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Experimental realization of quantum walks near synthetic horizons on photonic lattices
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Entanglement plays crucial roles in quantum optics, providing a prerequisite for these recent unprecedented
leaps. Nevertheless, the study of quantum entanglement under the influence of relativity, an important ingredient
of quantum optics, still needs to be explored. In parallel, integrated photonic chips, particularly those with the aid
of transformation optics, have simulated various relativity phenomena including gravitational lensing and Unruh
radiation. However, thus far, studying relativistic quantum optics on this type of platform has not yet occurred.
Here, we propose and experimentally realize quantum walks of entangled photons near an emulated Rindler
horizon. Remarkably, we find that quantum interference near the synthetic horizon leads to a counterintuitive
phenomenon of optical escape. Our study paves the way to a tabletop platform for studying quantum phenomena
in various relativistic space-time metrics, and may bring an implication for the test of quantum theory in relativity.
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I. INTRODUCTION

Quantum walks (QWs), the quantum mechanics analog
of classical random walks [1], are a powerful tool used in
quantum computing and simulation. In contrast to classical
random walks, QWs have the distinct advantages of coher-
ent superposition and quantum interference, making them a
compelling platform for simulating topological physical phe-
nomena [2–4], constructing novel quantum algorithms [5–7],
and realizing universal quantum computing [8,9]. The imple-
mentation of QWs has been achieved with diverse physical
architectures, ranging from nuclear magnetic resonance [10],
trapped atoms and ions [11,12], superconducting systems [4],
and fibers [13] to bulk optics [2] and especially integrated
photonic circuits [14–19]. Among these architectures, silicon
photonics [20], which are compatible with complementary
metal-oxide-semiconductor fabrication, have been assumed to
be a promising platform for QWs due to their overwhelming
dominance in terms of density and performance. As a re-
sult, QWs on silicon can be adopted as a resource structure
for quantum simulations, such as the environment-assisted
quantum transports [21] and vibronic modes of molecules in
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chemistry [22]. Recently, there has been an increasing inter-
est in quantum simulation under the background of relativity
[23–28]. For example, QWs in a superconducting processor
[28] with tunable couplings have simulated a curved space-
time of black holes and observed an analogy of Hawking
radiation. In addition to the analog of Hawking radiation
[29,30], one of the salient examples is the Unruh effect [31,32]
in flat space-time, which has been well emulated using a
variety of quantum architectures [33–36].

At the same time, recent years have witnessed remarkable
progress in the highly efficient manipulation of electromag-
netic waves on the subwavelength scale using metamaterials
[37], as well as the production of various functional photonic
architectures with unprecedented performance in integrated
photonic chips, e.g., polarization beam splitters and rotators
[38,39], waveguide crossings and bends [40], and mode con-
verters and multiplexers [41,42]. In particular, the emerging
concept of transformation optics [43–45], a design method
for controlling photons at a researcher’s discretion, opens up
unique possibilities for advancing the integration of complex
functionalities in photonic circuits, such as Maxwell’s fish-
eye lens for multimode routing [46], a Mikaelian lens for
transporting coding information [47], and other various lenses
[48,49]. Additionally, optical simulations of large-scale astro-
physical phenomena using small-scale photonic chips [50],
e.g., gravitational lensing [51], cosmic strings [52], a worm-
hole [53], and Dirac particles near the event horizon [25], have
also been successfully achieved with transformation optics.
Nevertheless, in all these experiments, simulations were car-
ried out using either a classical Gaussian or a single-photon
wave packet, both of which could be explained classically.
Based on this background, our previous work [54] theoret-
ically proposed the use of the QWs of entangled photons
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to study quantum interference in a noninertial frame with a
Rindler metric that is emulated by a nonuniform photonic lat-
tice with the aid of transformation optics. Thus far, however,
no experiments have been carried out for quantum interfer-
ence of entangled photons in the emulated Rindler space
using transformation optics. Remarkably, studying relativis-
tic quantum optics in the tabletop platform may provide a
forward-looking insight for quantum field theory in relativity
in the future.

