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O P T I C S

Cascaded-mode interferometers: Spectral shape and 
linewidth engineering
Jinsheng Lu1*, Ileana-Cristina Benea-Chelmus1,2, Vincent Ginis1,3,  
Marcus Ossiander1,4, Federico Capasso1*

Interferometers are essential tools for measuring and shaping optical fields, widely used in optical metrology, 
sensing, laser physics, and quantum mechanics. They superimpose waves with a mutual phase delay, modifying 
light intensity. A frequency-dependent phase delay enables spectral shaping for filtering, routing, wave shaping, 
or multiplexing. Conventional Mach-Zehnder interferometers generate sinusoidal output intensities, limiting 
spectral engineering capabilities. Here, we propose a framework that uses interference of multiple transverse 
modes within a single multimode waveguide to achieve arbitrary spectral shapes in a compact geometry. De-
signed corrugated gratings couple these modes, enabling energy exchange akin to a beam splitter for easy multi-
mode handling. We theoretically and experimentally demonstrate spectra with independently tunable linewidth 
and free spectral range, along with distinct spectral shapes for various transverse modes. Our method applies to 
orthogonal modes of different orders, polarization, and angular momentum, offering potential for sensing, cali-
bration, metrology, and computing.

INTRODUCTION
The manipulation and control of the amplitude and phase of broad-
band light at each wavelength, known as optical spectral shaping, is 
fundamental for applications such as pulse shaping (1–7), micro-
wave waveform generation through wavelength-to-time mapping of 
optical signals (8–16), and sensing in biochemistry, medicine, and 
physics (17–23). The first attempt to manipulate the optical spec-
trum dates back to Newton’s prism experiments (24), where white 
light was decomposed into its constituent colors. Building on Newton’s 
work, researchers have then implemented a spatial mask or spatial 
light modulator to control the amplitude (and possibly the phase) of 
each of these colors (1–5). This parallel manipulation offers spectral 
control with a frequency resolution limited by the pixel size of the 
mask and the beam diameter at the mask and requires large compo-
nents and space, making miniaturization challenging.

Simple filtering functions can be implemented via a simple 
Mach-Zehnder interferometer (Fig. 1A) (25) that splits and recom-
bines two beams (denoted as a1,in and a2,in) after sending them along 
two paths that differ by a length ΔL. Such interferometers are rou-
tinely implemented in integrated photonics, using on the platform’s 
ability to realize compact splitters and waveguides of arbitrary 
length. However, the spectral response depends sinusoidally on fre-
quency. Consequently, the output power spectrum of the two output 
beams (denoted as a1,out and a2,out) oscillates with a periodicity 
Δf ∝ 1∕

(
neffΔL

)
 that depends on the effective index neff of the 

waveguide mode and the path length difference ΔL (we do not con-
sider dispersion here for simplicity). Bragg gratings provide finer 
control that achieves wavelength-specific and bandwidth-controlled 
reflection or filtering through interference of an infinity of waves 
(26, 27). Such narrow-linewidth response relies strictly on invoking 

more than two waves and can also be achieved using multilayer thin 
films (28–30), Fabry-Perot interferometers (25), arrayed waveguide 
gratings (31), and fiber interferometers (32–35). More complex spectral 
manipulation can be achieved using on-chip spectral shapers, typi-
cally consisting of multiple resonators, which offer high spectral reso-
lution and programmability (8–11, 36, 37).

The working principle of most optical devices mentioned above 
relies on the interference of beams that are reflected multiple times. 
However, their amplitudes are constrained by the reflection or 
transmission coefficients of the mirrors or interfaces, and the phases 
are limited by the propagation lengths and propagation constants, 
which are integer multiples of the cavity length or thin-film thick-
ness. This typically results in the amplitudes being dependent on 
each other, leaving the requirement for independent control unad-
dressed. Furthermore, the propagation constants of these beams are 
typically the same.

