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In recent years, twisting has emerged as a new degree of freedom that plays an increasingly important role
in Bloch bands of various physical systems. However, there is currently a lack of reports on the nontrivial
physics of topological degeneracy in twisted systems. In this Letter, we investigated the intrinsic physical
correlation between twisting and topological degeneracy. We found that twisting not only breaks the
symmetry of the system but also introduces topological degeneracy that does not exist under the original
symmetric system without twisting. Furthermore, the topological degeneracy can be easily tuned through
twisting. This new twist-induced topological degeneracy gives rise to a unique polarization-degenerate
birefringent medium, wherein the twist angle acts as a novel degree of freedom for dispersion and
polarizationmanagement of interface states. Exhibiting fascinating properties and experimental feasibilities,
our Letter points to new possibilities in the research of various topological physics in twisted photonics.

DOI: 10.1103/PhysRevLett.134.106601

Introduction—Very recently, the twist angle, as a new
degree of freedom, has been widely explored to manipulate
quantum materials. The delicate interlayer coupling is con-
trolled by the twist angle, leading to the emergent field of
moiré structures [1,2], e.g., the prominent twisted bilayer
graphene [3–7]. The moiré physics has also been extended to
classical wave systems [8]. In photonics, twist angle can give
rise to exotic phenomenon [9–14], including flat band in
bilayer photonic crystals [15–19], phase synchronization in
nanolasers [20] and many more [21–24]. To date, most of the
works on twist photonics have primarily focused on generat-
ing flat bands where interlayer couplings intend to introduce
gapped phases. However, to the best of our knowledge, there
is currently a lack of reports on the nontrivial physics of
topological degeneracy in twisted systems.
Topological degeneracies [25–27] (TDs) usually serve as

the phase transition points between topological trivial and
nontrivial phases, thus play a vital role in identification of
various topological phases [28]. Systems exhibiting TDs
such as Dirac and Weyl nodes [29,30] are dubbed as
topological semimetals. Typical optical systems confined in
one direction can also host TDs [31,32], provided that
certain symmetries are preserved [33,34]. For example,
the Dirac points (DPs) in two-dimensional (2D) photonic

honeycomb lattice are protected by time reversal symmetry
and inversion symmetry [35]. Once either symmetry is
broken, TDs would be lifted, resulting in gapped phases
[36,37]. Therefore, most of the previous works insist on
preserving certain symmetries to construct topological
degeneracy. There is scarcely any work discussing the
opposite physical mechanism about symmetry-breaking
induced TDs (in particular, DPs) [38,39], i.e., TDs emerge
when certain symmetry is broken.
In this Letter, we investigated the intrinsic physical

correlation between twisting and topological degeneracy.
Our findings indicate that twisting not only breaks the
symmetry of the system but also introduces topological
degeneracy that is absent in the original symmetric system
without twisting. We present a specifically designed system
to demonstrate the twist-inducedTDs. The structure consists
of two anisotropic metasurfaces separated and sandwiched
by photonic crystals (PCs). Two anisotropic interfaces states
(AISs) are supported at the metasurfaces. They coupled to
form twisted bilayer AISs (TBAISs) through the PC in
between and a band gap opens. By twisting one of the two
anisotropic metasurfaces, the up-down mirror symmetry is
broken, and intriguingly, two type-II DPs emerge in the
momentum space. In other words, mirror symmetry break-
ing dictates the presence of theDPs.Meanwhile, the position
of the DPs can be shifted by tuning the twist angle.
Considering the twist angle as an additional dimension
besides the 2D momentum space, the Dirac nodes form two
nodal lines. These two nodal lines merge when the
twist angle is π=2, and instead of annihilation, they form
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a charge-2 Dirac node at the crossing point [38]. We note
that, the isofrequency contours at the type-II Dirac nodes are
similar to the contours of the uniaxial medium, thus our
system support 2D uniaxial interface waves that exhibit
birefringence effects. The above results were experimentally
verified in samples with different twist angles. The twist
angle here can be considered as a new synthetic dimension.
Over the past decade, constructing synthetic dimensions as
new controllable degree of freedom has gained intense
attention across various fields [40]. Our Letter provides a
novel and flexible method to tune TDs through twisting,
extending the use of synthetic dimensions as an effective
knob for tuning topological semimetal phases. Furthermore,
the uniaxial interface waves are applicable in phase match-
ing, mode division, and photonic integration.
Theory of topological degeneracy induced by symmetry