In this work, we present an observation of the QWs of
entangled photons near an emulated horizon. We exploit
silicon-on-insulator (SOI) technology to fabricate a nonuni-
form silicon waveguide lattice with site-dependent coupling
coefficients inspired by transformation optics, which can map
the Rindler space with an event horizon. We find that the
QWs of single photons and two indistinguishable photons
exhibit optical trapping near the emulated horizons, which
is a well-known classical physical process in which light is
trapping around the event horizon. Intriguingly, for a certain
type of path-entangled photon, there is a counterintuitive phe-
nomenon of optical escape arising from quantum interference.

II. THEORY

A. The mapping of Rindler metric based
on transformation optics

To study the QWs of entangled photons near the emulated
horizon on a silicon chip, we first map the (1+1)-dimensional
Rindler metric [55] into one-dimensional waveguide lattices
whose metric is

ds2 = −(αx)2dt2 + dx2, (1)

where α is the acceleration and nature units have been
adopted. Inspired by transformation optics, we exploit the
invariance between the emulated and actual space-time as a
tool to encode Rindler space-time into a lattice of coupled
waveguides. When considering the motion of light, it satisfies
null geodesic ds = 0. Then we obtain the evolution trajec-
tory as x ∝ e±αt . In parallel, when considering the dynamics
of photons in the photonic lattice, it can be derived from
a Schrodinger-type paraxial wave equation by employing
the tight-binding approximation i∂ϕn/∂z = β0ϕn − κnϕn−1 −
κn+1ϕn+1, where ϕn is the complex field amplitude of site

n, z is the propagation distance along the waveguides, β0

is the on-site energy of each waveguide, and parameter κn

represents the coupling strength between the adjacent sites.
Taking coupling coefficients as κn = κn+1 = κ and substitut-
ing the complex field amplitude with the plane-wave solution
ϕn ∝ exp(iβxnd−iβzz), we obtain the dispersion connecting
transverse (βx) and longitudinal (βz) wave vectors as βz =
β0 − 2κcos(βxd ) (d is waveguide spacing). After the pho-

tons evolve in such a waveguide over distance �z, each
transverse component gains a phase � = βz(βx )�z, and the
corresponding transverse shift of a wave centered around
βx is �x = ∂�/∂βx = �z ∂βz/∂βx = �z 2κdsin(βxd ). Be-
cause the propagation distance z in the coupled waveguide
equation plays the role of the time in the Schrodinger equa-
tion, we can define the velocity of wave packets in such a
system as v = �x/�z = ∂βz/∂βx = 2κdsin(βxd ). Accord-
ing to transformation optics, we find that for a lattice of
identical waveguides whose coupling coefficient satisfies as
κ = αnκ0/2 (κ0 is the normalized coupling coefficient), the
evolution of a Gaussian wave packet with an arbitrary trans-
verse wave vector can be depicted as 〈n〉 ∝ eαsin(βxd )z, also
determined by the acceleration α in the Rindler metric (see
Appendix A). And the n = 0 waveguide acts as the Rindler
horizon, as shown in Fig. 1(a).

B. The Green’s function of light near Rindler horizon

Moreover, we further quantize the fields in the lattice to
study the propagation of the photons. Because each waveguide
supports a single mode, the field in waveguide n is represented
by the bosonic creation and annihilation operators a†

n and an,
which satisfies the commutation relationship [ am, a†

n ] =
δm,n. The Heisenberg equations for waveguide lattices with
site-dependent coupling coefficients using identical waveg-
uides can be described as −i∂a†

n/∂z = α(n−1)κ0a†
n−1/2 +

αnκ0a†
n+1/2, where z is the spatial coordinate along the

propagation axis, taking the role of time for the waveguide
evolution. The evolution of the creation and annihilation op-
erators is calculated using the Green’s function Um,n(z) of
the above equation, a†

m(z) = ∑
n Um,n(z)a†

n(z = 0). The uni-
tary transformation Um,n(z) describes the amplitude for the
transition of a single photon from waveguide n to waveguide
m. The Green’s function is given by (see Appendix B)

Um,n(z) = 1

2π

∫ π

−π

dq exp

{
imq − i2n arctan

[
tanh

(
arctanh

[
tan

q

2

]
− αk0z

2

)]}
, (2)

where the quasimomentum q is confined to the zone −π �
q � π . Since any input state can be expressed with the cre-
ation operators a†

m and the vacuum state |0〉, the QWs of
the photons in the emulated noninertial frame with a Rindler
metric can be calculated using this type of Green’s function.

