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Abstract: We investigate the accurate full broadband simulation of complex nonlinear optical
processes. A mathematical model and numerical simulation techniques in the time domain are
developed to simulate complex nonlinear optical processes without the usual used slowly varying
envelope approximation. We illustrate the accuracy by numerical simulations. Furthermore, they
are used to elucidate THz generation in periodically poled Lithium Niobate (PPLN) including
optical harmonic generation.
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1. Introduction

Nonlinear optical phenomena are the basis of a wide range of applications such as novel optical
sources and measurement or diagnostic techniques. With the increasing availability of high-
intensity lasers, this field of research progresses fast, continuously uncovering new applications.
With growing complexity, however, the simulation of nonlinear optical phenomena becomes
more important to achieve optimal performance and save cost and time required for empirical
studies.

In recent years wave phenomena have received increasing attention from the applied math-
ematics community. Nevertheless, scientists or practitioners oftentimes still rely on ad hoc
approximations to deal with the central issues that they face. Oftentimes these approximations
allow for increased speed but reduce the accuracy of simulations and predictions. We want
to demonstrate the accuracy and efficiency of the concepts developed in the field of applied
mathematics and apply it to problems of practical interest. In the long term, we hope that this
will reduce the need for simplifying assumptions, for example the slowly varying envelope
approximation and increase physical realism.

In this work we present efficient and accurate methods for modelling complex phenomena
in nonlinear optics. In particular we study frequency mixing processes in the context of THz
generation in periodically poled nonlinear crystals by means of Quasi-Phase-Matching. The
conceptual basis is the direct simulation of the wave equation, which allows general combinations
of dispersion models, nonlinearities and reduced simplifying assumptions. Together with a
formulation of a perfectly matched layer (PML) for the domain truncation this allows simulations
of phenomena in nonlinear optics with high accuracy. The discretization is done with a finite
element time domain (FETD) method with which we gain flexibility w. r. t. complex domain
geometries, order of approximation and better handling of discontinuities compared to, e.g., finite
differences. We develop our FETD method within the framework of space time finite element
methods (STFEM). The computational effort can become enormous, which we alleviate by using
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parallelization and state of the art computational frameworks. We present numerical results for
the problem of THz generation in PPLN which demonstrates the accuracy and efficiency of the
presented methods. We conclude our work by giving an outlook for future work.

2. Related works

Among the most popular methods to simulate electromagnetic phenomena are finite element
methods. There is a wide range of literature and software on them, which we briefly review
here. Finite element methods are often used for physical simulations of any kind. In the field of
numerical methods for electromagnetics and optics the FETD method [1] allows fully broadband
simulations. The FETD method is well established, cf. [1], references therein and [2] for more
recent results. However, its use in the field of nonlinear optics results remain sparse: In [3–5]
Abraham et al. developed methods for applications similar to the ones studied within this paper.
In [6] they extended these methods to a mixed finite element formulation. In [7] the authors use
discontinuous Galerkin methods, which can be advantageous for hyperbolic problems due to low
dispersion and dissipation errors [8].

In particular, no literature is available on the subject of this paper, finite element time domain
methods for the simulation of nonlinear optical generation of THz radiation. In [9–11] the authors
use finite difference methods for the spatial discretization and explicit Runge-Kutta methods
for the time discretization to simulate simplified models based on the slowly varying envelope
approximation. To increase physical realism, we develop a new approach using finite element
time domain methods.

In the experimental context the generation of THz radiation is an active field of research with
a wide range of applications including imaging [12], linear and nonlinear THz spectroscopy
[13] and powering novel accelerators for compact electron sources. In the past, research in
nonlinear optical generation of THz radiation has focused on the development of broadband,
single-cycle sources [14,15]. These techniques enabled conversion efficiencies approaching 2%
[16]. Emerging applications, such as THz-driven electron acceleration [17], require high-field
pulses with high spectral purity. This demand has driven multiple advancements, which improved
efficiencies from the 1.00×10−5 to 1.00×10−3 range and THz pulse energies from the nJ to the
mJ range [18–21].

Electromagnetic phenomena can be complex, so simplifying assumptions such as considering
only a single frequency component (time-harmonic waves) or linear and instantaneously respond-
ing materials are popular. Here we consider the dispersive and nonlinear electromagnetic wave
equations in the time domain. This gives us the ability to resolve all frequencies while taking
frequency dependent responses into account.

In numerical simuations, wave propagation and other physical processes have to be truncated
to bounded regions. Artificial boundaries that do not perturb the wave propagation and lead
to unphysical reflections, caused by boundary conditions imposed there, are desired. To this
end, we discuss an implementation of the PML, which has been introduced in [22]. The PML
method is cost-effective, easy to implement and not limited with respect to the computational
domain. The original PML formulation relies on a splitting of the physical field into different
components. The splitting introduces two different sets of equations in the physical and PML
domain. This requires the treatment of the interface between the two domains. An alternative
approach is to consider the PML in the frequency domain as a coordinate stretching [23]. From
these formulations, a time dependent PML can be derived. The arising convolutions can be
computed by means of auxiliary differential equations.