In this work, we propose to shape the spectra of light by using an 
alternative to conventional Mach-Zehnder interferometers: We 
exploit multiple transverse modes of a multimode waveguide on 
silicon-on-insulator (SOI) platform, instead of the spatial modes of 
two individual waveguides (Fig. 1A). To couple these modes, we use 
transmissive mode converters (TMCs) that transfer energy from 
one mode to another, depending on the so-called splitting ratio 
(SR), similar to a beam splitter. The working principle of the TMC is 
based on long-period gratings that satisfy the Bragg condition for 
coupling between different modes. This approach enables a similar 
spectral shaping when using two TMCs in a geometry as shown in 
Fig. 1B, albeit with a periodicity that is not determined by a path 
imbalance but instead by an imbalance in the propagation constants 
(βi =

2π

λ
neff,i, i = 1, 2) of the two modes Δf ∝ 1∕

(
ΔneffLgap

)
, with 

Δneff being the difference in the effective refractive index of the used 
transverse modes and Lgap being the length of the multimode wave-
guide between the mode converters. We show that this compact 
implementation provides a straightforward extension to cascading 
more mode converters (N) and a higher number of modes (M) with 
propagation constants β1, β2,… , β

M
 (Fig. 1C). Building upon this 

concept, we develop and present a generalized framework that 
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computes the exact spectra of multiple interfering transverse modes 
through transfer matrix formalism and their dependency on the SR 
of the mode converters. We demonstrate narrow-linewidth (i.e., 
high finesse) and arbitrary spectra using our cascaded-mode inter-
ferometers. One of the promising aspects of our device is that, un-
like traditional technologies such as Fabry-Perot interferometers, 
its finesse remains unaffected by losses, enabling the integration of 
switchable or active materials without compromising the device’s 
spectral performance.

RESULTS
Spectral engineering using cascaded-mode interferometers
In the case of N TMCs spaced by the same distance Lgap (Fig. 1C), the 
amplitudes of the modes at the output of the interferometer depend on 
the input modes and the transfer function of the various components as

where ain =
(
a1,in, a2,in,… , a

M,in

)T and aout =
(
a1,out, a2,out,… , a

M,in

)T 
are the amplitude arrays of the input and output modes of the 

interferometer. This is only true for pure forward-scattering converters. 
T
c
 and Twg are the transmittance matrix of the mode converter and 

the multimode waveguide between the mode converters, respectively. 
The mode j accumulates a phase term H

j(λ) = e
−iβjLgap = e

−i
2π

λ
neff,jLgap 

( j = 1, 2,… ,M) during propagation in the multimode waveguide 
between the mode converters. Therefore, Twg represents a propaga-
tion phase matrix, which can be written as

The transmittance matrix T
c
 representing an arbitrary mode con-

version (or so-called beam splitting) function is given by

where tij (i, j = 1, 2,… ,M) is the transmittance coefficient indicat-
ing the mode conversion from mode j to mode i in a transmissive 
way. T

c
 and Twg are unitary matrices if there is no loss. T

c
 is a sym-

metric matrix if the mode conversion is reciprocal. The two matrices 
(T

c
 and Twg) applied sequentially in Eq. 1 resemble the evolution 

matrices of the adiabatic impulse model, which is used to describe 
qubit dynamics (38, 39).

We consider a case that N = 2 to show the ability of arbitrary 
spectral shaping of the cascaded-mode interferometer. Equation 1 
can then be simplified to aout = T

c
TwgTc

ain. Combined with Eqs. 2 
and 3, the amplitude spectrum of mode j in the output of the cascaded- 
mode interferometer can be calculated as

Note that the effective index neff,n in this series is not freely selectable 
but is instead restricted to specific values, typically nonequidistant, de-
termined by the waveguide cross section. Despite these nonequidistant 
neff,n values, the series can still effectively approximate a wide range of 
predetermined functions, similar to a standard Fourier series (40). There-
fore, by designing the transmittance coefficients tij, we can achieve nearly 
arbitrary spectral shapes of the output modes.