III. EXPERIMENT

A. Quantum walks of single photons

In experiments, we fabricate a nonuniform photonic lat-
tice [Fig. 1(a)] by judiciously varying the distance between

two adjacent identical waveguides as sites according to the
relationship of the coupling coefficient with the distance of
each waveguide [Fig. 1(b)], satisfying the special relationship
required by the Rindler metric [Fig. 1(e)]. To study the evolu-
tion of photons near the Rindler horizon emulated by this type
of nonuniform silicon lattice, we choose several waveguides
near the Rindler horizon sites as sources for injecting photons
[Fig. 1(d)]. For the detection of photons after passage through
such a silicon lattice, we then select the next-nearest neighbor
waveguide as the output source [Fig. 1(f)]. The selection of
one waveguide site separated by another site can efficiently
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FIG. 1. Nonuniform silicon lattices and experiment setup. (a) Schematic of the nonuniform silicon lattice. (b) The coupling coefficient
depending on the distance between the identical waveguides described as κ ∼= c0e−ηd (c0 = 0.3495 µm−1, η = 8.456 µm−1). The fundamental
mode (TE00) is used. (c) Experimental setup consists of three parts, including the quantum light source, phase control, and photon detection.
(d)–(f) A scanning electron microscope image of the input ports (zone I), evolution part (zone II), and output ports (zone III). The silicon lattice
consists of 50 sites. In experiments, the insert loss on the silicon chips is about 7 dB.

avoid the extra unnecessary coupling between photons in
the transporting region. Additionally, different types of quan-
tum light sources are prepared with spontaneous parametric
down-conversion by pumping a type II periodically poled
lithium-niobate (PPLN) waveguide (see Appendix C). For all
the data for coincidence detection in the experiments, acciden-
tal coincidence counts are subtracted.

First, we experimentally measure the QWs of single pho-
tons in the emulated Rindler horizon. For this case, we inject
a heralded single photon into silicon chips for the evolution,
while another photon acts as a trigger signal. Figure 2(a) the-
oretically exhibits the evolution probability of single photons
located at site m when a photon is injected into the lattice at
site n0 = 5 using Green’s functions, which are characterized
by the photon density ρm = 〈a†

mam〉 = |Um,n0 |2. The QWs of
the single photons in the emulated noninertial frame exhibit an
accelerated behavior. Single photons spread across the lattice
by tunneling between waveguides in a pattern characterized

by two peaks at the edges of the distribution. Both of the
contours of the two peaks have an exponential form that is
dependent on the acceleration α, in contrast to the two strong
and linear ballistic lobes in the flat space. The left peak toward
the Rindler horizon site is dominant, whereas the right peak
away from the horizon becomes weak with the longer propa-
gation distance. These phenomena can be explained from the
perspective of the Green’s function. When photons propagate
over a large distance for z � 2/(αk0), the Green’s function
can be simplified as Um,n(z) ∼= δ(m)exp(inπ/2), indicating
that photons are always captured at the Rindler horizon site no
matter which sites a photon is injected into. In experiments,
we fabricate three nonuniform silicon lattices with different
propagation lengths for the QWs of single photons with the
same injecting site. The experimental and simulated results
are illustrated in Figs. 2(b)–2(d). Moreover, the similarity
between these patterns of the QWs of single photons is cal-

