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Fig.1 Applications of thermal emission metasurfaces in the field of thermal management. (a) Schematic of the radiative cooler structure and the

calculated emissivity under normal incidence®”; (b) The manufacturing process of the emission-cooling fabric and its radiative spectrum®”; (c)

The metasurface design based on multi-layer graphene, the working principle schematic of the active thermal surface, and the thermal camouflage

effect diagrams under different voltage biases™*'; (d) The structural diagram and absorption spectrum of the nano-thickness dielectric-based

system, and the optical security encryption effect diagrams achieved by thermal-emission patterns®®!
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Fig.2 Applications of thermal emission metasurfaces in the realm of energy utilization. (a) Schematic of a solar thermophotovoltaic device with high-

temperature resistance enabled by tungsten metasurfaces, along with the absorption spectrum spanning from the visible to the near-infrared region

and the solar thermophotovoltaic efficiency®; (b) Structural diagram and internal schematic of a thermophotovoltaic cell*’”’; (c) Schematic of an

inverted three-dimensional porous membrane structure, along with the spectral plots of high absorption in the visible light region and high

emission in the long-wave infrared region!*!
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Fig.3 Applications of thermal emission metasurfaces in sensing and detection. (a) Cross-shaped metasurface structure for CO, gas sensing and its

narrowband absorption/emission spectrum™; (b) Schematic diagram of the mid-infrared hybrid nanofluid-SEIRA platform and its liquid sensing

spectrum®; (c) Structure diagram of the III-V semiconductor metasurface and its detection spectrum®®; (d) Structure diagram of the multilayer

graphene micro-radiator and its infrared spectrum®™®
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Fig.4 Spectral thermal emission control based on metasurfaces. (a) Schematic diagram of the "metal-dielectric-metal" sandwich structure metasurface

and its absorption and emission spectra™; (b) Emissivity (absorption rate) of conical metasurfaces at different sizes®; (c) Emission spectra of

one-dimensional and two-dimensional plasmonic grating structures at T =700 K!*”); (d) Schematic diagram of dynamic control of thermal emission

spectrum achieved through ultraviolet light irradiation™

FRATRVE R S SR E o BRILZ AN, B 5 A A
Tl T80 AR B RSN VO, GST) B R 4
SRR AR g A H | OB AR NI S A R
HIL il 10970 88920 R sz X6 B SO 1% 0 3h S 0
T LA T 1 R0 M AT B . KANG %5 AP
FIH GaN/AlGaN £ Ht FBE4E R SEBL T 500 °C i
LT A A VR S A R TR R o P T B TRD A
WA T AR B e SE IR, & S B B AS A AR O, O
L8 S 58 B T L o 9 1) 22t R v ) oL B
17 1 18 (50 kHz) HL R, 38 i BEAIK p-GaN 219 B 2K
T T W, 38 TT DA — A5 0 K R S 3R 9
VO, Fil GST & B R (9 AR S B4 kL, b1 RIS P 25 32 1R
AR . VO, TEIR BB i 68 °C I BEMS 4274
WA hERA, NeEtk RS2 245k . ZHOU P H
PR 0N 4 B B B 454 5 VO, M 45 A, iR
BRI RS T SR IR . AEEIRAMET,
SFEIEAE 3~5 pm Fl 8~14 pm (9K S B 10 ELA 5 4 5
R TR VO, B N &R AN, fST SR K

B, AE 5~8 pum AR AR S, DA G2 R AR A
1V B P A4 % . QU S8 AR T 5T 42 )i -4
G- B T R I ST R ANk
SPPAS T A ) TR R AR ) GST Y45 AR &, AT 5K
PRI AG  TE L R R S . 7E GST A
A o 20 R R A R e v A R AR AT B R (4 R
A A LRI N 6.51 pm 208 % 9.33 pum.,  HAE 5
{14 3h 25 45 Ry P 20 AN TR 9 A e B 408 TR 1) LK
COPPENS %5 A V4 MIM #3515 % Skt Rl A 1k 4
(ZnO) L1, FI FH L SPGB R ZnO 7224 A B2k
T, DT IR 9 R AR R, AR 4(d) TR . S
IR AAELIMDEICT, MRH R DX S i R G kA
HAA, I SEEL T IS sh A . H T Zno B
AR MOCEI T F7 6y, % R 50T TE L) R £ I
BRSO RS eAh, U AR A R i el
S5 K4 19 TUART 2 5t 8 52 B ' 3% i 1 1) 3h A 4
LIU % AN P0RE 50 B 7 P R 58 (MEMS) 5 1 41 %}
Shiy, SCELT R E A Y R SR R A