The PML method has been applied to lots of problems in electromagnetics and optics
[22,24–49]. Here we will adapt the complex frequency shifted PML (CFS-PML). The advantage
of CFS-PML is the ability to account for a wider variety of frequency ranges [50–56]. This is
useful for low frequency waves, where the PML is known to fail [46]. For an in-depth review of
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the PML technique we refer to [57] and references therein. An additional issue in nonlinear optics
is the treatment of the nonlinear term in the PML region and at the boundary to the physical
region. In contrast to this work where the PML is left linear, Abraham et al. [3] kept the PML
nonlinear.

We develop the complex frequency PML in the context of space time finite element methods
(STFEM) [58]. This allows to use a variety of time stepping methods, for example advantageous
higher order methods such as [59]. Variational time discretizations can be seen as a natural
extension of variational discretizations in space. This facilitates the use of concepts such as
duality and goal oriented adaptivity [60,61]. The concepts of variational space time discretization
are also applied to stability and error analysis [62]. Furthermore, the use of space time FEM
allow us to solve the wave equation together with the arising auxiliary differential equations
(ADE) in a single holistic framework. This framework can then be extended by the methods
mentioned above in a generic manner.

3. Mathematical and physical problem

In this section we address the physical models for the propagation of electromagnetic waves in
nonlinear dispersive media. Dispersive and nonlinear effects are the result of the wave interacting
with the atoms or molecules in a medium. The polarization captures these interactions on
a macroscopic level. The polarization P is generally developed as a power series w. r. t. the
electric field E with the electric susceptibilities χ(n). For the materials we consider the linear and
quadratic term

P = ε0
(︂
χ(1)E + χ(2)E2

)︂
(1)

suffices. With the assumptions made above, this expansion of Pi simplifies to (1). In general
the coefficients χ(n) are frequency dependent tensors of (n + 1)th rank. Linear dispersion can
then be described by a frequency dependent χ(1), as we will do later. While this can also be
true for the nonlinear terms, we consider instantaneous nonlinearities in this work. With one
exception, we consider homogeneous materials. We assume that χ(1) and χ(2) can be simplified
to scalar functions. We will discuss concrete functions in later sections. Note that, in the
multidimensional case, the polarization P reads as Pi = ε0

(︂
χ
(1)
ij Ej + χ

(2)
ijk EjEk

)︂
using Einstein

summation convention. The indices range from 1 to d, the number of space dimensions.

3.1. Physical model

We state the governing equations in the time domain where we transform the equations and
quantites by applying a time transformation t̃ = c0t. We use this everywhere and omit the “˜”
nomenclature from now on. Let D ⊂ Rd and I = (0, T] be an open bounded time interval. We
state the electromagnetic wave equation that includes a second order instantaneous nonlinearity
in dispersive media:

−∆E + ∂tt(n(t)2 ∗ E) + χ(2)∂ttE2 = f in D × I, (2a)

E(0) = E0, ∂tE(0) = A0 in D, E = gE on ∂D × I . (2b)

A Lorentz dispersion model accounts for the frequency dependent refractive index. It models
electrons as damped harmonical oscillators bound to the nucleus. The reaction of an electron to
external electromagnetic fields is then given by the differential equation

mp̈ + mΓ0ṗ + mν2t p = −eE . (3)

Here m is the electron mass, Γ0 is the damping coefficient and νt is the phonon frequency that
raises the refractive index for the low frequencies. We use nΩ and nω as low and high frequency
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limits of the refractive index. The electric permittivity and refractive index can then be expressed
through the solution to (3) above:

n(ν)2 = n2
ω +

(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

. (4)

In the time domain this leads to the convolution [n2 ∗ E](t); cf. (2). To avoid the expensive
evaluation of the convolution in (2), we derive an ADE. To this end we introduce the auxiliary
variable P, which is defined as

(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

E =: P . (5)

By this definition we obtain n(ν)2E = n2
ωE + P in the frequency domain. The second term of

(2) in the frequency domain becomes

∂tt(n(t)2 ∗ E) = −ν2nωE − ν2P . (6)

From (5) we derive the ADE for the variable P in the frequency domain

ν2t P − ν2P + iΓ0νP − (n2
Ω
− n2

ω)ν2t E = 0 . (7)

We transform (7) to the time domain with an inverse Fourier transform. This leads to the actual
ADE (8a) for Lorentz materials in the time domain. We use the ADE (7) to substitute −ν2P in
(6) and insert this into the electromagnetic wave Eq. (2), such that we recover (2a) a

∂ttP + Γ0∂tP + ν2t P − (n2
Ω
− n2

ω)ν2t E = 0, (8a)

−∆E + n2
ω∂ttE + (n2

Ω
− n2

ω)ν2t E − ν2t P − Γ0∂tP + χ(2)∂tt(E2) = 0, (8b)
with boundary and initial conditions as given in (2b). The technique of avoiding the evaluation
of the convolution by deriving an ADE is well-suited for the space time finite element framework.
However, alternative methods for evaluating the convolution have been proposed, most notably
the recursive convolution method (RCM) [63–65] and z-transform method [66,67].

