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General relativity uses curved space-time to describe accelerating frames. The movement of particles in
different curved space-times can be regarded as equivalent physical processes based on the covariant
transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to
mimic accelerating particles in curved space-times. The different curved shapes of structures are used to
mimic different accelerating frames. The different geometric phases along the structure are used to mimic
different movements in the frame. Using the covariant principle of general relativity, we can obtain
equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and
conformal transformation. In this way, many covariant structures can be found that produce the same
surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam,
is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such
systems based on geometric-phase gradient. This general covariant design method can be extended to many
other optical media.
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About a hundred years ago, Albert Einstein told us that
the space-time continuum should be understood as a curved
geometric space. The equivalence between space-times
from different observers relies on the fact that the form
of the governing equations remains the same. A uniformly
accelerating frame is intrinsically the same as a rest frame
with gravity. This recognition allows the inclusion of
gravity to generalize the Minkowski space-time in special
relativity, allowing a global geometric description of space-
time with gravitational masses. Such a geometric theory
of gravity successfully predicted gravitational lensing [1],
black holes [2,3], and gravitational waves [4]. Surprisingly,
a geometric understanding of space-time can be used in
optical designs. In 2006, Pendry et al. [5] and Leonhardt [6]
proposed a transformation approach to design an invisibil-
ity cloak. By writing the form-invariant Maxwell’s equa-
tions in vacuum (the “inertial” frame) with the transformed
coordinates in another space [7–9], the equivalence
between the two spaces induces generally inhomogeneous
indices of refraction, filling up the transformed space (i.e.,
the “gravity” in a “noninertial” frame), which are then
realized by metamaterials [10–18]. Invisibility carpet
cloaks [19–21], illusion optics [22], Talbot effects [23]
and further extensions to acoustics [24–27], elastic waves
[28–30], thermal control [31–33], and even matter waves
[34] have been developed. Interestingly, these inhomo-
geneous indices can then be used to explore different
general-relativistic phenomena, like particle motion around

a gravitational field, whose principles can now be easily
experimentally studied in desktop-scale experiments
[35–46]. Besides transformation optics, some other optical
structures, such as surfaces of revolution [47,48] and
optical lattices [49,50], were also recently reported to
mimic general relativity.
When the geometric interpretation is carried from space-

time to the state space of light, the spin-orbit interaction
(SOI) can be understood in a geometric-phase setting. An
optical spin Hall effect was thus predicted and directly
observed in experiments [51,52]. It allows the usage of
metasurfaces [53–61] to implement spin-enabled optical
devices using an inhomogeneous profile of metamaterial
atoms providing the necessary SOI [62–71]. The incorpo-
ration of SOI into the inhomogeneous material profile also
provides a handy tool to study the specific motions of
particles. Recently, Genevet et al. have utilized surface
plasmon polaritons (SPPs) generated on a metasurface
through SOI as an analogous system to study Cherenkov
radiation from a charged particle moving with a constant
high speed [72]. A chain of metamaterial atoms lying on a
straight line on the metasurface is taken as the analogous
particle motion along the same trajectory with constant
velocity, which is represented by the spatial rate of change
of geometric phase in these metamaterial atoms.
As Genevet et al. described [72], in the excitation

process of surface plasmons, the geometric phase can be
employed to mimic different movements in a straight line.
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In that paper, only geometric phase is taken into consid-
eration, and the effects of curved shapes of structures are
not included. On the other hand, as some recent papers
proposed, curved shapes also play an important role in
designing optical and electric devices [47–49,73]. In this
Letter, we propose a general method to combine curved
shape and geometric phase together to design optical
structures. Here, drawing on special and general relativity,
the different curved shapes of structures are related to
different coordinate frames. The different geometric-phase
profiles inside the structures are used to mimic different
movements in the same frame. In this way, we can obtain
different covariant transformations of geometric phase
between nanostructures with different curved shapes, such
as Lorentz transformations and conformal transformations.
This enables us to find many equivalent nanostructures that
produce the same surface plasmon fields. The well-known
Rindler metric in general relativity is employed to generate
a new kind of plasmonic accelerating beam, the Rindler
beam. Besides surface plasmons, the proposed covariant
design method can also be extended to other optical
structures.
We use a one-dimensional chain of metamaterial atoms

to generate a predefined caustic of surface plasmon polar-
itons on a metal surface, schematically shown as the orange
curve in Fig. 1(a). A series of nanoslots with orientation
profile θðlÞ is placed along a chosen trajectory l, the green
curved line in the figure, where θ is the angle between the
nanoslot and the trajectory. When the chain of atoms is
illuminated by circularly polarized light, the generated
SPP signal carries a geometric phase given by Φ ¼
�½2θ − argðkx þ ikyÞ� [59]. In our experiments, we use
left-handed circularly polarized incidence, and the term
argðkx þ ikyÞ can be neglected: Φ ¼ −2θ [74]. When the
orientation of the atoms changes along the trajectory, a SPP

ray is emitted at an angle φ governed by
kSPP cosφ ¼ dΦ=dl. This angle is defined with respect
to the direction along the trajectory, as shown in Fig. 1(a).
The SPP rays (red) emitted from different positions along
the trajectory vary in direction and form an envelope, which
is called the caustic. Here, we develop a metric route to
obtain the required profile of the geometric phase ΦðlÞ.
For a caustic described by a parametric description
ðx; yÞ ¼ (XðτÞ; YðτÞ) where τ is called the caustic param-
eter, we first promote the caustic parameter to a global
function defined for the spatial region below the caustic by
associating τ with a general location ðx; yÞ, so that the
caustic is constituted from the tangent points of SPP
rays parametrized by the same τ passing through ðx; yÞ.
Equivalently,

dYðτÞ
dτ

½x − XðτÞ� ¼ dXðτÞ
dτ

½y − YðτÞ�: ð1Þ

The global τðx; yÞ, obtained from the above equation, is a
convenient geometrical object representing the structure of
the caustic. The contour lines of τðx; yÞ are straight lines,
namely, the SPP rays constituting the caustic. Figure 1(b)
shows two such SPP rays, labeled by τ and τ þ Δτ,
together with the trajectory of metamaterial atoms. The
perpendicular distance can now be written in terms of
the global variable τ as Δτ=j∇τj. The length along the
trajectory is Δl. The wave front of the SPP ray is shown by
the dashed lines, whose effective elapsed optical path
should be the geometric phase ΔΦ=kSPP. Therefore, we
obtain the metric relationship

dτ2 ¼ j∇τj2½dl2 − ðdΦ=kSPPÞ2�: ð2Þ

For a given caustic and a chosen trajectory of atoms, we can
obtain the required geometric-phase profile ΦðlÞ by inte-
grating the metric relationship along the trajectory as