breaking—As depicted in Fig. 1(a), the TBAIS is con-
structed from two anisotropic metasurfaces (parallel golden
bars), which are sandwiched by three 1D PCs. Each
metasurface supports one AIS, and two AISs couple with
each other through the central PC. The metasurfaces are
made of gold nanostripes, whose period (200 nm) is much
smaller than the working wavelength (> 800 nm), and it
can be modeled as a homogenous hyperbolic medium
[41,42]. The two metasurfaces can twist relative to each
other with an angle α, and the coordinate axis are defined as
the two diagonal directions [inset in Fig. 1(a)]. The 1D PCs
are made of Ta2O5 and SiO2 with thickness dA and dB,

respectively [lower panel of Fig. 1(a)]. The unit cell of the
PC in between the metasurfaces is chosen as the A=2 −
B − A=2 configuration and the number of unit cells is 4,
while the two outer PCs are in the B − A configuration. The
above design ensures that the AISs only exist between the
metasurfaces and the middle PC [43]. The two AISs
interact with each other via evanescent waves and form
TBAISs. These TBAISs possess mirror symmetry with
respect to the central plane only at α ¼ 0° and no mirror
symmetry otherwise.
The dispersion of TBAISs is obtained by the transfer

matrix method [44]. For AIS at a single metasurface, the
dispersion is written as E ¼ E0 þ ak2x þ bk2y, with a ≠ b
indicating the anisotropy of AISs, E0 being the frequency at
k ¼ 0. We assume that the eigenfield of the AISs are
approximated by that at the Γ point (which is a reasonably
good approximation around the Γ point, as shown in
Figs. S4 and S5 [44]). From this, the angular-dependent
coupling between the two AISs is derived by calculating
the eigenfields overlap between them, and accordingly, the
effective Hamiltonian is [44]:

H ¼ 1

2
½E0 þ ðaþ bÞðk2x þ k2yÞ þ ða− bÞðk2x − k2yÞ cosα� · σ0

þ ða− bÞkxky sinα · σ3
þq

�
cosαþ 1

2
½ðk2x þ k2yÞ cosαþ k2x − k2y�

�
· σ1; ð1Þ

(a) (b)

(e) (f) (g)

(c) (d)

FIG. 1. (a) Schematic of twist bilayer metasurfaces embedded in 1D PCs (upper panel) and SEM image of the cross section of the
structure (lower panel), the black arrows indicate the metasurfaces, p, w, and t denote, respectively, the period, groove, and thickness of
the nanostripes. (b)–(d) Dispersion of the TBAISs at different twist angles, the green dots stand for Dirac points. (e) Enlargement at the
type-II Dirac point corresponding to the dashed region in (c). (f)–(g) Eigenfunctions of the TBAISs of α ¼ 70° at Dirac points.
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where σiði ¼ 0; 1; 2; 3Þ stands for the identity matrix and
Pauli matrices. Note here the second term (σ3) describes the
frequency detuning induced by twist between two
uncoupled AISs, while the last term (σ1) stands the
coupling strength between the two AISs, and q is regarded
approximately as a constant. Considering the condition of
0° ≤ α ≤ 90°, for kx ¼ 0, the second term vanishes and
the coefficient before the last term in Eq. (1) is
q½cos αþ 1