In [68] the z-transform has been applied to nonlinear dispersive media. This has proven to be
efficient and easily generalizable to complex media, which can be hard to achieve when the ADE
method is used. Nevertheless, the ADE method has advantages over the RCM and z-transform
approach. Firstly, the ADE will be discretized and solved with the same numerical methods as
the actual wave equation. Thus we maintain the same order of approximation for all equations
of our model. Furthermore we maintain the high level of flexibility w. r. t. the discretization
techniques. This also facilitates error and stability investigations. Secondly, the implementation
effort for adding an ADE to an existing space time finite element framework is small.

3.2. Domain truncation

In numerical simuations, wave propagation and other physical studies have to be truncated to
bounded regions. Artificial boundaries that do not perturb the wave propagation and lead to
unphysical reflections, caused by the imposed boundary conditions, are desired. Two main types
of methods exist for the implementation of such types of boundaries.

The first method uses an absorbing boundary condition on the surface of the domain. The waves
leave the domain without spurious reflections. In practice these types of boundary conditions are
difficult to implement due to their fast growing complexity for higher order methods. Secondly,
satisfactory absorption at sharp incident angles independent of the order is not feasible.

The second method used for absorbing boundaries is the PML. It is based on the idea to absorb
all waves in an artificial boundary region using a volume surrounding the physical domain. Here
we apply the complex frequency shifted PML (CFS-PML) that is based on [55]. It allows us to
derive ADEs similar to the Lorentz dispersion, which leads to a high level of flexibility w. r. t. the
applications of discretization techniques.
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3.2.1. Complex frequency shifted PML

Complex frequency shifted PML (CFS-PML) are based on a complex stretch of coordinates. As
the name suggests, CFS-PML use a frequency-shifted complex coordinate stretching function:

sk(ν) = κk + σk

αk + iν
, k ∈ x, y, z . (9)

The reciprocal of this function will be useful later on:

1
sk(ν) =

1
κk
+
σ̃k

α̃k + iν
, k ∈ x, y, z, where σ̃k = −σk

κ2k
and α̃k =

σk

κk
+ αk . (10)

In general, the parameters are functions depending on the position in the PML. Here we chose
a cosine profile

fc = bc + ac

(︃
1
2
− 1

2
cos

(︂
2π

vk

δ

)︂)︃pc

, where c ∈ {αk, σk, αk} . (11)

The parameters should be chosen such that κk = 1 and σk = 0 at the interface to the physical
domain to ensure continuity of the physical parameters and thereby the continuity of the solutions
E and A. The frequency shift α decays from the interface towards the PML boundary. The
parameter δ is the thickness of PML and vk the distance to the interface to the physical domain.

We derive the ADE formulation of the CFS-PML by multiplying the first term of (8b) by sx
which leads to

∂x
1
sx
∂xE +

(︃
κx +

σx

αx + iν

)︃ (︄
n2
ω +

(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

)︄
ν2E = 0 . (12)

We need to derive an ADE for the term 1
sx
∂xE in (12) as well as for the product of sx and the

Lorentz term. For the former we introduce the auxiliary variable Q,

∂x
1
sx
∂xE = ∂xκ−1

x ∂xE + ∂x
σ̃x

α̃x + iν
∂xE = ∂xκ−1

x ∂xE + ∂xQ, (13)

where Q is the solution to the equation iνQ + α̃xQ − σ̃x∂xE = 0 . The product of the Lorentz
dispersion term is more involved. The product of PML and Lorentz term yields(︃

κx +
σx

αx + iν

)︃ (︄
n2
ω +

(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

)︄
=(︃

κx +
σx

αx + iν

)︃
n2
ω + κx

(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

+
σx

αx + iν
(n2
Ω
− n2

ω)ν2t
ν2t − ν2 + iΓ0ν

.

(14)

In the following definition of the equations we do not consider the last term in (14). This avoids
the necessity to handle third order time derivatives. Since the parameter σ will always be 0 at the
interface between physical and PML region, we don’t expect this to have major influence on our
model and the accuracy of the simulations. We further limit our model to the one dimensional
case.

Definition 3.1 (ADE-CFS-PML equation in 1 dimension with Lorentz dispersion). Let
D = [0, LD] ⊂ R be a closed interval with boundary ΓD = {0, LD} and I = (0, T] a bounded
time interval. Corresponding to our real test case we prescribe Dirichlet boundary conditions
on both endpoints of D. We further define the decomposition of D into disjoint intervals
D = DPhy ∪ DPML. The decomposition is defined by the intervals DPhy = [0, LPhy) and
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DPML = [LPhy, LD], where LPML = LD − LPhy. The physical region DPhy is the domain of
physical interest, e.g., the periodically poled crystal in our case. The PML region DPML on the
other hand purely exists for damping incoming waves. In the physical region ΩPhy the governing
equations read as

∂ttP + Γ0∂tP + ν2t P − (n2
Ω
− n2

ω)ν2t E = 0, (15a)

−∆E + n2
ω∂ttE + (n2

Ω
− n2

ω)ν2t E − ν2t P − Γ0∂tP + χ(2)∂tt(E2) = 0, (15b)

with initial conditions E(x, 0) = E0(x), x ∈ DPhy and boundary conditions E(x, t) = g(x, t), x =
0, t ∈ (0, T]. Inside the PML-region ΩPML we solve the equations

∂ttP + Γ0∂tP + ν2t P − κx(n2
Ω
− n2

ω)ν2t E = 0, (16a)

∂tR + αxR − n2
ωσxE = 0, (16b)

∂tQ + α̃xQ − σ̃x∂xE = 0, (16c)

−∇ · κ−1
x ∇E + ∂xQ + κxn2

ω∂ttE + κx(n2
Ω
− n2

ω)ν2t E (16d)

−ν2t P − Γ0∂tP + ∂t
(︂
n2
ωσxE − αxR

)︂
= 0, (16e)

with initial conditions E(x, 0) = 0, x ∈ DPML and boundary conditions E(x, t) = 0, x = LD , t ∈
(0, T].