culated as [19] S = (
∑

j

√
ρ

expt
j ρ theor

j )
2
/(

∑
j ρ

exp
j

∑
j ρ

theor
j ),

FIG. 2. Quantum walks of single photons. (a) Simulation of the evolution probability of single photons. The inset shows the HOM
interference fringe with a visibility of 97.32% ± 0.17%. (b)–(d) The comparison of the detection probability of single photons between the
measured and simulated results for different evolution distances (lc = 1000 µm). The uncertainties denote the standard deviations from the
Poisson distribution of the raw photon counts.
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FIG. 3. Quantum walks of two indistinguishable photons. (a),(d) Simulated correlation probability when two photons are coupled into the
same waveguide site and into different waveguide sites. (b),(e) Photon bunching curve retrieved from site 2 depending on the optical delay.
(c),(f) The comparison of the correlation probability between the measured and simulated results for these two injecting methods. The evolution
length is 400 µm. In experiment, we select the next-nearest neighbor waveguide as the output source. Correspondingly, these chosen sites in
(a) shape the theory part of (c) made as a comparison for experimental results. The same principle is also applied to the comparison of (d)–(f)
and Figs. 4(b), 4(c), 4(e), and 4(f).

with results of up to 85.15% ± 1.8%, 89.7% ± 1.5%, and
90.0% ± 0.3%. Both the experimental and the theoretical
results validate the trapping process of single photons near
the emulated Rindler horizon. Note that in experiments we
inject single photons into photonic lattices through a single
waveguide site and the QWs of single photons can be assumed
as the superposition of null geodesics of a massless particle
with various transverse vectors (see Appendix A). Whereas in
Ref. [24], a broad Gaussian wave packet was utilized in the
theoretical model of QWs, which chose a certain constant of
the transverse vector and then clearly exhibited a null geodesic
behavior of a massless particle.

B. Quantum walks of two indistinguishable photons

Furthermore, to study multiparticle interferences in the
emulated accelerated noninertial frame, the two-photon

correlation function is introduced as 
(i, j)
i′, j′ =

1
1+δi′ , j′

|Ui′,i(z)Uj′, j (z) + Ui′, j (z)Uj′,i(z)|2, the probability

of detecting one photon at waveguide i′ and another photon
at waveguide j′, where i (i′) and j ( j′) represent the input
(output) sites. Figures 3(a) and 3(d) show the simulated
correlation of indistinguishable photons when the two
photons are injected into the same waveguide site a†

5a†
5|0〉

and coupled into different waveguide sites a†
3a†

5|0〉. In
experiment, to realize two indistinguishable photons, we
should choose one output port among the photonic lattice to
measure coincident counts for the two injecting photons.
If photons are indistinguishable, the photon bunching
occurs and there is a peak value of coincident counts.
Because the count rate in site 2 is highest among the
output ports, we hence choose site 2 to measure coincident
counts for the two injecting photons. Then we collect
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FIG. 4. Quantum walks of path-entangled photons. (a),(d) The schematic of the photon trapping and photon escape near the Rindler
horizon. (b),(e) Simulated correlation probability for injecting path-entangled NOON photons with θ = 0 and θ = π . (c),(f) The comparison
of the correlation probability between the measured and simulated results for these two different phases.

coincident counts for each data point from the balanced beam
splitter by introducing phase delays using a high-precision
computer-controlled translation stage. As shown in Figs. 3(b)
and 3(e), a distinct quantum interference peak, whose value
is nearly twice that of the distinguishable case, indicates
that these two photons are highly indistinguishable [19].
Figure 3(c) compares the theoretical and experimental
distribution of the coincident probability at a propagation
length (z = 400 µm) when two indistinguishable photons
are coupled into the same site, while Fig. 3(f) illustrates the
case for two photons injected into different sites at the same
propagation length. We calculate the similarity between the
two matrices of the simulated and measured results defined
by [19] S(1,1) = (