ΦðlÞ ¼ kSPP

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1=j∇τjÞ2ðdτ=dlÞ2

q
dl: ð3Þ

Such a geometric-phase profile is then converted by the
orientation profile of the metamaterial atoms. The formu-
lation of τðx; yÞ gives us huge mathematical convenience.
However, we note that the parametrization of the caustic is
actually not unique. Different choices of τ are like different
gauges, while the obtained ΦðlÞ is gauge independent.
Thus, the construction method we offer provides simplicity,
even for complex curved lines.
Moreover, the τ object can exist even if a caustic does not

form. A linear progressing τðx; yÞ, along a fixed direction,
can be used to represent simple planar radiation. In such a
case, if we choose any straight-line trajectories [e.g., the
trajectory l in Fig. 1(c)], it corresponds to a chain of
metamaterial atoms with linear geometric-phase or orien-
tation profile. This chain radiates SPPs at a fixed angle φ

FIG. 1. (a) The transformation sharing the same caustic. (b) The
geometric relationship between τ, Φ, and l. (c) The trans-
formation that occurs on the caustic through Cherenkov radiation,
which can be mapped to special relativity.
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[again with cosφ ¼ ð1=kSPPÞdΦ=dl]. Such radiation can be
interpreted as an analog of Cherenkov radiation from a
charged particle moving at a constant velocity larger than
the speed of light in a dielectric medium; see, for example,
the work of Genevet et al. [72]. In Fig. 1(c), we also draw
another straight-line trajectory l0, which crosses the SPP
rays at a different angle φ0. The two trajectories are
equivalent in generating SPP rays, with the orientation
of metamaterial atoms changing at two different but
constant rates. Here, we take j∇τj ¼1 on the whole plane
and the equivalence can be interpreted as a conservation
of Δτ between the two trajectories: Δτ2 ¼ dl2−
ðdΦ=kSPPÞ2 ¼ dl02 − ðdΦ0=kSPPÞ2. The transformation
between the two equivalent trajectories can be written as

j∇τj
�

dl

dΦ=kSPP

�
¼

�
cosh ζ sinh ζ

sinh ζ cosh ζ

�
j∇τj0

�
dl0

dΦ0=kSPP

�
;

ð4Þ

where ζ is called the rigidity between the two trajectories.
Here, if the two metachains are regarded as two different
reference frames, Eq. (5) can be seen as the Lorentz
transformation between them [74], under the analog’s
mapping tM ¼ j∇τjl, xM ¼ j∇τjΦ=kSPP

�
dtM
dxM

�
¼

�
cosh ζ sinh ζ

sinh ζ cosh ζ

��
dt0M
dx0M

�
; ð5Þ

which guarantees the conservation of metric dτ2 ¼
dt2M − dx2M ¼ dt02M − dx02M.
We now extend our scheme to more general situations.

For a more general motion, although the velocity changes
either in amplitude or in direction, we can still use the same
strategy to simulate themotion on a straight or curved line as
previously described. Under this circumstance, the appear-
ance of the caustic, which is the envelope of nonparallel τ
lines [75], is characteristic of “Bremsstrahlung radiation,”
and the emergence of this radiation requires acceleration.
For experimental implementation, the change of ∇Φ needs
to be slow so that, when chains ofmeta-atoms share the same
family of SPP rays (τ lines), the transformation of trajecto-
ries is established as shown in Fig. 2(a).
Here, we show an example of transformation between a

motion of constant velocity and an accelerating motion by
mapping l to “time” and Φ=kSPP to “length” in Fig. 2(a).
One of the trajectories, marked in white with a dashed
horizontal line, has its acceleration set to be proportional to
l−3=21 . The other trajectory, in green with a curved dashed
line, has constant velocity (see Fig. S5 in the Supplemental
Material [74]). The corresponding scanning electron micro-
scope (SEM) images of the metallic structures are shown in
Figs. 2(b) and 2(e) for l1 and l2. Simulations are shown
in Figs. 2(c) and 2(f) and our experiments are shown in
Figs. 2(d) and 2(g). All four results have the same caustic,

indicating shared τ lines, labeled by green or white dashed
lines. This provides a good match between theory and
experiment. Also, the fact that another caustic appears in
the test sample due to the SPP signal, without carrying
geometric phase, provides a clue to the trajectory’s curva-
ture. Thus, we extend our experimental platform to curved
chains for exploring the more general situation.
To explore the transformation in the more general

situations, we need to establish a curved space-time picture
based on inhomogeneous distributed τ lines through
analogy to general relativity. Thus, we map tC ¼ l and
xC ¼ Φ=kSPP and assume that the two-dimensional space-
time represented by this trajectory has the mathematic form

dτ2 ¼ gðtC; xCÞ2ðdt2C − dx2CÞ: ð6Þ

The metric here covers the more general situation and is
able to include curvature effect. Since we have established
the space-time on trajectories, we might wonder whether
the motions defined on different trajectories are in fact the
same motion, as shown in Fig. 3. If on two trajectories
the motions are the same, then in different space-times, the
metric should obey gμν ¼ ð∂xi=∂xμÞð∂xk=∂xνÞgik. This
maintains the covariance of the metric, if φ remains the
same (see the Supplemental Material [74]). Thus, the
transformation can be divided into two steps. The first
step is applying the conformal transformation, that j∇τj →
j∇τj0 with φ ¼ φ0, cosh ζ ¼ 1, and sinh ζ ¼ 0, correspond-
ing to expanding or shrinking the local length of the
trajectory. The second step is using the Lorentz

FIG. 2. Transformation between two trajectories. (a) The theo-
retic calculation. SPP rays marked in red lead to a caustic marked
in orange. A transformation occurs between the white dashed line
and the green dashed line. (b)–(d) Figures for the case of the white
dashed line and (e)–(g) for the case of the green dashed line. (b),
(e) SEM images of our samples. (c),(f) Full wave simulations by
COMSOL with the green dashed line labeling the corresponding
caustic. (d),(g) Experimental results with the white dashed line
labeling the corresponding caustic. Legends on the right part of
simulations and experiments mark the normalized amplitude with
different colors.
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transformation, corresponding to rotating the local trajec-
tory element. Therefore, the more general transformation is

j∇τjðlÞ
�
dtC
dxC

�
¼ j∇τjðl0Þ

�
coshζ sinhζ

sinhζ coshζ

��
dt0C
dx0C

�
; ð7Þ

which contains conformal covariance. Here, there is an
approximation that, due to slowly varying φ, we can locally
apply Lorentz transformations. Now, the general trans-
formation is established between two curvilinear spaces in
our scheme, which can be exploited to explore the trans-
formation of space-times and the corresponding phenom-
ena in general relativity.
When studying the close neighborhood of a black hole,