4. Discretization

In this section we develop the numerical methods for solving the electromagnetic wave equation
introduced in Def. 3.1. First we write the electromagnetic wave equation as a first order in time
system.

Problem 4.1 (First order ADE-CFS-PML equation). Considering Eq. (15) given in Def.
3.1. the first order in time governing equations in the physical region DPhy are

∂tP + Γ0P − U = 0, (17a)

ν2t P − (n2
Ω
− n2

ω)ν2t E + ∂tU = 0, (17b)

n2
ω∂tE − Γ0P + χ(2)∂t(E2) − A = 0, (17c)

−∆E + (n2
Ω
− n2

ω)ν2t E − ν2t P + ∂tA = 0 . (17d)

Note that we introduced auxiliary variables A and U in order to obtain the first order formulation.
The equations inside the PML-region ΩPML can be formulated analogously without changing the
equations for Q and R.

4.1. Variational space time methods

We briefly review variational space-time methods along the lines of [58] and investigate
discretization in space and time with special focus on the nonlinearity and PML. In addition to
the definitions given in Def. 3.1. let L := L2(D) and V := H1

0(ΓD;D), where H1
0 is the space

of H1-functions with vanishing trace on the specified part of the boundary (here ΓD). For the
definition of these function spaces we refer to [69]. We denote the L2-inner product by ⟨•, •⟩•,
where the subscript denotes the domain of integration and ⟨•, •⟩ := ⟨•, •⟩D . By • we denote the
L2-norm and by ∥•∥1 the H1-norm. Let L := L2(D) and V := H1

0(D). We split the time interval
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I into a sequence of N disjoint subintervals In = (tn−1, tn], n = 1, . . . , N. For a Banach space B
and k ∈ N0 we define

Pk(In, B) =
⎧⎪⎨⎪⎩wτn : In → B

|︁|︁ wτn (t) =
k∑︂

j=0
W jtj∀t ∈ In, W j ∈ B∀j

⎫⎪⎬⎪⎭ . (18)

For r ∈ N we define the finite element space that is built on the spatial mesh as

Vr
h =

{︁
vh ∈ C(D̄)

|︁|︁ vh |K ∈ Qr(K) ∀K ∈ Th
}︁ ∩ H1

0(D), (19)

where Qr(K) is the space defined by the reference mapping of polynomials on the reference
element with maximum degree r in each variable. For the discretization of the equations in (17)
we split the time interval I into a sequence of N subintervals In. With a discontinuous test basis
supported on the subintervals In, this leads to a sequence of the following local problems on each
subinterval.

Problem 4.2 (Space-time formulation of the ADE-CFS-PML equation). Assume that the
trajectories eτ, h, aτ, h, pτ, h and uτ, h have been computed before for all t ∈ [0, tn−1], starting with
initial conditions eτ, h(0) = e0, h, aτ, h(0) = a0, h, pτ, h(0) = p0, h and uτ, h(0) = u0, h. Consider
solving the following local problem on the interval In:

For given en−1
h := eτ, h(tn−1) ∈ V1

h with eτ, h(t0) := e0, h, find (eτ, h, aτ, h, pτ, h, uτ, h) ∈
P1(In, V1

h ) × P1(In, V1
h )

3, such that eτ, h(tn−1) = en−1
h and∫ tn

tn−1

⟨∂tpτ, h, φτ, h⟩ + Γ0⟨pτ, h, φτ, h⟩ − ⟨uτ, h, φτ, h⟩dt = 0, (20a)∫ tn

tn−1

ν2t ⟨pτ, h, φτ, h⟩ − (n2
Ω
− n2

ω)ν2t ⟨eτ, h, φτ, h⟩ + ⟨∂tuτ, h, φτ, h⟩dt = 0, (20b)∫ tn

tn−1

n2
ω ⟨∂teτ, h, φτ, h⟩ − Γ0⟨pτ, h, φτ, h⟩

+ χ(2)⟨∂t(eτ, heτ, h), φτ, h⟩ − ⟨aτ, h, φτ, h⟩dt = 0,
(20c)

∫ tn

tn−1

⟨∇eτ, h, ∇φτ, h⟩ + (n2
Ω
− n2

ω)ν2t ⟨eτ, h, φτ, h⟩

− ν2t ⟨pτ, h, φτ, h⟩ + ⟨∂taτ, h, φτ, h⟩dt =
∫ tn

tn−1

f ,
(20d)

for all (vτ, h, wτ, h, wτ, h, wτ, h) ∈ P0(In, V1
h )×P0(In, V1

h )
3. The equations inside the PML region

can be derived in an analogous manner with R ∈ P1(In, V1
h ) and Q ∈ P1(In, V1

h ).
We formulate a discrete problem in space and time by expanding the solutions eτ, h, aτ, h, pτ, h,

uτ, h in (20) in terms of temporal basis functions. In this work we consider the lowest order case
of linear polynomials.