2
k2yðcos α − 1Þ�. There are three cases: (i) The

system is up-down mirror-symmetric, i.e., α ¼ 0°, and the
term ðcos α − 1Þ equals to zero. Then the coupling strength
remains positive regardless of ky. Consequently, no TD can
be found in this case. (ii) The mirror symmetry is broken by
a twist (0° < α < 90°), then cos α is positive and
ðcos α − 1Þ is negative. At ky ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cos α=ð1 − cos αÞp
,

the third term in Eq. (1) equals zero. Therefore, there are
two TDs formed at these two points. For 90° < α < 180°,
another two TDs at (� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 cos α=ð1 − cos αÞp
; 0) are also

found following a similar derivation. (iii) At α ¼ 90°, two
TDs merge. In conclusion, the TDs only emerge when the
twist breaks the mirror symmetry in TBAISs.
Figure 1(b) plots the dispersion of the TBAISs with

α ¼ 0°, these two bands are gapped with NO TDs. When
the mirror symmetry is broken by a twist (e.g., α ¼ 70°),
these two bands intersect with each other at ðkx; kyÞ ¼
ð0; kTDy Þ, as shown in Fig. 1(c). An enlarged view of
one degenerate point is shown in Fig. 1(e). It is clear that
the TD tilts in momentum space forming a type-II Dirac

point since the tilting parameter is larger than unity [44,47].
Figures 1(f) and 1(g) show the typical horizontal electric
field ðEx; EyÞ of the two states forming the Dirac point
at α ¼ 70°.
When further increasing the twist angle, the two type-II

Dirac points move towards to the center of the momentum
space, i.e., Γ point. At α ¼ 90° (where the two metasurfaces
are perpendicular), these two type-II Dirac points merge
into one TD with quadratic dispersions at the Γ point. This
TD is classified as a charge-2 Dirac point, which charac-
terized by a 2π Berry phase when enclosing the DP [44].
Notably, the electric fields are parallel to the nanostripes in
a single AIS, therefore these two AISs decouple at the
charge-2 Dirac point when α ¼ 90°.
Observation of topological degeneracies with tuned

twist angles—To experimentally demonstrate the above
symmetry-breaking induced TDs, a series of samples with
different twist angles is fabricated [44]. It is known that
multilayer structure suffers from the inevitable loss, how-
ever, the loss term here is approximated as an identity
matrix and the DPs remain intact [44]. An SEM image of
the cross section for one sample is shown in the lower panel
of Fig. 1(a). In experiments, we measured the reflection
spectrum along different directions across the Γ point, thus
mapping the dispersion in the 2D momentum space [48].
Figure 2(a) shows the sketch of measuring dispersion of

the TBAISs at α ¼ 70°, where a type-II Dirac point is
expected. Four measured reflection spectra at different
azimuth angles θ for this sample are plotted in Fig. 2(b).

FIG. 2. (a) and (c) The schematics of dispersion at α ¼ 70° and 90°, respectively. The degeneracies are denoted by the green dots, and
the vertical gray planes indicate the azimuthal angles measured in experiment. (b) and (d) The reflection spectra at azimuthal angles
θ ¼ 0°, 30°, 60°, 90°, respectively, where the dashed lines correspond to the dispersion obtained theoretically, and the gray shaded areas
correspond to projected passband of the 1D PCs.
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The TBAIS is manifested as reflection dips in our meas-
urement. It is clear that two reflection dip lines intersect
with each other at θ ¼ 0° (i.e., along the ky axis); while for
the other three directions, these two dip lines are always
separated, i.e., gapped. Figure 2(c) shows the correspond-
ing dispersion with α ¼ 90°, where a charge-2 Dirac point
presents at the Γ point, the dispersions are quadratic,
consistent with the effective Hamiltonian. For comparison,
theoretical dispersions are shown in Figs. 2(b) and 2(d)
with gray dashed lines, and the Dirac points are denoted by
green dots, which match well with the measured results.
The above results confirm the observation of the type-II
Dirac point and the charge-2 Dirac point on the TBAISs.
According to the above discussion, these TDs are located