∑
i, j

√


expt
i, j theor

i, j )
2
/(

∑
i, j 

expt
i, j

∑
j 

theor
i, j )

to characterize the discrepancy between the experiment
and theory. For these two different injecting cases, the
experiment results reveal similarities of 93.0% ± 0.22%

and 85.15% ± 0.12% relative to the simulations. The
deviation comes from the imperfection of the photon
indistinguishability and especially the divergence of
coupling efficiency using grating coupling. Notably, two
indistinguishable photons coupled into different waveguide
sites have a larger deviation compared with the case of
the same waveguide site. Additionally, considering the
fabrication level of SOI technology and the brightness of the
quantum light source at the current, the QWs of two photons
with the long enough propagation length in a photonic lattice
have not been achieved. Nevertheless, under the case of the
limited propagation length (z = 400 µm), we still find the
bunching behavior that two photons have a high probability
of concentrating around site 2. Despite not concentrating at
site 0, all these theoretical and experimental results clearly
reveal that two photons have a trend of bunching toward the
Rindler horizon.
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C. Quantum walks of path-entangled NOON states

In addition to indistinguishable photons, what happens
to the entangled photons in the emulated accelerated non-
inertial frame involves more attraction. The entanglement is
a counteractive feature of quantum physics that is at the
heart of quantum technology. In experiments, we generate
path-entangled NOON states [56,57] with N = 2 injected
into two waveguides |ψ〉 = 1

2 (a†2
i + eiθ a†2

j )|0〉 (i = 3, j = 5)
with a different phase θ . Note that NOON states, as a
special type of nonclassical optical states, have important
quantum technology applications, such as quantum com-
puting [58], quantum optical metrology [59], as well as
quantum lithography [60]; while to depict the evolution of
path-entangled NOON states among the designed photonic
lattices, we also employ a photon correlation function 

(i, j)
i′, j′ =

1
1+δi′ , j′

|Ui′,i(z)Uj′,i(z) + eiθUi′, j (z)Uj′, j (z)|2 to depict the non-

classical features of these NOON states [61,62]. Figure 4(b)
depicts the simulation of the correlation distribution for the
input NOON state with θ = 0. And the photon correlation
function for such a NOON state can be described as 

(i, j)
i′, j′ =

1
1+δi′ , j′

|Ui′,i(z)Uj′,i(z) + Ui′, j (z)Uj′, j (z)|2, indicating that the

constructive interference occurs near the emulated Rindler
horizon, which is alike the case of two indistinguishable
photons having a high probability of bunching toward the
horizon. And the experimental results agree with simula-
tion results, as shown in Fig. 4(c), having a similarity of
85.38% ± 0.62%. Despite some deviation, both the simula-
tion and the experimental results clearly exhibit the fact that
the photons are bunching toward the Rindler horizon, which
conforms to the expectation that photons are captured to-
ward the synthetic horizon. Counterintuitively, for the input
NOON state (|ψ〉 = 1

2 (a†2
i − a†2

j )|0〉) with θ = π , we also

obtain the photon correlation function described as 
(i, j)
i′, j′ =

1
1+δi′ , j′

|Ui′,i(z)Uj′,i(z) − Ui′, j (z)Uj′, j (z)|2. Obviously, the de-

structive interference of two such photons happens near the
emulated Rindler horizon, whose behavior leads to photon
escape and antibunching behavior. And we find that one
photon is captured toward the Rindler horizon, whereas the
other photon has a very high probability of escaping from the
Rindler horizon, as shown in Figs. 4(d)–4(f). Additionally,
the experimental results fit the theoretical result with a sim-
ilarity of 88.38% ± 0.49%. Just as mentioned in Ref. [54],
this photon escape is completely distinct from the Hawking
mechanism that is caused by vacuum fluctuation generating
particle pairs with positive and negative energy. The particles
with negative energy are captured by the horizon, whereas the
particles with positive energy escape. In contrast, when such
entangled photons are walking near the emulated horizons, the
quantum interference leads to quantum antibunching behavior
resulting in that one photon is captured toward the emulated
horizon, whereas the other photon has a very high probability
of escaping.

IV. DISCUSSION

In conclusion, we have experimentally realized the QWs
of single photons, two indistinguishable photons, and entan-
gled photons in a synthetic horizon using silicon photonics.