Rindler coordinates are very useful in describing the
geometry close to the event horizon with uniform accel-
eration [76]. A specific experiment result is now presented,
analogous to the Rindler transformation in our established
scheme. In Fig. 4(a), we first define the motion marked by
the white dashed horizontal line to be accelerating to
the right with dΦ=kSPP=dl ¼ − tanhðβeαl=αÞ. We choose
τ ¼ φðlÞ þ tan−1dy=dx (the value of the angle between the
τ line and x axis) on every τ line, where x and y describe the
position of lðx; yÞ for numerical calculation. This choice of
value leads to j∇τjðl1Þ ¼ βeαl1 on the white dashed line,
where α and β are small constants. Also, as shown in
Fig. 4(a), on the cyan line, j∇τjðl2Þ ¼ β2, with β2 a constant,
and on the green trajectory, the motion has constant speed
(see Fig. S7 in the Supplemental Material [74]). Here, a
Rindler-analogous transformation occurs between the two
trajectories (the white line and the cyan line) with a positive
constant β1, β21e

2αl1ðdl21 − dΦ2
1=k

2
SPPÞ ¼ dl22 − dΦ2

2=k
2
SPP,

which implies j∇τjðl1Þ=j∇τjðl2Þ ¼ β1eαl1 . We experimen-
tally implemented three situations in our metamaterials

platform, with corresponding SEM images for l1, l2, and
l3 in Figs. 4(b), 4(e), and 4(h). The simulations in Figs. 4(c),
4(f), and 4(i) show the same caustic, marked by a green
dashed line, that appears in experiments in Figs. 4(d), 4(g),
and 4(i), highlighted by the white dashed line. Showing the
same caustic, which represents Bremsstrahlung radiation in
the experiment, reveals a good match between theory,
simulation, and experiment as realization of Rindler-analo-
gous transformations. The caustic obtained based onRindler
metrics is a completely new kind of accelerating beam. It is
only one special case of designing new kinds of accelerating
beams from the metrics in gravity. In addition, many other
metrics in general relativity are also worth trying in future
research.
As in the examples mentioned above, when a trans-

formation provides an equivalent curved trajectory of
motion within the same τ plane, there is a gauge freedom
on the τ line. If we choose another value τ̃ðlÞ ¼ f½τðlÞ�, the
gauge-independent quantity between two coordinates is
gðtC1Þ=gðtC2Þ ¼ g̃ðtC1Þ=g̃ðtC2Þ. As in the equivalence prin-
ciple in general relativity, we cannot distinguish a specific
coordinate system due to the gauge freedom, but the
comparison is meaningful, and this ratio actually modifies
the relation between these two different space-times. As in
the examples implementing Bremsstrahlung radiation, if
we change the choice of value τ to τ̃, their ratio still has

FIG. 3. Geometric picture describing the same event in different
coordinates through mimicking Bremsstrahlung radiation of
moving particles (blue ball and purple ball) in flat space-time
(g ¼ j∇τj ¼ 1) and curvilinear space-time (g ¼ j∇τj), respec-
tively.

FIG. 4. Transformations analogous to the Rindler transforma-
tion in general relativity. (a) Shows SPP rays in red and caustic in
orange. The dashed white line, green line, and cyan line of
nanoslots represent different corresponding coordinates. (b),(e),
(h) SEM images of samples of (b) white dashed line, (e) green
dashed line, and (h) cyan dashed line with inclination angle of
52°. (c),(d),(f),(g),(i),(j) The simulations and experiments of these
three cases. (c),(f),(i) Full wave simulations by COMSOL with the
green dashed line labeling the corresponding caustic. (d),(g),(j)
Experimental results with the white dashed line labeling
the corresponding caustic. Legends on the right part of simu-
lations and experiments describe the normalized amplitude with
different colors.
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gðl1Þ=gðl2Þ ¼ g̃ðl1Þ=g̃ðl2Þ (see Fig. S9 in the Supplemental
Material [74]). This gauge independence shows invariance
in our scheme.
In summary, we propose a very flexible method to design

transformation optical structures through combining curved
shape and geometric phase. In this method, gauge freedom
leads us to findmany equivalent structures through covariant
transformations, structures that share the same optical
functions. Some interesting metrics in general relativity
are employed for the first time to generate a new kind of
plasmonic accelerating beam, the Rindler beam.
Up to now, different methods and structures in

metamaterials have been used to mimic curved space
[35–46,77,78]. Each kind of metamaterial has both advan-
tages and limitations. Usually, it is not easy to make the
effective index of metamaterials satisfy the requirement of
curved space. Sometimes, the effective parameters need to
be very large. This Letter provides an easy way to obtain a
large effective index based on the geometric phase of
spin photons. If we define the speed of a photon along
the metachain as v ¼ ð1=kSPPÞdΦ=dl, we can define
the effective index of a structure as neff ¼ c=v ¼
ckSPP=ðdΦ=dlÞ. Here, as the geometric phase Φ is only
determined by the nanoslot rotation angle Φ ¼ �2θ (here,
“�” represents geometric phases of different optical spins),
we can change the refractive index neff by controlling θ. As
the sign and amplitude of θ can be conveniently tuned, the
effective index obtained in this way can be any value n ∈
ð−∞;∞Þ without being limited by resonance dispersions
or the intrinsic properties of constitutive materials [see
Supplemental Material Figs. S5(e), S5(f), and S7(g)–S7(i)
[74]]. In experiments, we only need to tune the rotation
angle of nanoslots. It is very easy to implement based on
present techniques without need of new materials or new
complex structure design. Another advantage of our work is
that photonic spin can provide more freedom to control the
effective index. As the sign of geometric phase is determined
by incident spin, we can easily change the sign of the effective
index by just reversing the photon spin. Furthermore, our
method is not limited to surface plasmons, as it can also be
extended to dielectric wave guides if we use dielectric particles
to obtain geometric phase instead of metallic nanoslots.
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I . Sample fabrications and measurement setup. 

 

FIG. 1s. Unit cell pictures: (a) is sketch, (b) is SEM picture of cross-section 
with inclination angle of 52°. 