on the ky axis for 0° ≤ α ≤ 90°, and on the kx axis
otherwise. Subsequently, the measured reflection spectra
along ky axis at different twist angles α are given in
Fig. 3(a). We note that the theoretical TDs marked as the
green dots move towards to the Γ point as twist angle α
increases; and they eventually merge into a charge-2 Dirac
point at α ¼ 90°. Meanwhile, there is no TD at α ¼ 0° as
the two reflection dip lines are separated. Taking the twist
angle as a synthetic dimension, these TDs form a nodal
chain in the 3D space consisting of kx, ky, and α, with a
chain point at ðkx; ky; αÞ ¼ ð0; 0; π=2Þ. For 0 ≤ α ≤ π=2,
with expanded Hamiltonian around the chain point, these
TDs are located at

ky ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðπ=2 − αÞ

p
; kx ¼ 0: ð2Þ

We collect all the band crossing point in Fig. 3(a) and
replot them in the ðkx; ky;αÞ space in Fig. 3(b). TDs that
found in the experiment are marked as solid magenta dots,
which agree well with the theoretically predicted nodal
chain (green solid line). Thus, we have experimentally
confirmed a chained nodal line in the synthetic space.

Uniaxial isofrequency contours at topological
degeneracies—In optics, the isofrequency contours plays
a decisive role in various effects, including birefringence
and negative refraction. In Figs. 4(a)–4(c), we show the
isofrequency contours above, at, and below the TDs of the
TBAISs at α ¼ 75°. For clarity, the analytical isofrequency
contours are plotted with colored lines, where the color
denotes the polarization ratio of the corresponding eigen-
mode. It is observed that the inner (outer) contours are
mainly dominated by EzðHzÞ near TDs, leading to a
polarization difference between these two contours. We
note that the isofrequency contour at the TD [Fig. 4(b)] is
quite similar to those in a uniaxial crystal. Unlike conven-
tional uniaxial medium where the isofrequency contours
are intersected by a circle (ordinary waves) and an ellipse
(extraordinary waves), here the contours of TBAISs are
composed of two elliptical-like contours, indicating that
both modes are extraordinary. Such a unique feature
implies that the TBAISs can host the intriguing birefringent
effect when the wave is incident from a structure with
isotropic isofrequency contour. To be specific, when light is
injected along the optical axis, i.e., TD, the two excited
states propagate with the same direction; once deviating
from the optical axis, the light beam splits into two with
different directions [44]. Furthermore, the uniaxial interface
waves of TBAIS can also be tuned by the twist angle, as
depicted in Figs. 4(d)–4(f). To the best of our knowledge,
this is the first time that the tunable birefringent effect has
been demonstrated within localized interface waves, which
favors applications in integrated mode division, phase
matching for interface waves and more.
Summary and outlook—The properties of TBAISs were

investigated both theoretically and experimentally. Twist
between two metasurfaces breaks the up-down mirror
symmetry of the system and leads to TDs. Specifically,

FIG. 4. (a)–(c) are the isofrequency contours above, at, and
below the Dirac point of twist angle α ¼ 75°, where the black dots
represent the experimental measured dips. The color bar is given
by ðW2

Ez
−W2

Mz
Þ=ðW2

Ez
þW2

Mz
Þ, where WEz

¼ R
DzEz=2 · dz

and WHz
¼ R

BzHz=2dz stand for the electric and magnetic
energies along the z axis. (d)–(f) are the isofrequency contours at
the Dirac points of different twist angles.

FIG. 3. (a) Reflection spectra along the ky axis at different twist
angles α ¼ 0°, 65°, 75°, 80°, 85°, and 90°, where the dashed lines
correspond to the theoretical dispersion, and the gray shaded
areas corresponds to the projected passband of the 1D PCs.
(b) Theoretical nodal chain (green solid line) and corresponding
experimental results (magenta solid dots).
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type-II and charge-2 Dirac points are observed experi-
mentally. Subsequently, a nodal chain is formed in the
kx − ky − α synthetic space as confirmed by experiment.
Our findings enrich the field of twist photonics [9] and may
offer a potential route to demonstrating non-Abelian braiding
by introducing more layers and twist angles [49–51]. Our
Letter not only demonstrates the new possibility of creating
TDs by breaking certain symmetries, but also presents a
rather simple and flexible platform for manipulating the
polarization and propagation of interface waves.
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