The QWs of single photons and two indistinguishable pho-
tons exhibit optical trapping, a well-known classical physical
recognition of the light trapping around the horizon. Remark-
ably, due to the antibunching behavior caused by quantum
interference, a counterintuitive phenomenon of optical escape
is observed for a certain type of path-entangled photon. In
this work we exploit silicon photonics to conduct QWs for
simulating quantum effects in a noninertial frame predicted by
our previous theoretical work [54]. These types of nonuniform
silicon photonic lattices inspired by transformation optics may
provide a promising platform to give an insight into the future
development of relativistic quantum optics. In the current
work, the quantum state of light propagating in the emulated
Rindler space is generated externally rather than internally.
Note that silicon itself owns third-order nonlinear coefficients
and has been extensively made as an integrated quantum light
source. The production and evolution of a quantum state in
Rindler space emulated by a single silicon chip is expected to
be explored.
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APPENDIX A: THE MAPPING RELATION BETWEEN
NONUNIFORM WAVEGUIDE LATTICES AND

SPACE-TIME WITH RINDLER METRIC

We consider the line element of a two-dimensional
Schwarzschild space-time with only radical direction (dθ =
0, dϕ = 0)

ds2 = −(1 − rs/r)dt2 + (1 − rs/r)−1dr2. (A1)

Here rs is the radius of the Schwarzschild black hole.
When considering the space near the event horizon r = rs +
ρ2/4rs and 0 < ρ 	 rs, the term of Schwarzschild metric has
a simplified form, 1 − rs/r = 1 − (1 + ρ2/4r2

s )−1 ∼= ρ2/4r2
s .

Thus, Eq. (A1) can be written as ds2 = −(ρ/2rs)2dt2 + dρ2,
which has the same form as the Rindler metric. Moreover,
the curvature 1/2rs plays the role of the acceleration α in the
Rindler metric.

Here we present the details of the derivation of the mapping
relation between nonuniform waveguide lattices and space-
time with the Rindler metric. When considering the motion
of light, it satisfies null geodesic ds = 0. Then we obtain the
evolution trajectory as x ∝ e±αt . On the other hand, accord-
ing to transformation optics, the evolution of photons in the
Rindler metric as Eq. (A1) is equivalent to that propagated in
such a medium:

neff =
√

−g11/g00 = 1/αx, (A2)

013233-6
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where g00 = −α2x2, g11 = 1. And photons evolve in such a
medium and have a corresponding velocity as

v = 1/neff = αx. (A3)

Here nature units have been adopted (G = c = 1).
We exploit evanescently coupled photonic waveguide lat-

tices with designed coupling coefficients to achieve the
required inhomogeneous effective refractive index. The dy-
namics of a single-photon wave packet in a photonic
waveguide lattice can be described by a set of coupled discrete
Schrodinger equations, which are derived from a Schrodinger-
type paraxial wave equation by employing the tight-binding
approximation:

i∂ϕm/∂z = β0ϕm − κmϕm−1 − κm+1ϕm+1, (A4)

where ϕm is the complex field amplitude of site m, z is the
propagation distance along the waveguides mapping the time
variable, β0 is the on-site energy of each waveguide, and
parameter κm represents the coupling strength between the
adjacent sites. Taking coupling coefficients as κm = κm+1 = κ

and substituting the complex field amplitude with the plane-
wave solution ϕm = A exp(iβxmd−iβzz) (A is the amplitude
of the plane wave), we obtain the dispersion connecting trans-
verse and longitudinal dynamics as

βz = β0 − 2κ cos (βxd ), (A5)

where βx (βz) is the transverse (longitudinal) wave vector and
d is the waveguide spacing. After the photons evolve in such
a waveguide over distance �z, each transverse component
gains a phase � = βz(βx )�z, and the corresponding trans-
verse shift of a wave centered around βx is �x = ∂�/∂βx =
�z ∂βz/∂βx. Because the propagation distance z in the cou-
pled waveguide equation plays the role of the time t in the
Schrodinger equation, we define the velocity of wave packets
in such a system as

v = �x/�z = ∂βz/∂βx = 2κd sin (βxd ). (A6)