4.1.1. Linear Galerkin method in time for the wave equation

The representation of (eτ, h, aτ, h, pτ, h, uτ, h) in terms of linear polynomials φn,0 and φ1,1 ∈
P1(Īn; R) on Īn can be substituted into (20). Then we integrate (20) numerically and get the
system of equations

Mvn
h +
τn
2
Avn

h =
τn
2

(︂
bn−1

h + bn
h

)︂
+Mvn−1

h − τn
2
Avn−1

h . (21)

The solution vectors are defined as vn
h =

(︂
(un

h)⊤, (pn
h)⊤, (en

h)⊤, (an
h)⊤

)︂⊤
. The discrete operators

M and A are defined in terms of (M)ij = ⟨φh, j, φh, i⟩, (A)ij = ⟨∇φh, j, ∇φh, i⟩ and the nonlinear
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operator (N(e))ij = ⟨eφh, j, φh, i⟩ as follows

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−M Γ0M 0 0

0 ν2t M −(n2
Ω
− n2

ω)ν2t M 0

0 Γ0M 0 −M
0 −ν2t M (n2

Ω
− n2

ω)ν2t M +A 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 M 0 0

M 0 0 0

0 0 n2
ωM + χ(2)N(e) 0

0 0 0 M

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The system of Eqs. (21) is equivalent to the one we would get from the well-known Crank-
Nicholson method. By deriving update equations for the variables un

h, pn
h and an

h we can
condense (21) such that we just need to solve for en

h.
For the solution of the system of nonlinear Eqs. (21) we use a linearization with a damped

version of the Newton method. Let vn
h ∈ Vh : S(vn

h) = F be the nonlinear system of equations
defined by (21). We assume that it is sufficiently differentiable by means of the Gateaux derivative
S′(vn

h; δvn
h) := d

dsS(vn
h + εδv

n
h)|ε=0. S′ denotes the derivative of S at vn

h ∈ Vh in direction
δvn

h ∈ Vh. In each step of the Newton method a linear system of equations arise from the
discretization, which can then be solved with linear solvers, e.g., Conjugate Gradient or Multigrid
methods. For a general overview of iterative methods see [70] or [71,72] for multigrid methods
in particular. Details on the application of Newton’s method and its variants to nonlinear
partial differential equations can be found in the literature [73,74]. Similar methods for the
solution of nonlinear electromagnetic wave equations including dispersive nonlinearities have
been developed in [4,68]. They have also been implemented on GPUs [6]. The Newton iteration
for solving (21) with an initial guess vn

h0 ∈ Vh iterates for m = 0, . . .

δvn
hm : S′(vn

hm−1; δvn
hm) = F − S(vn

hm−1), vn
hm := vn

hm−1 + δv
n
hm . (22)

As we have already seen in (16) the system of equations grow larger in the PML region due to
the additional variables for the PML. However, we can condense this system to the same size as for
the physical domain by reducing the ADEs to simple update equations. Since we don’t consider
nonlinear processes inside the PML, the nonlinear part can be left out here. We redefine vn

h and the

operators M and A in the PML region DPML as vn
h =

(︂
(qn

h)⊤, (rn
h)⊤, (un

h)⊤, (pn
h)⊤, (en

h)⊤, (an
h)⊤

)︂⊤
and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α̃G 0 0 0 σ̃A 0

0 αM 0 0 −n2
ωσM 0

0 0 −M Γ0M 0 0

0 0 0 ν2t M −(n2
Ω
− n2

ω)κν2t M 0

0 −αM 0 −Γ0M n2
ωσM −M

G 0 0 −ν2t M (n2
Ω
− n2

ω)κν2t M + 1
κA 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G 0 0 0 0 0

0 M 0 0 0 0

0 0 0 M 0 0

0 0 M 0 0 0

0 0 0 0 n2
ωκM 0

0 0 0 0 0 M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using these definitions, the notation of the system of equations in the PML region doesn’t
differ compared to (21). Analogous to the equations in the physical region we can derive vector
updates for the auxiliary variables. In our numerical investigations in Sec. 5 we study the
computational effort required for the PML.

5. Numerical simulation

In this section we demonstrate the efficiency of our techniques and the PML in particular. Firstly,
we verify the accuracy of our methods with convergence tests. We chose a test based on plane
waves. Secondly, we investigate the physical problem of THz generation in PPLN. We verify
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the methods once again by comparing results and quantities of interest to experimental data.
We discuss the practical implications, with a focus on aspects not yet investigated, e.g., second
harmonic generation (SHG).

For the implementation we use the finite element toolbox deal.II [75] along with the Trilinos
library. These software libraries support parallelization with MPI which is used throughout this
work. The nonlinear systems of equations are solved with a Newton-Krylov method. The linear
systems of equations arising in each Newton step are solved with the conjugate gradients (CG)
method. The convergence is accelerated by the algebraic multigrid solver MueLU [76], that is
used as a preconditioner with a single sweep performed for every CG step.