On-chip cascaded-mode interferometers
In the first experiment, we realize the most simple on-chip cascaded-
mode interferometer, featuring two input modes and two output 
modes that we choose to be TE0 and TE2 as shown in Fig. 2A. The 
interferometer is fabricated from 220-nm–thick SOI material (see 
Materials and Methods for details). We corrugate the multimode 
waveguide with a periodicity of Λ and a depth of h, satisfying the 
Bragg condition: β1 − β2 −m 2π

Λ
= 0. We use the first order m = 1. 

This grating provides a momentum at the central wavelength λ0 to 
satisfy the phase matching condition (Λ = λ0 ∕Δneff), enabling co-
directional coupling between the TE0 and TE2 mode. It uses long 

aout(λ) = T
c

(
TwgTc

)N−1
ain (1)

Twg =

⎡⎢⎢⎢⎢⎣

H1(λ) 0 … 0

0 H2(λ) … 0

… … … …

0 0 … H
M(λ)

⎤
⎥⎥⎥⎥⎦

(2)

T
c
=

⎛⎜⎜⎜⎜⎝

t11 t12 … t1M

t21 t22 … t2M

… … … …

tM1 tM2 … tMM

⎞⎟⎟⎟⎟⎠
(3)

aj,out(λ) =

M∑
m=1

M∑
n=1

tjne
−i 2π

λ
neff,nLgap tnmam,in (4)
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Fig. 1. Concept of cascaded-mode interferometers. (A) A typical Mach-Zehnder 
interferometer (MZI) with two inputs and two outputs. The relative phase shift be-
tween the two arms is Δφ = k0neffΔL, where k0, neff, and ΔL are the wave number, 
the effective index of the spatial mode, and the length difference of the two arms, 
respectively. The output interference spectrum is shown below and its free spectral 
range (Δf ) is proportional to 1∕

(
neffΔL

)
. Note that the group index ng should be 

used here if dispersion is considered. (B) A cascaded-mode interferometer, as a 
counterpart to the MZI. It consists of two orthogonal modes (propagation con-
stants β1 and β2) in a multimode waveguide and two TMCs separated by a distance 
Lgap. The relative phase shift between the two modes is Δφ = k0ΔneffLgap, where 
Δneff is the effective index difference of the modes. Its free spectral range of the 
output spectrum is proportional to 1∕

(
ΔneffLgap

)
. Orthogonal modes can include 

examples such as the linearly polarized (LP) modes in multimode optical fibers or 
the quasi-transverse electric modes in photonic integrated circuits. (C) A general 
cascaded-mode interferometer, where multiple orthogonal modes with propaga-
tion constants βj are converted and mixed by multiple TMCs separated by Lgap. aj,in 
and aj,out ( j = 1, 2,… ,M) represent the amplitudes of input and output mode j , 
respectively. A narrow linewidth spectrum and a spectrum with arbitrary shapes 
generated by suitably designed cascaded-mode interferometers are shown below.
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periods. In contrast, distributed-feedback laser gratings, which use 
short periods, function as mirrors by reflecting waves backward 
through contradirectional coupling. The coupling coefficient in both 
codirectional and contradirectional coupling scenarios is influenced by 
similar factors, such as grating corrugation depth, waveguide geometry, 
and mode profile. For identical waveguide geometry and corrugation 
depth, the coupling coefficients will be comparable in both scenarios 
(41). The transmittance coefficients tij (i, j = 1, 2) in the transmittance 
matrix T

c
 of this mode converter can be derived from coupled mode 

theory (42) (section S1) as t11, t22 = cos
(
sLc

)
∓ i δ

s
sin

(
sLc

)
 and 

t12 = t21 = −i κ
s
sin

(
sLc

)
, where δ = πΔneff

λ
−

π

Λ
 is the phase mismatch, 

κ is the coupling coefficient, Lc is the grating length, and s =
√
δ2 + κ2. 