Note that when photons walk among such a photonic
lattice, they have various velocity components caused by dif-
ferent transverse wave vector βx. To map the propagation
trajectory of photons under the Rindler metric into the discrete
photonic lattice, by comparing Eqs. (A3) and (A6) and the dis-
cretization processing, we obtain the coupling coefficients as

κ/κ0 = αm/2. (A7)

Here we take x = md , where m is waveguide sites and κ0

is the normalized coupling coefficient.
As a comparison, we first numerically calculate the light

propagation of classical Gaussian wave packets with various
transverse wave vectors in the uniform lattice. Figures 5(a1)–
5(c2) clearly exhibit the evolution of the wave packet with a
constant transverse wave vector, whose value determines the
evolution velocity. And the movement of the center of classi-
cal Gaussian wave packets 〈n〉 is linearly proportional to the
propagation length [see Figs. 5(d1) and 5(d2)]. Therefore, the
uniform photonic lattice can well replicate the null geodesic
behavior of photons with the different velocity in the flat
space. And the Gaussian wave packet with the transverse wave

vector βx = ±π/(2d ) has the highest value of velocity. Like-
wise, Figs. 5(e1)–5(g2) also exhibit the evolution of the wave
packet with various transverse wave vectors in the emulated
Rindler space. In Figs. 5(h1) and 5(h2), we can see that the
evolution of the center of a wave packet exponentially depends
on the propagation length (note that the scale of the vertical
axis is logarithmic), which can be depicted as 〈n〉 ∝ eα sin(βxd )z.
Note that the Gaussian wave packet with the transverse wave
vector βx = ±π/(2d ) has the fastest evolution, deciding the
contour of the quantum walk.

APPENDIX B: THE GREEN’S FUNCTION
OF THE ACCELERATED LATTICE

To obtain the Green’s function of the emulated accelerated
lattice with linear coupling coefficients as waveguide sites, we
take the Hamilton operator

H = −ακ0

2

n=+∞∑
n=−∞

n(|n〉〈n + 1| + |n + 1〉〈n|)

+ β0

n=+∞∑
n=−∞

|n〉〈n|. (B1)

Alternatively, one can use a representation in Bloch waves:

|k〉 =
n=+∞∑
n=−∞

|n〉〈n|k〉 =
√

1

2π

n=+∞∑
n=−∞

|n〉eink, (B2)

which satisfies the Bloch condition

〈n + 1|k〉 = eik〈n|k〉
with quasimomentum k confined to the Brillouin zone −π �
k � π . By means of the identities

n=+∞∑
n=−∞

n〈k′|n + 1〉〈n|k〉 = e−ik′
n=+∞∑
n=−∞

n〈k′|n〉〈n|k〉

= e−ik′ 1

2π

n=+∞∑
n=−∞

nein(k−k′ )

= −e−ik′
i
∂δ(k′ − k)

∂k
, (B3)

n=+∞∑
n=−∞

n〈k′|n〉〈n + 1|k〉 = eik
n=+∞∑
n=−∞

n〈k′|n〉〈n|k〉

= eik 1

2π

n=+∞∑
n=−∞

nein(k−k′ )

= −eiki
∂δ(k′ − k)

∂k
. (B4)

We obtain that the tight-binding Hamiltonian is diagonal:

〈k′|H |k〉 = δ(k′ − k)H (k), (B5)

H (k) = −ακ0cos(k)i
∂

∂k
+ β0. (B6)

The eigenstates of the Hamiltonian are found by integrating
the first-order differential equation,

−ακ0 cos (k)i
∂

∂k
�(k) + β0�(k) = E�(k) (B7)
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FIG. 5. A designed photonic lattice respectively emulates the null geodesic of photons in flat space (a1)–(c2) and Rindler space (e1)–(g2)
when injecting a classic Gaussian wave packet with different transverse wave vectors. Figs. d1, d2, h1, and h2 are the evolution of the center
of the wave packet.

with the periodic boundary condition �(k + 2π ) = �(k), and Em = β0 − mακ0
2 . One can rewrite Eq. (B7) as