 
 

The structure of metamaterial atom and sample picture are given in figure 1s (a) and 

(b). We fabricated a one-dimensional meta-chain composed of 500nm × 100nm 

metallic nano-slots on the top layer of a sandwich-like structure through a focused ion 

beam (FEI Dual Beam HELIOS NANOLAB 600i, 30ௗkeV, 7ௗpA). This structure, 

consisting of two silver films separated by a magnesium fluoride spacer, is based on 

an LN substrate (see Fig. 1s). The top silver film is about 50nm, the magnesium 

fluoride spacer is about 40nm and the silver film on the LN substrate is about 45nm, 

which they all are deposited with sputtering-deposition. A semiconductor 1064 nm 

laser (Coherent Mephisto S500NE) shaped by a slit was used to accurately excite 

metallic nano-slots with different orientation angles 𝜃, to generate target SPP field on 

the air-metal surface. An oil-immersed micro-objective associated with the LN 

substrate was used to collect the SPP signal from the sample’s bottom, which was 



imaged using a high-resolution sCMOS camera. Because of the need for high efficiency 

when transferring the propagating wave into a surface wave and blocking the 

transmitted portion, the parameters of metal/dielectric/metal structure were carefully 

tuned in experiment. 

 

 

II . Cherenkov radiation described using concepts in special relativity 

In our case, we set 𝜂 = |∇𝜏|𝑙 and 𝜉 = |∇𝜏|Φ/𝑘ୱ୮୮. Under the condition 𝑑𝜉/𝑑𝜂 = cos 𝜑, 

we will establish a transformation similar to the Lorentz transformation. We start 

from the line element 

 𝑑𝜏ଶ = 𝑑𝜂ଶ − 𝑑𝜉ଶ = 𝑑𝜂ᇱଶ − 𝑑𝜉ᇱଶ (1s) 

 

FIG. 2s. Transformation between two Minkowski spaces represented by two 
white dashed lines. 

 

As in Fig. 2s, for a transformation between two straight lines with different slopes, we 

use the same 𝜏 line to label the same events. The same motion has different velocity 

seen by different observers, and this motion specifies an inertial space-time with 

coordinates 𝜉଴  and 𝜂଴  still satisfying 𝑑𝜏ଶ = 𝑑𝜂଴
ଶ − 𝑑𝜉଴

ଶ . Similar to the Lorentz 

transformation, we introduce an additional parameter 𝜁 for which 

 
൜
𝜉଴ = −sinh 𝜁 𝜂 + cosh 𝜁 𝜉
𝜂଴ = cosh 𝜁 𝜂 − sinh 𝜁 𝜉

 (2s) 

When we have 𝑑𝜉଴ = 0, we derive 𝑑𝜉/𝑑𝜂 = tanh 𝜁 = cos 𝜑, which is the velocity of the 

induced Minkowski space-time. In our Cherenkov radiation example: 

 
൜
𝜉଴ = − sinh 𝜁 𝜂 + cosh 𝜁 𝜉
𝜂଴ = cosh 𝜁 𝜂 − sinh 𝜁 𝜉

, ൜
𝜉଴ = − sinh 𝜁ᇱ 𝜂ᇱ + cosh 𝜁ᇱ 𝜉ᇱ

𝜂଴ = cosh 𝜁ᇱ 𝜂ᇱ − sinh 𝜁ᇱ 𝜉ᇱ  (3s) 

and 

 𝜉 = − sinh(𝜁ᇱ − 𝜁) 𝜂ᇱ + cosh(𝜁ᇱ − 𝜁) 𝜉ᇱ

𝜂 = cosh(𝜁ᇱ − 𝜁) 𝜂ᇱ − sinh(𝜁ᇱ − 𝜁) 𝜉ᇱ  (4s) 

The relative speed is (𝑑𝜉ᇱ = 0) 



 
− tanh(𝜁ᇱ − 𝜁) = −

tanh 𝜁ᇱ − tanh 𝜁

1 − tanh 𝜁ᇱ tanh 𝜁
 =

cos 𝜑 − cos 𝜑ᇱ

1 − cos 𝜑 cos 𝜑ᇱ
 (5s) 

and the velocity transformation is 

 
𝑑𝜉

𝑑𝜂
=

− tanh(𝜁ᇱ − 𝜁) +
𝑑𝜉ᇱ

𝑑𝜂ᇱ

1 − tanh(𝜁ᇱ − 𝜁)
𝑑𝜉ᇱ

𝑑𝜂ᇱ

 (6s) 

There is also a transformation between ௗక

ௗఎ
= cos 𝜑 and ௗకᇲ

ௗఎᇲ
= cos 𝜑ᇱ. Let 

 𝛽 = − tanh(𝜁ᇱ − 𝜁) , 𝛾 = 1/ඥ1 − 𝛽ଶ (7s) 

We can easily derive the value of 𝛽 and 𝛾 from reading the angle 𝜑 and 𝜑ᇱ in Fig. 

2s. 

 
𝛽 =

cos 𝜑 − cos 𝜑ᇱ

1 − cos 𝜑 cos 𝜑ᇱ
 (8s) 

 
𝛾 =

1 − cos 𝜑 cos 𝜑ᇱ

sin 𝜑 sin 𝜑ᇱ
 (9s) 

Therefore, we can treat 𝜂 as time label 𝑡ெ and 𝜉 as length label 𝑥ெ in the article. 

In this case, we have associated the 𝜏(𝑥, 𝑦) object with an inertial object with constant 

velocity. The two meta-chains are in straight lines (white dashed line) which make 

different angles to the SPP-rays. They correspond to two different inertial reference 

frames, observing the same inertial motion. When the trajectory intersects a contour 

line of 𝜏, it means the proper time observed by the object is 𝜏. Therefore, in the current 

picture, an event is represented by a line instead of a point in the conventional world-

line diagram. A point in a conventional world-line diagram indicates 𝑡ெ and 𝑥ெ with 

the proper time obtained by integrating along a world-line. A point in our picture 

indicates a particular proper time 𝜏 and 𝑙, with Φ obtained by integrating the metric 

along a trajectory (Eq. (3)). We also note that the analogous (dimensionless) velocity 

here is defined as 𝑣 = 𝑑𝑥ெ/𝑑𝑡ெ = (1/𝑘ୗ୔୔)𝑑Φ/𝑑𝑙 = cos 𝜑. It is the reciprocal of the 

velocity used in P. Genevet’s work since we would like to associate to time-like instead 

of space-like events in relativity. 𝜁 in Eq. (5) is the rapidity between the two observing 

frames. It is related to the velocities observed in the two frames by the velocity-

subtraction formula in relativity. A non-zero rapidity signifies different observed 

velocities in the two frames, equivalently revealed as two non-parallel trajectories in 

the caustic picture. This transformation should include a simple case for the 

transformation between a straight trajectory perpendicular to the parallel SPP rays, 

which means 𝜑ᇱ = 𝜋/2, and a straight trajectory that is not perpendicular. We can 

easily write down: 