Phase matching is only achieved at the central wavelength, that is, 
δ
(
λ=λ0

)
= 0, and the phase mismatch is proportional to the devia-

tion of the wavelength from the central wavelength: δ(λ) ≈ πΔneff(λ−λ0)
λ2
0

. 
The power conversion efficiency of the mode converter is 
η =

κ2

κ2 +δ2
sin2

(
sLc

)
. The bandwidth of the mode converter (ΔλBW), 

determined by this term κ2

κ2 +δ2
, can be derived as ΔλBW =

2κλ2
0

πΔneff
, 

which increases with κ (section S4 and fig. S24). Suppose we input 
TE0 mode into this cascaded-mode interferometer, that is, ain = [1, 0]T, 
the amplitude of the TE0 mode at the output can be calculated 
using Eq. 4 as

When the phase mismatch is small compared to the coupling co-
efficient, δ≪ κ, Eq. 5 simplifies to a1,out= cos2

(
κLc

)
e
−i

2π

λ
neff,1Lgap − 

sin2
(
κLc

)
e
−i

2π

λ
neff,2Lgap. The power of the TE2 mode can be calculated as 

∣a2,out∣
2 = 1− ∣a1,out∣

2 according to energy conservation; the power of 

the TE0 mode, ∣a1,out∣2, can be determined from Eq. 5. Alternatively, as 
derived in detail in section S4, ∣a2,out∣2 can be expressed as

where the phase difference Δϕ is given by Δϕ =
2π(neff,1−neff,2)Lgap

λ
+

2arctan[
δ

s
tan

(
sLc

)
] and η is the power conversion efficiency (see 

above). The left term, 2η(1−η), is an amplitude modulator, which 
generates envelope patterns, such as the doughnut-shaped struc-
tures observed in the power spectra (see Fig. 2B and fig. S24D). The 
second term, 1 + cosΔϕ, introduces fine structures, including spec-
tral interference patterns and fork-shaped features (see Fig. 2B and 
fig. S24E). Together, the equation captures the interplay of coupling, 
detuning, and phase matching, which govern the power distribution 
between the coupled modes in a cascaded-mode interferometer (see 
also section S4).

To achieve a sinusoidal modulation of the power transmitted 
through the interferometer as a function of frequency with maximal 
visibility (for normalized power, this means the power modulation 
spans the full range from 0 to 1), the two TMCs need to split the 
power equally into TE0 and TE2, in analogy to 50:50 beam splitters 
used in conventional Mach-Zehnder modulators (fig. S7). There-
fore, the coupling strength κLc should be equal to π

4
, leading to 

a1,out =
1

2

(
e−i

2π

λ
neff,1Lgap −e−i

2π

λ
neff,2Lgap

)
 (when δ≪ κ) and a maximal 

visibility of the interference spectrum.
Figure 2B depicts the calculated wavelength-dependent trans-

mitted power contained in mode TE2 after the interferometer upon 
sending TE0 into the interferometer, as a function of coupling 
strength κLc for a gap length Lgap = 500 μm. We notice that the low-
est coupling strength for maximal visibility is when κLc =

π

4
 (white 

dashed cut line). Operating the cascaded-mode interferometer at 
this point allows to use the shortest length for the mode converter, 
which is beneficial for the footprint of the device or, alternatively, 
the smallest corrugation. The bandwidth of the mode converter is 
limited by phase mismatch, which becomes detrimental as soon as δ 

a1,out=
[
cos

(
sLc

)
− i

δ

s
sin

(
sLc

)]2

e
−i

2π

λ
neff,1Lgap −

κ2

s2
sin2

(
sLc

)
e
−i

2π

λ
neff,2Lgap

(5)

∣a2,out∣
2 = 2η(1−η)(1+cosΔϕ) (6)
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Fig. 2. Interference spectra generated by a cascaded-mode interferometer. (A) Scanning electron microscope image of a fabricated cascaded-mode interferometer 
comprising two waveguide transverse modes (TE0 and TE2) and two TMCs separated by a distance Lgap = 500 μm. The interferometer is fabricated from 220-nm–thick SOI 
material. The TMCs are made of gratings with period Λ = 2126 nm, the length Lc = 8Λ = 17 μm, and the corrugated grating depth h = 40 nm. The width of the multimode 
waveguide is 1100 nm. The aspect ratio of the zoomed-in image in (A) is set to 1:6 to visualize the gratings better. (B) Calculated output power spectra of the TE2 modes 
for varying coupling strength κLc which is the product of the grating’s coupling coefficient (κ) and the grating length (Lc). The white dashed lines in (B) correspond to the 
red curve (theory) in (C) where κLc = 0.25π, that is, a mode power SR of 50:50. (C) Measured and calculated output power spectra of the TE0 and TE2 modes when 
Lgap = 500 μm and κLc = 0.25π. The input mode is TE0 mode.
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becomes a substantial portion of s. As follows from Eq. 5, the band-
width can be increased by increasing the coupling strength to, for 
example, κLc =