5.1. Convergence and runtime study

Here we verify the numerical methods we developed before. To this end we manufacture a
solution by prescribing a function as the solution to (17). We use the residual of this function
as a source term, which in turn makes the prescribed function the solution. We use the linear
Galerkin method proposed in (21) for the time discretization and the finite element space V2

h
defined in (19) for the spatial discretization. Consequently, we expect second-order convergence.
Although piecewise linear polynomials in space would have been sufficient for ensuring this
rate of convergence, we use piecewise quadratic polynomials which has been shown to be
advantageous.

We chose a 1D test case in the domain D = [0, 1.96×10−3] over the time interval I =
[0, 1.00×10−13]. As the electric field we chose

E(x, t) = sin (2πω2 (x − n2t)) + sin (2πω1 (x − n1t)) . (23)

The source term can be calculated by substituting (23) into (17). To compute the error in the
physical domain and exclude error contributions from within the PML region, we introduce a
weighting function l : D → R that is 1 in the physical domain and 0 in the PML region:

l(x) =
{︄

0, x ∈ DPML,
1, x ∈ DPhy .

Furthermore we multiply l by the source term to restrict it to the physical domain. Thereby the
solution inside DPhy is given by (23). Then it propagates into DPML where it is attenuated to the
point of vanishing.

We study the errors eZ = Z(x, t) − Zτ, h(x, t) for Z ∈ {E, A, P, U} in the norms

∥eZ ∥L∞(L2) = max
t∈I

(︃∫
D
|eZ |2dx

)︃ 1
2

, ∥eZ ∥L2(L2) =
(︃∫

I

∫
D
|eZ |2dxdt

)︃ 1
2

. (24)

We abbreviate the error quantity ∥eE∥L∞(L2) by L∞ − L2(E) and analogously for the other
norms and variables. The errors are calculated by simultaneous refinement in space and time.
Table 1 and Fig. 1 show the optimal order of convergence we expected, due to the second order
convergence in time. This proves the efficacy of our PML implementation and that it is suitable
for nonlinear dispersive materials. Towards the end we see a decrease in the order of convergence
for the electric field, which is due to minor reflections caused by the PML. This can be avoided at
the cost of increased computation time by extending the PML. Here we decided to chose the PML
similar to the physical problem we investigate later. We use the convergence test to investigate
the influence of the PML on the runtimes and demonstrate the efficiency of the methods used. To
this end we compare the computation times per degree of freedom (DoF) inside the PML with
those in the physical domain. In order to minimize the computational overhead of the PML we
assemble the data structures for the PML once and reuse them in every timestep. This is possible
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since the PML does not have any nonlinearity which needs to be evaluated. For example, the
evaluation of the PML damping functions α, σ, κ can become expensive. However, they are time
independent and only need to be evaluated once. By caching them the time spent per DoF in the
PML increases by less than 1% compared to a DoF in the physical region.

�

�

E
r
r
o
r

�

�

Fig. 1. Calculated errors for the electric field E and the auxiliary variables A, U, P for the
linear Galerkin method plotted against the timestep-size. The expected quadratic order of
convergence is visualized by the dashed line and the triangles in the lower left corners.

Table 1. Calculated errors and experimental orders of convergence (EOC) for the electric field and
the auxiliary variable A for the linear Galerkin method introduced in Sec. 4.1.1.

k · c0 L∞ − L2(E) EOC L∞ − L2(A) EOC L2 − L2(E) EOC L2 − L2(A) EOC

3.00×10−4 8.16×100 — 2.55×103 — 8.69×10−1 — 2.49×102 —

1.50×10−4 1.61×100 2.35 1.21×103 1.08 1.68×10−1 2.37 1.24×102 1.00

7.49×10−5 3.88×10−1 2.05 3.44×102 1.81 3.99×10−2 2.07 3.60×101 1.79

3.75×10−5 1.00×10−1 1.95 8.85×101 1.96 9.89×10−3 2.01 9.31×100 1.95

1.87×10−5 2.69×10−2 1.90 2.23×101 1.99 2.50×10−3 1.99 2.35×100 1.99

9.37×10−6 7.67×10−3 1.81 5.59×100 2.00 6.54×10−4 1.93 5.88×10−1 2.00

4.68×10−6 2.39×10−3 1.68 1.40×100 2.00 1.92×10−4 1.77 1.47×10−1 2.00

This shows that the PML is resource efficient, scales well and the computational overhead is
solely determined by the size of the PML. In the following section we briefly analyze the cost of
the PML in a realistic setting.

5.2. THz generation in PPLN

In our numerical investigations we simulate THz generation in PPLN. The main goal in this
section is to reproduce the experimental results presented in [21]. The simulation data has the
advantage that we can evaluate it in all points of the space-time domain. Thus we can correlate
the different harmonics with each other and uncover effects of the periodic poling and quasi phase
matching. This will improve the understanding of the physical processes. That potentially leads
to the improvement of the experimental setup especially for higher intensities where simplified
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models fail. As in [21], we use two pump pulses with super Gaussian envelope

g(t) = exp
(︁ − (︁

2 log 2
(︁ t
τ

)︁2)︁P)︁(cos(2πω1t) + cos(2πω2t)) .