202504477



%14

MHAEF: RER@OMIEH S A bR e LF )

PRI, JF K AN TR 5 5 B A B 28 7 2 e B AN R
MAERHRI T 204 ik . &JEpES FinT, 9f A
A B I ey 3 A 3 5, (PR R AR RE 45 v, LA S B
O PRI 55 R A BUM EDE A BIFEAR, S
REARAR . HL AR S 2 2L, I T T2 5 CMOS
PR B, 18 A R HUE I 5 AHAR AR &
S5 BETUAEL, HI AP iR R 4 X
PR L, A8 S AR S A AE WS FE , JF S B IR
B PR, I A0 B O S H K A SN 5 S A
A%, B K Bl H A s T R A e O T v T R
i 0] S E RS, (EZORA R T AR e T o L RS
PIEA — Pk, FE TR R T2 MR, &
oK B 22 1 IR T S I FH T R S RS A v
22 RiRIAE

TR GE 2551k b5 1 AR 59 38 AN HL 4 T i ik
BV, BB AT R I TR R 0 & e, AEXF
R 6 2 T 114 77 | A A S ) O 4R 0 42 R WT R . DA
—AEC AL ), 7R AT TGS B TR
A7 1], AR S 25 2B AN [) B4 2 i 4 i 1o >0, 24
BT PR ZE A I, 18 2 1 RB 6% ™ A6 AN W] 1 1 150 i i
PR S0 100 p B AR S 5 B . St
Ta K KL 45 H, MAKHSIYAN %5 A 02 1 3 7 —Fp
HAT IR 5 0 A Fe Pk G2 9ok R &1, 1Z %1
B 6% 78 A RUBE b 0 AR S 447 25 1) R B R A 1Y)

FEE s . BeAh, R R GOK R R GT st &
i, 3T R B A% 52 3 22 63 B A iR 2 6 1 1Y)
BARBCR . LIUB A 25 APV 33 7 —FhEEXTFR 9 44
KRR GEH, B A5 G 1) H 2 P R LR Bl s i CJE fe v
TE L5, I RGEMFIE T I i A0 55 08 3 B 245 4 5 5L
dFN 6 WAL RUAE, S0 B TR A R 1 A Ak 2, a0
Fl 5(a) Fi7m . WFFE 2, 38 5 Y ik S B R sl 3 K
LR A, WA 808 2 45 R I A S T e,
i LT PR AR S R BT A B . ZHANG 258 A0 3
T T AT AR ) S 3 1 SR A (BICs) B
RS AR S ) i i 109 e, 4] 5(b) Bz . BIC 248
FFHL 2 G5 B AR 4R ST A AE AL, 2% BICs HA FR K
B i B LR T (O 18 Rz Ry AR i S R, T LA &%
Rt SRR A BEAE R . 2R R EA Cy )
PR 1) 2 5 T A% ) 38 8 it A 1 A, 38 3 46 0 LA
BICs Ayt s I 4k 2% 5 434 o A [RIY BIC 88 xCH#E
WA RN (¢ = £1), 763l it 28 (8] T 2L A A R 35
FENE =X, B & 1n] % BE 16 52 B0 O 41k % 2 1) 7 42 A8 1k o
FEF 4 00 e AR T, G B SRR B A AR X
B GEA B | 22 SR 1 (A 108 TE R 4%, 2F I FH 2 B
PG . TRLLAME R I R AR BN AR AR OGSl . T
PSS K RAE 2 e e . MR AEEAE IR 0k 5 HA A
A A RRIR 2 1, 3 2o B DR 5 4 1) 5 1T R B A3 (]
SRR, B A FHERRIE . R T 45