 𝑑𝜂ᇱ = 𝑑𝜏 (10s) 

In this case the transformation can be simplified as 



 

⎩
⎨

⎧𝜂 =
1

sin 𝜑
(𝜂ᇱ + 𝜉ᇱ cos 𝜑)

𝜉 =
1

sin 𝜑
(𝜉ᇱ + 𝜂ᇱ cos 𝜑)

 (11s) 

Now, 𝛾 =
ଵ

ୱ୧୬ ఝ
 and 𝛽 = cos 𝜑 . If 𝑑𝜂ᇱ = 0 , the length contraction 𝑑𝜉 = 𝑑𝜉ᇱ/ sin 𝜑 . If 

𝑑𝜉 = 0 , the time dilation 𝑑𝜂 = 𝑑𝜂ᇱ sin 𝜑 . If we set ο𝜑 = 𝜑 − 𝜑ᇱ , we can draw the 

changes of 𝑑𝜂/𝑑𝜂ᇱ as in Fig. 3s(a) and 𝑑𝜉/𝑑𝜉ᇱ as in Fig. 3s(b), with increasing ο𝜑. 

 

FIG. 3s, (a) the variation of 𝑑𝜂/𝑑𝜂′ with change of ο𝜑. (b) the variation of 

𝑑𝜉/𝑑𝜉′ with change of ο𝜑. 

 

  



III. Transformation between constant movements and 

accelerations 

In Fig. 2(a), we provide an example with two trajectories. The motion on one 

trajectory, marked by the white dashed line (in Fig. 4s it is black), has acceleration, 

and it has constant speed on the other trajectory marked by green dashed line. We 

draw the corresponding 𝜏 distribution in grayscale, with contours displayed by red 

lines. We calculate the 𝜏(𝑙) by defining 𝜏(𝑙) = 𝜑(𝑙) + tanିଵ 𝑑𝑦/𝑑𝑥. Thus, 𝑙ଵ, 𝑙ଶ, and 

the distribution, gradients and contour lines of 𝜏, are shown in Fig. 4s. 

 

FIG. 4s. The distribution of 𝜏 is shown in grayscale, with purple arrows 
representing the distribution of ∇𝜏 and contour lines of the function 𝜏 marked 
in red. 𝑙ଵ is the dashed line in black (in Fig. 2 it is white) and 𝑙ଶ is the dashed 
line in green. These two lines intersect at point (30µm, 0). 

 

The white dashed horizontal line (in Fig. 4s it is black) has 

 𝑑𝑙ଵ

𝑑Φ(𝑙ଵ)/𝑘௦௣௣
=

1

𝑣(𝑙ଵ)
= −

ඥ𝑙ଵ𝑘௦௣௣

𝜎𝑐ଵ
 (12s) 

 
|∇𝜏|(𝑙ଵ) = −𝑐ଵ𝜎/ ቆ2𝑘௦௣௣𝑙ଵ

ଷ
ଶ(1 −

𝑐ଵ
ଶ

𝑘௦௣௣
ଶ 𝑙ଵ

)ቇ (13s) 

in which 𝑐ଵ = 2√15𝜋/3 and 𝜎 = −1 for incident spin. From this we know that when 



𝑙ଵ = ∞, 
ௗ஍(௟భ)/௞ೞ೛೛

ௗ௟భ
= 𝑣(𝑙ଵ) = 0. 

Since we have 𝜏 = 𝜑(𝑙) + tanିଵ 𝑑𝑦/𝑑𝑥, on the plane we can write 

 𝑑𝜏

𝑑𝑙
= |∇𝜏|(𝑙) sin(𝜏 − tanିଵ

𝑑𝑦

𝑑𝑥
) (14s) 

 𝑑𝑙

𝑑Φ/𝑘௦௣௣
=

1

cos ൬𝜏 − tanିଵ 𝑑𝑦
𝑑𝑥

൰
 (15s) 

Apart from the metric-like discussion, if we confine ourselves to trajectories such that 

 
𝑞 =

𝑑(𝜏 − 𝑝)

𝑑𝜏
 (16s) 

is a constant order parameter, where 𝑝 = tanିଵ ௗ௬

ௗ௫
, then a straight-line trajectory 

corresponds to 𝑞 = 1 and the constant speed trajectory corresponds to 𝑞 = 0. Then, 

we can write the geodesic equation for either trajectory as 

 
𝑑ଶ𝑙

𝑑𝜏ଶ
= ൮−

𝑑 ln|∇𝜏|(𝑙)

𝑑𝑙
൬

𝑑𝑙

𝑑𝜏
൰

ଶ

− 𝑐௦௣௣𝑞|∇𝜏|(𝑙)

𝑑Φ
𝑘௦௣௣

𝑑𝜏

𝑑𝑙

𝑑𝜏
൲

= ቆ−
𝑑 ln|∇𝜏|(𝑙)

𝑑𝑙
−

𝑐௦௣௣𝑞|∇𝜏|(𝑙)

𝑣
ቇ ൬

𝑑𝑙

𝑑𝜏
൰

ଶ

 

(17s) 

 
𝑑ଶΦ/𝑘௦௣௣

𝑑𝜏ଶ
= ൮

𝑑Φ/𝑘௦௣௣

𝑑𝑙

𝑑ଶ𝑙

𝑑𝜏ଶ
+

𝑑𝑙

𝑑𝜏

𝑑
𝑑Φ/𝑘௦௣௣

𝑑𝑙
𝑑𝜏

൲

= ൭−
𝑑 ln|∇𝜏|(𝑙)

𝑑Φ/𝑘௦௣௣
− 𝑐௦௣௣𝑞|∇𝜏|(𝑙)

+ ቆ
𝑑𝑙

𝑑Φ/𝑘௦௣௣
ቇ

ଶ
𝑑ଶΦ/𝑘௦௣௣

𝑑𝑙ଶ
൱ ቆ

𝑑Φ/𝑘௦௣௣

𝑑𝜏
ቇ

ଶ

 

(18s) 

for the first horizontal trajectory, with 

 𝑑ଶ𝑙ଵ

𝑑𝜏ଶ
= ቆ−

𝑑 ln 𝑔(𝑙ଵ)