The pulses are separated in center frequency by the THz frequency with a full width half
maximum τ = 2.50×102 ps and frequencies ω1 = 2.92×102 THz, ω2 = 2.91×102 THz and P = 6.
We chose a pulse with average fluence of 2.00×103 J m−1. It is applied at the left-hand side of the
crystal by a Dirichlet boundary condition and then propagates through the domain until the PML
is hit on the right-hand side. The problem setting is sketched in Fig. 2. The computational effort
for these simulations are very high: Depending on the fluence, which influences the number
of iterations of the Newton method, the simulations can take up to 4 weeks. The simulations
presented here took 3 weeks on a workstation with 2 Intel Xeon E5-2699 CPUs (2 × 18 cores).
In this study, we limited our investigations and numerical simulations to one spatial dimension.
This was necessitated by simulation times and the added complexity of using Perfectly Matched
Layers (PMLs) in 2D and 3D. In the settings investigated here, the simplification of reducing
the simulations to one spatial dimension and neglecting the impacts of the remaining spatial
directions is not expected to significantly perturb the results. The simulation results presented
here are based on a timestep size of k = 5.00×10−17 and average cell-size of 5.18×10−8, which
leads to 1.00×1010 number of timesteps and 4.26×105 degrees of freedom in space.

The intensities of the simulated results are presented in Fig. 3. We observe, besides the THz
radiation generated by difference frequency generation (DFG) in Fig. 3(b), the harmonics in the
optical domain in Fig. 3(a). The optical harmonics are simultaneously generated by SHG and
sum frequency generation (SFG). In particular the second harmonic near 6.00×102 THz and
the other nth harmonics can be well observed. At 9.00×102 THz we can observe the effect of
DFG from the harmonics. The ability to simulate this phenomenon with such a low conversion
efficiency again demonstrates the potential and accuracy of the proposed method. We also find
significant intensities at frequencies 1.00×102 THz, 2.00×102 THz and 4.00×102 THz cf. 4(a),
3(a).

𝜔

𝜔

Ω

Λ

Γout
Γin

−𝜒 (2) 𝜒 (2) PML

Fig. 2. Example setting of a periodically poled crystal with period Λ. The pump pulse
g(t) at frequencies ω1, 2 enters the crystal on the left side Γin. In the subsequent layers THz
radiation is generated.

In Fig. 3(c) we show the intensity over the length of the PML at time t = 2.50×102 ps when
the pulse has entered the crystal. The intensity decays monotonically over the length of the
crystal until it almost vanishes. Reflections from the boundary are damped again. Therefore,
based on Fig. 3(c) we don’t expect spurious reflections into the physical domain. This proves the
effectiveness of the formulation of the PML. The PML has the same length as one poling period
of the PPLN crystal. With a period of Λ = 2.12×102 µm and 25 periods the computational
domain is enlarged by about 4%. Considering that the increase in computational cost per degree
of freedom was about 1% inside the PML in the convergence test, the PML accounts for 4% of
the total computing time, which is reasonable.

In Fig. 4(a) we show the internal conversion efficiencies plotted over the whole spectrum
from 0.00×100 THz to 8.00×102 THz. The methods and physical models we use allow us to
include nonlinear effects apart from optical to THz conversion in our results. Near 3.00×10−1
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Fig. 3. Plot (a) shows the spectrum of the electromagnetic field after it has passed 25 periods
of the crystal shown in Fig. 2 in the 0 THz to 1.00×103 THz region and (b) in the region
from 1.00×10−2 THz to 1.00×102 THz. Subplot (c) shows the intensity of the electric field
inside the PML at time t = 7.50×102 fs.

THz we see the remaining parts of the two input pulses. We observe a narrow peak near 0THz,
corresponding to the generated THz radiation at 3.00×10−1 THz. We further see the generation
of optical harmonics in a cascading manner. These efficiencies are mostly constant, since these
processes are phase-mismatched. For example, the SHG is phase mismatched and nevertheless
the conversion efficiencies are of similar magnitude compared to the ones at 3.00×10−1 THz.
This is due to the much higher efficiency for SHG than for THz generation and despite the large
phase mismatch some is generated.

Similar effects can be observed in Fig. 4(a) where the conversion efficiency in the layers
are plotted. The conversion efficiency at 4.00×102 THz remains constant over the layers; cf.
Figure 4(4). The 3.00×10−1 THz radiation on the other hand grows over the layers since the
process is phase-matched; cf. Figure 4(1), 4(b). In Fig. 4(2,3) we observe similar phenomena
at approximately 1.00×102 THz and 1.90×102 THz. Considering the Lorentz model (4) we
note that the phase matching condition for optical paramectric oscillation is almost fulfilled
for the process of frequency splitting with the pump frequencies ω1 and ω2, idler frequency
ωi = 1.00×102 THz and respective signal frequencies ωs, 1 = ω1 − ωi, ωs, 2 = ω2 − ωi.

