelength 
inaccuracies. In cases where Δν+ depends on T, one can leverage the 
relationship between Δν+ and mp. For instance, if T must be adjusted 
so much that a μOPO is destabilized when pumping mode mp, then 
switching to mp ± 1 (depending on whether T has been increased or 
decreased) will restore frequency matching.

In conclusion, we have shown that coherent coupling in photonic 
crystal resonators can facilitate FWM-based nonlinear wavelength 
conversion without higher-order GVD. We theoretically investigated 
four χ(3) processes within such resonators: FWM-BS, THG, DWEs in 
microcombs and OPO. In all cases we found that large efficiencies 
could be achieved for a specific targeted mode, establishing a basis 
for wavelength accuracy in Kerr-nonlinear photonics, and future opti-
mization of the method should lead to even larger efficiencies than we 
report here. Moreover, we explored how the photonic crystal structure 
gives excellent control over generated wavelengths while protecting 
the FWM process from unwanted nonlinear couplings. To affirm the 
simulation results, we experimentally focused on the specific case of 
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OPO, which is typically distinguished by a substantial sensitivity of the 
output wavelengths to the device geometry and pump wavelength. We 
generated μOPOs with signal wavenumbers defined by the photonic 
crystal grating period. We measured the conversion efficiencies and 
threshold powers for multiple devices, and our measurements agreed 
with the simulations. Finally, we demonstrated continuous tunability of 
the μOPO spectrum. Importantly, we expect that coherent coupling can 
be implemented in resonant χ(2)-nonlinear systems, in addition to the χ(3) 
systems discussed here. The devices and methods introduced here will 
be invaluable to future nanotechnologies that utilize application-tuned 
and wavelength-accurate nonlinear photonics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-023-01326-6.
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Methods
Fabrication methods
We deposit stoichiometric SiN via low-pressure chemical vapour depo-
sition on top of a 3-μm-thick layer of SiO2 on a 100-mm-diameter Si 
wafer. We fit ellipsometer measurements of the wavelength-dependent 
SiN refractive index and layer thicknesses to an extended Sellmeier 
model. The device pattern is created in positive-tone resist using 
electron-beam lithography and then transferred to SiN via reactive-ion 
etching using CF4/CHF3 chemistry. After cleaning the devices, we anneal 
them for 4 h at 1,100 °C in N2. Next, we perform a liftoff of SiO2 so that 
the resonator has an air top cladding for dispersion purposes while 
the perimeter of the chip is SiO2-clad for better coupling to lensed 
optical fibres. The facets of the chip are then polished for lensed-fibre 
coupling. After polishing, the chip is annealed again.

Measurement of Δν
To measure Δν in our devices, we use laser transmission spectroscopy 
to measure the resonance frequencies of TE0 resonator modes in 
the wavelength regions of interest, and Δν is calculated according to 
equation (3). We use a tunable, continuous-wave titanium:sapphire 
(TiS) laser to perform the spectroscopy. We tune the TiS laser to a 
TE0 resonator mode, minimize the transmission and record the TiS 
frequency using a wavemeter. The TiS laser power is kept at <1 μW to 
avoid thermo-optic mode-frequency shifts.
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