𝑑𝑙ଵ
−

𝑐௦௣௣𝑔(𝑙ଵ)

𝑣(𝑙ଵ)
ቇ ൬

𝑑𝑙ଵ

𝑑𝜏
൰

ଶ

= 2 𝑙ଵ  ቆ−2 +
3 𝑘௦௣௣

ଶ 𝑙ଵ

𝑐ଵ
ଶ ቇ (19s) 

 𝑑ଶΦ(𝑙ଵ)/𝑘௦௣௣

𝑑𝜏ଶ

=

⎝

⎜
⎛

−
𝑑 ln|∇𝜏|(𝑙ଵ)

𝑑𝑙ଵ

𝑑Φ/𝑘௦௣௣
𝑑𝑙ଵ

−
𝑐௦௣௣|∇𝜏|(𝑙ଵ)

൬
𝑑𝑙ଵ

𝑑Φ/𝑘௦௣௣
൰

ଶ +
𝑑ଶΦ/𝑘௦௣௣

𝑑𝑙ଵ
ଶ

⎠

⎟
⎞

൬
𝑑𝑙ଵ

𝑑𝜏
൰

ଶ

= ൮−
2 𝑐ଵ 𝑙ଵ

ଵ
ଶ

𝑘௦௣௣
+

4 𝑘௦௣௣𝑙ଵ

ଷ
ଶ

𝑐ଵ
൲ 

(20s) 

as its world line. 

The green line has 



 𝑣(𝑙ଶ) ≡ 1/2 (21s) 

 

|∇𝜏|(𝑙ଶ) =
𝑑 ൬tanିଵ 𝑑𝑦ଶ

𝑑𝑥ଶ
൰ /𝑑𝑙ଶ

sin(cosିଵ 1/𝑣)
 (22s) 

Therefore,  

 
|∇𝜏|(𝑙ଶ) = −

1

sin
2
3

𝜋

𝑥ଶ
ᇱᇱ(𝑙ଶ)

ඥ1 − 𝑥ଶ
ᇱ (𝑙ଶ)ଶ

 (23s) 

Similarly, for the second constant velocity trajectory, we have 

 𝑑ଶ𝑙ଶ

𝑑𝜏ଶ
= −

𝑑 ln|∇𝜏|(𝑙ଶ)

𝑑𝑙ଶ
൬

𝑑𝑙ଶ

𝑑𝜏
൰

ଶ

 (24s) 

 𝑑ଶΦ(𝑙ଶ)/𝑘௦௣௣

𝑑𝜏ଶ
= −

𝑑 ln|∇𝜏|(𝑙ଶ)

𝑑𝑙ଶ

𝑑Φ(𝑙ଶ)/𝑘௦௣௣
𝑑𝑙ଶ

൬
𝑑𝑙ଶ

𝑑𝜏
൰

ଶ

= −
𝑑 ln|∇𝜏|(𝑙ଶ)

𝑑Φ(𝑙ଶ)/𝑘௦௣௣
ቆ

𝑑Φ(𝑙ଶ)/𝑘௦௣௣

𝑑𝜏
ቇ

ଶ

 

(25s) 

as its world line. 



 

FIG. 5s. 𝑙ଵ and 𝑙ଶ should be read as time labels. (a, b) are numerical results 
with 𝜏 = 𝜑 + tanିଵ 𝑑𝑦/𝑑𝑥 of (a) |∇𝜏|(𝑙ଵ), (b) |∇𝜏|(𝑙ଶ). The velocity distribution of 
𝑙ଵ is (c) and of 𝑙ଶ is (d). (e, f) are respectively calculated effective index 𝑛 on 𝑙ଵ 
and 𝑙ଶ. (g, h) are respectively the world lines on 𝑙ଵ and 𝑙ଶ. 

  

Additionally, if we define the moving speed of photon along the meta-chain as  

𝑣 = (𝑑Φ/𝑑𝑙) 𝑘ୱ୮୮⁄  based on gradient of geometry phase Φ, we can define effective 

index of structure as  𝑛 = c/𝑣 = c ∙ 𝑘ୱ୮୮/(𝑑Φ/𝑑𝑙).  

In Fig. 5s, we numerically calculate Eqs. (12s, 13s, 21s, 22s) to derive Figs. 5s(a-

d), and we acquire Figs. 5s(g, h) through Eqs. (17s, 18s, 24s, 25s). Based on definition 

of effective index of structure, we acquire Figs. 5s(e, f) for effective index 𝑛 on 𝑙ଵ and 

𝑙ଶ respectively. 

  



IV . Transformation of  Metrics  

Consider the transformation (𝑥஼ , 𝑡஼) → (𝑥஼
ᇱ , 𝑡஼

ᇱ ) . The metric should obey 𝑔ఓఔ =

డ௫೔

డ௫ഋ

డ௫ೖ

డ௫ഌ
𝑔௜௞. First we write down the metric, 

 𝑔௧಴௧಴
= |∇𝜏|ଶ(𝑙, Φ) 

𝑔௫಴௫಴
= −|∇𝜏|ଶ(𝑙, Φ) 

𝑔௧಴
ᇲ ௧಴

ᇲ = |∇𝜏|ଶ(𝑙ᇱ, Φᇱ) 

𝑔௫಴
ᇲ ௫಴

ᇲ = −|∇𝜏|ଶ(𝑙ᇱ, Φᇱ) 

(26s) 

If we only consider the metric transformation with 𝜑(𝜏) = ±𝜑ᇱ(𝜏) + 𝑛𝜋, 𝑛 ∈ Integer, 

 
𝑔௧಴௧಴

= |𝛻𝜏|ଶ(𝑙, Φ) =
𝜕𝑡஼

ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼
𝑔௧಴

ᇲ ௧಴
ᇲ +

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑥஼
ᇱ

𝜕𝑡஼
𝑔௫಴

ᇲ ௫಴
ᇲ

= |𝛻𝜏|ଶ(𝑙ᇱ, Φᇱ) ቆ
𝜕𝑡஼

ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼
−

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑥஼
ᇱ

𝜕𝑡஼
ቇ

= |𝛻𝜏|ଶ(𝑙ᇱ, Φᇱ)
𝜕𝑡஼

ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼
൮1 −

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼

൲

= 𝑔௧಴௧಴

sinଶ 𝜑

sinଶ 𝜑ᇱ

𝑑𝑡஼
ଶ

𝑑𝑡஼
ᇱଶ

𝜕𝑡஼
ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼
൮1 −

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑥஼
ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼

𝜕𝑡஼
ᇱ

𝜕𝑡஼

൲ 

(27s) 

 
𝑔௫಴௫಴

= −|∇𝜏|ଶ(𝑙, Φ) =
𝜕𝑡஼

ᇱ

𝜕𝑥஼

𝜕𝑡஼
ᇱ

𝜕𝑥஼
𝑔௧಴

ᇲ ௧಴
ᇲ +

𝜕𝑥஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼
𝑔௫಴

ᇲ ௫಴
ᇲ

= |∇𝜏|ଶ(𝑙ᇱ, Φᇱ) ቆ
𝜕𝑡஼

ᇱ

𝜕𝑥஼

𝜕𝑡஼
ᇱ

𝜕𝑥஼
−

𝜕𝑥஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼
ቇ

= |∇𝜏|ଶ(𝑙ᇱ, Φᇱ) ቆ−
𝜕𝑥஼

ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼
ቇ ൮1 −

𝜕𝑡஼
ᇱ

𝜕𝑥஼

𝜕𝑡஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼

൲

= 𝑔௫಴௫಴

tanଶ 𝜑

tanଶ 𝜑ᇱ

𝑑𝑥஼
ଶ

𝑑𝑥஼
ᇱଶ  ቆ

𝜕𝑥஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼
ቇ ൮1 −

𝜕𝑡஼
ᇱ

𝜕𝑥஼

𝜕𝑡஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼

𝜕𝑥஼
ᇱ

𝜕𝑥஼

൲ 

(28s) 

Thus, ப௫಴
ᇲ

డ௧಴
 and డ௧಴

ᇲ

డ௫಴
 should all be zero to maintain the equality, which means that 

డ௫಴
ᇲ

డ௫಴

డ௫಴
ᇲ

డ௫಴
=

డ௧಴
ᇲ

డ௧಴

డ௧಴
ᇲ

డ௧಴
=

|∇ఛ|మ(௟,஍)

|∇ఛ|మ(௟ᇲ,஍ᇲ)
. Moreover, the transformation between frame (𝑥஼ , 𝑡஼) and 

(𝑥஼
ᇱ , 𝑡஼

ᇱ ) actually is a conformal transformation. The motion seen in (𝑥஼ , 𝑡஼) has ௗ௫಴

ௗ௧಴
=

ௗ௫಴
ᇲ |∇ఛ|(௟ᇲ,஍ᇲ)/|∇ఛ|(௟,஍) 

ௗ௧಴
ᇲ |∇ఛ|(௟ᇲ,஍ᇲ)/|∇ఛ|(௟,஍) 

=
ௗ௫಴

ᇲ

ௗ௧಴
ᇲ  

= cos 𝜑ᇱ = cos 𝜑 , where after transformation the velocity 

equals the definition. 

 

 



V . The Rindler-Analogue Transformation 

In analogy to the Rindler transformation in the 2D situation, we have 

 𝑑𝜏ଶ = 𝛽ଶ𝑒ଶఈ௧(𝑑𝑡ଶ − 𝑑𝑥ଶ) (29s) 

in which 𝛼 and 𝛽 are constants. In our platform, a two-dimensional plane, we have 

 𝑑𝜏ଶ = |∇𝜏|(𝑙)ଶ൫𝑑𝑙ଶ − 𝑑Φଶ/𝑘ୱ୮୮
ଶ ൯ (30s) 

When we set |∇𝜏|(𝑙) = 𝛽𝑒ఈ௟, and assume this trajectory is horizontal (𝑙 = 𝑥), 

 𝑑𝜏

𝑑𝑥
= |∇𝜏|(𝑥) sin 𝜑(𝑥) (31s) 

Setting the value of 𝜏 = 𝜑 + tanିଵ 𝑑𝑦/𝑑𝑥, 

 𝜏 = 𝑓(𝜑) (32s) 

We write 

 𝑑𝑓

𝑑𝜑

𝑑𝜑

𝑑𝑥
= |∇𝜏|(𝑥) sin 𝜑(𝑥) (33s) 

Solving Eq. (33s) with |∇𝜏|(𝑙) = 𝛽𝑒ఈ௟ and 𝜏 = 𝜑, we have 

 
𝜏(𝑥) = 2 cotିଵ 𝑒ି

ఉ௘ഀೣ

ఈ + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (34s) 

 𝑑𝑥

𝑑Φ/𝑘௦௣௣
=

1

cos 𝜑(𝑥)
= − coth ൬

𝛽𝑒ఈ௫

𝛼
൰ (35s) 

in which 𝛽 and 𝛼 are constants and 𝛽 is a scale constant. Notice that 𝑑𝑥/൫𝑑Φ/𝑘௦௣௣൯ 

determines the slope of the SPP ray emitting from the trajectory, so that |∇𝜏|(𝑙) will 

give the value difference on the SPP ray (𝜏 line) between different slopes. 

Therefore, for simplification, we do not define |∇𝜏|(𝑙ଵ)/|∇𝜏|(𝑙ଶ) = 𝛽𝑒ఈ௫, but instead 

set ∇(𝑙ଶ) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡  and solve ௗఛ

ௗ௫
= |∇𝜏|(𝑥) sin 𝜑(𝑥)  using Eqs. (34s,35s) above by 

choosing the gauge 𝜏 = ∠𝜏̂, which means 𝜑(𝑥) = 𝜏(𝑥) on 𝑙ଵ. In the experiment, we 

chose 𝛼 = 1/6, 𝛽 = 1/60 for our design and one micron for the length unit. For the 

green line 𝑙ଷ in Fig. 4(a), 𝑣ଷ = ൫𝑑Φ/𝑘௦௣௣൯/𝑑𝑙ଷ ≡ −1/2 and 𝜑ଷ ≡ 120°. 

We show the corresponding 𝜏 in grayscale, with ∇𝜏 in purple and the contour 

lines of the function 𝜏 in red in Fig. 6s, choosing 𝜏 = 𝜑(𝑙) + tanିଵ 𝑑𝑦/𝑑𝑥. 



 

FIG. 6s. The distribution of 𝜏 is shown in grayscale with purple arrows 
representing the distribution of ∇𝜏 and the contour lines of the function 𝜏 
marked in red. Due to rapid changes of ∇𝜏 in the top right corner, the accuracy 
of the amplitude there is little bit low because of the interpolation. Also, we 
mark 𝑙ଵ in white, 𝑙ଶ in cyan and 𝑙ଷ in green. 