3π

4
 or κLc =

5π

4
. In these cases, the larger coupling 

strength compensates for the phase mismatch, although at the ex-
pense of longer gratings or larger corrugations. To validate our con-
cept, we experimentally report the wavelength-dependent power of 
the output modes TE0 and TE2 after the interferometer, under an 
input TE0 mode (upper graph of Fig. 2C). We use a grating period 
Λ = 2126 nm. The coupling coefficient of the mode conversion be-
tween the TE0 and TE2 modes is κ =

π

32Λ
= 0.046 μm−1. We observe 

alternating powers that match well with our analytical model (lower 
graph of Fig. 2C and fig. S7) as well as simulation results (fig. S8), in 
line with expectations from a Mach-Zehnder interferometer. Note 
that the envelope of the measured spectra in Fig. 2C (also in Figs. 3D 
and 4D) results from the parallel waveguide coupler (section S2 and 
fig. S5), which is used to load and unload the modes from the mul-
timode waveguide. The free spectral range of the interference spec-
tra is measured as 19.4, 8.5, and 4.4 nm when Lgap = 100, 250, and 

500 μm, respectively, which are in good agreement with the calcula-
tions: 21.5, 8.6, and 4.3 nm using the formula ΔλFSR =

λ2
0

(ng,1−ng,2)Lgap
, 

where ng,1 = 4.85 and ng,2 = 3.75 are the group indexes of the TE0 
and TE2 modes at the central wavelength λ0 = 1538 nm (fig. S9). The 
group indexes were obtained from numerical simulations and veri-
fied in a previous work (43).

In many optical applications, controlling light’s spectrum to achieve 
a narrower transmission linewidth is desirable, for example, in filter-
ing or routing. In the following, we will show that cascading several 
mode converters provide a useful knob to achieve this, as visualized in 
Fig. 3A. A tempting approach could be to simply cascade N 50:50 
mode converters along a single multimode waveguide. However, we 
find from computing the total transfer function of the system using 
Eq. 1 that concatenating N 50:50 mode converters leads to a narrow-
ing of the transmission spectra, at the expense of multiple undesired 
sidebands (Fig. 3B and fig. S10). This is typically not desired in filter-
ing and routing applications that rely on achieving a vanishingly 
small insertion loss only at one desired wavelength and close to zero 
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Fig. 3. Cascaded-mode interferometer with multiple TMCs for precise tuning of FSR and linewidth. (A) Schematic of a cascaded-mode interferometer with multiple 
TMCs and two modes (TE0 and TE2). (B) Calculated output power spectra of the TE2 mode with varying the number (N) of TMCs at κLc = 0.25π. Parameters used in the 
numerical calculations: Lgap = 250μm, a1,in = 1, a2,in = 0, n1,eff = 2.74, and n2,eff = 1.98. (C) Calculated output power spectra of the TE2 mode for varying coupling strength 
κLc when N = 8. The four dashed lines in (C) represent the positions where (i) κLc = 0.5π∕N, (ii) κLc = (N−0.5)π∕N, (iii) κLc = (N+0.5)π∕N, and (iv) κLc = (2N−0.5)π∕N 
with N = 8. (D) Measured (left) and calculated (right) output power spectra of the two modes for different N with coupling strengths κLc = 0.5π∕N (N = 2,4,8). The multi-
plication of the number of the mode converters N and the number of the grating period of a single mode converter m equals 16. (E) Measured and calculated linewidth 
variation with N. Fitting equations: 12.88∕ (N−0.38) and 7.02∕ (N−0.44) for Lgap = 125 μm and Lgap = 250 μm, respectively. The input mode is TE0 mode. The inserts are 
the scanning electron microscope images of the mode converters of the fabricated cascaded-mode interferometer device at different N. The scale bars are 1 μm.
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transmission elsewhere. Guided by our mathematical derivation (sec-
tion S3), we find that, instead, the optimal coupling strength of the 
grating needs to generally satisfy the condition κLc =