@ 10 S © D00 s e
2 Simulation u -
3»048 £ Experiment o 0.8 o
£ Biea s £
i 0.6 ::f E 0.6
E£04 wer £ \aw? E 04
0.2 T 02
k. (2n/4)
0 o1 o0 -1 o ° x 0
2 3 4 5 6 7 Azimuthal angle frad 55 60 65 7.0 75
Wavelength/pm sn - 2n Simion o P RCP Wavelength/um
sE £ Xperiment |
1.0 0=30 S3 § 50 DOP 1gmeasured)
0.8 ;}kzg 2 8 - " 5.0.8 DOCP (measured)
= =60° B : s £
=~ 6-90° S22 € < 0k 2230 206
706 0-120 5 ERNA "
04 o130 01 0 01 o0 = 5 Bz 31 £04
M kQud)  kiQud) = g keua  E%0 5
0.2 0 = 2n 0.2
B  Max Azimuthal angle f/rad !
0 Emission/arb. units 0
2 3 4 5 6 7 40 50 60 70 80
Wavelength/pum Wavelength/pum

5 S TRARE M R PRSI (2) “CFIR MV FIR G B B RIZECT B IR R0 () Wk A9 32 PR3P BIC B LR I (o)
<27 PR TP R 7 2P B R R A P OY; (d) AT <F B8 S 7 e I A i S i B e KA B 1 TR A )

Fig.5 Polarized thermal emission control based on metasurfaces. (a) Structure diagrams of "C" and "V" shapes and polarized emissivity under different

parameters”®); (b) Measured polarization vortices of symmetry-protected BICs!""?; (c) Schematic of "Z" shaped incandescent chiral metasurface

and circular polarization characteristics!

thermal emission spectrum at large angles!'
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Fig.6 Angle-controlled thermal emission based on metasurfaces. (a) Thermal emission self-focusing and thermal emission holography achieved based on
the optical coupling theory among microscopic thermal radiators!""”); (b) Schematic diagram of a double-layer metasurface and theoretical thermal

emission focusing effect!"'"!
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Fig.7 Thermal emission angular response mechanism and angular resolved thermal emission spectrometry technology. (a) Schematic diagram of the

Al/SiO,/Al metasurface structure and the thermal emission spectra measured at different polarizations as a function of angle!"'®’; (b) Schematic

17 (¢) Schematic diagram of the

diagram of the Al/SiN/Al metasurface structure and the measurement of spatially isolated thermal emission’
angular resolved thermal emission spectrometry device and the schematic of the designed superlattice as well as the measured and calculated
thermal emission dispersion under this structure!'®; (d) The schematic diagram of the designed superlattice and the measured and calculated

thermal emission dispersion, which demonstrates the existence of interface states'''”)
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Fig.8 Progress of thermal emission microchips. (a) Schematic diagram of nanopore structure and absorption spectra under different asymmetric

parameters''”; (b) Schematic diagram of thermal emission microchip with its emission spectrum and thermal images of nanopore patterns under

different polarizations™; (c) Imaging device for thermal emission microchips and equivalent absorption spectra of ETFE, PTFE, and PVDC

materials'”!
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Abstract:

Significance = The emission emitted by traditional thermal emission sources usually manifests as broadband,
unpolarized, and nearly isotropic incoherent light. This makes it difficult to flexibly regulate the properties of
infrared thermal emission, thereby limiting its applications in the infrared field. In recent years, with the rapid
development of nanophotonics research and micro-nano processing technology, metasurfaces have been widely
used in the regulation of thermal emission properties, effectively breaking through the bottlenecks faced by
traditional thermal emission regulation. At present, thermal emission devices developed based on metasurfaces
have been widely applied in fields such as thermal management, energy utilization, and sensing detection,
significantly promoting the development of various infrared applications. In addition, relying on diversely
designed metasurface structures, researchers have achieved multi-degree-of-freedom regulation of thermal

emission-including its spectrum, polarization, and angle.