 

Since we determine the 𝜏  plane in this case, we can numerically derive the 

corresponding |∇𝜏|(𝑙) shown in Figs. 7s(a-c). Also, 𝑣(𝑙) for the three trajectories is 

shown in Figs. 7s(d-f), and, similar to the second part of the supplement, we draw 

effective index in Figs. 7s(g-i) and world lines with 𝑙 being time in Figs. 7s(j-l). 



 

FIG. 7s, the calculated (a) |∇𝜏|(𝑙ଵ), (d) 𝑣(𝑙ଵ), (j) world line for motion on 𝑙ଵ; the 
calculated (b) |∇𝜏|(𝑙ଶ), (e) 𝑣(𝑙ଶ), (k) world line for motion on 𝑙ଶ; the calculated 
(c) |∇𝜏|(𝑙ଷ), (f) 𝑣(𝑙ଷ), (l) world line for motion on 𝑙ଷ. The three world lines show 
the motion is directed backwards. The effective index 𝑛 on 𝑙ଵ is shown in (g); 
𝑛 on 𝑙ଶ is shown in (h); 𝑛 on 𝑙ଷ is shown in (i). 

 

  



VI . Gauge transformations 

 In implementing Bremsstrahlung radiation on the metasurface, we purposely set 

a value of 𝜏 equaling the angle between the SPP ray and 𝑥-direction. However, as 

mentioned in the article, there is a flexibility when choosing the gauge while still 

retaining the ratio between different 𝑔(𝑙)  which actually describes the relative 

properties between the coordinates. Here, we show another choice 𝜏̃ for setting the 

value on the 𝜏 line equaling the 𝑥-position of the intersection point of the 𝜏 line and 

𝑥 axis. 

 In the first case, the relation between the two gauges is 𝜏̃ = ൬
௖భ

௞ೞ೛೛ ୡ୭ୱ ఛ
൰

ଶ

 where 

𝑐ଵ = 2√15𝜋/3  is a constant defined in the second part of the supplement. The 

comparison of properties is shown in Fig. 8s. We can see that when 𝜏 changes, ∇𝜏 will 

also change (in Fig. 8s(b) compared to Fig. 8s(a)), and |∇𝜏|(𝑙௜) ≠ |∇𝜏̃|(𝑙௜) for 𝑖 = 1,2 in 

Figs. 8s(c-f), while for most important properties we still have ௚(௟భ)

௚(௟మ)
=

௚෤(௟భ)

௚෤(௟మ)
. We show 

|∇ఛ෤|(௟భ)

|∇ఛ෤|(௟మ)
=

௙ᇲ(ఛ)|∇ఛ|(௟భ)

௙ᇲ(ఛ)|∇ఛ|(௟మ)
=

|∇ఛ|(௟భ)

|∇ఛ|(௟మ)
 in Figs. 8s(g, h), in accordance with the length 

transformation for 𝜏(𝑙ଵ) = 𝜏(𝑙ଶ) and 𝜏̃(𝑙ଵ) = 𝜏̃(𝑙ଶ) which determines the relationship 

between the two spaces. 



 

FIG. 8s. 𝑙ଵ = 0 corresponding to 𝑥 = 𝑦 = 0; 𝑙ଶ = 0 corresponding to 𝑥 =
0.32µm, 𝑦 = −4.29µm. 𝑙ଵ and 𝑙ଶ share the same point (30µm, 0). (a) 𝜏 plane 
with ∇𝜏 in purple, contour lines of 𝜏 in red, black dashed line 𝑙ଵ and green 
dashed line 𝑙ଶ. (b) 𝜏̃ plane with ∇𝜏̃ in purple, contour lines of 𝜏̃ in red, white 
dashed line 𝑙ଵ and green dashed line 𝑙ଶ. The ratio (g) between (c)|∇𝜏|(𝑙ଵ) and 
(e)|∇𝜏|(𝑙ଶ) according to 𝜏(𝑙ଵ) = 𝜏(𝑙ଶ), is the same as the ratio (h) between 
(d)|∇𝜏̃|(𝑙ଵ) and (f)|∇𝜏̃|(𝑙ଶ) according to 𝜏̃(𝑙ଵ) = 𝜏̃(𝑙ଶ). 
 

In the Rindler-analogous case, the relation between two gauges is 𝜏̃ =

ଵ

ఈ
ln ቀ

ఈ

ఉ
cothିଵ ିଵ

ୡ୭ୱ ఛ
ቁ . We choose 𝑙ଵ  and 𝑙ଶ  out of the three trajectories to show the 

comparison of properties shown in Fig. 9s. Comparing the left column to the right, we 

can see that when 𝜏 changes, ∇𝜏 will also change in Fig. 9s(b) compared to Fig. 9s(a). 



Additionally, 𝑔(𝑙௜) ≠ 𝑔෤(𝑙௜) for 𝑖 = 1,2 in Figs. 9s(c-f), while for the most important 

property we still have ௚(௟భ)

௚(௟మ)
=

௚෤(௟భ)

௚෤(௟మ)
 in Figs. 9s(g, h), in accordance with the length 

transformation for 𝜏(𝑙ଵ) = 𝜏(𝑙ଶ) and 𝜏̃(𝑙ଵ) = 𝜏̃(𝑙ଶ) which determines the relationship 

between the two spaces. 

 

 

FIG. 9s. 𝑙ଵ = 0 corresponds to 𝑥 = 𝑦 = 0; 𝑙ଶ = 0 corresponds to 𝑥 = 5.50µm, 
𝑦 = −1.00µm.; 𝑙ଷ = 0 corresponds to 𝑥 = 0.14µm and 𝑦 = −4.02µm. 𝑙ଵ and 𝑙ଷ 
share the same point (30µm, 0). (a) 𝜏 plane with ∇𝜏 in purple, the contour 
lines of 𝜏 in red, white dashed line 𝑙ଵ, cyan dashed line 𝑙ଶ and green dashed 
line 𝑙ଷ. (b) 𝜏̃ plane with ∇𝜏̃ in purple, the contour lines of 𝜏̃ in red, white 
dashed line 𝑙ଵ, cyan dashed line 𝑙ଶ and green dashed line 𝑙ଷ. The ratio (g) 



between (c) |∇𝜏|(𝑙ଵ) and (e) |∇𝜏|(𝑙ଶ) obeying 𝜏(𝑙ଵ) = 𝜏(𝑙ଶ) is the same as the 
ratio (h) between (d) |∇𝜏̃|(𝑙ଵ) and (f) |∇𝜏̃|(𝑙ଶ) obeying 𝜏̃(𝑙ଵ) = 𝜏̃(𝑙ଶ). 

 

 

 