�m(k) = 〈k|�m〉 =
√

1

2π
exp

[
2(Em − β0)arc tan h

(
tan k

2

)
ακ0

]
=

√
1

2π
exp

[
−im arc tan h

(
tan

k

2

)]
. (B8)

The description in terms of the Wannier states with the Fourier transformation is as follows:

�m(n) = 〈n |�m〉 =
∫ π

−π

dk〈n|k〉 〈k|�m〉 = 1

2π

∫ π

−π

dk ei{nk−m· arc tan h[tan (k/2)]}. (B9)

In the basis of Wannier states one can obtain the propagator as

Unn′ = 〈n|U (z)|n′〉 =
∑

l

〈n|�l〉e−iEl z〈�l |n′〉

=
∑

l

1

2π

∫ π

−π

dk ei{nk−l arc tan h[tan (k/2)]}e−i[β0−(lακ0/2)]z 1

2π

∫ π

−π

dk′ei{−n′k′+l arc tan h[tan (k/2)]}

=
∑

l

1

2π

1

2π

∫ π

−π

∫ π

−π

dk dk′ei{nk−l arc tan h[tan(k/2)]−[β0−(lακ0/2)]z−n′k′+l arc tan h(tan k′
2 )}

=
∑

l

1

2π

1

2π

∫ π

−π

∫ π

−π

dk dk′ei{nk−n′k′−β0z−l arc tan h[tan (k/2)]+l (ακ0z/2)+l arc tan h[tan (k/2)]}
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= 1

2π

∫ π

−π

∫ π

−π

dk dk′ei(nk−n′k′−β0z)δ

[
arc tan h

(
tan

k

2

)
− arc tan h

(
tan

k′

2

)
− ακ0z

2

]

= 1

2π

∫ π

−π

dk · exp

(
ink − i2n′arc tan

{
tan h

[
arc tan h

(
tan

k

2

)
− ακ0z

2

]}
−iβ0z

)
(B10)

when ακ0z/2 � 1, which means photons propagating with large enough distance, one can simplify the Green’s function as

Unn′ ≈ 1

2π

∫ π

−π

dk exp(ink)exp
(

in′ π
2

− iβ0z
)

= δ(n)exp
(

in′ π
2

− iβ0z
)
. (B11)

APPENDIX C: EXPERIMENTAL METHODS

1. Sample fabrication

In the experiments, a structured nonuniform photonic lat-
tice is fabricated by etching the device layer of an SOI wafer,
with confinement provided by the buried oxide underneath
and a capping oxide above. The thickness of the silicon device
layer is 220 nm, while the buried oxide underneath and the
capping oxide above are both 2-µm-thick silica. The waveg-
uides are designed to be single mode, having a width of 450
nm. The structures are defined by electron beam lithography
and dry etching. The coupling coefficient of the fundamental
transverse electric mode at the telecom wavelength between
two adjacent identical waveguides is dependent on the dis-
tance between them, which can be described as κ ∼= c0e−ηd

with c0 = 0.3495 µm−1 and η = 8.456 µm−1.

2. Quantum light source

We generate the single-photon pair at the wavelength of
1550.92 nm via spontaneous parametric down-conversion by
pumping a type II PPLN waveguide from a continuous wave

fixed at 785.46 nm. And the length of the PPLN waveguide
is 2 cm. The generated photon pair is separated into two
components, horizontal and vertical polarization, after pass-
ing through a long-pass filter and a polarized beam splitter.
Moreover, after converting the polarization of these types
of single photons from the vertical state to the horizontal
state, we find that the deterministically separated identical
photon pair has a very high visibility of the quantum interfer-
ences, characterized by a Hong-Ou-Mandel (HOM) dip with
97.32% ± 0.17% visibility.

3. Photon detection

Photons are filtered to suppress residual noise with off-chip
filters and finally directed into and detected by supercon-
ducting nanowire single-photon detectors (SNSPDs). Fiber
polarization controllers are used to optimize the polarization
of the photons for the maximum detection efficiency in the
SNSPDs. Coincidence measurements are performed using the
time-correlated single-photon counting module (Picoquant Pi-
coHarp 300).
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