Progress  With the continuous development of metasurfaces, thermal emission devices have been widely
applied in thermal management, energy utilization, sensing and detection. In terms of thermal management,
Rephaeli et al. first proposed a radiative cooling scheme based on a metal-dielectric photonic structure. The
research groups of TAO Guangming and MA Yaoguang jointly designed and fabricated an optical radiative
cooling fabric with a morphologically hierarchical structure to achieve efficient outdoor personal thermal
management. In the field of energy utilization, CHANG C C et al. experimentally demonstrated a Solar
Thermophotovoltaic (STPV) system. A metasurface was fabricated using high-melting-point tungsten, which
maintains stability even at a high temperature of 1200 °C. The team of HENRY A reported a Thermophotovoltaic
(TPV) cell with an efficiency exceeding 40%. ZHOU L et al. proposed a plasmon-enhanced solar desalination
device. For sensing and detection applications, XU et al. developed a sapphire (Al,053)-based mid-infrared hybrid
nanofluid-Surface-Enhanced Infrared Absorption (SEIRA) platform for liquid sensing. BARHO et al. proposed a
surface-enhanced spectroscopy technique based on thermal emission from III-V semiconductor metasurfaces,
enabling effective detection of molecular layers coated on the metasurface.

Furthermore, with the continuous advancement of metasurfaces, simultaneous multi-parameter regulation of
thermal emission properties—such as spectrum, polarization, and angle—has been achieved.

In terms of thermal emission spectrum regulation: The research group of Padilla W J combined different
"cross"-shaped metal structures and used a metasurface with a Metal-Dielectric-Metal (MIM) configuration to
experimentally realize single-wavelength and dual-wavelength thermal emission. COPPENS et al. integrated an

MIM metasurface with zinc oxide (ZnO), a photosensitive material; ultraviolet light iremission excites free
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carriers in ZnO, thereby regulating the optical properties of the metasurface. In thermal emission polarization
regulation: LIU B A et al. designed an asymmetric nano-antenna structure. NGUYEN et al. proposed an ultra-thin
chiral metasurface based on connected zigzag resonators, achieving broadband circularly polarized mid-infrared
thermal emission. The JACOB Z team, by simultaneously breaking mirror symmetry and spatial inversion
symmetry, used a symmetry-broken "F"-shaped metasurface to realize asymmetric circularly polarized thermal
emission in the mid-wave infrared. In thermal emission angle regulation: ZHANG et al. designed an
aluminum/silicon dioxide/aluminum metasurface structure, achieving multi-degree-of-freedom regulation of the
spectrum, polarization, and angle of phonon thermal emission using its internal mode coupling mechanism.
ZHANG et al. further proposed a Fano resonance-based thermal radiator with an aluminum/silicon
nitride/aluminum sandwich structure. ZHONG et al. directly characterized the dispersion properties of a
superlattice structure using Angle-Resolved Thermal Emission Spectroscopy (ARTES), verifying the existence of
exceptional points in non-Hermitian systems. ZHONG et al. combined the concept of topological interface states
with thermal emission regulation, designing a superlattice unit based on a "gold-germanium-(gold)-germanium"
structure.

To achieve multi-wavelength, multi-mode emission output and multi-degree-of-freedom thermal emission
regulation, the concept of a thermal emission microchip was proposed. ZHANG et al. studied multiple symmetry-
protected BICs in one-dimensional and two-dimensional synthetic parameter spaces based on a thermal emission
microchip formed by a nano-pore metasurface array. CHU et al. proposed and realized a multi-wavelength
thermal emission microchip with high spatial resolution; based on this chip, CHU et al. further proposed a

compact and integrated indirect infrared absorption spectroscopy detection method.

Conclusions and Prospects In recent years, the technology for regulating infrared thermal emission based on
metasurfaces has made continuous progress and has been widely applied in various fields such as thermal
management, energy utilization, sensing and detection, and infrared light sources. Expanding the thermal emission
regulation mechanism and realizing the collaborative optimization of multiple parameters based on metasurfaces
not only promotes the in-depth development of theories and technologies related to thermal emission regulation,
but also lays a solid foundation for the innovation and expansion of relevant applications.To further promote the
research on thermal emission regulation to the field of practical applications, there are still many tasks worth
carrying out in the future. For instance, improving the Q-factor of thermal emission devices, enhancing the
precision of micro-nano processing technology, utilizing artificial intelligence for inverse structural design,
realizing dynamic regulation of thermal emission devices, and integrating special physical mechanisms from
optical research fields (such as topological photonics, moiré photonics, and non-Hermitian photonics) with
thermal emission regulation mechanisms into metasurface design.
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