π

2N
, with N be-

ing the total number of mode converters. In this case, the correspond-
ing SR of the mode converter at the central wavelength is SR =

η

1−η
, 

where η = sin2
(

π

2N

)
. For N = 8, the mode converter has an SR of 

around 0.04, which means that when 1 mW TE0 mode is input into 
the mode converter, it gets 0.038 mW TE2 mode and 0.962 mW TE0 
mode. We exemplify this by reporting in Fig. 3C the total transmitted 
power for TE2 and N = 8 for various coupling strengths κLc. As ex-
pected, at κLc =

π

2× 8
, the transmitted power features narrow-linewidth 

transmission [dashed line (i)]. Other coupling strengths where this is 
satisfied are κLc = π ±

π

2N
, κLc = 2π ± π

2N
, and so on (N = 8).

We fabricated a series of cascaded-mode interferometers with 
N = 2, 4, and 8 while adjusting the number of periods (m) to satisfy 
κLc =

π

2N
 for each one of them. We can easily get m × N =

π

2κΛ
= 16 

according to Lc = mΛ and κ =
π

32Λ
. Consequently, the number of the 

grating periods of the mode converter is m = 8, 4, and 2, respective-
ly. The maximum achievable N is 8 in this case (because m × N = 16 
and m ≥ 2). However, by using a multimode waveguide with a larger 
width or a mode conversion grating with weaker corrugation, we 
can reduce the coupling coefficient (κ), thereby enabling a substan-
tially larger N. For example, the maximum achievable N becomes 34 
when the width of the multimode waveguide and the corrugation 
depth of the grating are 2500 and 20 nm, respectively (fig. S23). 
Note that in the condition of κLc <

π

2N
, we can still obtain narrow 

linewidth spectra but with a smaller amplitude at the power spec-
trum peaks, which is determined by ∣apeak ∣2 = sin2

(
κLcN

)
 (fig. S23).

In line with our modeling, we experimentally find that an increased 
number of converters markedly reduce the linewidth of the transmis-
sion spectra while efficiently suppressing its off-resonance transmission, 
as shown in Fig. 3D. We find the experimental linewidth to match well 
with theory, which is corroborated by two sets of devices with different 
gap lengths Lgap = 125 μm (fig. S15) and Lgap = 250 μm (Fig. 3D). The 
free spectral range of the narrow linewidth spectra generated by 
this cascaded-mode interferometer, in this case, can be decreased by in-
creasing the gap between TMCs 

(
ΔλFSR∝

1

Lgap

)
 (fig. S14), and the 

linewidth (full width at half maximum) ΔλFWHM decreases when 
increasing the number N  of TMCs (Fig. 3 and figs. S11 to S13), 
which can be approximated by ΔλFSR

N
. A more accurate expression would 

be ΔλFWHM =
ΔλFSR + c1
N + c2

, where c1 and c2 are fitting coefficients (Fig. 3E). 
The finesse of this cascaded-mode interferometer, defined as the ratio of 
the free spectral range and the linewidth, therefore, is approximately 
equal to the number of the mode converters: F =

ΔλFSR

ΔλFWHM

≈ N. We note 
here, however, that, unlike in the case of resonators, the finesse is not 
related to a field enhancement, but rather to the contrast of the transmis-
sion spectrum in a given band. In contrast to the finesse of a tradi-
tional Fabry-Perot interferometer that is sensitive to loss, the finesse 
of our cascaded-mode interferometer is loss independent, whereas 
the total transmitted power is loss dependent (fig. S22).