We conjecture that the significant amount of radiation at 1.00×102 THz and 1.90×102 THz is
due to the frequency splitting described above. This hypotheses fits well with the simulation
data, where we observe a fast growth of the conversion efficiency. Further, we conjecture that the
4.00×102 THz radiation is a result of frequency mixing processes of the pump, signal and idler
frequencies. This corresponds to the observation that there is not a singular peak at one specific
frequency but rather multiple frequencies. In the last layers, we see a peak near 3.80×102 THz,
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Fig. 4. Internal conversion efficiency (a) for the frequencies from 1.00×102 THz to 8.00×102

THz. In subplot (b) the intensity at frequencies between 1.00×10−1 THz to 1.00×100 THz
are summed up, then the corresponding conversion efficiencies are plotted over the 25 layers.
Subplot (c) shows the conversion efficiencies determined in the same way for frequencies
between 1.00×102 THz and 8.00×102 THz. Subplot (d) shows the conversion efficiencies
for the second harmonic. In subplots (c) and (d) the pale blue lines show the linear regression
of the data.
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corresponding to the frequency doubling of the signal frequencies ωs, 1 and ωs, 2. The radiation
observed at 4.00×102 THz can be attributed to sum frequency generation of ωi and ω1 or ω2.

In Fig. 4(b) we show the development of the internal conversion efficiencies over the layers for
the THz spectrum from 1.00×10−1 THz to 5.00×10−1 THz. We are able to observe a growing
THz conversion efficiency, since the process is phase-matched. Furthermore, Fig. 4(b) shows
that the simulation data are in good agreement with the experimental data obtained from [21],
with a relative error of 9.8 % and an absolute error of 3.90×10−3. Although more work is
needed to verify this beyond the results presented here, which are based on a single instance. We
interpolated the experimental data between the start of the crystal with 0% conversion efficiency
and the end of the crystal, where experimental data are available.

In Fig. 4(c) we show the development of the internal conversion efficiencies over the layers
for the spectrum from 1.00×102 THz to 8.00×102 THz. Experimental data for a comparison in
this frequency range was not available. The decay of the conversion efficiency over the layers is
physically plausible due to the the optical to THz conversion shown in Fig. 4(b). We note that the
conversion efficiencies in Fig. 4(b) and (c) don’t necessarily add up to 100% since they don’t
cover the whole frequency spectrum and we include absorption in the THz range.

In Fig. 4(d) we show the development of the internal conversion efficiencies over the layers
from 5.60×102 THz to 6.00×102 THz, i.e., the second harmonic. We see that the conversion
efficiency to the second harmonic doesn’t grow significantly. A linear regression reveals that the
conversion efficiency increases slowly and stays almost constant on average. The reason for the
fluctuations is the phase-mismatch, which leads to oscillating negative and positive interference.
This leads to varying conversion efficiencies over the layers, depending on how close we are to a
phase-match. This is in contrast to the 3.00×10−1 THz radiation in Fig. 4(b), where the processes
are phase-matched. It is all the more surprising that we generate so much of the undesired
radiation of the second harmonic frequency.

The results presented in Fig. 4 will be used for the optimization of the optical to THz conversion,
the validation of simplified simulation algorithms and the development of multiscale models.
The validation of the optical parametric oscillation responsible for the generation of 1.00×102

THz, 2.00×102 THz and 4.00×102 THz radiation is subject to future work. Frequency division
in PPLN has been used in practice in the past; cf. [77,78]. However, some of the effects observed
in the simulations in this work still need to be verified by experiments. In the current model
we assumed the refractive index in the optical region at frequencies larger 5.00×101 THz as
constant. This is not correct and most likely leads to the parametric amplification at 100 and
200 THz, which may not be present in reality. In order to model this wavelength range correctly,
the dispersion of the refractive index in the optical wavelength range needs to be implemented.
This is beyond the scope of this paper, which is the development of a numerical algorithm for the
efficient solution of the nonlinear wave equation.

6. Conclusion

In this work we have simulated THz generation in PPLN. To this end we developed the
physical model for nonlinear, dispersive, electromagnetic wave propagation. We investigated the
Lorentz dispersion model and absorbing boundary conditions where we derived the governing
equations 3.1. We have demonstrated the efficiency of the simulation methods and absorbing
boundary conditions that we implemented with the PML. They fit well into the STFEM framework,
are effective and increased the computational cost by only 2%. We developed the methods in
a framework that is extendable to a wide range of applications within nonlinear optics where
numerical methods that are accurate and highly efficient are needed.

In the future we want to extend our code to higher order methods within the STFEM framework
to further accelerate the simulations. The higher order methods will allow us to chose larger time
steps without the loss of accuracy. This is crucial since simulation times can take up to 4 weeks
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right now. In order to not overburden this presentation, we restricted ourselves to the 1D case.
The methods and implementation allow extensions to 2D and 3D and are subject to future work.

Our comparison with experimental data indicated good agreement in terms of the main quantity
of interest, the optical to THz conversion efficiency. The fact that we are able to simulate the
THz conversion as well as the harmonic generation will allow us to design better effective
nonlinear media by poling. We will use the results presented here to optimize the optical to THz
conversion further. Future work include studies on this topic. Furthermore a comparison with
experimental data obtained from measurements in the optical spectrum is needed to explain and
verify the simulation results further. We may need to adjust the dispersion model in the optical
wavelength range. In the STFEM framework this can be done with little work and low additional
computational cost.

The simulations for the results we present here are computationally feasible but still expensive.
The main bottleneck is the time discretization. Since time steps are inherently sequential, the
time discretization limits the scalability of parallelization.
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