Multidimensional on-chip cascaded-mode interferometers
Shaping the spectrum of a light source simultaneously in multiple 
ways is a requirement in many applications. For example, having 
the ability to flatten part of the spectrum can be beneficial for 

spectroscopy over a broad bandwidth, and simultaneously modulat-
ing another part of it in intensity can be important for achieving 
more complex time-domain profiles. A large ΔλFSR

ΔλFWHM

 is also often 
needed to cut fundamental radiation in spectroscopy or on-chip 
generated frequency combs.

We show in the following that such manipulation of light’s spec-
trum can be accomplished by extending the cascaded-mode interfer-
ometer of Fig. 2 to provide efficient conversion between not only two 
but more distinct transverse modes. In this case, the spectral profile 
of two orthogonal modes can be arbitrarily shaped by dumping the 
remaining energy into the third mode (figs. S16 to S21). To exem-
plify this concept, we resort to mode converters that feature a pair of 
periodicities, as to convert TE0 into TE1 with a coupling strength κ1 
and TE0 into TE2 with a coupling strength κ2, as seen in Fig. 4A. Figure 
4B depicts an optical microscope image of the fabricated device, 
showcasing straightforward multiplexing and demultiplexing of the 
various transverse modes using mode-selective parallel waveguide 
couplers (section S2 and figs. S5 and S6). Coupling TE0 with TE1 re-
quires a grating that is asymmetrically displaced on the two sides of 
the waveguide due to the different symmetry of the two modes, whereas 
coupling TE0 with TE2 requires a symmetric one, as visible from the scan-
ning electron microscope image in Fig. 4C. By choosing κ1Lc1 = 0.19π 
and κ1Lc1 = 0.25π, we experimentally confirm in Fig. 4D (left) (also in 
fig. S18) that substantially different spectral shapes can be achieved for 
the three transverse modes, in line with our analytical description (Fig. 
4D, right).

DISCUSSION
In summary, we demonstrate how the interference of multiple trans-
verse modes in a single interferometer can be used to control the 
spectral response of light using TMCs. Our approach leverages the 
capabilities of photonics to engineer the effective index and propaga-
tion constant through waveguide design, and the conversion band-
width and efficiency through corrugation. By propagating multiple 
modes with different propagation constants within a single compact 
multimode waveguide, we circumvent the need for multiple wave-
guides that are otherwise used in multiarmed interferometers. By 
designing index-matched parallel waveguide couplers, we multiplex 
and demultiplex these transverse modes. Altogether, this enables a 
smaller footprint and greater design flexibility than the traditional 
Mach-Zehnder interferometer.

Potential applications span a wide range from versatile tools for 
exploring complex physical phenomena to innovative nanophoton-
ic devices for communication and sensing. Examples of applications 
are expected to emerge across three key aspects.

The cascaded-mode interferometer developed in this work provides 
an adaptable platform for nanophotonic sensing applications. By 
enabling narrow-linewidth transmission peaks and valleys tunable via 
mode converters, the system supports the detection of environmental 
changes such as temperature, strain, and chemical composition with ad-
vanced sensitivity compared with previous interferometric fiber optic 
sensors (44). Our cascaded-mode interferometer works in a transmis-
sive way without reflections. Therefore, the light energy is distributed in 
the entire device, which differs from the Fabry-Perot resonators where 
energy is built up in the cavity. This approach offers robustness to optical 
loss and improved reliability for distributed optical sensing over large-
scale systems (45). These attributes provide enhanced flexibility and 
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reliability compared to localized sensing technologies, supporting com-
pact and integrated designs for sensing applications (46).

This approach also facilitates fundamental physical studies of 
phenomena associated with the interference effects between multi-
ple transverse modes, polarization states (47), and angular momen-
tum modes in integrated circuits or optical fibers (48). The ability to 
integrate nonlinear optical effects, such as second-harmonic genera-
tion and supercontinuum generation, with mode converter integrat-
ed photonics, provides opportunities to investigate wave interactions 
and mode coupling dynamics in nonlinear optical systems.

In addition, the cascaded-mode interferometer offers potential ap-
plications in quantum interference studies and integrated photonic 
communications. Our approach is more flexible in spectral shaping 
compared to alternative solutions proposed using transmissive Bragg 
gratings on the silicon nitride platform (49), or multiarmed interferom-
eters in fibers (50). As such, it can become a tool for scalable on-chip 
quantum interference between many modes (51, 52), contributing to the 
development of quantum computing and communication technologies. 
The ability to achieve precise spectral shaping, including customizable 
free spectral ranges and tunable linewidths, addresses challenges in 
wavelength-division multiplexing, spectral filtering, and waveform en-
gineering for optical communications. Adding programmability to the 
device via thermo- or electro-optical tunable mode converters supports 
reconfigurable photonic circuits and space-efficient integrated optical 
computing applications (53–56).

Our studies offer a generalized theory framework for spectral 
shaping, opening up exciting directions for advanced sensing, 

wavelength-isolation filtering, waveform shaping, and narrow-linewidth 
light amplifying. The flexibility and compact design of the system 
expand the potential for interference-based optical engineering and 
inspire further developments in photonics, quantum technologies, 
and nonlinear optics.

MATERIALS AND METHODS
Sample fabrications
We use SOI material (thickness of the silicon device layer: 220 nm) 
to fabricate the cascaded-mode interferometers. The fabrication pro-
cesses are as follows: First, the ZEP520A e-beam resist with a thick-
ness of 450 nm is spin coated on the SOI substrate. Second, we use 
electron-beam lithography to write the designed structures and im-
merse after-exposure samples into O-xylene to develop the e-beam 
resist. Third, reactive-ion etching is used to etch the silicon device 
layer with a full etching depth of 220 nm, and Remover PG is used to 
remove all remaining resists. After that, a silicon oxide layer with 
700 nm thickness is deposited on top of the devices as a protection 
layer using chemical vapor deposition.

Numerical simulations
We use the finite-difference time-domain (FDTD) and the varia-
tional FDTD method (Ansys/Lumerical) to simulate and design our 
devices, including the grating couplers, parallel waveguide cou-
plers, TMC gratings, and cascaded-mode interferometers. In simu-
lations, the size parameters of the structures are used the same as in 
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Fig. 4. Cascaded-mode interferometer with multiple waveguide modes for parallel spectra engineering. (A) Schematic of a cascaded-mode interferometer with 
three waveguide modes (TE0, TE1, and TE2) and two TMCs separated by a distance of Lgap. The TMCs consist of two sets of gratings. One set of the grating is asymmetric and 
with the period Λ1 = 6023 nm, the length Lc1 = 3Λ = 18 μm, and the coupling strength κ1Lc1 = 0.19π, used for mode conversion between TE0 and TE1. The other set of 
grating is symmetric and with the period Λ2 = 2126 nm, the length Lc2 = 8Λ = 17 μm, and the coupling strength κ2Lc2 = 0.25π, used for mode conversion between TE0 
and TE2. The multimode waveguide width is W = 1100 nm. Lgap = 500 μm. The grating depth is 40 nm. (B) Optical image of the fabricated device. GC, grating coupler; PWC, 
parallel waveguide coupler; TMC, transmissive mode converter. (C) Scanning electron microscope image of the left TMC in (B). (D) Measured and calculated output power 
spectra of TE0, TE1, and TE2 modes when the input mode is TE0 mode.
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experiments. The refractive index of silicon and silicon oxide is 3.46 
and 1.46, respectively.

Optical measurements
The experiment measurement setup is shown in fig. S1. The laser 
source is a tunable Santec TSL-550 laser (tunable range: 1500 to 
1630 nm, linewidth: 200 kHz, wavelength accuracy: ±3 pm). A fi-
ber polarization controller is used to adjust the polarization of the 
light to reach the maximum coupling efficiency of the fiber-grating 
coupler, which is designed for transverse electric polarization. 
The output power is measured with an optical power meter Santec 
MPM-212 (power range: −80 to 10 dBm, wavelength range: 1250 
to 1650 nm).

Supplementary Materials
This PDF file includes:
Supplementary Text
Table S1
Figs. S1 to S24
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